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SUMMARY (English, Romanian, Russian) 

 

SUMMARY 

 

Cocemasov Alexandr, „Phonon processes in graphene and silicon-based nanostructures”, doctor 

thesis in physics, Chisinau, 2015. Introduction, 4 Chapters, General conclusions and 

recommendations, 200 References, 140 Pages, 66 Figures, 7 Tables. The results presented in the 

thesis are published in 33 scientific works. 

Key words: phonons, electrons, nanolayer, superlattice, nanowire, graphene, lattice dynamics, 

modulation, thermal properties. 

Domain of study: physics of nanosystems. 

Goal and objectives: investigation of phonon processes in graphene (single-, two-, three-layer 

graphene and twisted graphene) and silicon-based nanostructures (Si nanolayers, Si/Ge 

superlattices and Si-based modulated nanowires), and search of the methods for targeted control 

of their phonon properties. 

Scientific novelty and originality: a Born – von Karman lattice dynamics model for nanolayers, 

planar superlattices, cross-section modulated nanowires and multilayer graphene with different 

atomic stacking was developed; the influence of shell material and cross-section modulation on 

phonon and electron processes in Si-based nanowires was studied; a theoretical approach for 

calculation of scattering time of phonons on interfaces of Si/Ge superlattices was developed and 

the influence of Si/Ge interface quality on phonon and thermal properties of these superlattices 

was investigated; the influence of different atomic stacking on phonon and thermal processes in 

multilayer graphene was studied. 

Important scientific problem solved: it was demonstrated and investigated theoretically the 

possibility to control the phonon processes in two-layer graphene by rotation of graphene layers 

one against another around the axis perpendicular to the graphene plane. Theoretical model of 

lattice dynamics in rotated (“twisted”) two-layer graphene was developed. 

Theoretical importance: were developed theoretical approaches for targeted control of phonon 

processes in graphene and silicon-based nanostructures. 

Practical significance: the practical implementation of the obtained theoretical results can lead 

to fabrication of new classes of nanostructures with specifically desired phonon properties. 
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ADNOTARE 

 

Cocemasov Alexandr, „Procesele fononice în grafen și nanostructuri pe baza de siliciu”, teză de 

doctor în științe fizice, Chișinău, 2015. Introducere, 4 Capitole, Concluzii generale și 

recomandări, 200 Titluri bibliografice, 140 Pagini, 66 Figuri, 7 Tabele. Rezultatele prezentate în 

teză sunt publicate în 33 de lucrări științifice. 

Cuvintele-cheie: fononi, electroni, nanostrat, suprarețea, nanofir, grafen, dinamica rețelei, 

modulație, proprietăți termice. 

Domeniul de studiu: fizica nanosistemelor. 

Scopul și obiectivele: investigarea proceselor fononice în grafen (cu un singur, două, trei straturi 

și grafen ”twisted”) și nanostructuri pe baza de siliciu (nanostraturi din Si, suprarețele Si/Ge și 

nanofire modulated pe baza de Si), și căutarea metodelor de control precondiționat a 

proprietăților lor fononice. 

Noutatea și originalitatea științifică: a fost dezvoltat modelul Born – von Karman a dinamicii 

rețelei cristaline pentru nanostraturi, suprarețele planare, nanofire cu secțiunea transversală 

modulată și grafen multistrat cu aranjarea cristalină diferită; a fost studiată influența materialului 

de înveliș și modulației secțiunii transversale asupra proceselor fononice și electronice în 

nanofirele pe baza de Si; a fost dezvoltată o metodă teoretică pentru calcularea timpului de 

relaxare în procesele de împrăștiere a fononilor pe interfețele suprarețelelor Si/Ge și a fost 

studiată influența calității interfețelor Si/Ge asupra proprietăților fononice și termice al acestor 

suprarețele; a fost studiată influența aranjării cristaline asupra proceselor fononice și termice în 

grafenul multistrat. 

Problema științifică importantă soluționată: a fost demonstrată și investigată teoretic 

posibilitatea de control a proceselor fononice în grafenul bistrat prin rotația straturilor de grafen 

unul împotriva altuia în jurul axei perpendiculare către planul straturilor. A fost dezvoltat 

modelul teoretic a dinamicii rețelei cristaline în grafenul bistrat cu rotația dintre straturi 

(”twisted”). 

Semnificația teoretică: au fost dezvoltate metode teoretice de control precondiționat a 

proceselor fononice în grafen și nanostructuri pe baza de siliciu. 

Valoarea aplicativă: implementarea practică a rezultatelor teoretice obținute poate contribui la 

fabricarea a nanostructurilor cu proprietăți fononice precondiționate. 
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АННОТАЦИЯ 

 

Кочемасов Александр, „Фононные процессы в графене и наноструктурах на базе 

кремния”, диссертация на соискание ученой степени доктора физических наук, Кишинев, 

2015. Введение, 4 Главы, Общие выводы и рекомендации, 200 Ссылок, 140 Страниц, 66 

Рисунков, 7 Таблиц. Результаты, представленные в диссертации, опубликованы в 33 

научных работах. 

Ключевые слова: фононы, электроны, нанослой, сверхрешетка, нанонить, графен, 

динамика решетки, модуляция, тепловые свойства. 

Область исследований: физика наносистем. 

Цель и задачи: исследование фононных процессов в графене (одно-, двух-, трех-слойном 

и “twisted” графене) и наноструктурах на базе кремния (Si нанослоях, Si/Ge 

сверхрешетках, модулированных нанонитях на базе Si), и поиск методов 

целенаправленного управления их фононными свойствами.  

Научная новизна и оригинальность: развита модель динамики решетки Борна – фон 

Кармана для нанослоев, плоских сверхрешеток, нанонитей с модуляцией поперечного 

сечения и многослойного графена с различной упаковкой графеновых слоев; исследовано 

влияние материала обкладки и модуляции поперечного сечения на фононные и 

электронные процессы в нанонитях на базе Si; развит теоретический подход для расчета 

времени рассеяния фононов на интерфейсах Si/Ge сверхрешеток и исследовано влияние 

качества Si/Ge интерфейса на фононные и тепловые свойства этих сверхрешеток; изучено 

влияние способа упаковки графеновых слоев на фононные и тепловые процессы в 

многослойном графене. 

Решенная важная научная задача: теоретически продемонстрирована и исследована 

возможность управления фононными процессами в двухслойном графене путем поворота 

графеновых слоев друг относительно друга вокруг оси перпендикулярной к плоскости 

слоев. Развита теоретическая модель динамики решетки в двухслойном графене с 

поворотом (“twisted”). 

Теоретическая значимость: разработаны теоретические подходы для управления 

фононными процессами в графене и наноструктурах на базе кремния. 

Прикладная ценность: практическая реализация полученных теоретических результатов 

может способствовать появлению новых классов наноструктур с определенно заданными 

фононными свойствами. 
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LIST OF ABBREVIATIONS 

 

BZ  – Brillouin zone 

DFT  – density-functional theory 

BvK – Born - von Karman 

FCC – face-centered cubic 

VFF  – valence force field 

RT  – room temperature 

LAPACK  – Linear Algebra PACKage 

ML  – monolayer 

NW – nanowire 

MNW  – modulated nanowire 

DOS  – density of states 

TF  – thermal flux 

BTE  – Boltzmann transport equation 

BLG  – bilayer graphene 

FLG  – few-layer graphene 

T-BLG – twisted bilayer graphene 

T-FLG  – twisted few-layer graphene 
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INTRODUCTION 

 

Relevance and importance of the subject of the Thesis 

The relevance and importance of the subject of the Thesis is determined by a huge interest 

from both scientific and engineering community toward the nanoscale structures and materials 

with enhanced electron and phonon properties. The investigation of electron and phonon 

processes in nanostructures, as well as the search for novel nanoscale geometries and materials 

with properly engineered electron and phonon properties represents one of the most important 

problems of modern nanoscience. The technological progress in dimensional scaling of different 

material structures in the past few decades determined many important advancements in various 

areas: electronics, phononics, thermal management, thermoelectricity, photovoltaics, energy 

storage, etc. Further development of these fields requires a thorough understanding of the 

electron and phonon processes at nanoscale level.  

Electrons and phonons manifest themselves in all properties of materials: mechanical, 

optical, thermal, chemical, etc. Spatial confinement of electrons and phonons in nanostructures 

strongly affects their energy spectra, density of states and electron-phonon interaction. Thus, 

nanostructures offer a new way of controlling electron and phonon processes together with 

electron - phonon interaction via tuning electron and phonon dispersion relations, i.e. electron 

and phonon engineering. While electron engineering idea has been widely used during the last 60 

years, the phonon engineering is a relatively new approach. Phonon engineering is considered to 

be as powerful as the idea of the band-gap engineering for electrons, which is now utilized in a 

variety of devices.  

One of the areas where phonon engineering is playing an extremely important role is heat 

management at nanoscale, since phonons are the main heat carriers in many nanostructured 

material systems such as semiconductor and carbon nanostructures. Aggressive miniaturization 

of electronic devices and increasing their operation speed makes the problem of heat removal 

from the electronic circuits particularly important. Therefore the scientific search of materials 

with high thermal conductivity becomes extremely crucial for the future development of 

nanoelectronics. One of the two-dimensional nanostructures investigated in this Thesis is single-

layer and few-layer graphene. Graphene, among its excellent electron conductive properties, 

reveals extremely high thermal conductivity. Few-layer graphene flakes, which are easy to 

produce, also posses unusual physical properties: depending on the stacking configuration they 

demonstrate metallic- or semiconductor-like behavior. Despite of the fact that numerous 

scientific studies of the thermal properties in few-layer graphene have been carried out in the last 

few years, the phonon and thermal properties in twisted few-layer graphene, when one carbon 
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layer is rotated relatively to another layer by a specific angle were not studied yet. This 

investigation is very important and timely because change in the phonon properties in twisted 

few-layer graphene for different angles of rotation may significantly modify its thermal 

properties and can give an important insight into the physics of interlayer interaction in few-layer 

graphene. 

Another area where electron and phonon engineering has given a significant performance 

boost is thermoelectricity, i.e. thermal-to-electrical energy conversion and vice-versa. Among 

other renewable energy sources, thermoelectricity provides unique opportunity since it can be 

used as a generator deriving power out of waste heat from different sources: integrated chips, 

cars, buildings, etc. This opens up the exciting area of thermoelectric waste heat recovery. One-

dimensional and two-dimensional nanostructures are one of the most promising thermoelectric 

materials that allow separate engineering of electronic and thermal properties. The ability to 

manipulate the materials at the atomic scale using nanostructures such as nanowires, thin films 

and superlattices plays a key role in enhancing the thermoelectric efficiency. 

 

Goal and objectives of the Thesis 

The goal of this Thesis is the investigation of phonon processes in graphene and silicon-

based nanostructures, as well as determination of novel nanostructures for effective electron and 

phonon engineering. 

In order to achieve this goal, the following objectives are formulated:  

1. Determination of novel one-dimensional and two-dimensional nanostructures with specific 

geometrical and material parameters, as perspective candidates for electron and phonon 

engineering. 

2. Development of theoretical models to describe phonon and electron states in novel one-

dimensional and two-dimensional nanostructures. 

3. Investigation of electron, phonon and thermal properties of novel as well as generic one-

dimensional and two-dimensional nanostructured materials. 

The following theoretical methods and models are used to accomplish the objectives: 

1. Lattice dynamics theory for theoretical modeling the phonon states in novel one-dimensional 

and two-dimensional nanostructures. 

2. Extension and application of the effective mass approach in order to investigate electron 

states in novel nanostructures.  

3. Extension and application of the Boltzmann transport equation approach for modeling the 

thermal properties of novel one-dimensional and two-dimensional nanoscale structures. 
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Scientific novelty of the results:  

1. A Born - von Karman lattice dynamics model for cross-section modulated nanowires and 

multilayer graphene with different atomic stacking was developed. 

2. The influence of cross-section modulation on phonon and electron processes in Si-based 

nanowires was studied for the first time. 

3. A theoretical approach for calculation of scattering time of phonons on interfaces of Si/Ge 

superlattices was developed and the influence of Si/Ge interface quality on phonon and 

thermal properties of these superlattices was analyzed. 

4. The influence of different atomic stacking on phonon and thermal processes in multilayer 

graphene was elucidated for the first time. 

An important scientific problem was solved in the Thesis namely it was demonstrated and 

investigated theoretically the possibility to control the phonon processes in two-layer graphene 

by rotation of graphene layers one against another around the axis perpendicular to the graphene 

plane. 

 

Main items to be defended:  

1. An up to 5 times drop of the phonon heat flux at room temperature is predicted in Si cross-

section modulated nanowires in comparison with generic uniform Si nanowires, using the 

lattice dynamics Born – von Karman model and the Boltzmann transport equation for 

phonons. The effect is explained by the redistribution of the phonon energy spectra, strong 

decrease of the average phonon group velocities and exclusion of the phonon modes trapped 

in cross-section modulated nanowires segments from the heat flow.  

2. Using the lattice dynamics Born – von Karman model and the Boltzmann transport equation 

approach it was demonstrated theoretically that in Si/Ge core/shell cross-section modulated 

nanowires the combination of cross-section modulation and acoustic mismatch between Si 

and Ge materials can lead to a three orders of magnitude drop of room temperature phonon 

thermal conductivity as compared to bulk Si. 

3. A new type of hybrid folded rotationally-dependent phonon modes in twisted bilayer 

graphene were predicted employing lattice dynamics Born – von Karman model for 

intralayer interaction and an angle-dependent interlayer interatomic potential. These modes 

appear due to reduction of the Brillouin zone size and changes in the interaction between 

graphene layers. 

4. Applying the Boltzmann transport equation approach for phonons it was theoretically 

demonstrated that in single-layer, bilayer and twisted bilayer graphene the phonon specific 
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heat at temperatures less than 15 K varies as T
n
, where n = 1 for graphene, n = 1.6 for bilayer 

graphene and n = 1.3 for twisted bilayer graphene. 

 

Theoretical importance and practical significance of the results 

Theoretical importance of the results presented in the Thesis consists in the elaboration of 

new (such as Born – von Karman model of lattice dynamics for modulated nanowires and 

twisted bilayer graphene) and the extension of existent (such as effective mass approach for 

electrons and Boltzmann transport equation for thermal transport in modulated nanowires) 

theoretical approaches for investigation of phonons and electrons in graphene and silicon-based 

nanostructures. Another significant scientific result of the Thesis is the determination of novel 

nanoscale structures, such as core/shell modulated nanowires and twisted bilayer graphene, with 

high electron and phonon engineering abilities. 

The practical significance of the Thesis consists in the fact that the obtained theoretical 

results may contribute to the design and practical realization of novel nanostructures with 

optimized and properly engineered electron and phonon properties. 

 

Approbation of the results 

The results obtained in the Thesis were presented at following international scientific 

conferences:  

 VII-th International Conference of Young Researchers „ICYR-2009”, Chisinau, Moldova, 

2009. 

 VIII-th International Conference of Young Researchers „ICYR-2010”, Chisinau, Moldova, 

2010. 

 IX-th International Conference of Young Researchers „ICYR-2011”, Chisinau, Moldova, 

2011. 

 9
th

 European Conference on Thermoelectrics „ECT-2011”, Thessaloniki, Greece, 2011. 

 DPG Spring Meeting - 2012, Berlin, Germany, 2012. 

 13
th

 International Conference on Modern Information and Electronic Technologies „MIET-

2012”, Odessa, Ukraine, 2012. 

 I-st All-Russian Congress of Young Scientists, Saint-Petersburg, Russia, 2012. 

 International Scientific Conference for Undergraduate and Postgraduate Students and Young 

Scientists „Lomonosov-2012”, Moscow, Russia, 2012. 

 X-th International Conference of Young Researchers „ICYR-2012”, Chisinau, Moldova, 

2012.  
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 International Scientific Conference for Undergraduate and Postgraduate Students and Young 

Scientists „Lomonosov-2013”, Moscow, Russia, 2013.  

 14
th

 International Conference on Modern Information and Electronic Technologies „MIET-

2013”, Odessa, Ukraine, 2013.  

 CECAM-Workshop: Nanophononics, Bremen, Germany, 2013. 

 15
th

 International Conference on Modern Information and Electronic Technologies „MIET-

2014”, Odessa, Ukraine, 2014. 

 DPG Spring Meeting - 2014, Dresden, Germany, 2014. 

 

Publications 

Based on the results presented in the Thesis 33 scientific works were published, including 6 

articles in ISI journals and 15 abstracts at international conferences. 2 articles and 2 abstracts 

were published without coauthors. 

 

Structure of the Thesis 

The Thesis consists of Introduction, 4 Chapters and Conclusions. The Thesis contains 200 

references, 140 pages, 66 figures and 7 tables. 

In Chapter 1 is presented a detailed review of recent theoretical and experimental 

investigations of phonon and electron processes in graphene and silicon-based nanostructures. 

In Chapter 2 a Born-von Karman model of lattice dynamics for nanolayers and planar 

superlattices with diamond crystal lattice is developed. The Boltzmann transport equation 

approach is proposed for the investigation of the phonon and thermal processes in Si nanolayers 

and Si/Ge planar superlattices. Phonon energy spectra within Born – von Karman model of 

lattice dynamics are calculated for silicon nanolayers of different widths. An analytical 

expression for phonon thermal conductivity coefficient for nanolayers is obtained from 

Boltzmann transport equation in relaxation time approximation. Thermal transport is investigated 

in nanometer-wide silicon nanolayers and a good agreement between theoretical calculations and 

the experimental data for 20-nm-thick and 30-nm-thick silicon nanolayers is obtained. The major 

phonon scattering processes in nanolayers, such as Umklapp and phonon-boundary scattering are 

described and their influence on the total thermal conductivity is analyzed. The optical phonons 

contribution to total thermal conductivity of silicon nanolayers of different widths and at 

different temperatures is elucidated. In case of planar Si/Ge superlattices phonon energy spectra 

and average phonon group velocity are calculated and analyzed. The perturbation theory and 

second quantization formalism are used in order to model the scattering of phonons on interfaces 

in Si/Ge superlattices. The role of interface mass-mixing scattering of phonons in limiting the 
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total phonon lifetime in Si/Ge planar superlattices is established. It is concluded that interface 

mass-mixing scattering of phonons can lead to a peculiar behavior of phonon thermal 

conductivity of these structures owing to the non-trivial dependence of interface scattering rate 

on the amplitudes of the atomic displacements. For a wide temperature range from 50 K to 400 

K a good agreement between theoretical and experimental phonon thermal conductivity is 

obtained for a Si/Ge planar superlattice when phonon-phonon scattering is not taken into 

account, indicating that the interface mass-mixing scattering can be the dominant mechanism of 

phonon scattering in real Si/Ge planar superlattices.  

In Chapter 3 the effective mass approximation is extended and applied for calculation and 

investigation of electron energy spectra and electron wave functions in core/shell Si/SiO2 

nanowires with constant and periodically modulated cross-section. The influence of cross-section 

modulation on the electron energy spectra and electron wave functions in Si nanowires is 

established. An inhomogeneity in the ground state wave function distribution along the wire’s 

axis is found. The lattice dynamics Born – von Karman model and the Boltzmann transport 

equation are applied for the investigation of phonon and thermal processes in Si nanowires, Si 

cross-section modulated nanowires and novel Si/Ge core/shell cross-section modulated 

nanowires. The possibility of a significant suppression of the phonon heat flux in Si cross-section 

modulated nanowires in comparison with the generic uniform cross-section Si nanowires is 

theoretically demonstrated. A strong decrease of the average phonon group velocities together 

with a corresponding suppression of the phonon thermal flux is found and the mechanisms 

behind this suppression are elucidated. The phonon and thermal properties in novel Si/Ge 

core/shell cross-section modulated nanowires are investigated. The combination of cross-section 

modulation and acoustic mismatch between Si and Ge materials is proposed as an effective tool 

for engineering phonon flux in the one-dimensional modulated heterostructures. A drastic 

reduction of the room temperature thermal conductivity in Si/Ge core/shell cross-section 

modulated nanowires in comparison with bulk Si is predicted. A detailed explanation of this 

effect is presented. 

The Chapter 4 is devoted to the investigation of phonon and thermal properties of single-, 

two- and three-layer graphene as well as of twisted bilayer graphene structure with different 

angles of rotation between the graphene planes. A Born – von Karman model of lattice dynamics 

for these structures is developed and phonon energy spectra in all high-symmetry 

crystallographic directions are calculated. The comparison between theoretical and experimental 

phonon frequencies is presented. The tabulated phonon frequencies for twisted bilayer graphene 

for different rotational angles are provided. The Boltzmann transport equation approach is 

applied for thermal transport modeling in single- and few-layer graphene. The influence of the 
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rotational angle on the phonon energy spectra, as well as phonon mode-specific contribution to 

the thermal transport of single-, two- and three-layer graphene is established. The role of 

different phonon scattering processes in limiting the thermal conductivity of single-layer and 

non-rotated few-layer graphene is determined. The appearance of a new type of hybrid folded 

rotationally-dependent phonon modes in twisted bilayer graphene is theoretically predicted and 

the physics behind this phenomenon is elucidated. The temperature dependence of the phonon 

heat capacity in twisted bilayer graphene, calculated for the first time, is presented.  
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1. PHONON AND ELECTRON PROCESSES IN GRAPHENE AND Si-BASED 

NANOSTRUCTURES 

 

1.1. Electron processes in Si-based nanostructures 

 

The key effect which determines the electronic properties of nanoscale structures is quantum 

confinement. When the characteristic dimensions of the material become comparable to the de 

Broglie wavelength of the electron wave function the quantum confinement effect manifests 

itself in quantization of the electron energy spectrum i.e. appearance of discrete energy levels 

and band gaps [1]. Thus, shrinking the geometrical dimensions of structures results in the size-

dependence of their electronic properties, which may deviate substantially from their bulk values 

[2]. One of the most important steps in investigation of the electronic properties of 

nanostructures is the choice of an appropriate bandstructure model.  

The electronic bandstructure calculations are based on the solution of the Schrodinger 

equation. One of the most widely used approaches to solve the Schrodinger equation is the 

effective mass approach. The general form for the electronic Hamiltonian in the effective mass 

approach has the form: 

2
ˆ [ ( , , ) ( , , ) ( , , ) ] ( , , )

2
x y z bH M x y z M x y z M x y z V x y z

x x y y z z

     
  

     
  , 

where  is Planck constant, ( , , )bV x y z  is potential barrier in ( , , )x y z  point, ( , , )iM x y z  is the 

inverse electron effective mass along the i axis. Once the Hamiltonian Ĥ  is constructed the 

electron energy states and wave functions are obtained from a numerical solution of a time-

independent Schrodinger equation: 

ˆ
n n nH E   , 

where nE  and n  is electron energy and electron wave function for quantum number n, 

respectively. Using the appropriate boundary conditions for a given nanostructure’s geometry 

one can obtain the dispersion relation ( )nE k  for a set of electron wave vectors k . However, it 

should be pointed out that in the effective mass approach the actual atomistic structure of a 

material is not taken into account. As a result, the effective mass approach works well only in the 

vicinity of conduction band minima and does not ensure a correct calculation of the electronic 

bandstructure in the entire BZ of nanostructures. 

During the last two decades empirical tight-binding methods have become the primary tool 

in obtaining the correct electronic bandstructure of different nanostructures. Properly adjusting 
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the parameters of a tight-binding model allows one to correctly reproduce the electronic band 

gaps and effective masses in the entire BZ. The original tight-binding method was first proposed 

by Slater and Koster and accounted for eight electronic orbitals: one s and three p orbitals with 

spin up and spin down polarizations (sp
3
) [3]. In Ref. [4] the approach was extended to include a 

fictitious s-like state s*, which accounted for all other outer orbital interactions and allowed for a 

more accurate description of the conduction band in zincblende semiconductors. Recent 

developments in tight-binding methods [5-7] include also the excited d orbitals (sp
3
d

5
s*) and can 

reproduce accurately the complete bulk bandstructure of many crystals.  

In particular, it is usually enough to include the interactions between nearest neighbor atoms 

only. For example, the nearest neighbor sp
3
d

5
s* tight-binding model is composed of orthogonal 

orbitals [3, 8] localized on atoms which form the basis set of the electronic structure calculation. 

The orbitals are: 1 s orbital, 3 p orbitals, 5 d orbitals and 1 s* orbital. The orbitals on one atom 

can interact with orbitals on other neighbor atoms and the resulting wave functions are called the 

“two-centered integrals” [3]. Within the semi-empirical tight-binding models these two-centered 

integrals are used as fitting parameters [8]. The algorithm for calculating these parameters was 

given in Refs. [8-9]. The tight-binding model with properly adjusted parameters allows one to 

obtain correct energy dispersions and effective masses at high-symmetry points in the entire BZ 

of nanostructure. A detailed methodology of tight-binding implementation in bulk and 

nanostructures was provided in Refs. [8, 10].  

The most recent developments in electronic bandstructure calculations include ab initio 

techniques, such as DFT [11]. The fundamental importance and predictive power of the ab initio 

techniques, especially when applied to the novel nanostructured materials, is hard to 

overestimate. However, due to a great computational complexity of the DFT calculations, mainly 

arising from the many-body interactions problem, its use in studying the electronic properties of 

real-size nanostructures is still very limited. Therefore, the specifics of the DFT approach are not 

covered in this Thesis; for detailed information on the DFT models one can refer to works [11-

14]. 

Due to their excellent electronic properties, silicon nanolayers and nanowires currently 

constitute the main material base for modern nanoelectronic devices, such as metal-oxide-

semiconductor field-effect transistors (MOSFETs) and fin field-effect transistors (FinFETs) [15-

20]. The characteristic size of the active silicon channels in the state-of-art FETs is 14 nm (as to 

2014 year), considering the silicon lattice constant ~ 0.543 nm, they consists of just 100 atomic 

layers. At this dimensional scale the quantum confinement of carriers (electrons, phonons, etc.) 

is one of the main mechanisms which determine the characteristics of a nanoelectronic device.  
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Below are reviewed some of the recent developments in theoretical and experimental studies 

on electron-assisted processes in different nanostructures, with central attention paid to the Si-

based one-dimensional and two-dimensional nanoscale materials. 

In Ref. [21] the authors have studied the effect of confinement dimensions and crystallinity 

on the magnitude of the band gap expansion (as a function of decreasing size) in Si and Ge 

nanolayers, nanowires and quantum dots. Models with medium and strong confinement provided 

the best fit to experimental results. In Figures 1.1 and 1.2 it is presented the experimental and 

theoretical electronic energy gap in disordered and crystalline silicon nanolayers as a function of 

layer thickness. 

 

 

Fig. 1.1. The dependence of energy gap on layer thickness in disordered Si nanolayers. The dots, 

triangles and squares represent experimental data, while lines denote theoretical calculations 

from Ref. [21]. 
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Fig. 1.2. The dependence of energy gap on layer thickness in crystalline Si nanolayers. The dots, 

triangles and squares represent experimental data, while lines denote theoretical calculations 

from Ref. [21]. 

 

It was concluded that crystalline materials exhibit medium confinement, while amorphous 

materials exhibit strong confinement regardless of the confinement dimensions of the system. 

In Ref. [22] the authors have used methods derived from first-principles to examine the 

effect of different surface preparation, namely, passivation of silicon surface bonds by -H, -OH 

and -NH2, on the band gap of silicon nanowires with varying diameters. For both [100] and [110] 

oriented nanowires they found that the band gap narrows with increased wire diameter to the 

bulk value for large diameters. However, surface termination by -OH and -NH2 introduces a 

hybridization effect that competes with quantum confinement at smaller diameters, inducing a 

large relative red shift to the band gap by up to 1 eV for small diameter wires. In Figure 1.3 is 

plotted the calculated band gap Eg for nanowires with different surface terminations as the 

diameter of the silicon core changes. 

 

 

Fig. 1.3. The calculated within an ab initio approach electronic band gap as a function of the 

[100] silicon nanowire diameter for various surface terminations. The figure is taken from Ref. 

[22]. 

 

The origin of the reduced band gap was related to the interaction between the Si 3p and O/N 2p 

states in the valence band edge of the nanowire. The obtained results allow for a simple 

electronic structure engineering of nanometer scale silicon wires via surface treatment. 

