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SUMMARY (English, Romanian, Russian)

SUMMARY

Cocemasov Alexandr, ,,Phonon processes in graphene and silicon-based nanostructures”, doctor
thesis in physics, Chisinau, 2015. Introduction, 4 Chapters, General conclusions and
recommendations, 200 References, 140 Pages, 66 Figures, 7 Tables. The results presented in the
thesis are published in 33 scientific works.

Key words: phonons, electrons, nanolayer, superlattice, nanowire, graphene, lattice dynamics,
modulation, thermal properties.

Domain of study: physics of nanosystems.

Goal and objectives: investigation of phonon processes in graphene (single-, two-, three-layer
graphene and twisted graphene) and silicon-based nanostructures (Si nanolayers, Si/Ge
superlattices and Si-based modulated nanowires), and search of the methods for targeted control
of their phonon properties.

Scientific novelty and originality: a Born — von Karman lattice dynamics model for nanolayers,
planar superlattices, cross-section modulated nanowires and multilayer graphene with different
atomic stacking was developed; the influence of shell material and cross-section modulation on
phonon and electron processes in Si-based nanowires was studied; a theoretical approach for
calculation of scattering time of phonons on interfaces of Si/Ge superlattices was developed and
the influence of Si/Ge interface quality on phonon and thermal properties of these superlattices
was investigated; the influence of different atomic stacking on phonon and thermal processes in
multilayer graphene was studied.

Important scientific problem solved: it was demonstrated and investigated theoretically the
possibility to control the phonon processes in two-layer graphene by rotation of graphene layers
one against another around the axis perpendicular to the graphene plane. Theoretical model of
lattice dynamics in rotated (“twisted”) two-layer graphene was developed.

Theoretical importance: were developed theoretical approaches for targeted control of phonon
processes in graphene and silicon-based nanostructures.

Practical significance: the practical implementation of the obtained theoretical results can lead

to fabrication of new classes of nanostructures with specifically desired phonon properties.



ADNOTARE

Cocemasov Alexandr, ,,Procesele fononice in grafen si nanostructuri pe baza de siliciu”, teza de
doctor in stiinte fizice, Chisinau, 2015. Introducere, 4 Capitole, Concluzii generale si
recomandari, 200 Titluri bibliografice, 140 Pagini, 66 Figuri, 7 Tabele. Rezultatele prezentate in
teza sunt publicate 1n 33 de lucrari stiintifice.

Cuvintele-cheie: fononi, electroni, nanostrat, supraretea, nanofir, grafen, dinamica retelei,
modulatie, proprietati termice.

Domeniul de studiu: fizica nanosistemelor.

Scopul si obiectivele: investigarea proceselor fononice in grafen (cu un singur, doua, trei straturi
si grafen “twisted”) si nanostructuri pe baza de siliciu (nanostraturi din Si, supraretele Si/Ge si
nanofire modulated pe baza de Si), si cautarea metodelor de control preconditionat a
proprietatilor lor fononice.

Noutatea si originalitatea stiintifica: a fost dezvoltat modelul Born — von Karman a dinamicii
retelei cristaline pentru nanostraturi, supraretele planare, nanofire cu sectiunea transversala
modulata si grafen multistrat cu aranjarea cristalind diferitd; a fost studiata influenta materialului
de 1nvelis si modulatiei sectiunii transversale asupra proceselor fononice si electronice in
nanofirele pe baza de Si; a fost dezvoltatda o metoda teoreticd pentru calcularea timpului de
relaxare in procesele de imprastiere a fononilor pe interfetele supraretelelor Si/Ge si a fost
studiata influenta calitatii interfetelor Si/Ge asupra proprietatilor fononice si termice al acestor
supraretele; a fost studiata influenta aranjarii cristaline asupra proceselor fononice si termice in
grafenul multistrat.

Problema stiintificA importanta solutionata: a fost demonstratd si investigatd teoretic
posibilitatea de control a proceselor fononice in grafenul bistrat prin rotatia straturilor de grafen
unul impotriva altuia in jurul axei perpendiculare catre planul straturilor. A fost dezvoltat
modelul teoretic a dinamicii retelei cristaline in grafenul bistrat cu rotatia dintre straturi
("twisted”).

Semnificatia teoreticd: au fost dezvoltate metode teoretice de control preconditionat a
proceselor fononice in grafen si nanostructuri pe baza de siliciu.

Valoarea aplicativa: implementarea practicd a rezultatelor teoretice obtinute poate contribui la

fabricarea a nanostructurilor cu proprietati fononice preconditionate.



AHHOTANINA

KouemacoB Amnekcanzap, ,,DoHOHHBIE mTpouecchl B TpadeHe M HAHOCTPYKTypax Ha 0asze
KpEeMHUS’, TUCCepTalis Ha COMCKAHUE YYCHOU CTENeHHU JOKTopa ¢pu3ndeckux Hayk, KummHes,
2015. Beenenue, 4 I'maBbl, OOume BoIBOABI M pexomeHaanuu, 200 Cepuiok, 140 Crpanwui, 66
PucynkoB, 7 TaOnuu. Pe3ynpraTel, NpeacTaBieHHbIE B AMCCEpPTallMM, ONyOIMKOBaHBl B 33
HAYYHBIX paboTax.

Kntouegvie cnosa: QOHOHBI, 3JEKTPOHBL, HAHOCIOH, CBEpXpelleTKa, HAaHOHWTH, TrpadeH,
JUHAMUKA PELIETKH, MOIYJISIIHS, TeIJIOBbIE CBOWCTBA.

O0JacTh uccieoBaHmii: PU3MKa HAHOCHCTEM.

Hesas 1 3agaun: uccienoBanre GOHOHHBIX MPOLECCOB B rpadeHe (0AHO-, IBYX-, TPEX-CIOUHOM
u  “twisted” rpadeHe) u HaHOCTPYKTypax Ha 0Oase kpemuus (Si HaHocmosx, Si/Ge
CBEpXpEIIETKAaX, MOJIYJIUPOBAHHBIX HAHOHUTAX Ha ©Oa3ze Si), ©W TMOUCK METOJOB
L[EJICHAIIPaBJIEHHOT O YIIPaBJIEHUS UX (OHOHHBIMU CBOMCTBAMHU.

HayuyHnasi HOBM3HAa M OPUIMHAJBHOCTB: Pa3BUTa MOJEIb JWHAMUKM pemieTku bopHa — Qo
Kapmana s HaHOCTIOEB, IUIOCKUX CBEPXPELIETOK, HAHOHUTEH ¢ MOIYyJNSALUEH MONepeyHOro
CEYEHHUS M MHOTOCIOMHOIO rpadeHa ¢ pa3indHOil ymakoBKOW rpad)eHOBBIX CIOEB; UCCIEIOBAHO
BIMSHUE MaTepuasa OOKJIAaJKU W MOAYJALMU TONEPEYHOro CeYeHHs] Ha (POHOHHBIE U
AJICKTPOHHBIC MPOIECCHl B HAHOHUTSAX Ha 0Oa3e Si; pa3BUT TEOPETUUECKHUIl MOIXO IS pacueTra
BpeMeHHU paccestHusi (OHOHOB Ha mHTepdeiicax Si/Ge CBepXpeIIeTOK U UCCISI0BAHO BIHSIHUC
kauectBa Si/Ge unTepdeiica Ha HOHOHHBIC U TEIUIOBBIE CBOICTBA ITHX CBEPXPELIETOK; U3yYCHO
BIIMSIHUE CMOco0a YMakoBKH TpadeHOBHIX CIIOEB Ha (POHOHHBIE W TEIUJIOBBIE IPOIECCH B
MHOTOCJIOMHOM TpadeHe.

Pemiennasi Ba:kHasi Hay4YHasi 3aJa4a: TEOPETHUECKU MPOAEMOHCTPUPOBAHA U HCCIENOBaHA
BO3MOXHOCTH yIpaBiieHUs] (POHOHHBIMH IPOILIECCaMH B JIBYXCIIOMHOM TpadeHe myTeM MoBopoTa
rpa)eHOBBIX CJIOEB Pyl OTHOCUTENBHO JApYyra BOKPYI OCH MEPHEHAMKYISPHON K IUIOCKOCTU
cinoeB. Pa3Bura Teopernueckas MoOJeNb JUHAMHKU PEUIETKH B JBYXCIOWHOM rpadeHe c
noBopotoM (“twisted”).

Teopernueckasi 3HAYUMOCTb: pa3pabOTaHbl TEOPETHUECKUE MOAXOJbl JUIl YHpPaBICHUS
(OHOHHBIMHU TTpoLIecCaMU B rpa)eHe U HAaHOCTPYKTYpax Ha 0a3e KpeMHUS.

IIpuknagHas HeHHOCTH: NMPAKTUYECKas pean3alusl NOJyYEeHHBIX TEOPETUUECKUX PE3yJIbTaTOB
MOYET CIIOCOOCTBOBATH IMOSIBIEHUIO HOBBIX KJIACCOB HAHOCTPYKTYP C OIpPEEIEHHO 33 JaHHBIMU

(OHOHHBIMU CBOMCTBAMH.



LIST OF ABBREVIATIONS

BZ — Brillouin zone

DFT — density-functional theory
BvK — Born - von Karman

FCC — face-centered cubic

VFF — valence force field

RT — room temperature
LAPACK - Linear Algebra PACKage
ML — monolayer

NW — nanowire

MNW — modulated nanowire
DOS — density of states

TF — thermal flux

BTE — Boltzmann transport equation
BLG — bilayer graphene

FLG — few-layer graphene

T-BLG  —twisted bilayer graphene
T-FLG — twisted few-layer graphene



INTRODUCTION

Relevance and importance of the subject of the Thesis

The relevance and importance of the subject of the Thesis is determined by a huge interest
from both scientific and engineering community toward the nanoscale structures and materials
with enhanced electron and phonon properties. The investigation of electron and phonon
processes in nanostructures, as well as the search for novel nanoscale geometries and materials
with properly engineered electron and phonon properties represents one of the most important
problems of modern nanoscience. The technological progress in dimensional scaling of different
material structures in the past few decades determined many important advancements in various
areas: electronics, phononics, thermal management, thermoelectricity, photovoltaics, energy
storage, etc. Further development of these fields requires a thorough understanding of the
electron and phonon processes at nanoscale level.

Electrons and phonons manifest themselves in all properties of materials: mechanical,
optical, thermal, chemical, etc. Spatial confinement of electrons and phonons in nanostructures
strongly affects their energy spectra, density of states and electron-phonon interaction. Thus,
nanostructures offer a new way of controlling electron and phonon processes together with
electron - phonon interaction via tuning electron and phonon dispersion relations, i.e. electron
and phonon engineering. While electron engineering idea has been widely used during the last 60
years, the phonon engineering is a relatively new approach. Phonon engineering is considered to
be as powerful as the idea of the band-gap engineering for electrons, which is now utilized in a
variety of devices.