In the recent publication [23] the authors settled a general expression for the Hamiltonian of 

the electron-phonon deformation potential interaction in case of a novel nanosystem – non-polar 
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core-shell cylindrical nanowire. On the basis of long range phenomenological continuum model 

for the optical phonon modes and by taking into account the bulk phonon dispersions, they 

studied the size dependence and strain-induced shift of the electron-phonon coupling strengths 

for Ge-Si and Si-Ge core-shell nanowires. The deformation potential electron-phonon 

Hamiltonian was derived analytically and some numerical results for the frequency core modes 

and vibrational amplitudes were reported. The developed approach allows for the unambiguous 

identification of the strain and confinement effects in non-polar core-shell nanowires. The 

obtained results contribute to the characterization and device applications of the novel core-shell 

nanowires. 

In Ref. [24] the authors reported on fabrication and characterization of ultra-thin suspended 

single crystalline flat silicon layers with thickness down to 6 nm. They have developed a method 

to control the strain in the nanolayers by adding a strain compensating frame on the silicon 

nanolayer perimeter to avoid buckling of the released layers. The magnitude of the strain was 

related to the strain compensation ratio as Rc=wc/wm, where wm is the width of the bare Si part of 

the nanolayer and wc is the width of the area of the released layer covered with the compensating 

layer (Si3N4). To illustrate the effect of the compensation ratio Rc and the thickness of the 

nanolayer on the induced strain, LO phonon peaks measured from sets of 54 and 6 nm thick 

layers with various Rc of 0.8, 1.2 and 3.5, together with a reference Si LO peak are shown in Fig. 

1.4. 

 

Fig. 1.4. LO peaks measured by Raman scattering from 6 and 54 nm thick free-standing Si 

nanolayers with the strain compensation ratio Rc of 0.8, 1.2 and 3.5. The figure is taken from 

Ref. [24]. 
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It was shown that by changing the properties of the frame the strain in the silicon nanolayer can 

be tuned in a controlled manner. The authors argued that both the mechanical properties and the 

electronic band structure can be engineered and the resulting strain-engineered nanolayers 

provide a unique laboratory to study low-dimensional electronic, photonic and phononic 

phenomena. 

In Ref. [25] by Boykin T. et.al. the theory, based on empirical tight-binding approach, was 

developed to describe the valley splitting observed in silicon nanolayers with strain. The valley 

splitting was computed for realistic devices proposed for quantum computing. It was shown, that 

the splitting is in general nonzero even in the absence of electric field. The splitting in a square 

well oscillated as a function of the number of atomic layers in the silicon nanolayer, with a 

period that was determined by the location of the valley minimum in the BZ.  

One of the hottest topics of today’s solid state physics is related with investigation of 

electronic and other properties of carbon materials, such as carbon nanotubes, single- and few-

layer graphene, graphene nanoribbons, etc. Owing to some of their unique properties, carbon 

nanomaterials are considered one of the most perspective candidates for future high-tech 

nanoelectronic applications. In this context, the reports on the unusual properties of novel 

nanostructures made from conventional semiconductor materials, which could extend the 

applicability of the current well elaborated semiconductor technologies, are of a particular 

interest. One of the recent such results were presented in Ref. [26] by Perim E. et.al. In their 

work the authors reported on theoretical discovery of novel silicon and germanium tubular 

nanostructures with no corresponding stable carbon analogues. The electronic and mechanical 

properties of these new tubes were investigated through ab initio methods. Their results showed 

that the novel tubular structures have lower crystal energy than their corresponding nanoribbon 

counterparts and are stable up to high temperatures. Silicon tubes were stable at temperatures as 

high as 500 K, while germanium ones reached temperatures as high as 1000 K. Both tubes were 

semiconducting with small indirect band gaps, which could be significantly altered by both 

compressive and tensile strains. Large bandgap variations of almost 50% were observed for 

strain rates as small as 3%, suggesting possible applications in a variety of technological devices. 

The possibility to incorporate both electronic and optical functionality in a single material 

offers the tantalizing prospect of amplifying, modulating and detecting light within a monolithic 

platform. One of the major difficulties, which limit the application of silicon nanostructures in 

modern photonics, is their transparency at telecommunication wavelengths. A particularly 

interesting result in this direction was reported in Ref. [27] by Healy N. et.al. The authors made 

an important step toward the realization of the described monolithic devices. They developed a 
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laser processing technique for silicon fibre technology through which one can modify the 

electronic band structure of the semiconductor material as it is crystallized. The unique fiber 

geometry in which the silicon core is confined within a silica cladding allowed large anisotropic 

stresses to be set into the crystalline material so that the size of the bandgap could be engineered. 

The stresses cause an anisotropic distortion of the crystal lattice which acts to reduce its 

electronic bandgap energy, as illustrated in Figure 1.5 below. An extreme bandgap reduction 

from 1.11 eV down to 0.59 eV, enabling optical detection out to 2100 nm, was demonstrated. 

 

 

Fig. 1.5. Simulations of the bandgap as a function of strain – hydrostatic and in-plane across 

three main crystallographic planes. The figure is taken from Ref. [27]. 

 

Authors concluded, that the obtained results could inspire a new generation of mass-producible, 

fully functional, monolithic electron-photonics devices that are compatible with current 

semiconductor technology. 

 

1.2. Theoretical models for phonons in nanostructures 

 

The concept of a phonon and its properties were first introduced by P. Debye [28] in 1912. A 

phonon is defined as a quantum of vibrational energy within a crystal structure. A phonon (or 

phonon mode) is considered a quasi-particle with energy s , quasi-momentum q  and 

vibrational polarization s. The set of phonon modes with the same polarization forms the phonon 

branch, and thus the index s is also considered as a phonon branch index. The phonon 

polarization is characterized by the relation between the direction of atomic vibrational motion 

and wave propagation. The most common examples of polarizations are: longitudinal, where 

atoms oscillate in the direction of wave propagation, and transverse, where atoms oscillate 
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perpendicular to the direction of propagation. The maximum possible number of branches in a 

crystal equals to the number of atoms per unit cell multiplied by the number of degrees of 

freedom per one atom (normally three). The relation between phonon’s frequency and its wave 

vector is called phonon dispersion: ( )s q  and it is a fundamental relation of lattice dynamics 

theory. The phonon branches are divided into two categories: acoustic and optical. Acoustic 

branches are defined by the linear dispersion law near the BZ center: ( 0)s q q    with atoms 

within each unit cell vibrating in-phase while optical branches are defined by the relation 

( 0) 0s q   , with atoms within each unit cell moving out-of-phase. However, in nanostructures 

due to the confinement effect the atomic vibrations are quantized and there appear a large 

number of mixed modes, which have the vibrational behavior of both acoustic and optical nature.  

During the last century there were developed several models to describe the lattice dynamics 

(phonons) in bulk and nanostructured crystalline materials. These models vary greatly in 

complexity from simple continuum approaches to detailed ab initio techniques. Each of these 

models has their advantages and disadvantages, and their field of application can also differ. 

Below, the current achievements in the theory of phonons in nanostructures are reviewed. The 

basic concepts of the elastic continuum and force-constant models are provided.  

The basics of lattice dynamics were founded in 1912 by P. Debye [28] and independently by 

M. Born and Th. von Karman [29]. A systematic lattice dynamics theory was presented three 

years later by M. Born in his book “Dynamics of Crystal Lattices” (in German) [30].  Debye 

introduced the definition of ‘phonon’ and proposed a simple model known as the elastic isotropic 

continuum model. The basic idea of the continuum model is that the atomic crystal structure is 

disregarded and crystal is treated as a continuous elastic medium. The application of continuum 

models in describing acoustic and optical phonon phenomena in nanostructures has been 

reviewed in 2001 by Stroscio and Dutta [31]. A good application of the elastic continuum model 

provides the case of acoustic phonon modes propagating in a nanowire. The equation of motion 

for elastic vibrations in an anisotropic medium can be written as: 

2

3

2

( )m mi

i

d U x d

dt dx


  , 

where 1 2 3( , , )U U U U  is the displacement vector,   is the mass density of the material, mi  is 

the elastic stress tensor given by mi mikj kjc U   and 
1

2

k i
kj

j k

U U
U

x x

  
     

 is the strain tensor. The 

nanowire has two distinctively different symmetry planes and four possible types of the 

propagating phonon waves, which are the solutions of the equation of motion. These solutions 
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are usually denoted as [32]: Dilatational: ( , ); ( , ); ( , )AS SA SS D

x y z iu x y u x y u x y u , Flexural1: 

1( , ); ( , ); ( , )
FSS AA AS

x y z iu x y u x y u x y u , Flexural2: 2( , ); ( , ); ( , )
FAA SS SA

x y z iu x y u x y u x y u , Shear: 

( , ); ( , ); ( , )SA AS AA Sh

x y z iu x y u x y u x y u . Here SA and AS show mode parity relative to the change of 

sign, ( , )f x y  ( , )f x y  ( , ) ( , )SSf x y f x y  , ( , )f x y = ( , )f x y  = ( , )f x y  ( , )AAf x y , 

etc. In Figure 1.6 is presented the phonon dispersion for the Dilatational polarization in the GaN 

nanowire with 4 nm x 6 nm cross-section. The figure is taken from Ref. [32]. The free boundary 

conditions are applied at the nanowire’s boundary. 

 

 
        q (nm

-1
) 

Fig. 1.6. Phonon dispersion in free-standing GaN nanowire. 

 

One can see from Figure 1.6 that phonon spectrum of nanowire is quantized, i.e. there exist 

a large number of discrete energy branches with different dispersions. Also, there is only one 

acoustic branch in Dilatational polarization and the rest of the branches are acoustic-like with 

( 0) 0q   , which is a direct result of phonon confinement. At the same time, there is a 

considerable disadvantage of the elastic continuum treatment, namely, the phonon branches at 

the BZ edge at high q (short wave lengths) posses a considerable dispersion, i.e. large group 

velocity, which is in contradiction with more accurate atomistic models of lattice dynamics (see 

for example Ref. [33]), predicting group velocities close to 0. 

As the device size approaches the nanometer scale a continuum material description is no 

longer accurate. Lattice dynamics models, which account for discrete atomistic structure of the 

crystal, should be used instead. There are two main atomistic approaches in modeling the lattice 

dynamics of crystal lattice, these are phenomenological force-constant models and ab initio 

models. The ab initio models were first developed in the 1970’s. However, ab initio lattice 

dynamics calculations in nanostructures have only recently become feasible, due to the many-

body interactions problem and due to the lack of translation symmetry in one or more directions 
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which introduces difficulties in modeling the periodic potentials of the crystal structure. 

Calculation of the phonon dispersion relations for nanostructures with a thousand of atoms or 

more is nearly impossible within ab initio techniques with current computational resources. This 

has led to the use of phenomenological force-constant models for phonons in nanostructures. 

These were first developed a century ago [34] and have been continuously improved and adapted 

for different materials and structures. In the phenomenological force-constant models the 

interatomic force constants are treated as fitting parameters, which should be adjusted in order to 

reproduce the experimentally verified phonon spectra of a bulk material. A classic lattice 

dynamics force-constant model called “Born – von Karman model” was developed in 1954 [35].  

In BvK model the total potential energy of the crystal lattice is given in the harmonic 

approximation as: 

, , , , ,

1
( , ) ( ) ( )

2
s s

ij s s i s j s

i j x y z s s n n

V n n u n u n


 

 

    , 

where i,j numerate Cartesian coordinate components, s,s’ numerate neighbor atomic spheres of 

interacting atoms n and n’ correspondingly, u is a small atomic displacement from equilibrium 

position and   is the force constant matrix. The components of the force constant matrix are 

interatomic force constants; they are fitted to the experimental phonon frequencies of bulk 

material and then can be used in modeling the lattice dynamics of nanostructures. The main 

advantage of the BvK model is its simplicity and relatively modest calculation resources 

required, when one goes from bulk materials to nanoscale structures. The BvK model was 

successfully applied in phononic investigations in different nanomaterials: nanolayers, 

nanowires, superlattices, graphene, etc. [36-38].  

Other phenomenological models of lattice dynamics include VFF model [39] and adiabatic 

bond charge model [40]. In the VFF approach the internal energy of the crystal is expressed in 

terms of the position of the atoms, the bond lengths between the atoms and the angles between 

these bonds. Thus all interatomic interactions are seen in terms of bond-stretching and bond-

bending forces. In the adiabatic bond charge model the atom is considered a non-polarizable ion 

core with a shell of valence electrons. The valence charge density is considered as point charges, 

called bond charges. These two models are generally more complex than the simple BvK model 

and as a result are harder to modify for low-dimensional structures and require more 

computational time. Nevertheless, they are considered as an improvement in terms of accuracy 

of the phonon dispersion relations and in gaining the physical insight into the interatomic 

interactions in crystals. Both, VFF and adiabatic bond charge models were applied in studying 

the phonons in different nanostructures [41-42]. 
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In this context, an important direction in lattice dynamics theory of nanostructures is the 

development of approaches which link the classical force constant models with models based on 

the interatomic potentials. In Refs. [43-44] I derived simple analytical expressions for the 

components of force-constant matrices expressed through the parameters of Stillinger-Weber and 

Keating interatomic potentials [45], which can extend the applicability of the current force 

constant models for investigation of lattice dynamics of different nanomaterials. 

 

1.3. Phonon processes in Si-based nanostructures and graphene 

 

Phonons manifest themselves in all properties of materials: phonons limit electrical 

conductivity; optical phonons strongly influence optical response, while acoustic phonons carry 

heat in insulators and semiconductors. Long-wavelength phonons give rise to sound in solids. 

Spatial confinement of phonons in nanostructures can strongly affect the phonon spectrum and 

modify phonon properties such as phonon group velocity, polarization, density of states and 

electron - phonon interaction [46-48]. Thus, nanostructures offer a new way of controlling 

phonon transport and electron - phonon interaction via tuning phonon dispersion relation, i.e. 

phonon engineering. The idea of engineering phonon dispersion in nanostructures has the 

potential to be as powerful as the idea of the band-gap engineering for electrons, which is now 

utilized in a variety of devices. The original phonon engineering concept was first formulated by 

A. Balandin in 2000 [49]. 

A topic of special interest in recent years has been thermal transport in nanostructures [50-

52]. When the characteristic dimensions of nanostructures such as the diameter of a nanowire or 

thickness of a nanolayer approach phonon mean free paths, the thermal conductivity can be 

substantially smaller than the bulk value due to the phonon scattering on sample boundaries. 

Significant thermal conductivity reductions have been observed in a number of nanoscale 

systems, including nanowires [53-55], nanotubes [56] and nanolayers [57], and have been widely 

adopted in thermoelectrics applications [58-60]. Below are reviewed some selected advances of 

the last decade in studying the phonons and thermal transport in nanostructures. A special 

attention was paid to the Si-based one-dimensional and two-dimensional nanostructures and 

graphene. 

In Ref. [61] authors have investigated the thickness dependence of the thermal conductivity 

in ultra-thin free-standing Si nanolayers of high crystalline quality using Raman thermometry. 

The power absorption coefficient of the membranes was determined experimentally and 

theoretically calculated. It was found that the thermal conductivity of the layers systematically 

reduces as their thickness decreases. This was successfully modeled considering the shortening 
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of the phonon mean free path due to the diffuse scattering at the boundaries. The thermal 

conductivity of the thinnest nanolayer with thickness d = 9 nm resulted in (9 ± 2) Wm
-1

K
-1

, 

which approaches the amorphous limit (~0.01 Wm
-1

K
-1

) while still maintaining a high crystalline 

quality. The authors argued that the obtained results open new possibilities for building 

thermoelectric modules based on suspended two-dimensional systems. 

In Ref. [62] were presented experimental measurements and theoretical calculations of the 

relaxation times of confined phonons in ultra-thin silicon layers. In Figure 1.7 are presented 

phonon lifetimes in free-standing silicon layers as a function of phonon frequency. The thick 

dashed lines show the contributions to the finite phonon lifetime from three-phonon interactions 

τ3-ph and boundary scattering τb. The total contribution, calculated using Matthiessen’s rule 

1 1 1

3T ph b    

  , is shown by the thick solid line. Other models are: intrinsic scattering processes 

(grey dotted line: Herring [63], grey dashed line: Akhiezer [63]) and extrinsic scattering 

processes (dot-dashed grey lines: with specularity parameter p=0 and p=0.95). 

 

 

Fig. 1.7. Phonon lifetime of the dilatational mode in free-standing silicon layers as a function of 

frequency. Experimental data of free-standing silicon nanolayers with thickness values ranging 

from 222 to 8 nm (circles [62], squares [64],) and bulk silicon (triangles [63]). The figure is 

taken from Ref. [62]. 

 

The relaxation times of the ultra-thin layers were found to be dominated by boundary 

roughness scattering. In the case of thicker nanolayers, phonon-phonon interactions were 

predicted to be the dominant scattering processes. The obtained results are important for 

nanomechanical resonator and thermal transport applications. 
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In Ref. [65] authors have provided a methodology for predicting phononic gaps in thin 

semiconductor superlattices. They have shown that several different choices of ultra-thin 

superlattices possess one-dimensional phononic gaps and that the greater the difference between 

each layer’s vibrational properties the greater is the size of the gaps. The Sin/Gem [001] and 

GaAsn/AlAsm [001] superlattices manifested themselves as one-dimensional phononic crystals – 

artificial periodic structures with controllable phonon properties, with similar results expected 

for other semiconducting superlattices. It was shown that the gap positions in both these 

structures vary inversely with the superlattice period. Also, it was presented a method for 

predicting gap locations in thicker structures once these have been found in thin structures. 

Quantitative predictions have been made for the positions of the LA and TA gaps with the Ge 

length fraction Lf in Si/Ge superlattices for the period given by n+m=20, and for GaAs/AlAs 

structures with differing periods and Lf=0.5. It has been shown that the technique can be applied 

to any superlattice. Furthermore, an empirical formula has been provided for the location of a 

one-dimensional phononic gap in Si/Ge [001] superlattices for different length fractions and 

periods: 

 0.563 1.406gap f

L
L

L
    , 

where gap  is the frequency in terahertz of the center of the gap, L is the superlattice period in 

nanometers and L =5.54 nm. It was pointed out that such a relation could be easily found for 

other superlattices. Moreover, authors have found that the introduction of mass defects has the 

greatest effect for the high acoustic range in shifting frequencies, but does not close any pre-

existing phononic gaps. The results could be useful to both experimentalists and theorists in 

understanding vibrational and thermal properties of semiconductor superlattices.  

In Ref. [66] authors reported on the experimental observation of coherent heat conduction 

through the use of finite-thickness superlattices with varying number of periods. The measured 

thermal conductivity increased linearly with increasing total superlattice thickness over a 

temperature range from 30 to 150 K (see Figure 1.8 below).  
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Fig. 1.8. Measured thermal conductivity of GaAs/AlAs superlattices as a function of the number 

of periods for different temperatures. The figure is taken from Ref. [66]. 

 

The performed experimental and theoretical studies showed that most of the phonons that 

contributed to the measured thermal conductivity in superlattices traversed the structures 

ballistically and hence were coherent. Interface roughness was effective in destroying the 

coherence of high-frequency phonons but not effective in scattering low-frequency phonons. The 

large reduction in thermal conductivity resulted from the loss of coherence of high-frequency 

phonons, but the lower-frequency phonons that contribute to the thermal conductivity were 

mostly coherent during their transport through the superlattice structures until they were 

scattered at the sample’s external boundaries.  

In Ref. [67] partial coherent treatment of phonons, where phonons are regarded as either 

wave or particles depending on their frequencies, was considered. Phonons with mean free path 

smaller than the characteristic size of phononic crystals were treated as particles and the 

transport in this regime was modeled by Boltzmann transport equation with phonon boundary 

scattering taken into account. Phonons with mean free path longer than the characteristic size 

were treated as waves. In this regime, phonon dispersion relations were computed and it was 

found that they are modified due to the zone folding effect. The folded phonon spectra were then 

used to compute phonon group velocity and density of states for thermal conductivity modeling. 

The presented partial coherent model agreed well with the existent experimental results on in-

plane thermal conductivity of phononic crystals and highlighted the importance of zone folding 

effect on thermal transport in phononic crystals. 

In Ref. [68] authors presented atomistic VFF calculations of thermal transport in Si 

nanowires of diameters from 12 nm down to 1 nm. It was shown that as the diameter is reduced, 

the phonon density of states and transmission function acquire a finite value at low frequency, in 

contrast to approaching zero as in the bulk material. This effect is also known as the “problem of 
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long longitudinal waves”, which states that the thermal conductivity of a material increases as its 

length is increased due to the vanishing scattering for long wavelength phonons. The authors of 

Ref. [68] demonstrated that this thermal transport improvement also appears in nanowires as 

their diameter is decreased below d=5nm (not only as the length increases) originating from the 

increase in the density of states of the short wavelength phonon modes. The observation was 

present under ballistic transport conditions, and further enhanced with the introduction of 

phonon-phonon scattering. Because of this, in such ultra-narrow nanowires, as the diameter is 

reduced, phonon transport is dominated more and more by lower energy phonons with longer 

mean free paths. It was concluded, that almost 80% of the heat is carried by phonons with 

energies less than 5 meV, most with mean free paths of several hundreds of nanometers. 

In Ref. [69] was presented a kinetic model to investigate the anomalous thermal 

conductivity in silicon nanowires by focusing on the mechanism of phonon-boundary scattering. 

The developed theoretical model took into account the anharmonic phonon-phonon scattering 

and the angle-dependent phonon scattering from the nanowire surface. For silicon nanowires 

with diameter of ~27 nm, it was found that in the case of specular reflection at lateral boundaries, 

the thermal conductivity increases as the length increases, even when the length is up to 10 mm, 

which is considerably longer than the phonon mean free path. Thus the phonon-phonon 

scattering alone was not sufficient for obtaining a normal diffusion in nanowires. However, in 

the case of purely diffuse reflection at lateral boundaries, the phonons diffused normally and the 

thermal conductivity converged to a constant when the length of the nanowire was greater than 

100 nm. See Figure 1.9 for schematics of phonon scattering processes in nanowires. 

 

 

Fig. 1.9. Schematic illustration of phonon scattering in nanowires. The figure is taken from Ref. 

[69]. 

 

These results demonstrate that for observing the length dependence of thermal conductivity 

experimentally,  nanowires  with  smooth  and  non-contaminated  surfaces,  and  measuring  at  

low temperature, are preferred.  
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Another interesting way in controlling the phonon and thermal properties of nanostructured 

materials was recently demonstrated using thermocrystals – periodic structures made of alloys 

containing nanoparticles [70]. In thermocrystals the heat flow can be managed like sound waves 

[70]. The basic idea is to manipulate the heat frequency spectrum such that low-frequency 

phonons carry a considerable part of the heat. In this manner, heat-carrying phonons are subject 

to coherent reflection and transmission at interfaces, and thus many applications designed for 

sound management can be applied to heat flow. In thermocrystals [70], high-frequency phonons 

are blocked by including alloy atoms and nanoparticles (with diameters d ~ 1 nm). The alloy 

atoms and nanoparticles scatter a wide range of high-frequency phonons. Because high-

frequency phonons are severely restricted from carrying heat, the proportion of heat carried by 

low-frequency phonons increases. To concentrate heat around a specific frequency range the 

contribution of very low-frequency phonons is also reduced by considering a thin-film material 

with rough surfaces. As a result of blocking the highest and lowest frequencies, most heat is thus 

concentrated to a relatively narrow low-frequency band. Specifically, for a Si90Ge10 alloy with a 

10% filling fraction of d ~ 1 nm Ge nanoparticles, the frequency band is 0.1 THz < f < 2 THz, 

with up to 40% of the heat restricted to a narrow ‘hypersonic’ 100-300 GHz range [71]. This 

matching of the heat frequency spectrum and of the phononic band gaps demonstrates that 

thermal phonons can be managed through coherent interference effects. Thermocrystals lay the 

foundation for various applications such as heat waveguides, thermal lattices, heat imaging, 

thermo-optics, thermal diodes and thermal cloaking [71]. 

An intriguing example of phonon engineering approach is phonon thermal rectification. 

Thermal rectification refers to a phenomenon predicted for materials systems where thermal 

conduction in one direction is different from that in the opposite direction [72-75]. Controlling 

phonon transport by the structure asymmetry, lattice nonlinearity or heterostructuring opens up 

possibilities, such as a practical realization of the thermal diode. Such a device acts as a thermal 

conductor if a positive thermal bias is applied, while in the opposite case of a negative thermal 

bias it exhibits poor thermal conduction, thus effectively acting as a thermal insulator. The 

proposed applications of the thermal rectifier vary from thermal management [73] to information 

processing [76]. One can distinguish several physical mechanisms leading to thermal 

rectifications and the corresponding material systems where they can be realized [73, 77-81]. 

The first type is related to non-linear lattices with strong anharmonicity [75] or asymmetric mass 

or defect distributions [72, 80]. There have been a number of theoretical predictions of thermal 

rectifications in such systems [73-74], while there is a lack in experimental data. The second type 

of thermal rectification is more straightforward and feasible for practical applications. It is 

pertinent to the asymmetric structures operating in the ballistic or nearly-ballistic phonon 
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transport regime where the acoustic phonon scattering from the boundaries is significant [78]. By 

modifying the geometry of the structure, introducing asymmetric edges or defects, one can make 

the phonon-boundary scattering stronger in one direction than in the opposite [78-79]. Another 

type of the thermal rectification is the use of heterostructures with special focus on interface 

thermal resistance. Because phonons are strongly scattered due to the mismatch in vibrational 

properties of the materials forming the interface, which in addition depends on the sign of the 

applied thermal bias, this produces an asymmetric interface thermal resistance. In Ref. [82] an 

amorphous silicon - polyethylene thermal rectifier was designed, in which the heat current from 

the polymer to the silicon was larger than vice versa. To examine the origin of this thermal 

rectification, the density of states of phonons on each side of the interface was investigated. It 

was shown, that the phonon density of states significantly softens in the polymer as it becomes 

warmer. This increases the density of states in the polymer at low frequencies. Thus the 

transmission probability of those low-frequency acoustic modes in silicon increases, yielding an 

enhanced thermal transport. The design and the experimental realization of the thermal diode 

present a striking step toward the practical elaboration of a thermal transistor [83], which allows 

for an a priori control of heat flow similar to the control of charge flow in a field-effect 

transistor. Similar to its electronic counterpart, a thermal transistor would consist of three 

terminals: the drain, the source, and the gate. When one applies a constant temperature bias 

between the drain and the source, the thermal current flowing between the source and the drain 

could be fine-tuned by the temperature that is applied to the gate.  

Intense interests for phonon engineering represent carbon nanomaterials. Among them, 

graphene is seen as one of the most perspective candidates for future nanoelectronic and 

nanophononic applications. Graphene is a two-dimensional material, formed of a lattice of 

hexagonally arranged carbon atoms. Graphene has generated huge interest since it was first 

obtained in 2004 [84-85]. Phonons are the main heat carriers in carbon materials including 

graphene. The first measurements of thermal conductivity of suspended graphene were carried 

out in 2008 [86-87] and revealed extraordinary high values at RT in the range of 2000 – 5000 W 

m
-1

 K
-1

, depending on sample size and quality. The experimental observation was explained 

theoretically by the specifics of the 2D phonon transport [88-90]. It was concluded, that the low-

energy acoustic phonons in graphene make a substantial contribution to the heat conduction due 

to their extraordinary large mean free paths and weak anharmonic scattering [87]. The large 

values of thermal conductivity make graphene an excellent candidate for heat removal 

applications. The thermal transport in 2D graphene can be tuned more readily than in the 

corresponding bulk 3D graphite [91-92]. However, it should be pointed out that the thermal 

conductivity of the supported graphene is lower than that of suspended and constitutes ~ 600 W 
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m
-1

 K
-1

 for graphene on SiO2/Si substrate near RT [93], due to the strong phonon-interface and 

phonon-disorder scatterings [94]. Nevertheless, it is still rather high, exceeding considerably the 

thermal conductivity of bulk Si (148 W m
-1

 K
-1

) and Cu (400 W m
-1

 K
-1

).  