One of the areas where phonon engineering is playing an extremely important role is heat
management at nanoscale, since phonons are the main heat carriers in many nanostructured
material systems such as semiconductor and carbon nanostructures. Aggressive miniaturization
of electronic devices and increasing their operation speed makes the problem of heat removal
from the electronic circuits particularly important. Therefore the scientific search of materials
with high thermal conductivity becomes extremely crucial for the future development of
nanoelectronics. One of the two-dimensional nanostructures investigated in this Thesis is single-
layer and few-layer graphene. Graphene, among its excellent electron conductive properties,
reveals extremely high thermal conductivity. Few-layer graphene flakes, which are easy to
produce, also posses unusual physical properties: depending on the stacking configuration they
demonstrate metallic- or semiconductor-like behavior. Despite of the fact that numerous
scientific studies of the thermal properties in few-layer graphene have been carried out in the last

few years, the phonon and thermal properties in twisted few-layer graphene, when one carbon
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layer is rotated relatively to another layer by a specific angle were not studied yet. This
investigation is very important and timely because change in the phonon properties in twisted
few-layer graphene for different angles of rotation may significantly modify its thermal
properties and can give an important insight into the physics of interlayer interaction in few-layer
graphene.

Another area where electron and phonon engineering has given a significant performance
boost is thermoelectricity, i.e. thermal-to-electrical energy conversion and vice-versa. Among
other renewable energy sources, thermoelectricity provides unique opportunity since it can be
used as a generator deriving power out of waste heat from different sources: integrated chips,
cars, buildings, etc. This opens up the exciting area of thermoelectric waste heat recovery. One-
dimensional and two-dimensional nanostructures are one of the most promising thermoelectric
materials that allow separate engineering of electronic and thermal properties. The ability to
manipulate the materials at the atomic scale using nanostructures such as nanowires, thin films

and superlattices plays a key role in enhancing the thermoelectric efficiency.

Goal and objectives of the Thesis
The goal of this Thesis is the investigation of phonon processes in graphene and silicon-

based nanostructures, as well as determination of novel nanostructures for effective electron and

phonon engineering.

In order to achieve this goal, the following objectives are formulated:

1. Determination of novel one-dimensional and two-dimensional nanostructures with specific
geometrical and material parameters, as perspective candidates for electron and phonon
engineering.

2. Development of theoretical models to describe phonon and electron states in novel one-
dimensional and two-dimensional nanostructures.

3. Investigation of electron, phonon and thermal properties of novel as well as generic one-
dimensional and two-dimensional nanostructured materials.

The following theoretical methods and models are used to accomplish the objectives:

1. Lattice dynamics theory for theoretical modeling the phonon states in novel one-dimensional
and two-dimensional nanostructures.

2. Extension and application of the effective mass approach in order to investigate electron
states in novel nanostructures.

3. Extension and application of the Boltzmann transport equation approach for modeling the

thermal properties of novel one-dimensional and two-dimensional nanoscale structures.
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Scientific novelty of the results:

1. A Born - von Karman lattice dynamics model for cross-section modulated nanowires and
multilayer graphene with different atomic stacking was developed.

2. The influence of cross-section modulation on phonon and electron processes in Si-based
nanowires was studied for the first time.

3. A theoretical approach for calculation of scattering time of phonons on interfaces of Si/Ge
superlattices was developed and the influence of Si/Ge interface quality on phonon and
thermal properties of these superlattices was analyzed.

4. The influence of different atomic stacking on phonon and thermal processes in multilayer
graphene was elucidated for the first time.

An important scientific problem was solved in the Thesis namely it was demonstrated and
investigated theoretically the possibility to control the phonon processes in two-layer graphene
by rotation of graphene layers one against another around the axis perpendicular to the graphene

plane.

Main items to be defended:

1. An up to 5 times drop of the phonon heat flux at room temperature is predicted in Si cross-
section modulated nanowires in comparison with generic uniform Si nanowires, using the
lattice dynamics Born — von Karman model and the Boltzmann transport equation for
phonons. The effect is explained by the redistribution of the phonon energy spectra, strong
decrease of the average phonon group velocities and exclusion of the phonon modes trapped
in cross-section modulated nanowires segments from the heat flow.

2. Using the lattice dynamics Born — von Karman model and the Boltzmann transport equation
approach it was demonstrated theoretically that in Si/Ge core/shell cross-section modulated
nanowires the combination of cross-section modulation and acoustic mismatch between Si
and Ge materials can lead to a three orders of magnitude drop of room temperature phonon
thermal conductivity as compared to bulk Si.

3. A new type of hybrid folded rotationally-dependent phonon modes in twisted bilayer
graphene were predicted employing lattice dynamics Born — von Karman model for
intralayer interaction and an angle-dependent interlayer interatomic potential. These modes
appear due to reduction of the Brillouin zone size and changes in the interaction between
graphene layers.

4. Applying the Boltzmann transport equation approach for phonons it was theoretically

demonstrated that in single-layer, bilayer and twisted bilayer graphene the phonon specific
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heat at temperatures less than 15 K varies as T", where n = 1 for graphene, n = 1.6 for bilayer

graphene and n = 1.3 for twisted bilayer graphene.

Theoretical importance and practical significance of the results

Theoretical importance of the results presented in the Thesis consists in the elaboration of
new (such as Born — von Karman model of lattice dynamics for modulated nanowires and
twisted bilayer graphene) and the extension of existent (such as effective mass approach for
electrons and Boltzmann transport equation for thermal transport in modulated nanowires)
theoretical approaches for investigation of phonons and electrons in graphene and silicon-based
nanostructures. Another significant scientific result of the Thesis is the determination of novel
nanoscale structures, such as core/shell modulated nanowires and twisted bilayer graphene, with
high electron and phonon engineering abilities.

The practical significance of the Thesis consists in the fact that the obtained theoretical
results may contribute to the design and practical realization of novel nanostructures with

optimized and properly engineered electron and phonon properties.

Approbation of the results
The results obtained in the Thesis were presented at following international scientific

conferences:

e VII-th International Conference of Young Researchers ,,ICYR-2009”, Chisinau, Moldova,
2009.

e VIlI-th International Conference of Young Researchers ,,ICYR-2010”, Chisinau, Moldova,
2010.

e [X-th International Conference of Young Researchers ,,ICYR-2011", Chisinau, Moldova,
2011.

o O European Conference on Thermoelectrics ,,ECT-2011", Thessaloniki, Greece, 2011.

e DPG Spring Meeting - 2012, Berlin, Germany, 2012.

e 13" International Conference on Modern Information and Electronic Technologies ,,MIET-
20127, Odessa, Ukraine, 2012.

e I-st All-Russian Congress of Young Scientists, Saint-Petersburg, Russia, 2012.

¢ International Scientific Conference for Undergraduate and Postgraduate Students and Young
Scientists ,,Lomonosov-2012”, Moscow, Russia, 2012.

e X-th International Conference of Young Researchers ,,ICYR-2012”, Chisinau, Moldova,
2012.
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¢ International Scientific Conference for Undergraduate and Postgraduate Students and Young
Scientists ,,LLomonosov-2013”, Moscow, Russia, 2013.

e 14" International Conference on Modern Information and Electronic Technologies ,,MIET-
2013”, Odessa, Ukraine, 2013.

e CECAM-Workshop: Nanophononics, Bremen, Germany, 2013.

o 15" International Conference on Modern Information and Electronic Technologies ,,MIET-
2014”, Odessa, Ukraine, 2014.

e DPG Spring Meeting - 2014, Dresden, Germany, 2014.

Publications
Based on the results presented in the Thesis 33 scientific works were published, including 6
articles in ISI journals and 15 abstracts at international conferences. 2 articles and 2 abstracts

were published without coauthors.

Structure of the Thesis

The Thesis consists of Introduction, 4 Chapters and Conclusions. The Thesis contains 200
references, 140 pages, 66 figures and 7 tables.

In Chapter 1 is presented a detailed review of recent theoretical and experimental
investigations of phonon and electron processes in graphene and silicon-based nanostructures.

In Chapter 2 a Born-von Karman model of lattice dynamics for nanolayers and planar
superlattices with diamond crystal lattice is developed. The Boltzmann transport equation
approach is proposed for the investigation of the phonon and thermal processes in Si nanolayers
and Si/Ge planar superlattices. Phonon energy spectra within Born — von Karman model of
lattice dynamics are calculated for silicon nanolayers of different widths. An analytical
expression for phonon thermal conductivity coefficient for nanolayers is obtained from
Boltzmann transport equation in relaxation time approximation. Thermal transport is investigated
in nanometer-wide silicon nanolayers and a good agreement between theoretical calculations and
the experimental data for 20-nm-thick and 30-nm-thick silicon nanolayers is obtained. The major
phonon scattering processes in nanolayers, such as Umklapp and phonon-boundary scattering are
described and their influence on the total thermal conductivity is analyzed. The optical phonons
contribution to total thermal conductivity of silicon nanolayers of different widths and at
different temperatures is elucidated. In case of planar Si/Ge superlattices phonon energy spectra
and average phonon group velocity are calculated and analyzed. The perturbation theory and
second quantization formalism are used in order to model the scattering of phonons on interfaces

in Si/Ge superlattices. The role of interface mass-mixing scattering of phonons in limiting the
14



total phonon lifetime in Si/Ge planar superlattices is established. It is concluded that interface
mass-mixing scattering of phonons can lead to a peculiar behavior of phonon thermal
conductivity of these structures owing to the non-trivial dependence of interface scattering rate
on the amplitudes of the atomic displacements. For a wide temperature range from 50 K to 400
K a good agreement between theoretical and experimental phonon thermal conductivity is
obtained for a Si/Ge planar superlattice when phonon-phonon scattering is not taken into
account, indicating that the interface mass-mixing scattering can be the dominant mechanism of
phonon scattering in real Si/Ge planar superlattices.

In Chapter 3 the effective mass approximation is extended and applied for calculation and
investigation of electron energy spectra and electron wave functions in core/shell Si/SiO;
nanowires with constant and periodically modulated cross-section. The influence of cross-section
modulation on the electron energy spectra and electron wave functions in Si nanowires is
established. An inhomogeneity in the ground state wave function distribution along the wire’s
axis is found. The lattice dynamics Born — von Karman model and the Boltzmann transport
equation are applied for the investigation of phonon and thermal processes in Si nanowires, Si
cross-section modulated nanowires and novel Si/Ge core/shell cross-section modulated
nanowires. The possibility of a significant suppression of the phonon heat flux in Si cross-section
modulated nanowires in comparison with the generic uniform cross-section Si nanowires is
theoretically demonstrated. A strong decrease of the average phonon group velocities together
with a corresponding suppression of the phonon thermal flux is found and the mechanisms
behind this suppression are elucidated. The phonon and thermal properties in novel Si/Ge
core/shell cross-section modulated nanowires are investigated. The combination of cross-section
modulation and acoustic mismatch between Si and Ge materials is proposed as an effective tool
for engineering phonon flux in the one-dimensional modulated heterostructures. A drastic
reduction of the room temperature thermal conductivity in Si/Ge core/shell cross-section
modulated nanowires in comparison with bulk Si is predicted. A detailed explanation of this
effect is presented.