It is interesting to examine the evolution of the thermal properties of few-layer graphene 

with increasing thickness (number of atomic planes, n). One has to clearly distinguish two cases: 

thermal transport limited by (i) intrinsic properties of the few-layer graphene lattice, that is, 

crystal anharmonicity; and (ii) extrinsic effects, for example, by phonon-boundary or defect 

scattering. The optothermal Raman study [95] found that thermal conductivity of suspended few-

layer graphene decreases with increasing n, approaching the bulk graphite limit (see Figure 

1.10). This evolution of thermal conductivity was explained by considering the intrinsic quasi-

2D crystal properties described by the phonon Umklapp scattering [95]. As number of 

monolayers n increases, the phonon dispersion changes and more phase-space states become 

available for phonon scattering leading to a decrease in thermal conductivity.  

 

 

Fig. 1.10. Measured and calculated thermal conductivity of suspended few-layer graphene as a 

function of number of monolayers n. The figure is taken from Ref. [95]. 

 

The phonon scattering from the top and bottom boundaries in suspended few-layer graphene is 

limited if constant n is maintained over the layer length. The small thickness (n < 4) also means 

that phonons do not have a transverse component in their group velocity, leading to even weaker 

phonon-boundary scattering rate from the top and bottom boundaries. In few-layer graphene 

films with n > 4 the boundary scattering can increase, because transverse group velocity is non-

zero and it is harder to maintain constant n through the whole area of a graphene flake, resulting 

in thermal conductivity below the graphite limit. The graphite value recovers for thicker films.  
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An intriguing open question in the theory of phonon transport in graphene is the relative 

contribution to heat conduction by LA, TA and ZA phonon polarizations (see Figure 1.11 below 

for phonon dispersion in graphene [38]).  

 

 

Fig. 1.11. Phonon dispersion in graphene along Γ-K direction. 

 

There have been opposite views expressed as to the importance of ZA phonons, from negligible 

[91-92, 96] to dominant [90, 93, 97-98]. The argument against ZA contributions originates from 

the fact that ZA modes have large Gruneisen parameters [92-93] - which  defines the scattering  

strength - and zero group velocity near the zone centre, resulting in a negligible contribution to 

heat transport [91-92, 96]. The argument for the strong contributions of ZA modes is made on 

the basis of a selection rule in ideal graphene, which restricts the phase space for phonon-phonon 

scattering, and increases the lifetime of ZA modes [90]. However, graphene placement on any 

substrates and the presence of nanoscale corrugations in the graphene lattice can break the 

symmetry selection rule, which restricts ZA phonon scattering. It is also possible that ZA 

dispersion undergoes modification, for example, linearization, owing to the substrate coupling. 

In Ref. [99] authors have performed molecular dynamics simulations with phonon spectral 

analysis to predict the mode-dependent phonon relaxation times of suspended and supported 

graphene at RT. The per-branch phonon relaxation times for both suspended and supported 

single-layer graphene at 304 K as a function of phonon frequency are shown in Figure 1.12. It 

was concluded that the majority of LO and TO phonons were found to have relaxation times 

about 1-4 ps at RT and reduced by about half when put on substrate, which is consistent with the 

optical phonon relaxation times of supported few-layer graphene measured by Raman 

spectroscopy [100-102]. 
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Fig. 1.12. Phonon relaxation times as a function of frequency for all phonon branches. The 

subscripts “s” and “p” are short for “suspended” and “supported”, respectively. The figure is 

taken from Ref. [99]. 

 

As can be seen from Figure 1.12 in case of low frequency phonons a considerable suppression of 

their relaxation times was observed. For frequency below 18 THz, the relaxation times values 

monotonically decreased as frequency continuously reduced to zero, indicating the substrate 

couples most efficiently to low frequency acoustic phonons. Authors argued that one of the most 

significant implications of such observation is that the thermal conductivity of supported 

graphene will not be sensitive to graphene flake size. This is because long wavelength near-zone-

center phonons in larger samples would have minimal relaxation times due to substrate scattering 

and thus would barely contribute to thermal transport. The relaxation time reduction was found 

to be especially strong for ZA modes. This was due to the fact that the presence of the substrate 

breaks various symmetries (mirror-reflection, translational, etc.) in single-layer graphene and 

alters the out-of-plane vibrations by introducing graphene-substrate scattering which largely 

shortens the relaxation time of ZA phonons. In this case, higher-order anharmonic interactions 

would be no longer important. As a proof of their findings, authors referred to a Brillouin 

scattering experiment on multilayer graphene supported on SiO2/Si substrate [103], which 

suggested that the relaxation times of long wavelength LA/TA phonons are about 10-30 ps, 

which is shorter than that of suspended graphene, thus in line with the presented conclusions.  

In Ref. [104] ab initio density functional theory approach was used to calculate the lattice 

vibration, phonon dispersion and density of states of graphene under uniaxial strain along the   

zigzag direction. Zigzag and armchair are two typical configurations of graphene along the 

directions perpendicular or parallel to C-C bonds, respectively. The crystal symmetry and 

reciprocal lattice were changed under strain, depending on the strain direction. For the ideal 

graphene, G, M, and K high-symmetry crystallographic points were selected to calculate the 
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phonon dispersion, while G, N, and M points were for the strain along the zigzag direction. The 

strain was exerted by changing the lattice constant along a given direction and relaxing the atom 

position in the perpendicular direction. The convergence of the total energy was chosen as 10
-7

 

eV, and structure optimization was performed until the force acting on each atom was less than 

0.01 eV/nm. Supercells with periodic boundary conditions in all directions were utilized to 

calculate the phonon dispersion curves and density of states of graphene with or without uniaxial 

strain.  

  

  

Fig. 1.13. Phonon dispersion curves of graphene under uniaxial strain of (a) 0%, (b) 8%, (c) 

16%, and (d) 23% along the zigzag direction, and (e), (f), (g), and (h) present corresponding total 

density of states. The figure is taken from Ref. [104]. 

 

Figures 1.13(a) and 1.13(e) display the phonon dispersion curves and density of states of ideal 

graphene without strain, respectively. Figures 1.13(b)-1.13(d) depict the phonon dispersion 

curves of graphene under uniaxial strain of 8%, 16%, and 23% along the zigzag direction; the 

corresponding phonon density of states is shown in Figures 1.13(f)-1.13(h). Authors noted that 

the two degenerate optical branches split near the G points due to the reduced crystal symmetry 

in the presence of lattice strain and that this split becomes more evident at a larger strain. This 

resulted in a frequency gap of about 10 THz near 35 THz at a strain of about 16%, as was 

demonstrated in Figures 1.13(c) and 1.13(g). It was concluded, that the phonon modes in this 

frequency region were forbidden, similar to the band gap in electronic crystals and photonic 

crystals. This could be utilized in the applications such as thermal rectifiers, thermal transistors, 

and thermal memories [105]. When the strain increased up to 23%, imaginary frequencies 
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appeared near the G points as indicated by the red arrows in Figures 1.13(d) and 1.13(h). The 

structure became unstable and the phonon modes were softened. Similar results were obtained 

when the strain was along the armchair direction, but the instability appeared at 20% strain. 

Finally, the important questions are related to the identification of stacking configuration 

and how the interlayer coupling strength changes for different stacking arrangements and 

number of layers in few-layer graphene, since its electronic and phononic properties are found to 

be depended on the number of layers as well as the rotational angle between the interacting 

sheets of graphene (also known as twisted graphene) [38, 106-109]. Recently, it was reported on 

the observation of low-frequency shear phonon modes in few-layer graphene [110]. Shear modes 

involve the relative motion of atoms in adjacent graphene planes and provide a direct 

measurement of the interlayer coupling. The authors of Ref. [110] performed polarized Raman 

measurements and found a pronounced peak at low-frequency which they denoted as C-peak.  

 

Fig. 1.14. Raman spectra for the C-peak spectral region. 

 

Figure 1.14 plots the Raman spectra for few-layer graphene with increasing thickness. It is seen 

that position of the C-peak shifts to higher frequencies from two-layer graphene to bulk graphite. 

Considering a simple linear-chain model and assuming that a layer interacts strongly only with 

adjacent layers, the analytical expression for C-peak position was obtained: 

1
(C) 1 cos

2
NPos

Nc

 



 
   

 
, 

where N is the number of graphene layers,   is the mass per unit area in a graphene sheet, c is 

the speed of light and   is the interlayer coupling strength. From fitting to the experimental data 
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it was found that  =12.8x10
18

 N m
-3

. The authors concluded, that the hardening of the C mode 

when going from bilayer graphene to bulk graphite is not due to a variation of interlayer 

coupling, but rather to an increase of the overall restoring force i.e. surface layers are less bound 

in few-layer than in the bulk.  

Concluding, one can state that the strong dependence of phonon processes on stacking 

arrangements and interlayer coupling make few-layer graphene an ideal material for phonon 

engineering. 

 

1.4. Conclusions to chapter 1 and objectives of the Thesis. 

 

The presented highlight on recent theoretical and experimental investigations of electron and 

phonon processes in graphene and silicon-based nanostructures demonstrate a huge interest from 

both scientific and engineering community in further developments of nanoelectronic and 

nanophononic materials and applications. Successful realization of these plans requires the 

detailed investigation of electron and phonon processes in one-dimensional and two-dimensional 

nanostructures, as well as determination of novel nanoscale geometries and materials with high 

electron and phonon engineering abilities. It constitutes the main scientific problem and the goal 

of this Thesis.  

In order to achieve this goal, the following objectives are formulated:  

 Determination of novel one-dimensional and two-dimensional nanostructures with 

specific geometrical and material parameters, as perspective candidates for electron and 

phonon engineering. 

 Development of theoretical models to describe phonon and electron states in novel one-

dimensional and two-dimensional nanostructures. 

 Investigation of electron, phonon and thermal properties of novel and generic one-

dimensional and two-dimensional nanostructured materials. 

The methods which are used in order to accomplish the objectives are: 

 Lattice dynamics theory for the investigation of phonon processes in novel one-

dimensional and two-dimensional nanostructures such as cross-section modulated 

nanowires and multilayer graphene with different atomic stacking. 

 Effective mass approach for the investigation of electrons in novel nanostructures.  

 Boltzmann transport equation approach for modeling the thermal properties of novel one-

dimensional and two-dimensional nanostructures. 
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2. PHONON PROCESSES IN Si NANOLAYERS AND PLANAR Si/Ge 

SUPERLATTICES 

 

2.1. Born – von Karman lattice dynamics model for nanolayers and planar superlattices 

 

Let us consider a freestanding homogeneous layer and a superlattice made from such layers. 

The characteristic thickness of the layers is of a few nanometers. The schematic view of the 

considered structures is shown in Figure 2.1. The X and Y axes of the Cartesian coordinate 

system are in the plane of the nanolayer, while the Z axis is perpendicular to it. In the XY plane 

the layers are assumed to have infinite size.  

 

Fig. 2.1. Schematic view of a freestanding homogeneous layer (a) and planar superlattice (b). 

 

The main difference between the nanolayer and bulk material is the absence of translational 

symmetry along the Z axis. Atoms from different monolayers are translationally unequivalent 

and the amplitude of the atomic displacement is a function of monolayer number ( )U s , where s 

numerates monolayers. In case of a superlattice the translational symmetry along the Z axis is 

preserved by definition. However, within one translational element (superlattice period) atoms 

from different monolayers are also translationally unequivalent and the amplitude of atomic 

displacement is similarly dependent on the monolayer number s. As a result, the total number of 

equations of motion for atoms is determined by the number of monolayers and equals to 3N, 

where N is the number of monolayers in superlattice period. 

In the framework of BvK lattice dynamics theory for nanolayers and planar superlattices, the 

system of equations of motion for atoms from monolayer s can be represented, in a harmonic 

approximation, as: 

 2

, , 1

( , ) , , ( , )      , ,
N

s i ij j

j x y z s

m U s q D s s q U s q i x y z
 

                        (2.1) 

where s, s  – numerate monolayers and take values between 1 and N, sm  – mass of the atom 

from monolayer s,   – phonon frequency, q  – phonon wavevector, ( )iU s  – i-th component of 
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the atomic displacement amplitude vector of the s-th monolayer, 
ijD  – dynamic matrix element, 

given by expression:  

    , , ( , )exp ( ) ( )
s

ij ij s s s s

n

D s s q n n q r n r n


 



      i ,                (2.2) 

where ( )sr n  – radius-vector of the atom sn  and ( , )s sn n 
  – matrix of the force constants 

describing interaction between a pair of atoms ( , )s sn n 
 . It is taken into account the interaction 

within two nearest neighbor coordination spheres, therefore the summation in Equation (2.2) is 

performed over all atoms n  from two nearest spheres of atom n. The index n here denotes atom 

lying in the center of the coordination sphere for which the equations of motion are written. One 

should note also, that atoms n and n  can belong to the same monolayer ( , )s sn n , as well as to 

the different monolayers 1( , )s sn n 
 , 2( , )s sn n 

 . The lattice dynamics is described by two force 

constant matrices: 

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

s s s s s s

s s s s s s s s

s s s s s s

n n n n n n

n n n n n n n n

n n n n n n

  

  

  

  

   

  

   
       
    

 for the nearest sphere and 

( , ) ( , ) 0

( , ) ( , ) ( , ) 0

0 0 0

s s s s

s s s s s s

n n n n

n n n n n n

 

 

 

  

  
      
 
 

 for the second nearest sphere. Thus, the developed BvK 

model contains three independent interatomic force constants:  ,   and  . In case when 

interacting atoms sn  and sn 
  are from different materials, it is taken the arithmetic average 

between force constants in corresponding materials. For instance, if Si atom interacts with Ge 

atom, which takes place on the interfaces of a Si/Ge superlattice, than force constants are 

calculated according to the following formulas: (Si-Ge)
2

Si Ge 



 , (Si-Ge)

2

Si Ge 



  and 

(Si-Ge)
2

Si Ge 



 . 

Solving Equations (2.1) in the long-wavelength limit 0q   and approximating the 

frequency of transverse optic (TO) and longitudinal optic (LO) phonons at the BZ center as 

, [100]( 0) 2 / ,LO TO Lq a    where [100] 11 /L c   is the longitudinal sound velocity in [100] 

crystallographic direction, a is the lattice constant and   is the mass density, the interatomic 

force constants can be expressed through independent elastic moduli of a bulk crystal 11c  and 44c  

as: 2

11 /16a c  , 11 44( ( 2 ) ) / 2a c c     and  11 / 8ac   . Hence, the proposed 
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BvK model does not contain any fitting parameters and allows one to simulate phonon properties 

of different materials with diamond crystal lattice without additional fitting procedures.  

An important step in the modeling of the lattice dynamics of nanostructures is the choice of 

the boundary conditions on external surfaces. In case of a homogeneous nanolayer the external 

surfaces are considered to be free, i.e. the components of the forces on the surface are equal to 

zero and therefore 0     . In case of a planar superlattice the external surfaces are absent 

(the structure is considered infinite along the Z axis) and on the superlattice period are applied 

the periodic boundary conditions in the form:  1 1( ) ( )expN zU n U n q L  i ; 

 0( ) ( )expN zU n U n q L i , where L – thickness of one superlattice period. 

 

2.2. Phonon processes in Si nanolayers 

 

2.2.1. Phonon energy spectra and scattering processes 

 

In order to obtain the phonon energy spectra the system of equations of motion (2.1) with 

dynamic matrix (2.2) was solved numerically. Diagonalization of the dynamic matrix was 

performed using standard numerical procedures within double precision LAPACK library. 

Material parameters and interatomic force constants of silicon used in the calculations are 

presented in Table 2.1. 

 

Table 2.1. Material parameters and interatomic force constants used in calculations of phonon 

energy spectra in bulk silicon and silicon nanolayers. 

a  (nm)   (kg/m
3
) 

11c  (GPa) 44c  (GPa)   (N/m)   (N/m)   (N/m) 

0.5431 [111] 2329.0 [111] 166.0
 
[112] 79.6

 
[112] 55.6 40.6 4.3 

 

In Figure 2.2 are shown phonon energy spectra in [100] crystallographic direction in bulk 

silicon (Figure 2.2(a)) and silicon nanolayer with 10 nm thickness (Figure 2.2(b)). 
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Fig. 2.2. Phonon energy spectra of bulk Si (a) and Si nanolayer with 10 nm thickness (b). 

Squares denote experimental points from Ref. [113]. 

 

It is seen from Figure 2.2(a) that the developed three-parameter BvK model reproduces 

reasonably well all the features of the bulk silicon phonon spectra, except for the overestimation 

of TA and TO phonon energies for max0.5q q  , where 1

max 11.57 q nm . This overestimation 

is explained by the fact that the short-range interatomic interactions are only considered in this 

model [114]. The behavior of phonon dispersion curves in the [110] and [111] directions is 

analogous. In Figure 2.2(b) we present the phonon energy spectra for a Si nanolayer with 

10 d nm  in the [100] crystallographic direction calculated within the BvK model with 

interatomic force constants from Table 2.1. The strong dimensional confinement along the Z-axis 

results in a quantification of the phonon energy spectra, i.e. the appearance of a large number of 

size-quantized energy branches. Analogously to the bulk silicon phonon spectrum in nanolayer’s 

spectrum one can distinguish three bunches of phonon branches: TA-like, LA-like and TO(LO)-

like branches. However, unlike in the bulk case, where all atomic vibrations are exactly 

distinguished on transversal/longitudinal and acoustic/optic, in nanolayers appear essentially new 

transverse-longitudinal acousto-optical mixed vibrations. As a result, a numerous phonon modes 

in the nanolayers possess low phonon group velocity. Thus these modes do not contribute to the 

thermal transport. Similar results were also obtained in the framework of continuum approaches 

[115-116] and different models of lattice vibrations [33, 117-120] for nanolayers and nanowires 

made from GaN, AlN, Si or Ge material. 

In nanolayers it was taken into account two basic mechanisms of phonon scattering: 

Umklapp phonon-phonon scattering and phonon-boundary scattering. Total scattering time of a 

phonon with wavevector q  from s-th energy level was calculated according to Matthiessen’s 

rule:            



44 

 

 
1

1 1

, , ,( ) ( ) ( )tot s U s b sq q q  


   ,              (2.3) 

where , ( )U s q  and , ( )b s q  are phonon lifetimes in Umklapp and boundary scattering process, 

respectively. 

 

A) Umklapp scattering processes 

There are two types of phonon-phonon scattering processes: normal (N-processes) and 

umklapp (U-processes). In N-processes the total momentum of interacting phonons is zero, while 

in U-processes the total momentum is preserved with a precision of a reciprocal lattice vector G . 

The N-processes do not influence on thermal flux directly, but through redistribution of the 

momentum between heat-carrying phonons. U-processes affect the thermal transport directly, 

since they change the total momentum of the phonon system. Due to the momentum and energy 

conservation laws for phonons in silicon the N-processes are significant only at very low 

temperatures. At medium and high temperatures the U-processes prevail and the N-processes can 

be disregarded with a good approximation. The most intensive U-processes limiting the heat 

transfer are scattering processes involving three phonons. Such processes satisfy the following 

momentum (with a precision of a vector G ) and energy conservation laws: 

1) U-processes of the I-st type: 

q q q G

  

    


  
 

These processes can be described as an absorption by phonon  ,q   of the phonon  ,q    

with creation of the third phonon  ,q    in the second BZ. Or as a decay of a phonon  ,q    

from the second BZ into two phonons  ,q   and  ,q    in the first zone. 

2) U-processes of the II-nd type: 

q G q q

  

    


  
 

Analogously, these processes can be described as a decay of a phonon  ,q   from second 

BZ into two phonons  ,q    and  ,q    in the first zone, or as an absorption by phonon 

 ,q    of the phonon  ,q    with creation of a third phonon  ,q   in the second BZ. 

In order to evaluate the scattering time of the phonons in three-particle U-processes of the 

both types the following model formula from Ref. [119] was used: 

   
21

, ( ) ( ) exp / ,U s sq B q T C T                  (2.4) 
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According to [119] this form of the Umklapp scattering rate ensures an adequate temperature 

dependence of the thermal conductivity both at high as well as low temperatures. Parameters B 

and C are fitted to reproduce the experimental thermal conductivity of bulk silicon [121].  

 

B) Phonon-boundary scattering processes 

One of the most significant phonon scattering mechanisms in nanolayers is scattering on 

external boundaries. For calculation of the phonon-boundary scattering time a phenomenological 

formula first introduced by Ziman [122] was used: 

1

,

( )1 ( )
( )

1 ( )

s

b s

qp q
q

p q d


  




,               (2.5) 

In this approach the p-th part of the phonons is reflected specularly from the boundary, while 

all the other phonons are scattered diffusively, i.e. uniformly in all directions independently on 

the initial direction of the phonon wave before impact with the boundary. In this context, the 

parameter p characterizes the degree of boundary roughness, namely, the values of p close to 0 

correspond to a very smooth boundary, while p close to 1 correspond to a very rough boundary. 

Moreover, it is clear, that boundary roughness parameter p should depend on the wavelength 

of the incident phonon as well as on the boundary (surface) profile. The same surface can be 

rough for short wavelengths and smooth for long wavelengths. According to authors of Refs. 

[122-124] the parameter p can be determined from the following expression: 

 2 2( ) exp 2p q q   , where   – average height of the surface roughness. This expression was 

used to calculate the phonon-boundary scattering time from Equation (2.5). This form of the 

parameter p takes into account that when the average height of the surface roughness is much 

higher than the wavelength of the incident phonon, then the scattering is very strong and phonon 

“feels” even the smallest surface imperfections. In this case the parameter p is close to 0. In the 

case when phonon wavelength is much larger than   then surface details are hardly 

distinguishable for such waves and the scattering will take place almost specularly with p close 

to 1. 

It is important to analyze the phonon scattering mechanisms, determined by Equations (2.4) 

and (2.5), through their relative influence on thermal conductivity of nanolayers for different 

temperatures, phonon frequencies and phonon group velocities. First, let us consider the 

temperature dependence. According to (2.4), at low temperatures the lifetime of phonons in U-

processes is large ( U   when 0T  ), while lifetime of phonons in boundary scattering does 

not depend on temperature and it is the same in the whole temperature range. Due to 

Matthiessen’s rule (2.3) the total phonon scattering time tot  is limited by the smallest scattering 
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time, i.e. at low temperatures by the phonon-boundary scattering time 
b . Thus, in the low-

temperature range the dominant mechanism of phonon scattering in nanolayers is scattering on 

the external boundaries. When temperature rises the Umklapp scattering rate increases and at 

high temperatures it scales as 
1

U

T


. Therefore, in the range of high temperatures the dominant 

phonon scattering mechanism limiting the thermal conductivity of nanolayers is Umklapp 

scattering.  

Let us consider the dependence of total phonon scattering time on phonon frequency and 

phonon group velocity. According to Equation (2.4) U  is inverse proportional to the squared 

phonon frequency, while b  (2.5) is independent on frequency and is inverse proportional to the 

phonon group velocity. As a result, low-frequency high-speed acoustic phonons practically do 

not participate in U-processes and mainly scatter on the nanolayer’s external boundaries. In the 

high-frequency range the picture is opposite, the total phonon lifetime is limited by U-processes 

as 
2

1
tot U 


, which is caused by their weak boundary scattering due to the low group 

velocity (see Figure 2.2(b), where high-frequency phonons are almost dispersionless). 

 

2.2.2. Phonon thermal conductivity 

 

The microscopic definition of the thermal flux is a sum of contributions from all phonons 

with energy ( )s q , group velocity ( )s q  and nonequilibrium distribution function ( )sn q  [88]:  

,

( ) ( ) ( )s s s

s q

q q n q   ,               (2.6) 

where s – numerates phonon branches, q  – phonon wavevector. 

According to the Boltzmann transport equation in the relaxation time approximation, 

phononic nonequilibrium distribution function is given by relation [88]:  

,

( )
( ) ( , ( )) ( ) s

s s tot s

N q
n q T q q

T
 


  


.              (2.7) 

The “–“ sign in the right hand side of the Equation (2.7) shows that thermal flux is directed 

opposite to the temperature gradient vector T , i.e. toward the fastest temperature decrease. In 

(2.7) 
1

( )
( )

exp( ) 1
s

s

B

N q
q

k T






 – Bose-Einstein equilibrium distribution function, , ( )tot s q  – total 

phonon scattering time, determined by Equations (2.3)-(2.5). Substituting (2.7) in (2.6), for 

phonon thermal flux we will obtain: 
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,

,

( )
( ) ( )( , ( )) ( ) s

s s s tot s

s q

N q
q q T q q

T
    


  


 .             (2.8) 

From comparison of formula (2.8) with phenomenological definition of thermal conductivity 

(Fourier law):  T    , results the following expression for phonon thermal conductivity 

[88]: 

2 2

,

( )
( )( ( )) (cos ) ( ) s

s s s

s q

N q
q q q

T
    





 ,            (2.9)                      

where   – angle between q  and X axis. In Equation (2.9) was assumed that the thermal flux is 

directed along the X axis. 

Thermal conductivity coefficient ph  is related to the thermal conductivity   through a 

simple relation: ph
V


  , where V is the volume of the nanolayer. Taking into account two-

dimensional phonon density of states one can change in Equation (2.9) the summation over q  to 

the integration as: 
2(2 )

x y

q

S
dq dq


  , where S is the area of one of the nanolayer’s surfaces 

(
V

S
d

 , d is the nanolayer thickness). In the approximation of isotropic phonon dispersion in the 

XY plane the integration can be performed in the polar coordinates: 
max 2

0 0

q

x ydq dq qdq d



   . 

Thus, the phonon thermal conductivity coefficient in nanolayers is given by the following 

formula [88, 125]: 

max

2 2

,2
20

( )
exp( )

1
( ( )) ( ( )) ( )

( )4
(exp( ) 1)

s
q

B
ph s s tot s

ssB

B

q

k T
q q q qdq

qk T d

k T



   





  .       (2.10) 

In Figure 2.3 is presented the comparison between the experimental [121] (black dashed 

curve) and calculated (gray curve) temperature dependence of the bulk silicon thermal 

conductivity limited by the Umklapp scattering only.  
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Fig. 2.3. Experimental [121] (black dashed curve) and calculated (gray curve) temperature 

dependence of the bulk silicon thermal conductivity. 

 

In the considered temperature range the proposed BvK model with the Umklapp scattering 

parameters 191.76 10B   s/K and C = 137.39 K allows one to obtain a good agreement between 

theoretical and measured thermal conductivity even with overestimated energies of TA and TO 

phonons for max0.5q q , because these phonons weakly participate in the heat transport due to 

the small group velocities of TO phonons and the strong Umklapp scattering of the short-

wavelength TA phonons. Therefore overall correction of the thermal conductivity from them is 

small. At temperatures T<80 K the experimental thermal conductivity decreases with 

temperature decrease due to the phonon relaxation on the lattice defects. These mechanisms of 

the phonon scattering were not accounted in the theory, therefore the difference between 

theoretical and experimental results reinforces with temperature decrease. 

In Figure 2.4 we plot the temperature dependence of the phonon thermal conductivity in 

silicon nanolayers with d = 5, 10, 20 and 30 nm. 
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Fig. 2.4. Calculated temperature dependence of the phonon thermal conductivity of silicon 

nanolayers with d = 5, 10, 20 and 30 nm for average roughness height 0.23   nm. The red 

dashed line corresponds to the thermal conductivity of 20-nm-thick layer calculated with the 

constant roughness parameter p = 0.08. The experimental data points from Ref. [126] are also 

shown for comparison. 

 

In thermal conductivity calculations for silicon nanolayers were used the same Umklapp 

scattering parameters as in the bulk silicon: 191.76 10B   s/K and C = 137.39 K. One should 

note a sharp drop of thermal conductivity in comparison with bulk case, which is explained by 

quantification of phonon energy spectrum, decrease of the phonon group velocity and additional 

scattering of phonons on nanolayer’s external boundaries. A drop by a factor of 5 – 20 is found 

at the RT depending on nanolayer thickness. The experimental data points for nanolayers with d 

= 20 and 30 nm from Ref. [126] are also shown in Figure 2.4 for comparison. A good agreement 

is achieved for the average roughness height   = 0.23 nm. As one can see from the figure, the 

maximum thermal conductivity shifts to higher temperatures with decrease of d, from T ~ 130 K 

for 30-nm-thick layer to T ~ 320 K for 5-nm-thick layer. This behavior can be explained as 

follows: the position of the thermal conductivity maximum separates the low-temperature region, 

where phonon scattering is mainly due to the boundary, from the high-temperature region, where 

Umklapp scattering is dominant. In a thinner nanolayer the boundary scattering is stronger in a 

comparison with a thicker one ( b d  according to Equation (2.5)) and dominates up to higher 

temperatures, therefore the position of the thermal conductivity maximum on the temperature 

dependence curves shifts to the right. In Figure 2.4 is also shown the thermal conductivity of a 

20-nm-thick silicon layer calculated using a momentum-independent roughness parameter p = 

0.08 (red dashed line). The results show that the major difference between two approaches with 
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( )p q  and p = const is at low temperatures. These findings are in line with the recent theoretical 

predictions from Ref. [124]. However phonon scattering on the lattice defects (point defects or 

dislocations) in real nanoscale structures which is dominant at low temperatures could eliminate 

the difference between approaches with p(q) and p=const. 