The Chapter 4 is devoted to the investigation of phonon and thermal properties of single-,
two- and three-layer graphene as well as of twisted bilayer graphene structure with different
angles of rotation between the graphene planes. A Born — von Karman model of lattice dynamics
for these structures is developed and phonon energy spectra in all high-symmetry
crystallographic directions are calculated. The comparison between theoretical and experimental
phonon frequencies is presented. The tabulated phonon frequencies for twisted bilayer graphene
for different rotational angles are provided. The Boltzmann transport equation approach is

applied for thermal transport modeling in single- and few-layer graphene. The influence of the
15



rotational angle on the phonon energy spectra, as well as phonon mode-specific contribution to
the thermal transport of single-, two- and three-layer graphene is established. The role of
different phonon scattering processes in limiting the thermal conductivity of single-layer and
non-rotated few-layer graphene is determined. The appearance of a new type of hybrid folded
rotationally-dependent phonon modes in twisted bilayer graphene is theoretically predicted and
the physics behind this phenomenon is elucidated. The temperature dependence of the phonon

heat capacity in twisted bilayer graphene, calculated for the first time, is presented.
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1. PHONON AND ELECTRON PROCESSES IN GRAPHENE AND Si-BASED
NANOSTRUCTURES

1.1.  Electron processes in Si-based nanostructures

The key effect which determines the electronic properties of nanoscale structures is quantum
confinement. When the characteristic dimensions of the material become comparable to the de
Broglie wavelength of the electron wave function the quantum confinement effect manifests
itself in quantization of the electron energy spectrum i.e. appearance of discrete energy levels
and band gaps [1]. Thus, shrinking the geometrical dimensions of structures results in the size-
dependence of their electronic properties, which may deviate substantially from their bulk values
[2]. One of the most important steps in investigation of the electronic properties of
nanostructures is the choice of an appropriate bandstructure model.

The electronic bandstructure calculations are based on the solution of the Schrodinger
equation. One of the most widely used approaches to solve the Schrodinger equation is the
effective mass approach. The general form for the electronic Hamiltonian in the effective mass

approach has the form:

2
N he_0 0 0
H_——[—M (xyz)&JrayM (xyz)@Jra M, (X, yz) ]+V (x,y,2),

where 7 is Planck constant, V, (X,y,z) is potential barrier in (X,y,z) point, M,(X,y,z) is the

inverse electron effective mass along the i axis. Once the Hamiltonian H is constructed the
electron energy states and wave functions are obtained from a numerical solution of a time-

independent Schrodinger equation:
HY =EW,,
where E, and W is electron energy and electron wave function for quantum number n,

respectively. Using the appropriate boundary conditions for a given nanostructure’s geometry

one can obtain the dispersion relation En(IZ) for a set of electron wave vectors k . However, it

should be pointed out that in the effective mass approach the actual atomistic structure of a
material is not taken into account. As a result, the effective mass approach works well only in the
vicinity of conduction band minima and does not ensure a correct calculation of the electronic
bandstructure in the entire BZ of nanostructures.

During the last two decades empirical tight-binding methods have become the primary tool

in obtaining the correct electronic bandstructure of different nanostructures. Properly adjusting
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the parameters of a tight-binding model allows one to correctly reproduce the electronic band
gaps and effective masses in the entire BZ. The original tight-binding method was first proposed
by Slater and Koster and accounted for eight electronic orbitals: one s and three p orbitals with
spin up and spin down polarizations (sp*) [3]. In Ref. [4] the approach was extended to include a
fictitious s-like state s*, which accounted for all other outer orbital interactions and allowed for a
more accurate description of the conduction band in zincblende semiconductors. Recent
developments in tight-binding methods [5-7] include also the excited d orbitals (sp®d°s*) and can
reproduce accurately the complete bulk bandstructure of many crystals.

In particular, it is usually enough to include the interactions between nearest neighbor atoms
only. For example, the nearest neighbor sp*d°s* tight-binding model is composed of orthogonal
orbitals [3, 8] localized on atoms which form the basis set of the electronic structure calculation.
The orbitals are: 1 s orbital, 3 p orbitals, 5 d orbitals and 1 s* orbital. The orbitals on one atom
can interact with orbitals on other neighbor atoms and the resulting wave functions are called the
“two-centered integrals” [3]. Within the semi-empirical tight-binding models these two-centered
integrals are used as fitting parameters [8]. The algorithm for calculating these parameters was
given in Refs. [8-9]. The tight-binding model with properly adjusted parameters allows one to
obtain correct energy dispersions and effective masses at high-symmetry points in the entire BZ
of nanostructure. A detailed methodology of tight-binding implementation in bulk and
nanostructures was provided in Refs. [8, 10].

The most recent developments in electronic bandstructure calculations include ab initio
techniques, such as DFT [11]. The fundamental importance and predictive power of the ab initio
techniques, especially when applied to the novel nanostructured materials, is hard to
overestimate. However, due to a great computational complexity of the DFT calculations, mainly
arising from the many-body interactions problem, its use in studying the electronic properties of
real-size nanostructures is still very limited. Therefore, the specifics of the DFT approach are not
covered in this Thesis; for detailed information on the DFT models one can refer to works [11-
14].