Comparison between the dependencies of the RT thermal conductivity on the nanolayer 

thickness calculated using BvK (solid and dotted lines) and Face-centered cubic cell (FCC) 

(dashed lines) models of lattice dynamics is shown in Figure 2.5. The detailed description of the 

FCC model and its application for the calculation of the phonon energy spectra is presented in 

Refs. [33, 118, 125]. 

 

Fig. 2.5. Room temperature phonon thermal conductivity as a function of silicon layer thickness 

for different values of a boundary roughness parameter  . The theoretical curves are obtained 

within BvK model (solid and dotted lines) and FCC model (dashed lines). Dotted line shows the 

thermal conductivity of acoustic phonon branches only. The experimental data points from Ref. 

[126] are also shown for comparison. 

 

The results are presented for different values of the boundary roughness parameter  =0.12,  

0.20 and 0.28 nm. The dotted line shows the thermal conductivity calculated with taking into 

account the acoustic phonon modes only, i.e. modes with energy 50meV  (see Figure 2.2).  

The experimental data points for silicon nanolayers with thicknesses 20d  nm and 30d  nm 

from Ref. [126] are also shown for comparison. The rise of the thermal conductivity with 

increase of nanolayer thickness is explained by the reduction of the phonon boundary scattering 

rate. One should note also, that calculations based on both BvK and FCC models reproduce well 

the available experimental data, but for the different values of  . The best agreement between 

BvK calculations and experimental data is obtained for   = 0.2 nm, while for the FCC 

calculations for   = 0.12 nm. This discrepancy is attributed to the difference between FCC and 
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BvK phonon energy dispersions. Note also that for the same values of the boundary roughness 

parameter the FCC thermal conductivities are smaller than those obtained within BvK model. 

Growth of the nanolayer thickness leads to the increase of the number of phonon branches. 

Therefore the difference in the thermal conductivities calculated using FCC and BvK models 

strongly depends on the layer thickness and increases from ~ 0 % for 1 nm-thick-nanolayer to ~ 

20-25 % for 50-nm-thick nanolayer. The lower values of the thermal conductivity obtained in 

FCC model is explained (1) by a smoother slope of the FCC phonon dispersion branches in 

comparison with BvK branches and (2) by the taking into consideration acoustic phonon 

branches only within the FCC model [33, 118].  

An interesting question is the contribution of optic phonons in the thermal transport of silicon 

nanolayers. In order to establish the quantitative estimation of this contribution, in Figure 2.5 is 

also shown the thermal conductivity curve, obtained taking into account acoustic phonons only 

(red dotted line). It was found, that the contribution of the optic phonon branches to the thermal 

conductivity in the considered Si nanolayers constitutes ~ 5 % and is almost independent on the 

nanolayer thickness. This weak contribution of optic phonons is due to their small group 

velocities and strong umklapp scattering. 

 

2.3. Phonon processes in planar Si/Ge superlattices 

 

2.3.1. Phonon energy spectra 

 

Material parameters and interatomic force constants of germanium used in the calculation of 

phonon energy spectra in Si/Ge planar superlattices are presented in Table 2.2. The material 

parameters of silicon where taken from Table 2.1. 

 

Table 2.2. Material parameters and interatomic force constants of germanium used in 

calculations of phonon energy spectra in Si/Ge planar superlattices. 

a  (nm)   (kg/m
3
) 

11c  (GPa) 44c  (GPa)   (N/m)  (N/m)  (N/m) 

0.5658 [127] 5323.4 [127] 126.0
 
[128] 67.7

 
[128] 44.0 29.2 3.4 

 

The values of the force constants  ,   and   were adjusted to reproduce the phonon spectra of 

bulk germanium (see Figure 2.6). 
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Fig. 2.6. Phonon energy spectrum of bulk Ge in [100] crystallographic direction. Open circles 

denote experimental points from Ref. [129]. 

 

Analogously to the bulk Si case (Figure 2.2(a)), the three-parameter BvK model reproduces 

reasonably well all the features of the bulk germanium phonon spectra, except for the 

overestimation of TA phonon energies near the BZ edge, which is caused by the lack of the long-

range interatomic interactions in the developed model of lattice dynamics. 

In Figure 2.7 the phonon energy spectra in Si(23ML)/Ge(5ML) planar superlattice are shown 

for two different directions in the BZ. 

 

 

Fig. 2.7. Phonon energy spectra of Si(23ML)/Ge(5ML) planar superlattice in 

max(0,0,0) (0,0, )zq  direction (a) and max max max(0, ,0) (0, , )y y zq q q  direction (b). 

 

One can see from Figure 2.7 that phonon energy spectra in Si/Ge planar superlattices is 

strongly modified compared to bulk silicon or silicon nanolayers (see Figure 2.2). Due to the 
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superlattice nature of the considered planar Si/Ge nanostructure i.e. the existence of a set of 

consecutive Si/Ge interfaces and due to the acoustic mismatch between Si and Ge materials, 

there appear a large number of phonons trapped (localized) in different segments of the 

superlattice: Si layers, Ge layers or Si/Ge boundary. A clear manifestation of the trapping effect 

one can found considering the high-energy phonons from Figure 2.7(a). The maximal phonon 

energy in germanium is ~ 40 meV, therefore all phonon modes in a Si/Ge superlattice with 

energy more than this value should be localized in Si segments. It is clearly seen from Figure 

2.7(a) that phonons with energy more than 40 meV are dispersionless i.e. they posses group 

velocity close to zero and therefore they are localized in silicon segments of Si/Ge superlattice. 

Moreover, one can see from Figure 2.7(b) that in directions close to BZ edge the short-

wavelength phonons are also dispersionless and posses a very low group velocity. 

The peculiarities of the phonon spectra redistribution in Si/Ge planar superlattices in 

comparison with bulk Si and Ge can be qualitatively estimated from the calculation of the 

phonon group velocities averaged over entire BZ. In Figure 2.8 is shown the dependence of the 

average phonon group velocity 1

( )

( ) ( ) / ( / )s z

s E

E g E dE dq   as a function of the phonon 

energy for Si(23ML)/Ge(5ML) planar superlattice (black solid line), bulk silicon (black dashed 

line) and bulk germanium (gray solid line). The ( )g E  is the phonon density of states i.e. the 

number of phonon modes with energy E. 

 

 

Fig. 2.8. Average phonon group velocity as a function of phonon energy in Si(23ML)/Ge(5ML) 

planar superlattice (black solid line), bulk Si (black dashed line) and bulk Ge (gray solid line). 

 

The average phonon group velocity in Si/Ge planar superlattice is smaller than that in the 

bulk silicon for all phonon energies. This drop is explained by the phonon localization effect: the 
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localized phonon modes represent standing waves existing only in the corresponding segments 

of the Si/Ge superlattice or at the Si/Ge interfaces. Another interesting feature of the Si/Ge 

superlattice phonon spectrum can be observed in the range of intermediate energies: 

30 meV 40 meVE  , where a considerable drop of the average phonon group velocity can be 

observed. This drop cannot be explained by the localization of these phonon modes in 

superlattice segments, since phonons of this energy are not filtered by the acoustic mismatch at 

Si/Ge interface and they exist in the entire Si/Ge structure. The cause of this drop is phonon 

hybridization effect i.e. phonons of the same energies but of different polarizations and/or from 

different materials are “mixed” with each other, forming different (hybridized) phonon states 

with averaged phonon properties. In the considered case, the hybridization takes place between 

high-velocity TA and LA acoustic “silicon” phonons and low-velocity TO and LO optic 

“germanium” phonons. As a result, for the considered energy interval a strong decrease of the 

average phonon group velocity in Si/Ge planar superlattice occurs, as compared to bulk silicon 

case. 

 

2.3.2. Phonon scattering processes. Scattering on Si/Ge interface 

 

To model the phonon scattering processes in real planar Si/Ge superlattices it was taken into 

account three basic mechanisms of phonon scattering: Umklapp phonon-phonon scattering, 

scattering on external boundaries (on the bottom and top segments) and scattering on Si/Ge 

interface. Total scattering time of a phonon with wavevector q  from s-th energy branch was 

calculated according to Matthiessen’s rule:            

 
1

1 1 1

, , , ,( ) ( ) ( ) ( )tot s U s B s I sq q q q   


     ,           (2.11) 

where , ( )U s q , , ( )B s q  and , ( )I s q  are phonon lifetimes in Umklapp, boundary and interface 

scattering processes, respectively. 

 

Umklapp scattering processes 

For calculation of the phonon-phonon Umklapp scattering rate it was used the same formula 

as for silicon nanolayers (Equation 2.4). However, for Si/Ge superlattice the parameters B and C 

were averaged between silicon and germanium values taking into account a particular 

distribution of the phonon mode in one superlattice period: 

 
2

,

( )1
( )      ( )  exp

( )

s
s s

U s

C q
B q T q

q T




 
  

 
,           (2.12) 

where 
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2 2

over Si over Ge 
segment segment

( ) ( ) ( , )       ( ) ( , )s s sB q B Si w z q dz B Ge w z q dz   ,        (2.13) 

2 2

over Si over Ge 
segment segment

( ) ( ) ( , )       ( ) ( , )s s sC q C Si w z q dz C Ge w z q dz   .        (2.14) 

In Equations (2.13) and (2.14) ( , )sw z q  is the amplitude of the displacement of atoms from z-th 

monolayer in ( , )s q  vibrational mode. In calculations these amplitudes were normalized to 

unity:
2 2

over Si over Ge 
segment segment

( , )    ( , ) 1s sw z q dz w z q dz   . In this way, every phonon mode is scattered 

individually. For example, if 90% of the vibration is localized in Si segment 

i.e.
2

over Si 
segment

( , ) 0.9sw z q dz   and
2

over Ge 
segment

( , ) 0.1sw z q dz  , then the Umklapp scattering parameters 

will have values close to that of silicon: ( ) 0.9 ( )     0.1  ( )sB q B Si B Ge  ; 

( ) 0.9 ( )     0.1  ( )sC q C Si C Ge  . 

 

Boundary scattering processes 

In a real superlattice there are no phonons with mean free path larger than the total thickness 

of the superlattice, because of the scattering of phonons on the external boundaries. This 

condition is satisfied if one uses for the phonon-boundary scattering lifetime the following 

formula: 

1

,

( )
( )

s

B s

q
q

L


   ,              (2.15) 

where L  - total thickness of the superlattice along Z axis. 

 

Scattering on Si/Ge interface 

 

Let us consider a superlattice consisted of an infinite number of consecutive layers of two 

materials – A and B. At the A/B (B/A) interfaces there exists a domain, where atoms from A and 

B materials are intermixed (see Figure 2.9 below). If the perturbation due to such intermixing 

(mass defect) is weak, then the phonon scattering on the A/B interface can be described using 

perturbation theory. Let us write the perturbation Hamiltonian for one superlattice period [130]: 

   
22( ) ( )1 1

2 2

G A G B
ji

i j

i j

uu
H m m m m

t t


    

 
  ,          (2.16) 
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where G  - number of intermixed atoms in A and B layers (for the sake of simplicity it is 

considered the same for both layers, however indices A and B remain for a more clear 

understanding), m  - average mass of atoms in superlattice. 

 

 

Fig. 2.9. Schematics of a planar superlattice with atomic intermixing at interfaces. 

 

In the second quantization formalism, displacement vector of i-th atom is given by 

expression: 

    
,

( , )
i ( , ) ( , ) exp i , ( , )

2 ( , )

i
i i

q s

e q s
u b q s b q s q r q s t

V q s


 

        ,       (2.17) 

where   - average density in one superlattice period, V  - volume of one period, ( , )ie q s  - 

vector of the displacement amplitudes corresponding to a vibrational mode ( , )q s . The first 

derivative of (2.17) over time is: 

    
,

( , ) ( , ) ( , ) ( , ) exp i , ( , )
2

i
i i

q s

u
q s e q s b q s b q s q r q s t

t V
 




      

 .      (2.18) 

Substituting (2.18) into the perturbation Hamiltonian (2.16), one can obtain: 



  

    

 

, ,

( )
*

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
4

( , ) ( , ) ( , ) ( , ) exp i ( , ) ( , )

( , ), ( , ) exp i

q s q s

G A

i i i i

i

G

j

j

H q s q s b q s b q s b q s b q s
V

b q s b q s b q s b q s q s q s t

m m e q s e q s q q r

m m

 


 

  

 



         

              


        



 





   
( )

*( , ), ( , ) exp i
B

j j je q s e q s q q r


     




       (2.19) 
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The probability of a phonon to go from state ( , )q s  into another state ( , )q s    as a result of 

an interface scattering event can be calculated using the Fermi’s golden rule: 

2

2

2
( , ) 1, ( , ) 1 ( , , , ) ( , ), ( , ) ( ( , ) ( , ))q s

qsP n q s n q s H q s q s n q s n q s q s q s


  
              .     (2.20) 

In Equation (2.20) delta-function ensures the energy conservation law for all possible transitions 

( , ) ( , )q s q s  . The bosonic creation b  and annihilation b  operators act on phonon occupation 

number ( , )n q s  as: 

( , ) ( , ) ( , ) 1 ( , ) 1

( , ) ( , ) ( , ) ( , ) 1

b q s n q s n q s n q s

b q s n q s n q s n q s

   

 
           (2.21) 

In the matrix element (2.20) the creation and annihilation operators which correspond to a 

vibrational mode ( , )q s  act only on the phononic state ( , ), __n q s , while operators which 

correspond to mode ( , )q s   only on the state __, ( , )n q s  . Taking into account Equation (2.21), 

Equation (2.20) will take the form: 

 

    

  

 

2

2 2 2

( )
*

( )
*

*

2
4 ( , ) ( , ) ( , ) ( , ) 1 ( ( , ) ( , ))

16

( , ), ( , ) exp i( )

( , ), ( , ) exp i( )

( , ),

q s

qs

G A

i i i i

i

G B

j j j j

j

i i

P q s q s n q s n q s q s q s
V

m m e q s e q s q q r

m m e q s e q s q q r

m m e q s


    



          


     




       



 





   

  

( )

( )
*

( , ) exp i( )

( , ), ( , ) exp i( )

G A

i i

i

G B

j j j j

j

e q s q q r

m m e q s e q s q q r


    




        







      (2.22) 

Here it was taken into account that in the double sum 
, ,q s q s 

 there are 2! identical elements 

( , , , )H q s q s    and ( , , , )H q q s s q q s s        , thus one should multiply the matrix 

element q s

qsP
 

 by 2(2!) 4 . Opening the brackets in Equation (2.22), one can obtain:  
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 

    

   

2 2

( ) ( )
* *

* *

( , ) ( , ) ( , ) ( , ) 1 ( ( , ) ( , ))
2

( , ), ( , ) ( , ), ( , ) exp i( )( )

( , ), ( , ) (

q s

qs

G A G A

i j i i j j i j

i j

i j i i j

P q s q s n q s n q s q s q s
V

m m m m e q s e q s e q s e q s q q r r

m m m m e q s e q s e


    



          


            



   

 

 

    

    

( ) ( )

( ) ( )
* *

* *

, ), ( , ) exp i( )( )

( , ), ( , ) ( , ), ( , ) exp i( )( )

( , ), ( , ) ( , ), ( , ) ex

G A G B

j i j

i j

G B G A

i j i i j j i j

i j

i j i i j j

q s e q s q q r r

m m m m e q s e q s e q s e q s q q r r

m m m m e q s e q s e q s e q s

      

           

     

 

 

( ) ( )

p i( )( )
G B G B

i j

i j

q q r r


    


 

     (2.23) 

The best case scenario is the exact calculation of the matrix element (2.23). However, it is a 

problem of great complexity, since it requires: (i) knowing the spatial distribution of atoms in 

mixed layers and their displacement amplitudes vectors, and (ii) summation of a huge number of 

elements 2
G G

i j

G . Nevertheless, one can greatly simplify the problem if consider the 

following approximations: (а) segments with mixing atoms have the same crystalline structure as 

the segments without mixing, (b) all atoms from one particular monolayer have the same 

amplitudes of the displacements and (c) the number of atoms in monolayers is constant and 

equals to N. In this case, it is convenient to divide the summation 
G

i

 over atoms in matrix 

element (2.23) into the summation over monolayers 
g

l

 (where g  - number of monolayers with 

mixing in segments А and B) and the summation over atoms in a monolayer 
N

k

 . Thus, the first 

sum from Equation (2.23) can be written as: 

    

     

( ) ( )
* *

( ) ( ) ( ) ( )
* *

( ) ( )

( ) ( )

( )

( , ), ( , ) ( , ), ( , ) exp i( )( )

( , ), ( , ) ( , ), ( , )

exp i( )(

G A G A

i j i i j j i j

i j

g A g A N A N A

l l n n k l p n

l n k l p n

k l

m m m m e q s e q s e q s e q s q q r r

e q s e q s e q s e q s m m m m

q q r

          

      

 

 

  

( ) )p nr  

     (2.24) 

Here ( )k l  denotes k-th atom from l-th monolayer, ( )k lr  - radius-vector of ( )k l -th atom. Once the 

displacement amplitudes vectors are taken out from summation over atoms, the calculation of 

sums 
( ) ( )

( ) ( )

N A N A

k l p n

  is becoming possible, if one uses the assumption of a random distribution of 

atoms in monolayers with mixing. Consider as origin of summation the center of a monolayer. 
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The radius-vectors of atoms can be represented as a sum of two vectors: ||

( ) ( )k l l k lr R r  , where 

lR  - vector of l-th monolayer, directed perpendicular to it, and ||

( )k lr  - radius-vector of k-th atom 

from l-th monolayer, lying in the monolayer plane. In the chosen representation one can write: 

  

  

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
|| ||

( ) ( ) ( ) ( )

( ) ( )

exp i( )( ) exp i( )( )

exp i( )( )

N A N A

k l p n k l p n l n

k l p n

N A N A

k l p n k l p n

k l p n

m m m m q q r r q q R R

m m m m q q r r

             

      

 

 

     (2.25) 

Assuming a random distribution of atoms in monolayers with mixing, one can obtain: 

     

  

|| ||
( ) ( )

|| ||
( ) ( )

( ) ( ) ( ) ( )
|| ||

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
|| ||

( ) ( ) ( ) ( )

( ) ( )

exp i( )( )

exp i( )( )

k l p n

k l p n

N A N A N A N A

k l p n k l p n k l p n

k l p n k l p n

r r

N A N A

k l p n k l p n

k l p n

r r

m m m m q q r r m m m m

m m m m q q r r





         

    

   

   
2

N

k

k

m m    

(2.26) 

The last sum in Equation (2.26) can be calculated as: 

         

   

     

2 2 2 2 2

2 2 2 2

2 22 2

2

2 2

2

A B

A B A B

N NN N N N

k k k A B

k k k k k k

N N N N

A B A A B B

k k k k

A A B B A B A A B B

m m m mm m m m

mm mm m m N m N m

m N m N m N m N m N m m N m m

      
            

       

   
            

   

         

     

          (2.27) 

Here AN  and BN  - number of atoms in material A and B in monolayer with mixing, 

respectively. It is convenient to introduce a parameter x, i.e. part of A atoms in a monolayer with 

mixing. Then one can express the following quantities in terms of x and N: 

     

         2 2 2

2 1 2 1
;       ;  

2 2

;         1 ;        1

A A B B A B A A B B A B

A B A B

N

A B k A B

k

m g m g g xm x m g g g x x
m

g g g g g g

N xN N x N m m N x m m x m m

   


       
 

   

        

   (2.28) 

where Ag  and Bg  - number of monolayers without mixing in segments A and B 

correspondingly. 

Using Equations (2.25)-(2.28), the matrix element (2.23) takes the form: 
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 

  

 

2

2 2

( ) ( )
* *

* *

( , ) ( , ) ( , ) ( , ) 1 ( ( , ) ( , ))
2

( , ), ( , ) ( , ), ( , ) exp i( )( )

( , ), ( , ) ( , ), (

q s

qs

g A g A

l l n n l n

l n

l l n n

P N q s q s n q s n q s q s q s
V

e q s e q s e q s e q s q q R R

e q s e q s e q s e q


     



           


          



  

 

 

  

  

( ) ( )

( ) ( )
* *

( ) ( )
* *

, ) exp i( )( )

( , ), ( , ) ( , ), ( , ) exp i( )( )

( , ), ( , ) ( , ), ( , ) exp i( )(

g A g B

l n

l n

g B g A

l l n n l n

l n

g B g B

l l n n l

l n

s q q R R

e q s e q s e q s e q s q q R R

e q s e q s e q s e q s q q R

     

         

      

 

 

  )nR


  


      (2.29) 

where     
2 22 1A Bx m m x m m      .  

Once the matrix elements are known one can calculate the relaxation time of phonons in 

interface scattering using the formula [130]: 

 
,1

, ( )
( , ) ( , ) 1

q s

qs

q s

I s

P

q
n q s n q s



 

  



.             (2.30) 

Taking advantage of 2D layered geometry of a planar superlattice one can go from summation 

over q to integration using the following scheme: 

   

2

3 2

0

1

2 2

a L

x y z z

q L

V
dxdydz dq dq dq q dq dq

 

 
 

 

           .        (2.31) 

Substitute Equation (2.31) into Equation (2.30): 

  

22
1

, 2

0

( ) ( )
* *

( , ) ( , , ) ( , , )
4

( , , ) 1
( ( , , ) ( , , ))

( , , ) 1

( , , ), ( , , ) ( , , ), ( , , ) exp i( )(

L a

I s z z z

s L

z
z z

z

g A g A

l z l z n z n z z z

l n

q q q q s q q s

n q q s
q q s q q s

n q q s

e q q s e q q s e q q s e q q s q q

 




   

 

  



  
 


 



   


   

   
    



       

  

 

  

  

( ) ( )
* *

( ) ( )
* *

)
4

( , , ), ( , , ) ( , , ), ( , , ) exp i( )( )
4

( , , ), ( , , ) ( , , ), ( , , ) exp i( )(

g A g B

l z l z n z n z z z

l n

g B g A

l z l z n z n z z z

l n

a
l n

a
e q q s e q q s e q q s e q q s q q l n

e q q s e q q s e q q s e q q s q q l n

   

   

  
   

 

 
          

 

        

 

 

  
( ) ( )

* *

)
4

( , , ), ( , , ) ( , , ), ( , , ) exp i( )( )
4

g B g B

l z l z n z n z z z

l n

z

a

a
e q q s e q q s e q q s e q q s q q l n

q dq dq

   

 

 
 

 

 
          

 

  

 

     (2.32) 

In Equation (2.32) the distance between monolayers was taken equal to 
4

a
, which corresponds to 

a diamond crystal lattice. Also it was introduced a parameter   as an amount of mixing atoms in 
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superlattice. This parameter is the only adjustable parameter of the model and is used to fit the 

experimental data. Integrating the Equation (2.32) over 
zq  finally one can obtain for phonon 

relaxation time in interface scattering: 

 

  

 

,

22
21

, 2

0

( ) ( )
* *

* *

1
( , ) ( , , )

4 ( , , )

( , , ), ( , , ) ( , , ), ( , , ) exp i( )( )
4

( , , ), ( , , ) ( ,

z

a

I s z z

q s z z

g A g A

l z l z n z n z z z

l n

l z l z n

q q q q s
q q s

a
e q q s e q q s e q q s e q q s q q l n

e q q s e q q s e q q




  
  



 
  

   

  


 

  

  
           

 

  

 

 

 

  

 

( ) ( )

( ) ( )
* *

* *

, ), ( , , ) exp i( )( )
4

( , , ), ( , , ) ( , , ), ( , , ) exp i( )( )
4

( , , ), ( , , ) ( , , ),

g A g B

z n z z z

l n

g B g A

l z l z n z n z z z

l n

l z l z n z
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    (2.33) 

In order to calculate the phonon lifetime of interface scattering in a Si/Ge superlattice with 

Equation (2.33) one should first know the phonon eigenfrequencies and displacement vectors for 

the whole BZ taking into account the atomic intermixing at interfaces. The intermixing was 

introduced in the BvK model by changing the force constants between atoms from corresponding 

layers. For instance, if the x-th part of the atoms in monolayers with mixing is Si atoms, then 

force constants in these monolayers were calculated as: 

     1 ;     1 ;     1mix Si Ge mix Si Ge mix Si Gex x x x x x                 .      (2.34) 

In Figure 2.10 are presented phonon lifetimes as a function of wavenumber zq  in 

Si(35ML)/Ge(9ML) planar superlattice for a fixed wavenumber 0q   and different phonon 

branches. The gray lines correspond to the calculations taking into account boundary and 

umklapp scattering only, while black lines are results of the calculations with boundary and 

interface scattering. 
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Fig. 2.10. Phonon lifetime as a function of wavenumber 
zq  in Si(35ML)/Ge(9ML) planar 

superlattice with 2 ML interface mixing for a fixed wavenumber 0q   and three different 

phonon branches: (a) s=1, (b) s=5 and (c) s=11. Total number of branches is 132. 

 

In the calculations of phonon scattering rates were used the following parameters: T = 300 K, 

L = 1800 nm, x = 0.5,   = 3.1 x 10
8
 and 2 ML interface mixing. The total thickness of the 

superlattice L was taken from experimental work [131] and parameter   was found by fitting 

the theoretical temperature dependence of the thermal conductivity to the experimental data from 

[131]. The Figures 2.10(a)-(c) are insightful in terms of particular influence of different phonon 

scattering mechanisms on total phonon lifetime in Si/Ge planar superlattices. From panel (a) one 

can see that for the lowest energy branch (s=1) the gray and black lines coincide for 

max0.4z zq q , which means that for low-energy long wavelength phonons the boundary scattering 

mechanism is the only mechanism limiting their mean free path and lifetime. For max0.4z zq q  

the interface scattering becomes a dominant mechanism of the phonon scattering. Moreover, 

from panels (b) and (c) one can see that for higher energy branches the interface scattering is the 

dominant scattering of phonons for all wavelengths. The latter means that interface mass-mixing 

scattering of phonons plays an extremely important role in the limiting the total phonon lifetime 

in Si/Ge planar superlattices.  

 

2.3.3. Phonon thermal conductivity 

 

Taking into account anisotropy of the phonon energy dispersion in the direction 

perpendicular to the layers one can go in Equation (2.9) from the summation over q  to the 

integration as: 
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    , where V is the volume of the planar superlattice. 

Thus, for calculation of the phonon thermal conductivity in planar Si/Ge superlattices we used 

the following equation: 
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   ,     (2.35) 

where q  – 2D phonon wavevector ( , )zq q q , ( )s q  – phonon frequency of s -th branch with 

wavevector q ,  , ( )z s q  – z-th component of the phonon group velocity, , ( )tot s q  – total phonon 
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lifetime, zL  – thickness of one superlattice period along Z axis. In Equation (2.35) the BZ was 

represented as a cylinder with height 
zL


 along the Z axis and base radius 

2

a


 lying in the XY 

plane. In the XY plane the phonon dispersion is considered to be isotropic. 

In order to calculate the thermal conductivity of Si/Ge planar superlattices one first should 

define the Umklapp scattering parameters for Si and Ge materials from comparison with bulk 

thermal conductivity data. The Umklapp parameters of silicon were found previously (see Fig. 

2.3 from Section 2.2.3). In Figure 2.11 is presented the experimental [121] (black dashed curve) 

and calculated (gray curve) temperature dependence of the bulk germanium thermal conductivity 

limited by the Umklapp scattering only.  

 

 

Fig. 2.11. Experimental [121] (black dashed curve) and calculated (gray curve) temperature 

dependence of the bulk germanium thermal conductivity. 

 

For temperatures 50 K and higher the BvK model with the Umklapp scattering parameters 

194.08 10B   s/K and C = 57.6 K allows one to obtain an excellent agreement between 

theoretical and experimental thermal conductivity. As in the case of bulk silicon, at low 

temperatures T<50 K the experimental thermal conductivity of bulk Ge is substantially lower 

than Umklapp-limited theoretical one due to the scattering of phonons on the crystal lattice 

defects. 

In Figure 2.12 is presented the calculated phonon thermal conductivity of planar 

Si(35ML)/Ge(9ML) superlattice as a function of temperature. 
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Fig. 2.12. Temperature dependence of the phonon thermal conductivity in Si(35ML)/Ge(9ML) 

planar superlattice. Gray triangles denote experimental points from Ref. [131]. 

 

The black dashed and solid lines correspond to calculations for 1 ML and 2 ML interface 

mixing without taking into account Umklapp scattering, while solid gray line represents 

calculation with 2 ML mixing and all three basic mechanisms of phonon scattering. The black 

solid line was obtained with parameters x=0.5 and   = 3.1 x 10
8
 in order to fit the experimental 

data from Ref. [131]. A good agreement between theoretical and experimental data was obtained 

only in the case when Umklapp scattering was not accounted in calculations, indicating that in a 

real Si(35ML)/Ge(9ML) planar superlattice from Ref. [131] the interface mass-mixing scattering 

is the dominant mechanism of phonon scattering. Indeed, if Umklapp scattering was dominating 

over interface scattering, then one should find a slow decrease of thermal conductivity at high 

temperatures, since Umklapp scattering time scales with temperature as 1

U T  , which is 

clearly seen from the solid gray curve. However, the experimental data demonstrated no such 

behavior (follow gray triangles on the figure) and thermal conductivity remained almost 

independent on temperature. Another important conclusion can be made if one compares black 

solid and dashed curves i.e. calculations with different number of mixed monolayers at interface. 

The thermal conductivity of planar Si(35ML)/Ge(9ML) superlattice with 1 ML interface mixing  

is almost 2 times larger than with 2 ML mixing for a wide range of temperatures, which 

demonstrates the strongest influence of interface mass-mixing phonon scattering on thermal 

conductivity of planar Si/Ge superlattices.  

In Figure 2.13 is presented the calculated thermal conductivity of Si/Ge planar superlattices 

as a function of thickness of Si and Ge segments. There are two set of curves: top curves 

represent calculation without taking into account phonon-interface scattering and bottom curves 
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represent calculation with all basic mechanisms of phonon scattering. The calculations were 

performed for temperature T = 300 K, interface scattering parameter   = 10
5
, 1 ML interface 

mixing and different values of parameter x i.e. different ratios between amount of Si and Ge 

atoms in mixing regions. The thickness of the superlattice period remained constant and equal to 

24 ML (~ 3 nm). In the case when interface scattering of phonons is not taken into account the 

thermal conductivity possesses its maximal value at dSi=20ML and dGe=4ML (dSi and dGe are 

thicknesses of silicon and germanium segments, respectively), i.e. when Ge segment is much 

thinner than the Si one. It is an expected result since silicon material possesses better thermal 

conduction properties than germanium. On the contrary, when phonon-interface scattering is 

included in calculations the thermal conductivity have a distinguished maximum when dSi = dGe 

= 12 ML. This peculiar behavior differs significantly from the case where phonon-interface 

scattering was not taken into account (top curves). It is attributed to the non-trivial dependence 

of the interface scattering rate on the amplitudes of the atomic displacements in Si/Ge 

superlattices (see Equation 2.32). The atomic displacement field can change significantly for 

different vibrational modes and different ratios between thicknesses of Si and Ge segments, 

because of the strong acoustic mismatch and different vibrational properties of the materials. 

 

 

Fig. 2.13. Room-temperature thermal conductivity of Si/Ge planar superlattices with constant 

period Lz=24 ML and different ratio between thicknesses of Si and Ge segments. 

 

Another valuable conclusion from Figure 2.13 can be made about the dependence of thermal 

conductivity on the parameter x when all basic mechanisms of phonon scattering are accounted 

in calculations (bottom curves). In Si/Ge superlattices with thin Ge segments the thermal 
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conductivity for x=0.9 (red curve) case is higher than for x=0.5 (black curve) and x=0.1 (blue 

curve) cases. In Si/Ge superlattices with thin Si segments there is opposite situation, the thermal 

conductivity for x=0.1 is higher than for x=0.5 and x=0.9 cases. It is attributed to the specifics of 

interface scattering of phonons, since in the case when the interface scattering is not taken into 

account (top three curves) the thermal conductivity do not demonstrate such behavior. The 

results suggest that Ge atoms act as strong scatterers of Si-like phonons when dSi>>dGe. In this 

case phonon-interface scattering rate is larger for smaller values of x i.e. for larger amount of Ge 

atoms in interface layers with mixing. When Ge segments are much thicker than Si segments the 

situation is opposite and Si atoms at the interface strongly scatter Ge-like phonons.  

 

2.4. Conclusions to chapter 2 

 

In this chapter a three-parameter BvK model of lattice dynamics for nanolayers and planar 

superlattices with diamond crystal lattice was developed. The Boltzmann transport equation 

approach was proposed for investigation of the phonon and thermal processes in Si nanolayers 

and Si/Ge planar superlattices.  

For nanometer-wide silicon nanolayers a good agreement between theoretical calculations 

and the experimental data for 20-nm-thick and 30-nm-thick silicon nanolayers was obtained. It 

was demonstrated that optical phonons contribution to the thermal conductivity of silicon 

nanolayers under consideration constitutes only a few percent.  

The perturbation theory and second quantization formalism were used in order to model the 

scattering of phonons on interfaces in Si/Ge planar superlattices. It was concluded that interface 

mass-mixing scattering of phonons plays an extremely important role in the limiting the total 

phonon lifetime in Si/Ge planar superlattices and can lead to a peculiar behavior of phonon 

thermal conductivity of these structures owing to the non-trivial dependence of the interface 

scattering rate on the amplitudes of the atomic displacements. For a wide temperature range from 

50 K to 400 K a good agreement between theoretical and experimental phonon thermal 

conductivity was obtained for Si(35ML)/Ge(9ML) planar superlattice when phonon-phonon 

scattering was not taken into account, indicating that the interface mass-mixing scattering can be 

the dominant mechanism for the phonon scattering in real Si/Ge planar superlattices. 

The proposed theoretical approaches allow better understanding of the phonon processes in 

2D homogeneous layers and acoustically-mismatched heterostructures with diamond crystal 

lattice and can be highly useful for an accurate predictive simulation of their phonon and thermal 

properties. 
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3. PHONON AND ELECTRON PROCESSES IN Si-BASED MODULATED 

NANOWIRES 

 

3.1. Effective mass method and electron energy spectra in Si/SiO2 core/shell modulated 

nanowires 

 

Despite the technological difficulties, modulated nanowires (modulated NWs or MNWs) 

have been successfully synthesized during the past few years, using electron deposition in pores 

of different materials, thermal evaporation and chemical vapor deposition [132-135]. 

Experimental successes stimulate the investigation of physical properties of modulated 

structures. Electronic states and ballistic electron transport in Si and GaAs MNWs have been 

theoretically investigated in Refs. [136-140] in the framework of effective mass method and 

density functional theory. It was demonstrated [139-140] that cross-section modulation with only 

a few quantum dots leads to an appreciable enhancement of electron conduction properties of 

GaAs nanowires. 

In Figure 3.1 is shown the schematic view of considered core/shell nanowires. Nanowires 

consist of two periodically repeated Si segments with dimensions 1 1 1

x y zd d l   and 2 2 2

x y zd d l   

covered by SiO2 shell.  

 

Fig. 3.1. Schematics of a Si nanowire with constant cross section (a) and periodically cross-

section modulated Si nanowire (b). Both wires are covered with a SiO2 shell. 

 

Electron states in these structures are described with time-independent Schrodinger equation: 

ˆ
n n nH E   ,                (3.1) 

where nE  and n  is electron energy and electron wave function with quantum number n, 

respectively. Since NW with constant cross-section can be considered as a particular case of a 
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MNW (when cross-section of different segments is equal), then it can be obtained a general form 

of electronic Hamiltonian Ĥ  for both modulated and unmodulated nanowires.  

Let us direct the Z axis of the Cartesian coordinate system along the NW, while X and Y axes 

in the NW’s cross-sectional plane. For a chosen coordination scheme the electronic Hamiltonian 

in the effective mass approximation takes the form: 

2
ˆ [ ( , , ) ( , , ) ( , , ) ] ( , , )

2
bH M x y z M x y z M x y z V x y z

x x y y z z
 
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  
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  ,        (3.2) 

where  is the Planck constant, ( , , )bV x y z  is potential barrier in ( , , )x y z  point, ( , , )M x y z  and 

( , , )M x y z  is transversal and longitudinal electron effective masses. Transversal and 

longitudinal electron effective masses in Si are equal to 0.19 em  and 0.98 em , correspondingly, 

where 319.10938215 10em    kg is electron mass in vacuum. Equation (3.1) with Hamiltonian 

(3.2) represents an eigenvalue problem, with electron energies as eigenvalues and electron wave 

functions as eigenvectors. For the numerical solution of this problem a discretization of 

equations (3.1-3.2) was performed. Thus, a point in continuum space with coordinates ( , , )x y z  

was mapped into a point with coordinates ( , , )i j k  in discrete space. The discrete indices can 

have values: 1,..., xi N ; 1,..., yj N  and 1,..., zk N , where number of discrete points along the 

corresponding axes was taken equal to 15xN  , 15yN   and 8zN  . 

Applying a finite difference method for derivatives from equation (3.2), the equation (3.1) 

takes the form: 
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It is supposed, that considered core/shell Si/SiO2 nanowires are suspended in vacuum and are 

infinite along the Z axis and in XY plane have nanometric dimensions. In this case the following 

boundary conditions are applied: 

( 1, , ) (0, , ) 0
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,              (3.4) 

where zL  is the length of one period of NW along the Z axis; kz is electron wave number along 

the Z axis. Equation (3.3) with boundary conditions (3.4) determines electron energy and wave 

function in (n,kz) state. 

In Figure 3.2 are shown ten lowest electron energy branches in Si NW with constant cross-

section x yd d = 9x9 nm
2
 and Si MNW 1 1 1

x y zd d l  =5x5x1 nm
3
; 2 2 2

x y zd d l  =9x9x1 nm
3
. Both 

wires are covered with SiO2 shell in such a way that total cross-sectional dimensions are equal to 

15x15 nm
2
. 

 

Fig. 3.2. Electron energy dispersion in Si nanowire with constant (a) and periodically modulated 

(b) cross-section, covered with SiO2 shell. 

 

Due to the nanometric cross-sectional dimensions of the considered wires, electron motion in 

XY plane is quantified and its energy can have only discrete values. In case of Si NW with 

constant cross-section the electron motion along the NW axis remains free and is described by a 

parabolic energy dispersion (see panel (a) in Figure 3.2). In case of a Si NW with modulated 

cross-section (panel (b) in Figure 3.2) there is a significant deviation from parabolic law, which 

indicates that electron motion along the Z axis is not free and a part of electron wave function 

being localized in wide segments of the modulated wire. One can observe also that lowest energy 
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levels in MNW possess higher energy compared to generic NW, suggesting that electron 

confinement in nanowires with modulation manifests itself more strongly.  

In Figure 3.3 is presented modulus of the electron wave function for lowest (ground) state in 

Si NW with constant cross-section 9x9 nm
2
 and Si MNW 5x5x1-9x9x1 nm

3
. 

 

Fig. 3.3. Electron function modulus for ground state in Si nanowire with constant (a) and 

periodically modulated (b) cross-section, covered with a SiO2 shell. 

 

The distribution of wave function in YZ plane of NWs for three different values of coordinate 

i=8, 5 and 3 is shown. The YZ section for i=8 is situated in the middle of the wire’s cross-section 

(since the total number of discrete i points is Nx=15), while for i=3 totally in the SiO2 shell. For 

i=5 in case of unmodulated nanowire the YZ section totally lies on the Si/SiO2 interface and in 

case of modulated nanowire one part of it is situated in SiO2 shell (corresponds to the narrow Si 

segment; k=1,2,3,4) and another part on the Si/SiO2 interface (corresponds to the wide Si 

segment; k=5,6,7,8).  

From Figure 3.3(a) one can observe that for Si NW with constant cross-section the wave 

function distribution along the Z axis is homogeneous. In this case the wave function modulus 

strongly decreases in the SiO2 shell e.g. for i=3 it is ~3 orders lower than for i=8. In case of a Si 

NW with modulated cross-section (Figure 3.3(b)) there is an inhomogeneity in the wave function 

distribution along the wire’s axis, namely, in the wide segment is concentrated the main part of 

the wave function. In particular, for i=5 case it is clearly seen the electron wave function 

localization in the wide segment of the MNW. In addition, all graphics demonstrate that electron 

wave function is almost completely localized in the silicon channel and very weakly penetrates 

into the SiO2 shell, which is caused by a high potential barrier on the Si/SiO2 interface: Vb = 3.2 

eV. 
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3.2. Phonon processes in Si and Si/Ge core/shell modulated nanowires 

 

In spite of the fact that bulk Si is a poor thermoelectric with room-temperature ZT ~ 0.01 

[141], thin Si NWs and Si/Ge segmented NWs are considered promising for thermoelectric 

applications [54-55, 125, 142-143] owing to the much lower values of the RT (RT) lattice 

thermal conductivity ph < 1 W m
-1 

K
-1

. It has been demonstrated experimentally that the good 

electrical conductivity, as in doped bulk Si, and poor thermal conductivity of Si NWs [55] and 

rough Si NWs [54] provide relatively high values of ZT ~ 0.3 to 0.6 at RT. These experimental 

results stimulate theoretical search of one-dimensional Si-based nanostructured materials with 

the ultra-low thermal conductivity. An up to 30-fold drop of the RT lattice thermal conductivity 

in comparison with Si NWs was reported for Si-based segmented nanowires consisting of 

acoustically-mismatched materials [125]. The reduction of the RT lattice thermal conductivity up 

to 75% was theoretically demonstrated in Si/Ge core/shell NWs with Ge thicknesses of several 

monoatomic layers [144]. The corresponding enhancement of ZT in these NWs was also 

predicted [145]. 

Fabrication of the periodically cross-section modulated nanowires is still a major challenge. 

It is difficult to precisely control shape and size of the nanowire segments. Nevertheless, the 

periodic diameter-modulated GeSi/Si pillar structures were prepared from the multilayer GeSi/Si 

islands using the selective etching of Si in KOH [136]. The theoretical models for the cross-

section modulated nanowires have also been reported. Ballistic thermal conductance of Si and 

Si/Pb wires with modulation of the cross-sectional width from 0.1 to 0.5 µm was considered in 

Ref. [138]. Within the framework of the elasticity theory, thermal conductance was demonstrated 

to yield a minimum with a reduction by a factor 0.6 to 0.7 at T ~ 0.1 K to 0.3 K [138]. Nanowires 

of GaAs modulated by several quantum dots reveal the enhanced thermoelectric properties at 

low temperatures in the ballistic transport regime due to modification of the electron 

transmission coefficients [139-140] and reduction of the low-temperature thermal conductance 

[146].  

Numerous theoretical investigations of phonon properties of semiconductor nanostructures 

were carried out in the framework of a continuum approach. This approach is a powerful tool for 

the analysis of the long-wavelength phonon modes. It is completely adequate for the description 

of the electron-phonon interaction [46, 147-148] or low-temperature thermal conductivity in 

nanostructures when only the low-frequency long-wavelength phonon modes are populated [146, 

149]. However, the continuum approach significantly overestimates thermal conductivity for 

temperatures T>100 K in comparison with the FCC model of the lattice vibrations due to a steep 
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slope of the dispersion curves for high-frequency phonon modes [33]. Different models of lattice 

dynamics and molecular dynamics simulations [88, 118, 150-154] allow for an accurate 

description of heat transfer and thermal conductivity in a good agreement with experiments. 

The schematics of the considered Si NW, Si MNW and Si/Ge core/shell MNW are shown in 

Figure 3.4. The external surfaces of the nanostructures under consideration are assumed to be 

free [32, 116, 125]. The X and Y axes of the Cartesian coordinate system are located in the cross-

sectional plane of the nanowires (unmodulated or modulated) and are parallel to its sides, while 

the Z axis is directed along the wire axis. It is assumed that NW and MNWs are infinite along the 

Z axis. The origin of the coordinates is set at the center of the nanowire cross-section. The 

translation period of MNW consists of two parts with dimensions 1 1 1

x y zd d l   and 2 2 2

x y zd d l  , 

respectively. In case of a core/shell MNW the modulated Si core is covered by Ge shell with 

constant thickness dGe. The length of one MNW period is 1 2

z z zl l l  . The sides of unmodulated 

NW are denoted as dx and dy. 

 

Fig. 3.4. Schematic view of a Si nanowire with constant cross-section (a), a cross-section 

modulated Si nanowire (b) and a cross-section modulated core/shell Si/Ge nanowire (c). 

 

The crystal lattice of Si consists of two face-centered cubic sublattices, which are shifted 

along the main diagonal of a unit cell by 1/4 of its length. For convenience, let us identify the 

atoms of the first sublattice as the “blue” atoms while the atoms of the second sublattice as the 

“red” atoms (see Fig. 3.5 below).  
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Fig. 3.5. Schematics of a diamond-type crystal lattice. Lattice constant is denoted as a. 

 

In nanostructures under consideration, the displacements of the atoms belonging to one 

period only are independent. The rest of the atomic displacements are equivalent to those in the 

selected period due to the translational symmetry along the Z-axis. In the case of an unmodulated 

NW, the translation period consists of two atomic layers of the “blue” atoms and two atomic 

layers of the “red” atoms (all layers are perpendicular to the Z axis). For MNW, the number of 

atomic layers in the period is determined by lz. The displacements of equivalent atoms have the 

form: 

( )
( , , ; ) ( , , ; ) ,z ziq nl

z z zu x y z nl q w x z q ey               (3.5) 

where ( , , ; ) ( ; )z zw x z q w r qy   is the displacement of the atom with coordinates x, y and z, the 

period is labeled by an integer n, and qz is the phonon wavenumber. The equations of motion for 

the displacement are 

2

, , ;

( ; ) ( , ) ( ; ),
k

i k z ij k k j k z

j x y z r

w r q D r r w r q


    k=1,…,N, i = x,y,z,          (3.6) 

where   

( , ) ( , ) / ( ) ( ).ij k k ij k k k kD r r r r m r m r                 (3.7) 

In Equations (3.6) and (3.7) ijD are the dynamic matrix coefficients, ( )km r  [ ( )km r ] is the mass 

of the atom at kr  [ kr ], ( , )ij k kr r  is the matrix of force constants and N is the number of atoms in 

the NW or MNW translational period. For the atom at kr , the summation in Equation (3.6) is 

performed over all the nearest and second-nearest atoms at kr . In case of silicon or germanium, 

the atom at kr  has 4 nearest neighbors at ,

I

k n k nr r h    (n=1,…,4) and 12 second-nearest 

neighbors at ,

II

k n k nr r h    (n=1,..,12). The components of vectors I

nh  and II

nh  are presented in 

Table 3.1. In our model, the interaction of an atom with its nearest and second-nearest neighbors 
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is described by the following force constant matrices: 2

, ,(16 / )( (1 ))I I I

ij ij ij n i n ja h h       for 

the nearest atoms (n=1,…,4) and 2 2

, , , , , ,(4 / )( ( / 4 ) (1 ) )II II II II II II II

ij ij n i n i ij n i n i ij n i n ja a h h h h h h          

for the second-nearest atoms (n = 1, …, 12), where a is the lattice constant, , , ,   and   

are the force constants, ij  is the Kronecker’s delta and i,j=x,y,z. The force constant matrix 

( , )ij k k kr r r   is obtained from the condition that the total force acting on the atom kr  at the 

equilibrium position is equal to 0, i.e. ( , ) ( , ) 0.
k

ij k k k ij k k k

r

r r r r r r


         

By solving the equations of motion (3.6) at Г and X BZ points of bulk Si, one can express 

three constants , , and   through   and the frequencies of the LO and TO phonons at Г 

point and the LA phonon at X point:   

 

 

2 2 2

2 2 2

( ) / 8;   2 ( ) ( ) / 32;

4 ( ) 2 ( ) ( ) / 32 / 2.

LO LA LO

TO LA LO

m Г m X Г

m X X Г

    

    

  

   
             (3.8) 

The constants   and   are treated as fitting parameters and are obtained from the best fit to 

experimental dispersion curves for bulk Si [115]. The numerical values of the force constants for 

Si are indicated in the last column of Table 3.1. 

To calculate the energy spectra of phonons in Si NWs and MNWs, the set of Equations (3.6) 

was solved numerically by taking into account the periodic boundary conditions [see Equation 

(3.5)] along the Z-axis and free-surface boundary conditions in the XY-plane (i.e. all force 

constants outside the nanostructure are set to zero). The calculations were performed for all zq  

values in the interval (0,  /lz) for MNWs and (0,  /a) for NWs (in the case of NWs, lz = a), 

where a = 0.5431 nm is the lattice constant of Si. The notations and dimensions in the 

monoatomic layers (ML, 1 ML = a/4) for analyzed Si NWs and MNWs are represented in Table 

3.1. 

 

Table 3.1. Notations and dimensions for Si nanowires and Si cross-section modulated nanowires 

under consideration. 

Nanostructure Dimensions Notation 

Si NW 14 ML  14 ML NW #1 

Si MNW 14 ML  14 ML  6 ML / 22 ML  22 ML  6 ML MNW #1 

Si MNW 14 ML  14 ML  8 ML / 18 ML  18 ML  8 ML MNW #2 

Si MNW 14 ML  14 ML  8 ML / 22 ML  22 ML  8 ML MNW #3 

Si MNW 14 ML  14 ML  8 ML / 26 ML  26 ML  8 ML MNW #4 
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Si MNW 14 ML  14 ML  8 ML / 30 ML  30 ML  8 ML MNW #5 

Si MNW 14 ML  14 ML  8 ML / 34 ML  34 ML  8 ML MNW #6 

Si MNW 14 ML  14 ML  Nz / 22 ML  22 ML  Nz MNW #7 

Si MNW 14 ML  14 ML  4 ML / 22 ML  22 ML  4 ML MNW #8 

Si MNW 14 ML  14 ML  12ML / 22 ML  22 ML  12 ML MNW #9 

 

The phonon energy spectra of Si NW #1 and Si MNW #1 are shown in Figure 3.6(a) and (b), 

correspondingly. In the figure, we show 20 lowest branches ( )s zq  (s=1,2,…,20) in both 

structures as well as several higher branches with s=20,25,30,35,…, 285,290,294 for the NW and 

with s=35,50,65,80,…,1515,1530 for the MNW.  

 

Fig. 3.6. Phonon energies as a function of the phonon wave vector q (a) in Si NW with the lateral 

cross-section 14 ML  14 ML (the phonon branches with s=1 to 20, 25, 30, 35…290, 294 are 

shown) and (b) in Si MNW with dimensions 14 ML × 14 ML × 6 ML/ 22 ML × 22 ML × 6 ML. 

The phonon branches with s=1 to 20, 35, 50, 65, …, 1515, 1530 are depicted. 

 

The nanowire cross section is chosen the same as the cross section of narrow segments of the 

MNW (see Table 3.1). The volume of a translational period in the MNW is larger than that in the 

NW, therefore the number of quantized phonon branches in the MNW is substantially larger as 

compared to the NW. In the MNW, there are 1530 branches, while only 294 branches exist in the 

NW (see Figure 3.6). As follows from Figure 3.6, a great number of phonon modes in the MNW 

with energy  > 5 meV are dispersionless and possess group velocities close to zero due to the 

trapping into the MNW segments.  

The trapping effect is illustrated in Figure 3.7: the average squared displacements of atoms 

(see Figure 3.7(a)) 
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in the mode (s=8, qz=0.4qz,max) (red line) are relatively large in the wide segments of the MNW 

and almost vanishing in the narrow segments. Therefore this mode is trapped into the wide 

segments of the MNW. For comparison, it is also shown the average squared displacements of 

atoms in a propagating phonon mode (s=992, qz=0.2qz,max) (blue line), which are equally large in 

both the wide and narrow MNW segments.  

 

Fig. 3.7. (a) Average squared displacements 2|),;(| zqszU  of the trapped (s=8, qz=0.4qz,max) (red 

line) and propagating (s=992, qz=0.2qz,max) (blue line) phonon modes in Si MNW with 

dimensions 14 ML × 14 ML × 8 ML/ 22 ML × 22 ML × 8 ML. (b) Localization of phonon 

modes in 14 ML × 14 ML MNW core shown for MNWs #2, #4 and #6. 

 

For illustration of the phonon mode distribution in the cross-section of MNWs in Figure 3.7(b) 

we show the integral squared displacements of atoms in 14 ML  14 ML cross-section channel 

as a function of the phonon energy:     

11 1 2

1 1

/2/2
22

( ) 0/2 /2

( , , ; ) / ( ).

yx z z

x y

dd l l

core s

s d d

U w x y z dxdydz g


 



 

              (3.10) 

Here summation is performed over all phonon modes ( )s   with the frequency ; ( )g   is the 

number of the phonon modes. The results are presented for NW #1 (dashed black line) and 
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MNWs #2 (green points), #4 (black points) and #6 (blue points). In Si NW 2

coreU  = 1 for all 

energies due to the orthonormalization of the phonon displacement vectors (see dashed black line 

in Figure 3.7(b)). Increase of the cross-section of the wide segments leads to the decrease of 

2

coreU  for all phonon energies and, corresponding, the rise of (1 2

coreU ). The latter is indicative of 

the phonon mode localization in the wide segments. Thus, the trapping effect enhances with 

increasing cross-section of the wide segments.     

The effect of the phonon deceleration in cross-section modulated nanowires is illustrated in 

Figure 3.8, where is shown the average phonon group velocity 

1

( )

( ) ( ) / ( / )s z

s

v g d dq


     as a function of the phonon energy for Si NW #1 (dashed line) 

and Si MNW #1 (solid line).  

 

Fig. 3.8. Average phonon group velocity as a function of the phonon energy in Si NW with the 

lateral cross-section 14 ML  14 ML and Si MNW with dimensions 14 ML × 14 ML × 6 ML/ 22 

ML × 22 ML × 6 ML. 

 

The average phonon group velocity in MNW is smaller than that in the NW for all phonon 

energies. As a result, the phonon modes in MNW carry less heat than those in the NW. The drop 

in the phonon group velocities in MNWs in comparison with NWs is explained by the trapping 

effect: the trapped phonon modes represent standing waves existing only in the wide segments of 

MNWs. These modes do not penetrate into narrow MNW segments (see the red line in Figure 

3.7(a)). Therefore, these phonons possess group velocities close to zero. For example, group 

velocities of the phonon modes shown in Figure 3.7(a) are , 992 ,max( 0.2 )z s z zq q   ~ 1.5 km/s and 

, 8 ,max( 0.4 )z s z zq q   ~ 0.01 km/s for the propagating and trapped modes, respectively. A similar 

strong reduction of the phonon group velocity has been recently demonstrated in the segmented 
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NWs, consisting from the acoustically-mismatched materials [125]. The effect was also 

explicated by the phonon modes trapping in NW segments. 

The following NWs were considered: Si/Ge core/shell MNWs with 14 14 22 22z zN N      

ML Si core and different dGe (denoted as MNW # Nz - dGe), Si MNWs with dimensions 

14 14 22 22z zN N      ML (denoted as MNW # Nz) and Si NW with the cross-section area 

x yd d  = 14 14  ML, which are equal to the cross-section area of a thin Si segment of MNWs 

(denoted as NW #1). 

As well as in the case of Si NWs and Si MNWs the phonon energy spectra in Si/Ge 

core/shell MNWs were calculated from equation (3.2). In Figure 3.9, we show dependence of the 

phonon energies on qz for the Si NW #1 (panel (a)) and Si/Ge MNW#8-4 (panel (b)). The energy 

dispersion for phonon branches s=1-5,7,9,11,..,293 of the Si NW#1 and s=1-5,25,50,75,..,4150 

of the MNW#8-4 are plotted for comparison. The number of phonon branches Nb=4152 in the 

MNW#8-4 is substantially larger than Nb=294 in the NW#1.  