Due to their excellent electronic properties, silicon nanolayers and nanowires currently
constitute the main material base for modern nanoelectronic devices, such as metal-oxide-
semiconductor field-effect transistors (MOSFETS) and fin field-effect transistors (FinFETS) [15-
20]. The characteristic size of the active silicon channels in the state-of-art FETs is 14 nm (as to
2014 year), considering the silicon lattice constant ~ 0.543 nm, they consists of just 100 atomic
layers. At this dimensional scale the quantum confinement of carriers (electrons, phonons, etc.)

is one of the main mechanisms which determine the characteristics of a nanoelectronic device.
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Below are reviewed some of the recent developments in theoretical and experimental studies
on electron-assisted processes in different nanostructures, with central attention paid to the Si-
based one-dimensional and two-dimensional nanoscale materials.

In Ref. [21] the authors have studied the effect of confinement dimensions and crystallinity
on the magnitude of the band gap expansion (as a function of decreasing size) in Si and Ge
nanolayers, nanowires and quantum dots. Models with medium and strong confinement provided
the best fit to experimental results. In Figures 1.1 and 1.2 it is presented the experimental and
theoretical electronic energy gap in disordered and crystalline silicon nanolayers as a function of

layer thickness.
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Fig. 1.1. The dependence of energy gap on layer thickness in disordered Si nanolayers. The dots,
triangles and squares represent experimental data, while lines denote theoretical calculations
from Ref. [21].

[2+]

in
T

-

Expt. VBM shift
Expt. CBM shift
Expt. CBM+VEM

Energy Gap (2V)

=
Lh

0.5

o8 - O

Expt. PL

110 Stromg oo
1D: Medium - CBM shift
11: WBM shift ———

EEU]H/ED/_'

o oo

0.3

1 1.5
Si1 Layer Thickness (nm)

19

2.5



Fig. 1.2. The dependence of energy gap on layer thickness in crystalline Si nanolayers. The dots,
triangles and squares represent experimental data, while lines denote theoretical calculations
from Ref. [21].

It was concluded that crystalline materials exhibit medium confinement, while amorphous
materials exhibit strong confinement regardless of the confinement dimensions of the system.

In Ref. [22] the authors have used methods derived from first-principles to examine the
effect of different surface preparation, namely, passivation of silicon surface bonds by -H, -OH
and -NH,, on the band gap of silicon nanowires with varying diameters. For both [100] and [110]
oriented nanowires they found that the band gap narrows with increased wire diameter to the
bulk value for large diameters. However, surface termination by -OH and -NH; introduces a
hybridization effect that competes with quantum confinement at smaller diameters, inducing a
large relative red shift to the band gap by up to 1 eV for small diameter wires. In Figure 1.3 is
plotted the calculated band gap Eg for nanowires with different surface terminations as the

diameter of the silicon core changes.
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Fig. 1.3. The calculated within an ab initio approach electronic band gap as a function of the
[100] silicon nanowire diameter for various surface terminations. The figure is taken from Ref.
[22].

The origin of the reduced band gap was related to the interaction between the Si 3p and O/N 2p
states in the valence band edge of the nanowire. The obtained results allow for a simple
electronic structure engineering of nanometer scale silicon wires via surface treatment.

In the recent publication [23] the authors settled a general expression for the Hamiltonian of

the electron-phonon deformation potential interaction in case of a novel nanosystem — non-polar
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core-shell cylindrical nanowire. On the basis of long range phenomenological continuum model
for the optical phonon modes and by taking into account the bulk phonon dispersions, they
studied the size dependence and strain-induced shift of the electron-phonon coupling strengths
for Ge-Si and Si-Ge core-shell nanowires. The deformation potential electron-phonon
Hamiltonian was derived analytically and some numerical results for the frequency core modes
and vibrational amplitudes were reported. The developed approach allows for the unambiguous
identification of the strain and confinement effects in non-polar core-shell nanowires. The
obtained results contribute to the characterization and device applications of the novel core-shell
nanowires.

In Ref. [24] the authors reported on fabrication and characterization of ultra-thin suspended
single crystalline flat silicon layers with thickness down to 6 nm. They have developed a method
to control the strain in the nanolayers by adding a strain compensating frame on the silicon
nanolayer perimeter to avoid buckling of the released layers. The magnitude of the strain was
related to the strain compensation ratio as R.=w./Wp,, where wy, is the width of the bare Si part of
the nanolayer and w is the width of the area of the released layer covered with the compensating
layer (SisN4). To illustrate the effect of the compensation ratio R; and the thickness of the
nanolayer on the induced strain, LO phonon peaks measured from sets of 54 and 6 nm thick
layers with various R of 0.8, 1.2 and 3.5, together with a reference Si LO peak are shown in Fig.
14.
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Fig. 1.4. LO peaks measured by Raman scattering from 6 and 54 nm thick free-standing Si
nanolayers with the strain compensation ratio R of 0.8, 1.2 and 3.5. The figure is taken from
Ref. [24].
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It was shown that by changing the properties of the frame the strain in the silicon nanolayer can
be tuned in a controlled manner. The authors argued that both the mechanical properties and the
electronic band structure can be engineered and the resulting strain-engineered nanolayers
provide a unique laboratory to study low-dimensional electronic, photonic and phononic
phenomena.

In Ref. [25] by Boykin T. et.al. the theory, based on empirical tight-binding approach, was
developed to describe the valley splitting observed in silicon nanolayers with strain. The valley
splitting was computed for realistic devices proposed for quantum computing. It was shown, that
the splitting is in general nonzero even in the absence of electric field. The splitting in a square
well oscillated as a function of the number of atomic layers in the silicon nanolayer, with a
period that was determined by the location of the valley minimum in the BZ.