 

Fig. 3.9. Phonon energies as a function of the phonon wave vector qz in (a) a generic Si nanowire 

with the lateral cross-section area 14 14  ML and (b) a cross-section modulated Si/Ge nanowire 

with 14 14 8 22 22 8      ML Si core and 4 ML – thicker Ge shell. The color in the plot shows 

the relative participation of the phonons in heat transfer: from maximum (red) to minimum 

(blue).  

 

Flattening of the phonon dispersion branches in MNW leads to a decrease in the phonon group 

velocities in MNW in comparison with NW. As a result, the average phonon group velocities in 

Si/Ge MNWs are substantially lower than those in both Si NW and corresponding Si MNW. The 

color of the curves shows contribution of a given phonon mode (s,qz) to thermal transport: red 

(blue) color designates maximum (minimum) participation. Since thermal conductivity is a sum 

of contributions of all phonon modes, we also calculated partial contribution of each mode. In Si 

NW, phonons with energy 10meV   carry 24% of heat while in the Si/Ge MNW#8-4 these 
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modes carry 50% of heat. Therefore, participation of the higher energy phonons in heat transport 

is substantially reduced in Si/Ge MNWs.  

The average phonon group velocity 1

( )

( ) ( ) / ( / )s z

s

g d dq


      is shown in Figure 3.10 

for the Si NW#1, Si MNW#8 and Si/Ge MNWs #8-4 and #8-10. Here ( )g   is the number of the 

phonons with frequency .  

 

Fig. 3.10. Average phonon group velocity as a function of the phonon energy shown for Si NW 

with the lateral cross-section area 14 14  ML, Si MNW with dimensions 14 14 8 22 22 8      

ML and Si/Ge core-shell MNWs with 14 14 8 22 22 8      ML Si core and different dGe 

 

Note that Ge shell reinforces the decrease of   making it especially strong for the low- and 

middle-energy phonons with 40meV  . Since these phonons are the main heat carriers in 

semiconductor nanostructures, the strong decrease of their group velocities significantly 

influences thermal conduction.  

In calculations, we take into account all basic mechanisms of phonon scattering: three-

phonon Umklapp scattering and boundary scattering [33, 115, 118, 120, 125, 151-154]. 

According to the Matthiessen’s rule, the total phonon relaxation time is given by: 

, ,,1 ( ) 1 1/ / ( ) / ( )z U s z B s ztot s q q q    .  Here, (i) ,U s  is the relaxation time for the Umklapp 

scattering:    
2

,

1
( )  ( ) exp ( ) /

( )
s z s z s z

U s z

B q q T C q T
q




   [120]; (ii) ,B s  is the relaxation time 

for the boundary scattering:  

,

,

| ( ) |1 1 1 1

( ) 1 2

z s z

B s z x y

qp

q p d d





 
     

,            (3.11) 
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in the case of a NW, 
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in the case of a MNW and 
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in the case of a core/shell MNW, where  
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       (3.14) 

In equations (3.11-3.13), , ( ) ( ) /z s z s z zq d q dq   is the phonon group velocity along the 

nanowire axis, p is the specularity parameter of the boundary scattering. Equations (3.11-3.13) 

provide an extension of the standard formula for the rough edge scattering [115] to the case of a 

rectangular NW or MNW. In equation (3.12) it was taken into account that a part of the phonon 

wave corresponding to the mode (s,qz), concentrated in the MNW segment 1 1 1

x y zd d l  , scatters 

on the boundaries of this segment, while the rest of this wave scatters on the boundaries of the 

segment 2 2 2

x y zd d l  . In equation (3.13) the parameter   was introduced in order to classify 

different phonon modes: core-like, cladding-like and propagating. The quantities , ( )i

core s zq  and 

, ( )i

shell s zq  show the relative portion of the phonon mode (s,qz), concentrated in the core or shell 

of the ith MNW segment, correspondingly. For Si/Ge core/shell MNWs it was taken into account 

that the core-like and propagating modes partially scatter at Si/Ge interfaces and outer 

boundaries while cladding-like (Ge-like) modes with , ,( ) / ( )i i

core s z shell s zq q    scatter only at 
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Si/Ge interfaces. In this sense, the parameter   represents a threshold value for a ratio between 

the integrated phonon amplitudes concentrated in the core , ( )i

core s zq  and in the shell , ( )i

shell s zq  

of ith MNW segment. In calculations it was used 0.1  , which means that in the cladding-like 

modes more than 90% of lattice vibrations from the ith MNW segment occur in Ge-shell, while 

Si core-region is depleted of phonons. A similar effect of the phonon depletion was theoretically 

described by Pokatilov et.al. in Ref. [155] for the acoustically-mismatched planar 

heterostructures, where part of the phonons is pushed out into the acoustically softer layers.  

The mode-dependent parameters Bs and Cs in the expressions for the Umklapp scattering in 

Si/Ge MNWs were averaged for the values of the Umklapp scattering parameters in bulk Si and 

Ge so that 1 2 1 2

, , , ,( ) ( ( ) ( )) ( ( ) ( ))s z core s z core s z Si shell s z shell s z GeB q q q B q q B        and 

1 2 1 2

, , , ,( ) ( ( ) ( )) ( ( ) ( ))s z core s z core s z Si shell s z shell s z GeC q q q C q q C       . In the case of Si NW and Si 

MNW, we have 1 2

, ,( ) ( )shell s z shell s zq q   = 0 and Bs(qz)=BSi, Cs(qz)=CSi. The bulk values BSi and CSi 

were taken from Ref. [37] while BGe and CGe were determined by comparing the calculated 

thermal conductivity of bulk Ge with experimental data [121]: 191.88 10SiB   s/K, CSi = 137.39 

K, 193.53 10GeB   s/K, CGe = 57.6 K. 

The Boltzmann transport equation in the relaxation time approximation [37, 118, 125] was 

used in order to model the thermal properties of Si-based modulated nanowires. See equations 

(2.6)-(2.9) for description of this approach. Within BTE with relaxation time approximation the 

phonon flux per unit gradient in the Si NWs and the Si MNWs is given by: 
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  .      (3.15) 

Here ,tot s  is the total phonon relaxation time, s is the number of a phonon branch, Bk  is the 

Boltzmann constant,  is the Planck constant and Т is the absolute temperature. The Eq. (3.15) 

was derived from Eqs. (2.8-2.9) taking into account one-dimensional density of phonon states 

[125]. 

In Figure 3.11, the lattice thermal conductivity κ /( )NW

ph x yd d  and 

1 2 1 1 1 2 2 2κ ( ) / ( )MNW

ph z z x y z x y zl l d d l d d l    are plotted as a function of temperature for Si NW #1, as 

well as for Si MNWs #2, #3, #4 and #5 (see Table 3.1 for denotations). The results are presented 

for a reasonable specularity parameter p = 0.85, which was found in Ref. [118] from a 

comparison between theoretical and experimental data for a Si film of 20 nm thickness.  
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Fig. 3.11. Temperature dependence of the lattice thermal conductivity in Si NW with the cross-

section 14 ML  14 ML and Si MNW with different dimensions. 

 

A significant redistribution of the phonon energy spectra and a reduction of the average 

group velocities in MNWs strongly decrease their lattice thermal conductivity in comparison 

with the NW. At RT, the ratio between the thermal conductivities in NW and MNWs ranges 

from a factor of 5 to 13 depending on S2 = x yd d . However, this result does not mean that the 

ratio of the thermal fluxes in NW and MNWs should be the same since the average cross section 

of MNWs is larger than that in NW. To compare the abilities of MNWs and NWs to conduct 

heat, it was calculated the thermal flux per unit temperature gradient  using equation (3.15) for 

all structures under analysis.  

In Figure 3.12(a) we show the thermal flux for Si NW #1 (upper dashed line) and Si MNWs 

#2, #4 and #6 for p = 0.85 as a function of temperature.  
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Fig. 3.12. (a) Temperature dependence of the thermal flux for Si NW (dashed line) and Si 

MNWs with dimensions 14 ML × 14 ML × 8 ML/ 18 ML × 18 ML × 8 ML, 14 ML × 14 ML × 8 

ML/ 26 ML × 26 ML × 8 ML and 14 ML × 14 ML × 8 ML/ 34 ML × 34 ML × 8 ML. (b) 

Temperature dependence of the ratio between thermal fluxes in Si NW and Si MNWs. 

 

The maxima on the thermal flux curves are determined by the interplay between the three-

phonon Umklapp and the phonon-boundary scattering. At low temperatures, the boundary 

scattering dominates; the thermal flux increases with temperature due to the population of high-

energy phonon modes and approaches the maximum value when 
U  ~ 

B . A subsequent rise of 

temperature leads to an enhancement of the Umklapp scattering and diminution of the thermal 

flux. An increase of the cross-section of the MNW wide segments attenuates the phonon-

boundary scattering, and the maximum of the thermal flux curves shifts to lower temperatures: 

from T = 190 K for Si NW #1 to T = 100 K for Si MNW #6. Therefore, at low temperatures 

(T<120 K) the thermal flux reduction is stronger in MNWs with the smaller cross-sections. 

Numerous high energy phonon modes in MNWs are trapped in the wide segments and possess a 

low group velocity. The population of these modes with increasing temperature almost does not 

increase the thermal flux. Thus, at medium and high temperatures the Umklapp-limited thermal 

flux in MNWs reduces stronger than that in the generic NW. The ratio of the thermal fluxes in 

NW and MNW (Si NW) / (Si MNW)    increases with temperature, and reaches the values 

of 3.5 to 4.5 depending on the MNW cross-section (see Figure 3.12(b)). For these temperatures, 

the increase of the MNW cross-section makes the reduction of the thermal flux stronger due to 

the corresponding rise of the number of the trapped high-energy phonon modes, which do not 

carry heat in MNWs. This is distinct from the case of NWs. The strong modification of the 

phonon energy spectra and phonon group velocities in MNWs in comparison with NWs also 

increases the Umklapp phonon scattering in MNWs as compared with NWs. The latter is an 

additional reason for the thermal flux reduction in MNWs. 

An important quantity, which determines the thermal conductivity and thermal flux, is the 

mode-dependent phonon mean free path (MFP) ( )s zq  [122]. In our model ( )s zq  is given by: 

,
,

1/ ( ) 1/ ( )s z r s z
r B U

q q


   ,             (3.16) 

where , , ,( ) ( ) ( )r s z r s z z s zq q q     and r = B or U. The dependence of the average phonon MFP 

( )

( ) ( ) / (1/ )s

s

g


     on the phonon energy is presented in Figure 3.13 for the NW #1 

(solid black line) and MNWs #7 with Nz = 4 (solid red line) ML and Nz = 12 (dashed blue line). 
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Fig. 3.13. Dependence of the average phonon mean free path on the phonon energy in Si NW #1 

(solid black) and Si MNWs #8 (solid red line) and #9 (dashed blue line). 

 

The interplay between , ( )B s zq  and , ( )U s zq  is insightful. The Umklapp-limited phonon 

MFPs , ( )U s zq  in MNWs are significantly smaller than those in NWs due to both reduction of 

the group velocity and enhancement of the phonon scattering. The boundary-limited MFPs 

, ( )B s zq  are larger in MNWs due to the larger average cross-section of MNW in comparison 

with that in NW (see equations (3.12-3.13)). As a result, at small energies when the Umklapp 

scattering is weaker than the boundary scattering 
MNW NW

   , while for  >5 meV 

MNW NW
   . Nevertheless, the integrand in equation (3.15) averaged over all phonon 

branches is smaller in MNWs for all energies due to the multiplication of ( )s zq  by  ,z s zq . 

The augmentation of 2

zl  decreases 
MNW

 for almost all energies. The energy-averaged phonon 

MFP calculated from Figure 3.13 constitutes ~ 9.25 nm for the Si NW, ~ 8.4 nm for the MNW # 

8 and ~ 6.9 nm for the MNW #9. The increase in the average MNW cross-section at fixed 1

zl  and 

2

zl  attenuates boundary scattering and increases the thermal flux.  

In Figure 3.14 we show the dependence of the ratio   of the thermal fluxes in Si NW #1 and 

Si MNW #3 on temperature for different values of the specularity parameter p = 0.0, 0,3, 0.6, 

and 0.9.  
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Fig. 3.14. Temperature dependence of the ratio of thermal fluxes in Si NW and Si MNWs. The 

results are shown for different values of the specularity parameter p = 0.0, 0.3, 0.6 and 0.9. 

 

For the interpretation of the data in Figure 3.14, it were calculated separately the thermal flux 

B  carried out by the long-wavelength phonon modes (s,qz), which are mainly scattered at the 

boundaries and described by the inequality ( , )U zs q  ( , ),B zs q  and the thermal flux U  carried 

out by the rest of the phonons, the total thermal flux being B U  . The results show that 

for all values of p under consideration, the RT flux B  is by a factor of ~ 5 lower in MNW than 

that in NW due to the phonon trapping. An increase of p decreases B  and strongly enhances 

U  in NW due to attenuation of the boundary scattering of the high-energy phonon modes. 

These modes in MNW do not participate in the heat transfer because of their localization in the 

wide segments. For this reason, the ratio between thermal fluxes in the NW and the MNW 

appreciably depends on p: for p = 0.0 (NW) / (MNW)U U  ~ 1, while for p = 0.9 

(NW) / (MNW) ~ 3.U U   As a result, the flux ratio increases with increasing p in a wide range 

of temperatures from 100 K to 400 K. The RT thermal conductivity of the rough Si NWs [54] is 

already by a factor of 100 lower than the corresponding bulk value. The obtained results suggest 

that the cross-section modulation of the rough NWs allows for an additional decrease of the 

thermal conductivity by a factor of 2 to 2.5 with a subsequent increase of ZT.  

The dependence of the ratio   of the thermal fluxes in Si NW #1 and Si MNW #7 on Nz  for 

the temperatures T = 100 K, T = 200 K, T = 300 K and T = 400 K and p = 0.85 is presented in 

Figure 3.15. The calculated points for Nz = 2,4,6,…,18 are joined by the smooth curves as guides 

for an eye.  
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Fig. 3.15. Ratio of thermal fluxes in Si NW and Si MNWs as a function of Nz. The results are 

shown for different temperatures T = 100 K, 200 K, 300 K and 400 K. 

 

The overall trend of these curves is determined by the interplay of two effects: (i) the phonon 

modes trapping, which suppresses the heat flux and (ii) augmentation of the MNW average 

cross-section, which enhances the heat flux due to the emergence of additional phonon modes for 

heat propagation and attenuation of the phonon-boundary scattering.  In Si MNW with the ultra-

narrow segments Nz = 2 ML, the trapping of phonon modes is weak and the thermal flux is larger 

than that in Si NW ( <1) due to the weakening of the phonon-boundary scattering in MNW in 

comparison with NWs. The rise of Nz enhances the trapping, and for all temperatures under 

consideration the flux ratios rapidly increase with Nz rising up to the values 8 ML to 12 ML, and 

reach their maximum values at around Nz = 16 ML to 18 ML. It is expected that a subsequent 

rise of Nz should decrease   due to augmentation of the MNW average cross-section. 

The following NWs were considered: Si/Ge core/shell MNWs with 14 14 22 22z zN N      

ML Si core and different dGe (denoted as MNW # Nz - dGe), Si MNWs with dimensions 

14 14 22 22z zN N      ML (denoted as MNW # Nz) and Si NW with the cross-section area 

x yd d  = 14 14  ML, which are equal to the cross-section area of a thin Si segment of MNWs 

(denoted as NW #1).  

The dependence of thermal conductivity on temperature, T, for Si NW#1, Si MNW#8, Si/Ge 

MNWs #8-1, #8-3, #8-7 and #8-10 is presented in Figure 3.16.  
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Fig. 3.16. Phonon thermal conductivity as a function of the absolute temperature. Results are 

presented for Si NW#1, Si MNW#8 and Si/Ge MNW#8- dGe with different dGe.  

 

The thermal conductivity of Si MNW#8 is lower by a factor of 4.3 – 8.1 than that in Si NW#1, 

depending on T. Additional strong decrease of κ is reached in Si/Ge MNWs. Increasing the 

thickness of Ge shell to dGe = 7 ML leads to κ decrease by a factor of 2.9 – 4.8 in comparison 

with that in Si MNW#8, and by a factor of 13 – 38 in comparison with that in Si NW#1. The 

reduction in κ of Si/Ge MNWs is substantially stronger than that reported for core/shell 

nanowires without cross-sectional modulation [118, 144, 156-159]. In the generic core/shell 

nanowires, the κ decrease is due to phonon hybridization, which results in changes in the phonon 

DOS and group velocity. In the considered core/shell MNWs, κ reduction is reinforced due to 

localization of some phonon modes in wider MNW segments. The localization completely 

removes such phonons from the heat transport.  

A comparison of κ of nanowires with the same cross-sections is sufficient to make a 

conclusion about their abilities to conduct heat. A lower κ means lower heat transfer. In the case 

of nanowires with various cross-sections, a nanowire with the minimum κ may not necessarily 

possess the minimum thermal transfer properties due to the difference in the cross-section areas. 

Therefore, in this case, a comparison of TF is more illustrative. The dependence of the ratio of 

TF at RT for MNWs and Si NW on dGe is presented in Figure 3.17 for Nz = 4, 6, 8, 12. Two 

points for Nz = 20 and 28 at dGe = 4 ML are also shown. All curves demonstrate a maximum 

between dGe = 3 ML and dGe = 6 ML. The increase in Nz leads to a shift of the maximum to lower 

values of dGe. 



88 

 

 

Fig. 3.17. Ratio of thermal fluxes in Si NW and Si/Ge MNWs as a function of dGe for different 

values of Nz. 

 

In order to explain the non-monotonic behavior of the ratio curves in Figure 3.17 it was 

calculated the spectral density of TF ( )  , determined by the equation 
max

0

( )d



     ,  as a 

function of the phonon energy for Si NW, Si MNW and Si/Ge MNWs. The results show that in 

Si MNWs without Ge cladding, TF is strongly suppressed in comparison with Si NW due to 

redistribution of phonon energy spectra leading to the reduction of the phonon group velocities 

and localization of phonon modes in nanowire segments. The influence of Ge shell on the 

spectral density of MNWs is two-fold: (i) it reinforces the decrease in the spectral density in 

Si/Ge MNWs as compared with Si MNWs owing to a stronger decrease of the phonon velocities 

and stronger phonon localizations; (ii) it increases TF due to appearance of additional channels 

for heat transfer through the Ge shell and attenuation of the phonon boundary scattering of 

propagating and cladding-like phonons. An interplay of these two opposite effects explains the 

non-monotonic dependence of the TF ratio on dGe  shown in Figure 3.17. The difference between 

TF in MNWs and NWs becomes larger with growing Nz and it reaches the maximum values of 

10-11 at Nz ~ 28 ML – 32 ML. For Nz>32 ML, TF ratio starts to decrease due to redistribution of 

the phonon energy spectra and heat conduction through Ge shell. 

The energy-dependent localization of the phonon modes in the narrow segments of MNWs 

1 1( ) 100%narrow core shell      is shown in Figure 3.18 for Si NW (dashed line), Si/Ge MNW#8-2 

(red triangles) and MNW#8-7 (blue circles).  
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Fig. 3.18. Phonon modes localization as a function of the phonon energy in narrow segment of 

MNW. The results are presented for Si NW#1 (dashed line), Si/Ge MNW#8-2 (red triangles) and 

Si/Ge MNW#8-7 (blue circles). 

 

Approximately, half of the phonon modes are concentrated in the wide segments of MNW and 

have narrow <30%, i.e. less than 30% of the atomic vibrations of these modes take place in the 

narrow segments of MNW. Many low-energy phonons in MNWs with 15meV  are 

concentrated in Ge shell and possess 1 2( ) 100% 20%Si core core      (not shown in the Figure 

3.18). It means that more than 80% of atomic vibrations in these modes occur in Ge shell. The 

number of the modes localized in Ge-shell increases with increasing shell thickness. The 

demonstrated localization of certain phonons in Ge shell or wide segments of MNWs is one of 

the reasons for the strong inhibition of κ in Si/Ge MNWs. 

For ideally smooth interfaces when all phonon scattering events are specular p =1. In the 

present calculations was used p=0.85, which corresponds to smooth NW surfaces with small 

average roughness height ~1ML . The estimated   from averaging the mode-dependent 

specular parameter 2 2( , ) exp( 2 )p q q     [36, 115, 124, 160] over all q is: p = 

,max

,max

0

( ) /
zq

zp q dq q . The small roughness of NWs and MNWs interfaces is beneficial for both 

maintaining high electron mobility [161-162] and for suppression of the phonon heat conduction 

in MNWs [37]. It was already demonstrated (see section 3.2.5 and Ref. [37]) that increase of p 

leads to faster growth of the thermal flux in Si NW than in Si MNWs without claddings. This 

effect is attributed to the fact that the higher energy phonons in MNW are excluded from thermal 

transport while they participate in the heat transfer in NWs. As a result the ratio between TF in Si 

NW and Si MNWs increases with increasing p.  
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3.3. Electron-phonon interaction in Si-based modulated nanowires 

 

Here the electron-phonon interaction in Si-based modulated nanowires is treated in the 

deformation potential approach [163]. The deformation potential is given by relation [163-164]: 

( )d dW c u r  ,              (3.17) 

where 
dc  – deformation interaction constant and u  – atomic displacement.  

In a modulated nanowire electrons and phonons can propagate only along the wire axis Z, 

therefore their wavevectors have only one non-zero component i.e. (0,0, )zk k  and 

(0,0, )zq q . The atomic dispacement in a modulated nanowire in a second quantization 

formalism is determined by the equation: 

   
1

( , , ) ( , , , , ) ( , ) ( , ) exp
2 ( , ) ( , )

z

N

z z z z

q s j z z z

u x y z e s q x y z b s q b s q iq j
L s q s q 





   ,     (3.18) 

where ( , , , , )ze s q x y z  – polarization vector of ( , )zs q  phonon mode at ( , , )r x y z , b  and b  – 

phonon annihilation and creation operators, respectively. Index j numerates translational 

elements of modulated nanowire. The total length of nanowire is 0

z zL N L  , where N – number 

of translation elements along the wire axis аnd 0

zL  – length of one translational element i.e. 

modulation period. The ( , )zs q  in equation (3.18) is the density of the material averaged over 

one modulation period: 

( , ) ( , , , , ) ( , , ) ( , , , , )z z zs q e s q x y z x y z e s q x y z dxdydz    .        (3.19) 

Electron-phonon coupling Hamiltonian [163-164]: 

3( ) ( ) ( )e ph dH r W r r d r

    ,            (3.20) 

where electron wavefunctions are given by the operator: 
,

ˆ ( , , ) ( ) ( , , , , , )
z

n z z

n k

x y z a k j n k x y z  , 

with a  and a  – electron annihilation and creation operators, respectively. 

Taking into account equations (3.17) and (3.18) the electron-phonon interaction Hamiltonian 

takes the form: 

   

, , , ,

0

1

( , , , , , )
2 ( , ) ( , )

1
( ) ( ) ( ) ( ) ( ) ( ) exp ( )

z z

e ph z z z

k q s n n s z z z

N

n z n z s z n z n z s z z z z z

j

H I n k n k s q
L s q s q

a k a k b q a k a k b q k q k jL
N

 




  

 



  

 
      

 

 

 i

,      (3.21) 

where ( , , , , , )z z zI n k n k s q   – overlap integral of the electron-phonon interaction: 
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( , , , , , ) ( , , , , ) ( , , , , ) ( , , , , )z z z z z zI n k n k s q n k x y z s q x y z n k x y z dxdydz      ,      (3.22) 

with ( , , , , )zn k x y z  – electron wavefunction amplitudes and ( , , , , )zs q x y z  – deformation 

potential interaction function: 

( , , , , )( , , , , ) ( , , , , )
( , , , , )

y zx z z z
z c

e s q x y ze s q x y z e s q x y z
s q x y z d

x y z

  
    

   
.      (3.23) 

The matrix element of the electron-phonon interaction by definition is:  

( )el ph el phM i f f H i   .            (3.24) 

The initial state i  is determined by electron wavefunction 

01
( , , , , , ) ( , , , , )exp( )z z z zj n k x y z n k x y z k jL

N
  i  and phonon occupation number 0 ( , )zN s q . 

Amplitudes ( , , , , )zn k x y z  are the solutions of the three-dimensional stationary Schrodinger 

equation. The final state f , after absorption or emission of a phonon ( , )zs q  is determined by 

electron wavefunction ( , , , , , )zj n k x y z    and phonon occupation number 0 1 1
( , )

2 2
zN s q   , 

where ‘+’ superscript corresponds to the phonon absorption, while ‘–’ subscript to the phonon 

emission. The difference between energies of the final and initial states equals to: 

( , ) ( , ) ( , )f i z z zE E n k s q n k        ,           (3.25) 

where ( , )zn k  – energy of the n-th quantized electron level with wavevector zk  and ( , )zs q  – 

energy of phonon ( , )zs q . Therefore, one can obtain for the matrix element of the electron-

phonon interaction in a modulated nanowire the following relation: 

0

,

1 1
( , )

2 2
( , , , , , ) ( , , , , , )

2 ( , ) ( , ) z z z

z

el ph z z z z z z k k q

z z

N s q

M n k n k s q I n k n k s q
N s q s q


 

 

 
  

     ,      (3.26) 

where Kronecker delta resulted from the summation: 

 0

,

1

1
exp ( )

z z z

N

z z z z k k q

j

k q k jL
N

  



   i .           (3.27) 

In order to obtain the electron-phonon interaction scattering rate from the Fermi golden rule: 

2
1 2

( ) ( ) ( )el ph i el ph f i

f

E M i f E E


 

     one needs to summarize over variables , , zn s q . 

One should keep in mind, that the summation over electron wavevectors zk   of the final states is 

unnecessary due to the momentum conservation law z z zk k q   . Thus, one can obtain: 
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 

0

21

, ,

,

1 1
( , )

2 2
( ( , )) ( , , , , , )

( , ) ( , )

( , ) ( , ) ( , )

z

z z z

z

el ph z z z z

n s q z z

k k q z z z

N s q

n k I n k n k s q
N s q s q

n k s q n k



 
 

    






 

 
  

    

   

 .        (3.28) 

In equation (3.28) one can substitute the summation over zq  with integration using the rule 

0

2
z

z
z

q

L N
dq


  : 

 

max 0

21 0

, 0

,

1 1
( , )

2 2( ( , )) ( , , , , , )
2 ( , ) ( , )

( , ) ( , ) ( , )

z

z z z

q
z

el ph z z z z z

n s z z

k k q z z z z

N s q

n k L I n k n k s q
s q s q

n k s q n k dq

 
 

    






 

 
  

   

  .        (3.29) 

For the numerical calculations the equation (3.29) is poorly suited due to the delta-function. One 

can greatly simplify the numerical problem if considers one of the well-known properties of the 

delta-function: 
( )

( ) ( ( ))
( )

l

l l

f x
f x g x dx

g x
 


 , where lx  are the roots of the equation ( ) 0g x  . 

Thus, for the electron-phonon scattering rate in a modulated nanowire one can finally obtain: 

,1

, ,

( , , , , )
( ( , ))

( )

z z l

el ph z

n s l z l

n k n s q
n k

g q
 






 ,           (3.30) 

where 

0

20

1 1
( , )

2 2( , , , , ) ( , , , , , )
2 ( , ) ( , )

z

z z z z z z z

z z

N s q

n k n s q L I n k n k q s q
s q s q 

 
    ,        (3.31) 

and 

 ( , ) ( , ) ( , )
( )

z z z z

z

z

n k s q n k q
g q

q

      



.          (3.32) 

In Figure 3.19(a-b) are presented the RT electron-phonon scattering rates with emission and 

absorption of a phonon for the electron ground state calculated using confined electron and 

phonon dispersion relations. Due to the ultra-low dimensions of the considered nanowires 

(limited by available calculation resources) the electron quntization energy for the few lowest 

levels is much larger than the maximal phonon energy, which constitutes ~ 65 meV. Therefore, 

only the intrasubband transitions within the electron ground state level were accounted in 

calculations. 
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Fig. 3.19. Electron-phonon scattering rate with emission (a) and absorption (b) of a phonon in 

Si/SiO2 core/shell modulated nanowires at RT. 

 

The numerical analysis of the obtained results together with the derived analytical expressions 

(see equations (3.31-3.32)) showed that electron-phonon scattering processes associated with an 

emission of a phonon are characterized by two pronounced peaks at low electron wavevectors 

and are practically insensitive to the modulated profile of the investigated Si/SiO2 core/shell 

nanowires. In case of the electron-phonon scattering processes with phonon absorption the 

scattering rate has few pronounced maximums at high electron wavevectors for the modulated 

Si/SiO2 nanowires, while is almost constant for all zk  in case of a non-modulated Si/SiO2 

nanowire.  

 

3.4. Conclusions to chapter 3 

 

In this chapter the effective mass method was applied for investigation of electron energy 

spectra and electron wave functions in core/shell Si/SiO2 nanowires with constant and 

periodically modulated cross-section. It was shown, that cross-section modulation strongly 

influences the electron energy spectra and electron wave functions in Si nanowires. For ground 

state there appear an inhomogeneity in the wave function distribution along the wire’s axis, 

namely, the main part of the wave function modulus being localized in the wide segments of the 

modulated wire.  

The lattice dynamics BvK model and the Boltzmann transport equation were applied for 

investigation of phonon and thermal processes in Si nanowires, Si cross-section modulated 

nanowires and Si/Ge core/shell cross-section modulated nanowires.  
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For Si cross-section modulated nanowires it was theoretically demonstrated that phonon heat 

flux can be significantly suppressed in comparison with the generic uniform cross-section Si 

nanowires. Redistribution of the phonon energy spectra in the cross-section modulated 

nanowires leads to a strong decrease of the average phonon group velocities and a corresponding 

suppression of the phonon thermal flux. This effect was explained by the exclusion of the 

phonon modes trapped in cross-section modulated nanowires segments from the heat flow. As a 

result, an up to 5 times drop of the phonon heat flux at RT is predicted for Si cross-section 

modulated nanowires in comparison with uniform Si nanowires.  

For Si/Ge core/shell cross-section modulated nanowires it was found theoretically that a 

combination of cross-section modulation and acoustic mismatch between Si and Ge materials 

can lead to an even more drastic reduction of the thermal conductivity. The performed 

calculations indicate that the RT thermal conductivity of Si/Ge core/shell cross-section 

modulated nanowires is almost three orders of magnitude lower than that of bulk Si. Thermal 

flux in the modulated nanowires is suppressed by an order of magnitude in comparison with 

generic Si nanowires. The effect is explained by modification of the phonon spectra in 

modulated nanowires leading to decrease of the phonon group velocities and localization of 

certain phonon modes in narrow or wide nanowire segments.  

The analytical expression for the electron-phonon scattering rate with emission and 

absorption of a phonon in Si/SiO2 core/shell modulated nanowires was derived in the 

deformation potential approach. It was shown that cross-section modulation of the Si core results 

in a substantial modification of the RT electron-phonon scattering rate with phonon absorption. 

The obtained theoretical results demonstrate that geometry modulation is an efficient 

instrument in engineering electrons and phonons in Si-based nanowires, which proved to be 

excellent candidates for thermoelectric and thermal insulator applications due to extremely low 

values of thermal conductivity.  

All numerical simulations presented in this chapter were carried out entirely by the author, 

while theoretical derivations and data analysis was done in close collaboration and under 

supervision of scientifc advisor. The results of these investigations were published in the 

research articles [37, 165]. 
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4. PHONON PROCESSES IN MULTILAYER GRAPHENE WITH DIFFERENT 

ATOMIC STACKING 

 

4.1. Theoretical model for phonons in multilayer graphene 

 

Graphene i.e. a single layer of carbon atoms arranged in a pristine honeycomb pattern, is a 

promising material for future electronics because of its unique electrical [84], thermal [86-87] 

and optical [166-167] properties. The high electrical [84, 165] and thermal [86-87] conductivities 

of graphene are crucial for its proposed applications in field-effect transistors [168], sensors 

[169], solar cells [170], resonators [171] and thermal management of ultra-large scale integrated 

circuits and high-power-density devices [87, 172-174]. Multi-layer graphene flakes, which are 

easy to produce, also posses unusual physical properties: depending on the stacking 

configuration Bernal or rhombohedral, they demonstrate metallic- or semiconductor-like 

behavior [175]. Thermal properties of Bernal stacked multi-layer graphene are highly sensitive to 

the number of layers [95]: the RT thermal conductivity decreases from ~2800 to ~1300 Wm
-1

K
-1

 

as the number of layers increases from 2 to 4 [95], which is explained by the changes in the 

phonon energy spectra and phonon scattering space [176-177].  

Despite of the fact that numerous scientific studies of the thermal properties in Bernal 

stacked multi-layer graphene (ABA, ABAB, ABABA, etc.) have been carried out in the last few 

years, the phonon and thermal properties in multi-layer graphene with rhombohedral stacking 

order (ABC, ABCA, ABCAB, etc.) as well as in twisted graphene, when parallel carbon layers 

are rotated relatively to one another in a specific manner [178], were not studied yet. This 

investigation is very important and timely because change in the phonon properties in 

rhombohedral stacked or twisted multi-layer graphene in comparison with generic Bernal 

stacking may significantly modify its thermal properties.  

In order to study the phonon processes in single- and multi-layer graphene it was developed a 

lattice dynamics model in framework of the BvK lattice dynamics theory [38]. Within the BvK 

model the set of equations of motion for atoms can be written in a harmonic approximation as:  

, ,

( ) ( , ) ( )      , , ,k

j k

m u jk jk j k u j k x y z  


 
 

       ,           (4.1) 

where km  and ( )u jk  is the mass and displacement of the k-th atom in the j-th unit cell 

respectively, ( , )jk j k
   is the interatomic force constants describing the interaction between 

atoms jk  and j k  . The unit cell of single-layer graphene contains 2 atoms (any pair of nearest-

neighbor “blue” and “red” atoms in Figure 4.1 below), while unit cell of multi-layer graphene 



96 

 

with Bernal or rhombohedral stacking contains 2n atoms, where n is number of graphene layers. 

Thus, the total number of equations of motion is 6n. The solution of differential equations (4.1) 

represents a superposition of plane waves with frequency   and wave vector q : 

  ,

1
( ) ( )expk j

qk

u jk e q qr t
m

    i ,             (4.2) 

where ke  is the k-th atom vector of displacement amplitudes and jr  is the radius vector of the j-

th unit cell. Substituting equation (4.2) into the equations of motion (4.1), one obtains: 

2

, ,

,

( ) ( ; ) ( )k k

k

e q D kk q e q  


 



 ,              (4.3) 

with the dynamic matrix: 

  
1

( ; ) ( , )exp j j

jk k

D kk q jk j k r r q
m m

  



     i .           (4.4) 

After the dynamic matrix (4.4) is constructed, the eigenvalues (i.e. phonon frequencies) and 

eigenvectors (i.e. atomic displacement amplitudes) are obtained by solving the secular equation:  

2 ( ) 0D q   .                (4.5) 

In calculations it was taken into account four nearest-neighbor atomic spheres of the 

intralayer interaction and two nearest-neighbor spheres of the interlayer interaction. A schematic 

view of the in-plane atomic spheres is presented in Figure 4.1.  

 

Fig. 4.1. Four nearest atomic spheres in a graphene plane. 
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The coordination vectors 
j jr r   of atoms from the four atomic spheres of a “blue” atom are 

listed in Table 4.1. The vectors j jr r   of the atoms from the four atomic spheres of a “red” atom 

can be found by the rotation of the corresponding vector from Table 4.1 by the angle   around 

the (0,0)-point. 

 

Table 4.1. Coordination vectors of atoms in a graphene plane. 

Atom # (j’) 1
st
 sphere 2

nd
 sphere 3

rd
 sphere 4

th
 sphere 

1  ,0a   0, 3a   2 ,0a   5 / 2, 3 / 2a a  

2  / 2, 3 / 2a a    3 / 2, 3 / 2a a   , 3a a   5 / 2, 3 / 2a a  

3  / 2, 3 / 2a a   3 / 2, 3 / 2a a   , 3a a   / 2, 3 3 / 2a a   

4 –  0, 3a  –  2 , 3a a   

5 –  3 / 2, 3 / 2a a   –  2 , 3a a  

6 –  3 / 2, 3 / 2a a  –  / 2,3 3 / 2a a  

 

Note that zth component of all atoms is omitted in the notations, since different parallel 

graphene planes posses the same hexagonal symmetry. In the considered multi-layer graphene 

structures the graphene sheets can only be shifted (as in Bernal or rhombohedral stacking) or 

rotated (as in twisted stacking) in the graphene plane, relative to one another.  

Since the components of the dynamic matrix are determined by the interatomic force 

constants (see equation (4.4)), the main problem in obtaining the phonon data within a BvK 

model of lattice dynamics is the corresponding choice of the set of force constant matrices  . 

The force constant matrix describing the interaction of an atom with its s
th

 nearest-neighbor 

intralayer sphere has the form: 

0 0

0 0

0 0

s

s s

s







 
 

   
 
 

. The force constant matrices for all atoms 

from four neighbor atomic spheres can be found from s  using the rotations around Z-axis by 

an angle   in a clock-wise direction 

cos sin 0

sin cos 0

0 0 1

R

 

 

 
 

  
 
 

  and the reflections in XZ-plane: 



98 

 

1 0 0

0 1 0

0 0 1

y

 
 

  
 
 

. In Table 4.2 we present a list of corresponding symmetry operations which 

map the matrix 
s  into force constant matrices for all atoms from the first four atomic spheres. 

 

Table 4.2. Force constant matrices of intralayer interaction. 

Atom # (j’) 1
st
 sphere 2

nd
 sphere 3

rd
 sphere 4

th
 sphere 

1 1   2  3   1 1

6 4 6y yR R     

2 
1

2 3 1 2 3R R 

    1 1

2 3 2 2 3y yR R     1

2 3 3 2 3R R 

  1

6 4 6R R 

  

3 
1

4 3 1 4 3R R 

  1

2 3 2 2 3R R 

  1

4 3 3 4 3R R 

   1 1

4 3 4 4 3y yR R     

4 – 
1

2y y    – 
1

2 3 4 2 3R R 

  

5 – 
1

4 3 2 4 3R R 

  –  1 1

2 3 4 2 3y yR R     

6 –  1 1

4 3 2 4 3y yR R     – 
1

4 3 4 4 3R R 

  

 

The intralayer interaction for each atomic sphere is described by three independent force 

constants: s , s  and s . In BvK model these constants have a clear physical meaning. A 

displacement of an atom induces a force towards its s
th

 neighbor. The force constant   describes 

the longitudinal component of the force while constants   and   describe the in-plane and out-

of-plane transverse components, respectively.  

The force constant matrix describing the interaction of an atom with its 1
st
 nearest-neighbor 

interlayer sphere has the form: 

1

1

1

ˆ 0 0

ˆ0 0

ˆ0 0







 
 

   
 
 

 and for the 2
nd

 nearest-neighbor interlayer 

sphere: 

2

2

ˆ 0 0

ˆ0 0

0 0 0





 
 

   
 
 

. Therefore, the total number of the force constants in the proposed 

model is 15, i.e. 12 for the intralayer interaction and 3 for the interlayer interaction. One should 

note here, that in the case of single-layer graphene the interlayer interaction, obviously, should 

not be taken into account since it is only one layer thick and the number of force constants is 

reduced to 12 in this case.  
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In calculations were used the force constants fitted in Ref. [179] to density functional theory 

results, which are in a good agreement with experimental phonon dispersion frequencies of bulk 

graphite. The numerical values of the force constants are listed in Table 4.3. 

 

Table 4.3. Interatomic force constants obtained from a fit to experimental phonon frequencies of 

graphite (in units N/m).  

Intralayer interlayer 

1 398.7         1 172.8          1 90.0   

2 72.9          2 46.1           2 0.8    

3 15.0         3 33.1           3 0.8   

4 1.0            4 7.9            4 6.3    

1
ˆ 4.0    

1̂ 5.8   

2
ˆ 0.55   

 

 

4.2. Phonon processes in single-layer, two-layer, three-layer graphene and graphite 

 

4.2.1. Energy spectra and vibrational properties 

 

The schematic view of the single-layer, AB two-layer, ABA (Bernal) three-layer and ABC 

(rhombohedral) three-layer graphene is shown in Figure 4.2. 

 

 

Fig. 4.2. Schematics of single-, two- and three-layer graphene. 

 

In Figures 4.3-4.4 is presented the phonon energy spectrum for single-layer and two-layer 

graphene, obtained within BvK model of lattice dynamics.  
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Fig. 4.3. Vibrational spectrum of the monolayer graphene. Symbols  ,   and   denote high 

symmetry points of the first BZ. Experimental data points (gray triangles) for graphite from Refs. 

[176-177] are also shown for comparison. 

 

 

Fig. 4.4. Vibrational spectrum of the AB-stacked two-layer graphene. Experimental data points 

(gray triangles) for graphite from Refs. [176-177] are also shown for comparison. 

 

As can be seen from the figures, our calculated results are in a good agreement with 

experimental data from Refs. [176-177] for all phonon branches: in-plane acoustic branches (LA 

and TA), in-plane optic branches (LO and TO), out-of-plane acoustic (ZA) and optic (ZO) 

branches. A weak interlayer coupling between graphene layers (see Table 4.3, where interlayer 
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force constants are much less than intralayer ones) results in appearance of almost doubly 

degenerate phonon branches in the case of two-layer graphene compared with monolayer result. 

The only exception constitutes the low-frequency ZA2 mode with frequency of about 90 cm
-1

 at 

 , which arises from interlayer movement (see also Figure 4.6(b) below). An interesting 

behavior demonstrates out-of-plane acoustic ZA branch, in contrast to the linear dispersion near 

the   point for the in-plane TA and LA branches, it shows a 2q  dispersion, which is a 

characteristic feature for layered crystals [118, 180].  

In Figure 4.5 we show the atomic displacements in graphene and two-layer graphene 

structures, which correspond to different types of acoustic vibrations at   point. 

 

Fig. 4.5. Acoustic vibrational motion in graphene (a) and AB-stacked two-layer graphene (b). 

 

In single-layer graphene there is only three types of acoustic modes at   point: out-of-plane 

(ZA), longitudinal in-plane (LA) and transversal in-plane (TA). As number of graphene layers 

increases from 1 to 2 (Figure 4.5(b)) additional vibrational mode appears – in-plane shear, in 

which parallel graphene layers slide one over another in opposite directions. An important thing 

to note here is that acoustic shear mode has non-zero frequency of about 36 cm
-1

 at the zone 

center and it has Eg symmetry type, which makes it Raman active and thus it can be observed 

experimentally.  

Besides acoustic phonons, that are main heat carriers in graphene [87, 95], optical phonon 

modes are also of a fundamental importance. It was demonstrated experimentally [181-183], that 

optical zone-center modes provide significant information about the layer number and the 

stacking geometry of graphene layers. The numerical values of optical phonon frequencies 

calculated within BvK model are listed in Table 4.4.  

 

Table 4.4. High-frequency optical phonons (in units cm
-1

) at   for single-layer graphene, two-

layer graphene and graphite. In parenthesis are indicated the mode symmetries. 
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Graphene  

(BvK model) 

Graphene  

(VFF model [88]) 

AB bilayer 

graphene  

(BvK model) 

Graphite  

(experiment [176-177]) 

  1581 ( 2gE ) 1554 ( 2gE ) 
1580 ( gE ) 

1582 ( uE ) 
1580 ( 2gE ) 

 

As can be seen from the Table 4.4 BvK value for frequency of E2g mode of graphene (1581 

cm
-1

) is much closer to the experimental value of graphite (1580 cm
-1

) than the value obtained 

within VFF lattice dynamics model (1554 cm
-1

 [88]). This can be attributed to the difference in 

fitting precision, since the number of fitting parameters in the proposed BvK model is two times 

larger than in Valence Force Field model. Also, compared with the monolayer result, in AB-

stacked two-layer graphene one can observe a splitting of the highest optical mode: E2g mode in 

the monolayer evolves into Eg and Eu modes for AB two-layer. The splitting is due to the weak 

interlayer coupling and constitutes about 2 cm
-1

. Moreover, the group theory predicts that E2g 

and Eg modes are Raman active, while Eu is infrared active. Therefore, a combination of Raman 

and infrared spectroscopic measurements can provide a complete picture of zone-center optical 

modes. 

In Figure 4.6 is shown the schematic atomic displacements of zone-center optical vibrations 

in graphene and two-layer graphene.  

 

Fig. 4.6. Optical vibrations in graphene (a) and AB-stacked two-layer graphene (b). 

 

As in the case of acoustic vibrations, in graphene exist three types of optical vibrational 

motion at   point (Figure 4.6(a)): out-of-plane (ZO), longitudinal in-plane (LO) and transversal 

in-plane (TO). In two-layer graphene system, because of the 4 atoms in one unit cell, the zone-

center optical vibration is more complex. In Figure 4.6(b) are presented few types of optical 
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eigenmodes with different frequencies. It is clearly seen from the figure that two splitted high 

frequency optical modes Eg and Eu are characterized by the in-plane vibrations, while the low-

frequency ZA2 mode arises from the interlayer motion along the Z-axis. Since in ZA2 mode the 

top and bottom layers move in opposite directions, it results in compression of graphene bilayer.  

In Figure 4.7 is presented the phonon energy spectrum of three-layer graphene with ABA 

stacking order, obtained within BvK model of lattice dynamics.  

 

 

Fig. 4.7. Vibrational spectrum of the three-layer ABA graphene. Symbols  ,   and   denote 

high symmetry points of the first BZ. Experimental data points (gray triangles) for graphite from 

Refs. [176-177] are also shown for comparison. 

 

Calculations of phonon spectrum for ABC three-layer graphene gave the same result, with a 

difference in phonon frequencies less than 1 cm
-1

. Therefore one can conclude, that phonon 

spectrum of three-layer graphene is practically insensitive to the stacking geometry. However, 

that does not mean that vibrational properties are also the same, since the different phonon 

modes can posses different symmetries and can interact differently with electrons, photons, etc.  

One can see from Figures 4.7(a-c) that in three-layer graphene there is almost threefold 

degeneracy of phonon branches, with a small splitting ~2 cm
-1

 because of the weak interlayer 

coupling. The only exception constitutes low-frequency ZA modes, which are characterized by 

out-of-plane vibrations (see Figure 4.8 below) and thus are very sensitive to the number of layers 

and interlayer interaction. Analyzing the evolution of the ZA modes from single-layer to two-

layer graphene (Figure 4.3 and 4.4), and from two-layer to three-layer graphene, we can reach to 

the conclusion that number of ZA phonons is uniquely determined by the number of graphene 

layers, namely the number of ZA branches is equal to the number of graphene layers. This 

statement is confirmed by the recent doubly resonant Raman measurements of out-of-plane 
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phonons in high-quality multilayer graphene [184]. Moreover, it was obtained a good agreement 

between calculated values of ZA phonon frequencies in three-layer graphene and corresponding 

experimental values from Ref. [184], the discrepancy constitutes only a few cm
-1

. 

In Figure 4.8 are presented the schematic atomic displacements in three-layer graphene with 

ABA and ABC stacking order, which correspond to out-of-plane vibrations at   point. 

 

Fig. 4.8. Different types of out-of-plane vibrations in ABA and ABC three-layer graphene. 

 

From Figure 4.8 one can see that in ABA and ABC three-layer graphene there is three 

acoustic out-of-plane modes: ZA1, ZA2, ZA3 and three optic out-of-plane modes: ZO1, ZO2, ZO3. 

All these modes can be classified by symmetry type according to the group theory and thus can 

be predicted whenever a mode is Raman/IR active or silent. For instance, from Figure 4.8 one 

can observe that in ZA2 mode the top and bottom layers move in opposite directions while the 

middle layer remains unmoved, therefore this mode is symmetric and according to the group 

theory it is Raman active. The ZA3 modes are not symmetric and should not be observable in 

Raman measurements, since the top and bottom layers in these modes move in the same 
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direction, while the movement of the middle layer is opposite to them. However, recent 

experiments on ZA phonons in graphene multilayers [184] demonstrate that all of the low-

frequency ZA modes can be observed in Raman spectroscopy, leaving the question of correct 

theoretical and experimental interpretation of ZA modes in few-layer graphene to be still open.  

Another interesting feature of few-layer graphene is the existence of the in-plane zone-center 

shear modes (see Figure 4.7(c) and Figure 4.9 below), in which parallel graphene layers slide 

one over another. Although these vibrations appear to be acoustic-like and take place only in the 

plane of the graphene layers, they demonstrate a nonlinear behavior close to the BZ center and 

have a non-zero frequency about ~26 cm
-1

 and ~44 cm
-1

 in the case of three-layer graphene. The 

schematic view of the atomic displacements from the shear modes is presented in Figure 4.9. 

 

Fig. 4.9. Shear vibrational modes in ABA and ABC three-layer graphene. 

 

Since these low-lying shear modes have a non-zero frequency at the   point, their position is 

determined by the interlayer coupling and thus they can be used for probing directly the 

interlayer interaction strength in multilayer graphene.  

 

4.2.2. Phonon scattering processes and thermal properties 

 

Phonon scattering in graphene is determined by three basic mechanisms: (i) phonon – 

phonon umklapp scattering, (ii) phonon – point-defect scattering, i.e. phonons being scattered by 

a point defect within a graphene lattice, and (iii) phonon – boundary scattering where phonons 

are scattered by the boundaries of the graphene sample. All three mechanisms are treated within 

a relaxation rate approach, thus the total phonon relaxation time is given by:  

1 1 1 1

, , , ,( ) ( ) ( ) ( )tot s U s pd s b sq q q q         ,              (4.6) 

where U , pd  and b  are relaxation times in umklapp, point-defect and boundary scattering, 

respectively. 
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In the case of Umklapp scattering, only three-phonon scattering processes were taken into 

account and the phonon relaxation time was calculated using the Klemens’s approach from [88], 

applied to the single-layer graphene case:  

2 2
1

, 2

max,

( )
( )

( )

B s s
U s

s s

k T q
q

m q

 


 

  .               (4.7) 

Here m = 19.9442 x 10
-27

 kg is the mass of a carbon atom, s  is the average Gruneisen parameter 

for phonon branch s ( 5.0ZA   ; 1.0TA  ; 2.0LA  ; 1.0ZO   ; 2.2TO  ; 2.0LO  ) [185] 

and max,s  is the maximal phonon frequency of the branch s.  

Scattering of phonons on point-defects was modeled by the following expression [88]: 

2
1 0

,

( )
( )

4 ( )

s
pd s

s

S G q
q q

q






  ,               (4.8) 

where 
2

0
4

a
S   is the cross-section area per one atom in the graphene lattice (a is the smallest 

carbon-carbon distance), G  is the measure of the strength of the point-defect scattering. In 

present calculations was used a fixed value of the parameter 0.1G   taken from Ref. [88].  

The scattering of phonons on graphene boundaries were studied using the Ziman model [88, 

122]: 

1

,

( )1
( )

1

s

b s

qp
q

p d


  




,                (4.9) 

where d is the width of a graphene layer and p is the specularity parameter, which depends on the 

roughness of the graphene edges. Specularity parameter can take values between 0 (fully 

diffusive scattering) and 1 (fully specular scattering).  

Thermal conductivity in graphene has been investigated both theoretically and 

experimentally. Experimental studies of the thermal conductivity were carried out using 

optothermal [86-87, 95] or electrical self-heating methods [93, 186]. It was found experimentally 

that single-layer graphene possess a record-high thermal conductivity in the range 3000–5000 

Wm
-1

K
-1

 [86, 172] at the RT. Since the main heat carriers in graphene are phonons, it is their 

unusual properties which determine its extremely high thermal conduction parameters.  

Theoretical investigations of graphene’s thermal properties employed different models of 

molecular dynamics simulations and BTE approach [88, 172-174, 187-189]. Within the BTE 

approach in the relaxation time approximation [88] the thermal conductivity of a graphene flake 

is defined by the following equation: 

 
 

  

2

, 22

( ) /1
( ) ( ) ( )

4 ( ) / 1

s Bgraphene

s s tot s

sB s B

exp q k T
q q q qdq

k T h exp q k T


   

 



 .      (4.10) 
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Here 
Bk  - Boltzmann’s constant, T – temperature, h is the thickness of graphene flake (e.g. 

h=0.35 nm for single-layer graphene), s enumerates phonon branches,  - Planck’s constant, q – 

phonon wave vector,   - phonon frequency,   - phonon group velocity, 
tot  - total phonon 

relaxation time determined by equations (4.6)-(4.9). 

In Figure 4.10 is presented the phonon energy spectrum along   direction in BZ and 

mode-by-mode contributions to the room-temperature thermal conductivity in 10m-wide 

graphene layer.  

 

Fig. 4.10. Phonon energy spectrum and mode-specific contributions to thermal conductivity in 

single-layer graphene. 

 

From Figure 4.10 can be observed that a vast majority of the heat (~99%) is transferred by 

low-energy in-plane acoustic phonons LA and TA, while the contribution to the thermal 

transport from other phonon modes is significantly reduced. This result is mainly caused by the 

difference in average Gruneisen parameters and group velocities. Indeed, at the RT all phonon 

modes are excited and umklapp scattering is a dominant mechanism of phonon relaxation. From 

equation (4.7) we can see that characteristic time of umklapp scattering process is proportional to 

2

,
s

U s

s






 
 
 

 and thus, LA and TA phonons which posses very large group velocities 

(respectively 20.4 km/s and 13.5 km/s near BZ center) and a relatively small Gruneisen 

parameters, have significantly larger lifetimes, while the other acoustic phonon – ZA, due to a 

very small group velocity (less than 0.3 km/s near zone center) and a large Gruneisen parameter, 

is strongly scattered and therefore eliminated from the heat transfer. Contribution from optical 
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phonon modes is also strongly suppressed due to very low group velocities. However, we would 

like to note here that the question of the relative contribution of different phonon polarization is 

still open, since some of the recent theoretical results, based on the exact solution of BTE and 

molecular dynamics simulations [187-188], suggest that ZA phonons could be the main heat 

carriers in graphene due to additional selection rules imposed on the phonon-phonon scattering 

space. 

In Figure 4.11 are shown temperature dependencies of thermal conductivity in graphene for 

different layer widths: d = 1,5,10 and 15 m. All calculations were performed for a fixed value 

of specular parameter p = 0.9.  

 

Fig. 4.11. Phonon thermal conductivity of single-layer graphene as a function of temperature for 

different layer widths. 

 

One can see from Figure 4.11 that graphene layers of larger width have larger thermal 

conductivity in all temperature range due to a weaker boundary scattering from layer edges, 

which indicates that besides phonon-phonon umklapp scattering processes boundary scattering 

also plays an important role in limiting the heat transfer through graphene layers. The maximum 

thermal conductivity value of ~6000 Wm
-1

K
-1

 is reached for 15-m-wide layer at 60 K. An 

interesting behavior demonstrates the position of maximum on the temperature dependence 

curves. The maximum thermal conductivity shifts to higher temperatures with decrease of d, 

from T ~ 60 K for 15-m-wide layer to T ~ 120 K for 1-m-wide layer. This behavior can be 

explained as follows: the position of the thermal conductivity maximum separates the low-

temperature region, where phonon scattering is mainly due to the boundary, from the high-

temperature region, where umklapp scattering is dominant. In a narrower layer the boundary 

scattering is stronger in a comparison with a wider one (see equation (4.9)) and dominates up to 

higher temperatures, therefore the position of the maximum shifts to the right. Also, the 
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contribution of the phonon – point-defect scattering processes with parameter 0.1G   has a 

much weaker influence on thermal conductivity of graphene than the two above mentioned 

scattering mechanisms.  

Another interesting question is the influence of the quality of the graphene boundary edges 

on its thermal conductivity. In Figure 4.12 is plotted the RT thermal conductivity as a function of 

layer width for different values of specularity parameter p.  

 

Fig. 4.12. Room temperature phonon thermal conductivity as a function of graphene layer width 

for different values of boundary roughness parameter p. 