One of the hottest topics of today’s solid state physics is related with investigation of
electronic and other properties of carbon materials, such as carbon nanotubes, single- and few-
layer graphene, graphene nanoribbons, etc. Owing to some of their unique properties, carbon
nanomaterials are considered one of the most perspective candidates for future high-tech
nanoelectronic applications. In this context, the reports on the unusual properties of novel
nanostructures made from conventional semiconductor materials, which could extend the
applicability of the current well elaborated semiconductor technologies, are of a particular
interest. One of the recent such results were presented in Ref. [26] by Perim E. et.al. In their
work the authors reported on theoretical discovery of novel silicon and germanium tubular
nanostructures with no corresponding stable carbon analogues. The electronic and mechanical
properties of these new tubes were investigated through ab initio methods. Their results showed
that the novel tubular structures have lower crystal energy than their corresponding nanoribbon
counterparts and are stable up to high temperatures. Silicon tubes were stable at temperatures as
high as 500 K, while germanium ones reached temperatures as high as 1000 K. Both tubes were
semiconducting with small indirect band gaps, which could be significantly altered by both
compressive and tensile strains. Large bandgap variations of almost 50% were observed for
strain rates as small as 3%, suggesting possible applications in a variety of technological devices.

The possibility to incorporate both electronic and optical functionality in a single material
offers the tantalizing prospect of amplifying, modulating and detecting light within a monolithic
platform. One of the major difficulties, which limit the application of silicon nanostructures in
modern photonics, is their transparency at telecommunication wavelengths. A particularly
interesting result in this direction was reported in Ref. [27] by Healy N. et.al. The authors made

an important step toward the realization of the described monolithic devices. They developed a
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laser processing technique for silicon fibre technology through which one can modify the
electronic band structure of the semiconductor material as it is crystallized. The unique fiber
geometry in which the silicon core is confined within a silica cladding allowed large anisotropic
stresses to be set into the crystalline material so that the size of the bandgap could be engineered.
The stresses cause an anisotropic distortion of the crystal lattice which acts to reduce its
electronic bandgap energy, as illustrated in Figure 1.5 below. An extreme bandgap reduction
from 1.11 eV down to 0.59 eV, enabling optical detection out to 2100 nm, was demonstrated.
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Fig. 1.5. Simulations of the bandgap as a function of strain — hydrostatic and in-plane across

three main crystallographic planes. The figure is taken from Ref. [27].

Authors concluded, that the obtained results could inspire a new generation of mass-producible,
fully functional, monolithic electron-photonics devices that are compatible with current

semiconductor technology.

1.2.  Theoretical models for phonons in nanostructures

The concept of a phonon and its properties were first introduced by P. Debye [28] in 1912. A
phonon is defined as a quantum of vibrational energy within a crystal structure. A phonon (or

phonon mode) is considered a quasi-particle with energy %wo,, quasi-momentum 7% and

vibrational polarization s. The set of phonon modes with the same polarization forms the phonon
branch, and thus the index s is also considered as a phonon branch index. The phonon
polarization is characterized by the relation between the direction of atomic vibrational motion
and wave propagation. The most common examples of polarizations are: longitudinal, where

atoms oscillate in the direction of wave propagation, and transverse, where atoms oscillate
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perpendicular to the direction of propagation. The maximum possible number of branches in a
crystal equals to the number of atoms per unit cell multiplied by the number of degrees of
freedom per one atom (normally three). The relation between phonon’s frequency and its wave

vector is called phonon dispersion: «,(d) and it is a fundamental relation of lattice dynamics

theory. The phonon branches are divided into two categories: acoustic and optical. Acoustic

branches are defined by the linear dispersion law near the BZ center: o,(q — 0) ~q with atoms

within each unit cell vibrating in-phase while optical branches are defined by the relation

,(q=0) = 0, with atoms within each unit cell moving out-of-phase. However, in nanostructures

due to the confinement effect the atomic vibrations are quantized and there appear a large
number of mixed modes, which have the vibrational behavior of both acoustic and optical nature.

During the last century there were developed several models to describe the lattice dynamics
(phonons) in bulk and nanostructured crystalline materials. These models vary greatly in
complexity from simple continuum approaches to detailed ab initio techniques. Each of these
models has their advantages and disadvantages, and their field of application can also differ.
Below, the current achievements in the theory of phonons in nanostructures are reviewed. The
basic concepts of the elastic continuum and force-constant models are provided.

The basics of lattice dynamics were founded in 1912 by P. Debye [28] and independently by
M. Born and Th. von Karman [29]. A systematic lattice dynamics theory was presented three
years later by M. Born in his book “Dynamics of Crystal Lattices” (in German) [30]. Debye
introduced the definition of ‘phonon’ and proposed a simple model known as the elastic isotropic
continuum model. The basic idea of the continuum model is that the atomic crystal structure is
disregarded and crystal is treated as a continuous elastic medium. The application of continuum
models in describing acoustic and optical phonon phenomena in nanostructures has been
reviewed in 2001 by Stroscio and Dutta [31]. A good application of the elastic continuum model
provides the case of acoustic phonon modes propagating in a nanowire. The equation of motion
for elastic vibrations in an anisotropic medium can be written as:

d?U, (x,) _ do;
dt? dx.

where U =(U,,U,,U,) is the displacement vector, p is the mass density of the material, o,; is

oY, +% is the strain tensor. The
OX;  O%,

the elastic stress tensor given by o,; =c

U, and U, :%(

nanowire has two distinctively different symmetry planes and four possible types of the

propagating phonon waves, which are the solutions of the equation of motion. These solutions
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are usually denoted as [32]: Dilatational: u;®(x,y);us*(x,y);u;°(x,y) —>u’, Flexural:
U (%, Y);us (6 V)i Uz (x, y) —>u, Flexuralz:  uf(x, y);us® (X, y);us* (%, y) > U, Shear:
U (X, Y);up® (X, y);uh(x, y) = U . Here SA and AS show mode parity relative to the change of

sign,  f(xy)=f(=xy)=fx=y) > F2(xy), fxy)=—f(=xy)=—f(x,-y) > T (xy),
etc. In Figure 1.6 is presented the phonon dispersion for the Dilatational polarization in the GaN
nanowire with 4 nm x 6 nm cross-section. The figure is taken from Ref. [32]. The free boundary

conditions are applied at the nanowire’s boundary.