 

The parameter p is explicitly related to the edge roughness: p = 0 means maximum roughness 

and p = 1 means no roughness (smoothness). The rise of the thermal conductivity with increase 

of layer width is explained by the reduction of the phonon boundary scattering rate. In Figure 

4.12 the black dashed line corresponds to a specular boundary scattering (p=1) which does not 

add to thermal resistance, so umklapp and point-defect scattering are the only mechanisms 

limiting the thermal conductivity in this case. When p is approaching 0 the boundary scattering 

starts to play a dominant role, resulting in a strong decrease of thermal conductivity, e.g. for a 

10-m-wide graphene layer thermal conductivity reduces by almost 40% from 2580 Wm
-1

K
-1

 for 

p = 0.8 to 1650 Wm
-1

K
-1

 for p = 0.0.  

In Figure 4.13 is presented the phonon energy spectrum along   direction and mode-by-

mode contributions to the RT thermal conductivity of AB two-layer graphene with 10m width.  
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Fig. 4.13. Phonon energy spectrum and mode-specific contributions to thermal conductivity in 

two-layer graphene with AB stacking. 

 

In Figure 4.13 maximum contribution to the heat transport corresponds to red color, while 

minimum contribution to blue color. The performed calculations show that low-energy in-plane 

acoustic LA and TA phonons carry ~ 99% of the heat, while optic phonons together with out-of-

plane acoustic ZA phonons carry less than 1% of the total heat energy. The same result is 

obtained for two-layer AA graphene, three-layer ABA and ABC graphene. Comparing the 

obtained results with the same data for single-layer graphene, it can be concluded that 

polarization-dependent behavior of heat transport in graphene is practically insensitive to the 

number of layers and stacking geometry. It means that phonons of the same polarization together 

carry an almost constant portion of the heat with respect to its total amount. However, the 

absolute value of the thermal conductivity strongly depends on the number of layers, as well as 

their width, quality of the boundaries and temperature.  

In Figure 4.14 is shown the temperature dependence of thermal conductivity in single-layer 

graphene, AB two-layer graphene and ABA three-layer graphene for two different layer widths: 

d = 1 and 10 m. All calculations were performed for a fixed value of specular parameter p = 

0.9.  
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Fig. 4.14. Phonon thermal conductivity of single-layer graphene, two-layer AB graphene and 

three-layer ABA graphene as a function of temperature for different layers width. 

 

One can see from the figure that with increasing of the number of layers the thermal 

conductivity decreases in the whole considered temperature range and for different layers width. 

The reason of this reduction can be understood from the following picture. There are two major 

factors that determine the dependence of the thermal conductivity on the layer number, these are: 

(i) number of heat carrying phonons and (ii) value of the 
1

h
 term in the equation for the thermal 

conductivity (see equation (4.10)). Here h is the thickness of the graphene flake. The total 

thickness of the graphene multilayer increases directly proportional to the number of layers, e.g. 

the three-layer graphene is three times thicker than the monolayer graphene. Although the 

dependence of the total number of phonon branches on the number of layers is analogous (e.g. 

there are three times more phonon branches in three-layer graphene than in monolayer), the 

number of heat carrying phonons is different. The translational symmetry of the graphene lattice 

imposes that the number of zone-center in-plane phonons with zero energy (denoted as TA1 and 

LA1 in Figure 4.13) equals to 2 and does not depend on the number of layers. The additional 

(quantified) TA2/LA2, TA3/LA3, etc., phonons of multi-layer graphene have an almost zero 

group velocity in the direct vicinity of the BZ center and thus are practically excluded from the 

heat transfer. However, in-plane acoustic phonons of the same polarization but farther from the 

zone-center have almost the same group velocity and contribute equally to the heat transport. 

When number of layer increases, the above mentioned mechanisms act opposite to one another, 

with a more stronger influence of the mechanism (ii) in comparison with mechanism (i), 

resulting in an overall decrease of the thermal conductivity. Moreover, the calculations suggest 

that this picture takes place regardless of the stacking geometry. 
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4.3. Twisted two-layer graphene. Engineering phonons with atomic plane rotations 

 

In recent years the interest of the physics community has been shifting toward investigation 

of the T-FLG systems. When two graphene layers are placed on top of each other they can form 

a Moiré pattern [108, 178, 190]. In this case, one layer is rotated relative to another layer by a 

specific angle. The synthesis of T-FLG was experimentally demonstrated using the chemical 

vapor deposition, mechanical exfoliation or growth on the carbon terminated SiC surface [178, 

191-193]. Although twisting only weakly affects the interlayer interaction, it breaks symmetry of 

the Bernal stacking resulting in an intriguing dependence of the electronic and phonon properties 

on the rotation angle (RA).   

The electronic structure of the T-BLG with relatively small RAs was theoretically studied 

using both the continuum approach [108] and the density functional theory [194-195]. 

Experimentally, the specifics of the electronic transport in T-FLG were investigated using the 

surface X-ray diffraction [191], scanning tunneling microscopy [191-192] and Raman 

spectroscopy [190].  It was observed that twisted multilayer graphene grown on the carbon 

terminated face of 4H-SiC reveals single-layer graphene electronic properties [191]. More 

recently, this observation was confirmed by an independent Raman spectroscopy study [190]. 

While the electronic properties of T-FLG have been intensively investigated both theoretically 

and experimentally the phonon properties of T-FLG remain largely unexplored. Therefore, there 

is a strong need for an accurate theory and computation of the phonon energy, dispersion and 

DOS in T-BLG for the purpose of interpretation of experimental data. 

Let us consider a bilayer graphene structure with a relative rotation angle   between parallel 

graphene sheets and let us define the initial stacking configuration with 0    as AB stacking. If 

one rotates one atomic layer of carbon atoms relative to another layer by an angle   one will 

obtain a twisted graphene, as shown for example in Figure 4.15(a). Due to hexagonal symmetry 

the chosen scheme limits our consideration to rotational angles between 0    and 60   , 

which corresponds to AA stacking configuration.  
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Fig. 4.15. (a) Rotational scheme. Note that rotational axis R passes through atoms which lie 

exactly above each other. (b) BZ of T-BLG with 21.8   .   and   denote two high-

symmetry points of T-BLG BZ. 

 

Commensurate structures, i.e. structures with translation symmetry, exist for a certain 

rotational angles only, determined by the following condition: 

2 2 2 2cos ( , ) (3 3 / 2) / (3 3 )p n p pn n p pn n      , where p and n are coprime positive integer 

numbers. The basis vectors of Bravais lattice 1t  and 2t  for the commensurate T-BLG are given 

by the expression:  

1 1

22

,
( ) 2

t ap p n

p n p n at

    
    

     
            (4.11) 

where 1 (3 / 2, 3 / 2)a a a   and 2 (3 / 2, 3 / 2)a a a  are the basis vectors of Bravais lattice for 

the single-layer graphene, a=0.142 nm is the carbon-carbon bond length. The number of atoms in 

the commensurate cell is equal to the ratio between the volumes of the rotated and unrotated 

cells multiplied by a number of atoms in the unrotated cell: 

 
1 2

1 2

4
t t z

N
a a z

   


 
,              (4.12) 

where z  is the unitary vector normal to the graphene plane. Substituting equations (4.11) into 

equation (4.12) one can obtain for N: 

    2
4 2 .N p n p p n                (4.13) 

The unit cells of T-BLG with larger indices (p,n) contain larger number of carbon atoms. For 

instance, the unit cell of T-BLG with (1,1) 21.8    contains the smallest possible number of 

atoms N = 28, while a rotation by (2,1) 13.2    increases this number to N = 76. 
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In order to construct the BZ of the T-BLG with the angle of rotation ( , )p n  one should 

determine the corresponding reciprocal space. The reciprocal vectors of T-BLG 
1g  and 2g  are 

related to the real space vectors 1t  and 2t  as: 
2

1

1 2

2
t z

g
t t z


  

   

; 
1

2

1 2

2
z t

g
t t z


  
   

. Using 

these relations and equations (4.11) one can obtain: 

   

1 1

2

2 2

21

( )2

g bp n p n

g p n pp n p p n b

     
               

,         (4.14) 

where 1 (2 / 3 , 2 / 3 )b a a    and 2 (2 / 3 ,2 / 3 )b a a   are the basis vectors of the 

reciprocal lattice of the single layer graphene. The BZ of the T-BLG with (1,1) 21.8    is 

shown in Figure 4.15(b) as a green hexagon. 

In the case of the intralayer coupling the hexagonal symmetry of the interatomic interaction 

is preserved for different  , while in the interlayer coupling, the atomic configuration and force 

constant matrices are dependent on the rotational angle. In this case, one can describe the 

interlayer interactions with the Lennard-Jones potential     12 6
( ) 4 / /V r r r    . The 

parameters   = 4.6 meV and   = 0.3276 nm were taken from Ref. [196]. They reproduce the 

experimental values of the interlayer space and phonon dispersion along the   direction of 

bulk graphite. Thus, the force constant matrix of interlayer interaction is: 

2

( ; ) ( ; )
( ; ) ( ( ))

( ; )

ij
r n r n

n r
r n

 



 
  


    ,           (4.15) 

where 
12 6

14 8

156 42
( ( )) 4

( ) ( )
r

r r

 
  

 

 
  

 
 is the force constant of the interlayer coupling, ( )r   is the 

distance between the interacting atoms from a given atomic configuration corresponding to angle 

 .  

The phonon dispersions in T-BLG with the rotation angles 21.8    and 13.2    are 

shown in Figure 4.16(a-b) along Г-K direction in BZ. The phonon frequencies were calculated 

from equations (4.3) for each phonon wave number q from the interval 0 to max ( )q  , where 

 max max( ) 2 ( 0)sin / 2 8 sin( / 2) /(3 3 )q q a       .  
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Fig. 4.16. Phonon energy dispersions in twisted bilayer graphene with 21.8    (a) and 

13.2    (b). 

 

The directions in BZ of T-BLG depend strongly on the rotational angle and do not coincide 

with the directions in BZ of bilayer graphene without a twist (BLG). As shown in Figure 4.15 

(b), the Г-K direction in BZ of T-BLG is rotated relative to that in BZ of BLG. Therefore, the 

phonon curves in Figure 4.16(a-b) are shown for different directions in BZ of BLG. However, 

the Г- and K-points in BZ of T-BLG correspond to those in BZ of BLG and the change of the 

phonon modes in these points is a direct effect of the twisting. The number of atoms in the unit 

cell of T-BLG with 21.8    ( 13.2   ) increases by a factor of 7 (19) as compared with BLG. 

The number of phonon branches increases to 84 for T-BLG with 21.8    and to 228 for T-

BLG with 13.2   . The number of phonon modes at Г- and K-points in BZ of T-BLG 

increases correspondingly. In addition to the degenerate TO/LO phonon modes of BLG at Г-

point with the frequency ω ~ 1589.5 cm
-1

,
 
the new in-plane phonon modes appear in T-BLG. The 

frequencies of these modes depend strongly on the rotational angle and their number increases 

with decreasing  . In T-BLG with 21.8   , there appear additional phonon modes at the Г-

point related to the in-plane optical phonons with the frequencies ω ~ 1378.6 cm
-1

, 1468.8 cm
-1

 

and 1589.5 cm
-1

. In T-BLG with 13.2    one can observe new phonon modes with six 

different frequencies: ω ~ 1353.0 cm
-1

, 1363.1 cm
-1

, 1367.2 cm
-1

, 1458.8 cm
-1

, 1479.3 cm
-1

 and 

1564.1 cm
-1

. Analogously, at K-point of BZ instead of the in-plane phonon modes with ω ~ 

1197.3 cm
-1

 and 1347.4 cm
-1

, which are observed in BLG, one finds the phonon modes with the 

frequencies ω ~ 1197.4 cm
-1

, 1347.4 cm
-1

, 1350.7 cm
-1

, 1411.6 cm
-1

, 1486.8 cm
-1

 and 1569 cm
-1

 

in T-BLG with 21.8   . In T-BLG with 13.2    the number of different frequencies of K-

point phonons rises to 14: ω ~ 1197.4 cm
-1

, 1260.5 cm
-1

, 1339.8 cm
-1

, 1347.4 cm
-1

, 1351.4 cm
-1

, 

1365.2 cm
-1

, 1390.4 cm
-1

, 1395.6 cm
-1

, 1449.6 cm
-1

, 1491.5 cm
-1

, 1498.2 cm
-1

, 1547.3 cm
-1

, 
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1552.8 cm
-1

 and 1584.7 cm
-1

. Overall the phonon spectrum of twisted bilayer graphene becomes 

much more complicated.  

The twisting influences the phonon spectra of BLG owing to two reasons: (i) modification of 

the weak van der Waals interlayer interaction and (ii) alteration of a size of a BZ leading to the 

phonon momentum change. To investigate these effects separately in Figure 4.17(a-b) it is 

plotted the phonon dispersions in AA-BLG along Г0-K0 (red curves) and Г1-K1 (blue curves) 

direction in BZ of AA-BLG.  

 

Fig. 4.17. Phonon energy dispersions in AA-stacked bilayer graphene shown for Г0-K0 and Г1-K1 

(a) directions of the BZ of AA-BLG. (b) BZs in AA-BLG and T-BLG with 21.8   . 

 

In BZ of AA-BLG there are seven directions Гi-Ki (i = 0,...,6) which are equivalent to the 

direction Г0-K0 in BZ of T-BLG (see Figure 4.15(b), where the BZs for the BLG and T-BLG are 

shown). The phonon dispersion in T-BLG with 21.8   , shown in Figure 4.16(a), corresponds 

to the phonon dispersions along Гi-Ki (i = 0,...,6) directions in BZ of AA-BLG. Thus, in the 

twisted bilayer graphene appear hybrid folded phonon branches resulting from mixing of 

different directions from BLG BZ: Г0-K0, Г1-K1, .., Г6-K6. The red and blue curves in Figure 

4.16(a) appear in the phonon spectra of T-BLG from Г0-K0 and Г1-K1 direction in BZ of AA-

BLG. The difference in the frequencies of the phonon modes shown in Figures 4.16(a) (red and 

blue curves) and Figure 4.17(a-b) is a manifestation of the twisting. In T-BLG the difference 

between the phonon frequencies of all corresponding modes is small due to weak interlayer 

interaction.  

The frequencies of the shear (LA2, TA2) and flexural (ZA2) phonons are affected stronger by 

the twisting. The specific properties of these modes in T-BLG with 21.8    (red curves) and 

T-BLG with 13.2    (blue curves) as well as in AA-BLG (black curves) are presented in 

Figure 4.18.  
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Fig. 4.18. Zone-center phonon dispersions of the out-of-plane (a) and in-plane (b) acoustic 

modes in AA-BLG (black curves), T-BLG with 21.8    (red curves) and T-BLG with 

13.2    (blue curves). The region where anti-crossing of LA1 and TA2 hybrid folded phonon 

branches occurs are shown by dashed circle. 

 

At Г – point, the twisting increases the frequency of the shear modes by 1 – 2 cm
-1

 and decreases 

the frequency of ZA2 modes by ~ 5 – 5.5 cm
-1 

depending on   (see Figure 4.18(a)). In AA-BLG, 

the phonon branches LA1 and TA2 intersect at q ~ 0.7 nm
-1

. Twisting changes the interaction 

between these phonons in T-BLG and leads to anti-crossing of LA1 and TA2 hybrid folded 

phonon branches (see Figure 4.18(b)).  

Specific heat, C, is one of the key parameters that characterize the phonon and thermal 

properties of materials. It is defined as /C Q T  , where Q  is the change in energy density of 

a material when temperature changes by T  [122]. For calculation of the phonon specific heat in 

T-BLG it is used the following formula [122, 189]: 

 
max

2

2
2

0

exp( )
3

( ) ( )

[exp( ) 1]

A B
V

B

B

N k T
c T f d

k T

k T




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




 ,          (4.16) 

where   is the phonon frequency, max  is the maximum phonon frequency, f is the 2D 

normalized phonon DOS, T is the temperature, NA is the Avogadro constant, kB is the Boltzmann 

constant and  is the Planck constant. The normalized phonon DOS is given by: 

max

0

( ) ( ) ( ) ,f g g d



                  (4.17) 

where ( )g   is the 2D phonon DOS given by the relation: 
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Here s numerates phonon branches. In order to calculate ( )g   we applied a 200200 2D grid to 

a 1/4
th

 part of BZ of T-BLG (shown as a green segment in Figure 4.15(b)), and then calculated 

phonon frequencies for every (qx,qy) point in this grid. 

The dependence of specific heat on temperature for single-layer graphene and AB-BLG is 

presented in Figure 4.19(a). The experimental values of graphite heat capacity reported in Ref. 

[197] are also shown for comparison by the blue triangles.  

 

Fig. 4.19. Dependence of the specific heat at constant volume on temperature in single-layer 

graphene (gray curve) and AB-BLG (black curve). The blue triangles represent the experimental 

results for graphite, reported in Ref. [197]. The inset shows the results plotted for a wide 

temperature range 100 K – 3000 K. 

 

The low-temperature heat capacity of single-layer graphene is higher than that in graphite 

due to inequality of 2D and 3D phonon DOS. The difference in the heat capacity of single-layer 

graphene, BLG and graphite diminishes with temperature rise. The heat capacities become 

identical within 0.01% deviation for T > 2000 K. At temperatures T > 2500 K, all heat capacities 

approach the classical Dulong-Petit limit Vc = 24.94 J K
-1

 mol
-1

. At small frequencies, ZA 

phonons demonstrate a quadratic dispersion 
2~ q , leading to ( ) ~Vc ZA T , while TA and LA 

phonons possess linear dispersions ~ q , resulting in 2( , ) ~Vc LA TA T . We found that total heat 

capacity in single-layer graphene varies with temperature as nT , where n = 1 for T   15 K; n = 

1.1 for 15 K < T   35 K; n = 1.3
 
for 35 K < T   70 K and n = 1.5 for 70 K < T   240 K. The 

power factor n increases with temperature not only due to greater contribution of LA and TA 
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phonons but also due to the deviation of ZA phonon frequency dispersion from the quadratic 

law, leading to nearly linear dependence of ZA DOS on frequency for   > 100 cm
-1

. Our results 

for heat capacity in single-layer graphene are qualitatively similar to those described in Refs. 

[198-199] with the exception of the power factor values n = 1 [198] and n = 1.1 [199] for T < 

100 K. This discrepancy is explained by the fact that in Refs. [198-199] the authors did not take 

into account the non-parabolicity of ZA dispersion for   > 100 cm
-1

. In AA-BLG or AB-BLG 

1.6~Vc T  for wide temperature range T   170 K due to the changes in DOS in comparison with 

those in single-layer graphene. 

In Figure 4.20 we plot a difference between the specific heat in AB-BLG and T-BLG as a 

function of temperature: ( ) ( ) ( )v v vc c AB c     for 21.8   , 13.2    and 9.4   .  

 

Fig. 4.20. Dependence of the deviation ( )vc   of the specific heat in T-BLG from that in AB-

BLG on the temperature. The inset shows the relative deviation   between AB-BLG and T-BLG 

specific heats as a function of temperature. 

 

The change in the specific heat due to twisting is relatively weak in a wide temperature range 20 

K - 2000 K. It attains its maximum value ~ 0.028 J K
-1

 mol
-1 

at T ~ 250 K. At the same time, at 

low temperatures the relative difference between specific heat in AB-BLG and T-BLG 

(1 ( ) / ( )) 100%V Vc c AB     constitutes substantial 10-15% at T = 1 K and ~ 3-6% at T = 5 K 

in dependence on   (see blue, red and green curves from the inset to Figure 4.20). The low 

temperatures specific heat depends stronger on the twist angle because twisting affects the low-

frequency ZA phonon modes the most [38]. A somewhat similar effect of modulation of the 

specific heat was recently reported for single-layer graphene under strain [104]. The authors 

found that a stronger modification of the specific heat occurs at temperatures below 1 K. The 

temperature dependence of low-temperature specific heat in T-BLG with 21.8    differs from 
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single-layer or bilayer graphene: 1.3~Vc T  for T < 10 K and 1.6~ T  for 10 K   T   100 K. One 

should expect that twisting can produce stronger effects on the specific heat of the T-FLG with 

the larger number of the atomic planes rotated with respect to each other as well as in van der 

Waals materials with stronger interlayer coupling. The results suggest a possibility of phonon 

engineering of phonon and thermal properties of layered materials by twisting the atomic planes. 

 

4.4. Conclusions to chapter 4 

 

The main scientific results of this chapter are: 

 A BvK model of lattice dynamics for single-, two-layer and three-layer graphene as well 

as for twisted bilayer graphene with different angles of rotation was developed.  

 Phonon energy spectra of these structures in all high-symmetry crystallographic 

directions were calculated. The obtained results for phonon frequencies of single-layer 

and non-rotated few-layer graphene are in a very good agreement with experimental data 

of bulk graphite.  

 It was found that, since many of the zone-center acoustic and optical vibrational modes of 

non-rotated few-layer graphene are Raman or infrared active, they can provide important 

information on layer number and stacking configuration of graphene multilayers. 

 It was found that middle- and high-frequency phonons in twisted bilayer graphene are 

practically independent on the twisting angle, while the low-frequency phonons strongly 

depend on it. 

 A phonon mode-specific contribution to the thermal transport of single-, two- and three-

layer graphene was established, suggesting that high-velocity in-plane acoustic LA and 

TA phonons are the main heat carriers in these structures.  

 It was demonstrated, that in single- and non-rotated few-layer graphene umklapp and 

boundary scattering are the dominant scattering mechanisms, limiting correspondingly its 

thermal conductivity in a wide range of temperatures and layer widths. 

 It was found, that in non-rotated few-layer graphene phonons of the same polarization 

together carry an almost constant portion of the heat with respect to its total amount, 

irrespective to the number of layers and stacking geometry. 

 It was shown that a new type of hybrid folded rotationally-dependent phonon modes 

appear in the twisted bilayer graphene due to reduction of the BZ size and changes in the 

interaction between graphene layers. These modes can manifest themselves in Raman or 
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infrared measurements and, thus, can be used for the non-contact characterization of 

twisted bilayer graphene.  

 The phonon specific heat in single-layer, bilayer and twisted bilayer graphene was 

studied. It was found that at temperature T<15 K, specific heat varies with temperature as 

T
n
, where n = 1 for graphene, n = 1.6 for bilayer graphene and n = 1.3 for the twisted 

bilayer graphene. 

All numerical simulations presented in this chapter were carried out entirely by the author, 

while theoretical derivations and data analysis was done in close collaboration and under 

supervision of scientifc advisor. The results of the investigation of the phonon processes in 

graphene and twisted bilayer graphene were published in the research articles [38, 44, 196, 

200]. 
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GENERAL CONCLUSIONS AND RECOMMENDATIONS 

 

Below the summary of the results obtained in the Thesis is given. 

1. A three-parameter Born-von Karman type model of lattice dynamics for nanolayers and 

planar superlattices with diamond crystal lattice was developed. The Boltzmann transport 

equation approach was used for investigation of the phonon and thermal processes in Si 

nanolayers and Si/Ge planar superlattices. For nanometer-wide silicon nanolayers was obtained a 

good agreement between theoretical calculations and the experimental data for 20-nm-thick and 

30-nm-thick silicon nanolayers. It was demonstrated that optical phonons contribution to the 

thermal conductivity of silicon nanolayers under consideration constitutes only a few percent. 

2. The perturbation theory and second quantization formalism were used in order to model 

the scattering of phonons on interfaces in Si/Ge planar superlattices. It was concluded that 

interface mass-mixing scattering of phonons plays an extremely important role in limiting the 

total phonon lifetime in Si/Ge planar superlattices and can lead to a peculiar behavior of phonon 

thermal conductivity of these structures owing to the non-trivial dependence of interface 

scattering rate on the amplitudes of the atomic displacements. For a wide temperature range from 

50 K to 400 K a good agreement between theoretical and experimental phonon thermal 

conductivity was obtained for Si(35ML)/Ge(9ML) planar superlattice when phonon-phonon 

scattering was not taken into account, indicating that the interface mass-mixing scattering can be 

the dominant mechanism of phonon scattering in real Si/Ge planar superlattices. 

3. The effective mass method was applied for investigation of electron energy spectra and 

electron wave functions in core/shell Si/SiO2 nanowires with constant and periodically 

modulated cross-section. It was shown, that cross-section modulation strongly influences the 

electron energy spectra and electron wave functions in Si nanowires. For ground state there 

appear an inhomogeneity in the wave function distribution along the wire’s axis, namely, the 

main part of the wave function modulus being localized in the wide segments of the modulated 

wire. 

4. The lattice dynamics Born – von Karman model and the Boltzmann transport equation 

were applied for investigation of phonon and thermal processes in Si nanowires, Si cross-section 

modulated nanowires and Si/Ge core/shell cross-section modulated nanowires. For Si cross-

section modulated nanowires it was theoretically demonstrated that phonon heat flux can be 

significantly suppressed in comparison with the generic uniform cross-section Si nanowires. 

Redistribution of the phonon energy spectra in the cross-section modulated nanowires leads to a 

strong decrease of the average phonon group velocities and a corresponding suppression of the 

phonon thermal flux. An up to 5 times drop of the phonon heat flux at room temperature is 
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predicted for Si cross-section modulated nanowires in comparison with uniform Si nanowires. 

For Si/Ge core/shell cross-section modulated nanowires it was found theoretically that a 

combination of cross-section modulation and acoustic mismatch between Si and Ge materials 

can lead to an even more drastic reduction of the thermal conductivity. The performed 

calculations indicate that the room temperature thermal conductivity of Si/Ge core/shell cross-

section modulated nanowires is almost three orders of magnitude lower than that of bulk Si. 

5. The analytical expression for the electron-phonon scattering rate with emission and 

absorption of a phonon in Si/SiO2 core/shell modulated nanowires was derived in the 

deformation potential approach. It was shown that cross-section modulation of the Si core results 

in a substantial modification of the room temperature electron-phonon scattering rate with 

phonon absorption. 

6. A Born – von Karman model of lattice dynamics for single-, two-layer and three-layer 

graphene as well as for twisted bilayer graphene with different angles of rotation was developed. 

Phonon energy spectra of these structures in all high-symmetry crystallographic directions were 

calculated. The obtained results for phonon frequencies of single-layer and non-rotated few-layer 

graphene are in a very good agreement with experimental data of bulk graphite. It was found 

that, since many of the zone-center acoustic and optical vibrational modes of non-rotated few-

layer graphene are Raman or infrared active, they can provide important information on layer 

number and stacking configuration of graphene multilayers. It was found that middle- and high-

frequency phonons in twisted bilayer graphene are practically independent on the twisting angle, 

while the low-frequency phonons strongly depend on it. Thus, an important scientific problem 

was solved in the Thesis namely it was demonstrated the possibility to control the phonon 

processes in two-layer graphene by rotation of graphene layers one against another around the 

axis perpendicular to the graphene plane. 

7. It was shown that a new type of hybrid folded rotationally-dependent phonon modes 

appear in the twisted bilayer graphene due to reduction of the BZ size and changes in the 

interaction between graphene layers. These modes can manifest themselves in Raman or infrared 

measurements and, thus, can be used for the non-contact characterization of twisted bilayer 

graphene. The phonon specific heat in single-layer, bilayer and twisted bilayer graphene was 

studied. It was found that at temperature T<15 K, specific heat varies with temperature as T
n
, 

where n = 1 for graphene, n = 1.6 for bilayer graphene and n = 1.3 for the twisted bilayer 

graphene. 

Based on the conclusions presented above, the following recommendations can be made: 

1. The Si/Ge planar superlattices with atomic intermixing at interfaces are perspective 

candidates for phonon filtering applications. 
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2. The acoustically-mismatched Si-based core/shell modulated nanowires with suppressed 

phonon heat transport are perspective for thermoelectric and thermal insulator 

applications. 

3. The twisted bilayer graphene with different angles of rotation can be recommended for 

heat spreading and heat management applications owing to their unusual angle-dependent 

phonon processes. 

The obtained theoretical results contribute to a better understanding of the electron and 

phonon processes in graphene and silicon-based nanostructures and are important for the design 

and practical realization of novel nanomaterials with optimized and properly engineered electron 

and phonon properties.  
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