Phonon Energy (meV)

Fig. 1.6. Phonon dispersion in free-standing GaN nanowire.

One can see from Figure 1.6 that phonon spectrum of nanowire is quantized, i.e. there exist
a large number of discrete energy branches with different dispersions. Also, there is only one
acoustic branch in Dilatational polarization and the rest of the branches are acoustic-like with

w(q=0)=0, which is a direct result of phonon confinement. At the same time, there is a

considerable disadvantage of the elastic continuum treatment, namely, the phonon branches at
the BZ edge at high q (short wave lengths) posses a considerable dispersion, i.e. large group
velocity, which is in contradiction with more accurate atomistic models of lattice dynamics (see
for example Ref. [33]), predicting group velocities close to 0.

As the device size approaches the nanometer scale a continuum material description is no
longer accurate. Lattice dynamics models, which account for discrete atomistic structure of the
crystal, should be used instead. There are two main atomistic approaches in modeling the lattice
dynamics of crystal lattice, these are phenomenological force-constant models and ab initio
models. The ab initio models were first developed in the 1970’s. However, ab initio lattice
dynamics calculations in nanostructures have only recently become feasible, due to the many-
body interactions problem and due to the lack of translation symmetry in one or more directions
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which introduces difficulties in modeling the periodic potentials of the crystal structure.
Calculation of the phonon dispersion relations for nanostructures with a thousand of atoms or
more is nearly impossible within ab initio techniques with current computational resources. This
has led to the use of phenomenological force-constant models for phonons in nanostructures.
These were first developed a century ago [34] and have been continuously improved and adapted
for different materials and structures. In the phenomenological force-constant models the
interatomic force constants are treated as fitting parameters, which should be adjusted in order to
reproduce the experimentally verified phonon spectra of a bulk material. A classic lattice
dynamics force-constant model called “Born — von Karman model” was developed in 1954 [35].

In BvK model the total potential energy of the crystal lattice is given in the harmonic
approximation as:

V=2 3 33 o nu (n)u ().

2 i,j=X,y,z 5,8 ng,ng
where i,j numerate Cartesian coordinate components, s,s~ numerate neighbor atomic spheres of
interacting atoms n and =’ correspondingly, u is a small atomic displacement from equilibrium
position and @ is the force constant matrix. The components of the force constant matrix are
interatomic force constants; they are fitted to the experimental phonon frequencies of bulk
material and then can be used in modeling the lattice dynamics of nanostructures. The main
advantage of the BvK model is its simplicity and relatively modest calculation resources
required, when one goes from bulk materials to nanoscale structures. The BvK model was
successfully applied in phononic investigations in different nanomaterials: nanolayers,
nanowires, superlattices, graphene, etc. [36-38].

Other phenomenological models of lattice dynamics include VFF model [39] and adiabatic
bond charge model [40]. In the VFF approach the internal energy of the crystal is expressed in
terms of the position of the atoms, the bond lengths between the atoms and the angles between
these bonds. Thus all interatomic interactions are seen in terms of bond-stretching and bond-
bending forces. In the adiabatic bond charge model the atom is considered a non-polarizable ion
core with a shell of valence electrons. The valence charge density is considered as point charges,
called bond charges. These two models are generally more complex than the simple BvK model
and as a result are harder to modify for low-dimensional structures and require more
computational time. Nevertheless, they are considered as an improvement in terms of accuracy
of the phonon dispersion relations and in gaining the physical insight into the interatomic
interactions in crystals. Both, VFF and adiabatic bond charge models were applied in studying

the phonons in different nanostructures [41-42].
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In this context, an important direction in lattice dynamics theory of nanostructures is the
development of approaches which link the classical force constant models with models based on
the interatomic potentials. In Refs. [43-44] | derived simple analytical expressions for the
components of force-constant matrices expressed through the parameters of Stillinger-Weber and
Keating interatomic potentials [45], which can extend the applicability of the current force

constant models for investigation of lattice dynamics of different nanomaterials.

1.3.  Phonon processes in Si-based nanostructures and graphene

Phonons manifest themselves in all properties of materials: phonons limit electrical
conductivity; optical phonons strongly influence optical response, while acoustic phonons carry
heat in insulators and semiconductors. Long-wavelength phonons give rise to sound in solids.
Spatial confinement of phonons in nanostructures can strongly affect the phonon spectrum and
modify phonon properties such as phonon group velocity, polarization, density of states and
electron - phonon interaction [46-48]. Thus, nanostructures offer a new way of controlling
phonon transport and electron - phonon interaction via tuning phonon dispersion relation, i.e.
phonon engineering. The idea of engineering phonon dispersion in nanostructures has the
potential to be as powerful as the idea of the band-gap engineering for electrons, which is now
utilized in a variety of devices. The original phonon engineering concept was first formulated by
A. Balandin in 2000 [49].

A topic of special interest in recent years has been thermal transport in nanostructures [50-
52]. When the characteristic dimensions of nanostructures such as the diameter of a nanowire or
thickness of a nanolayer approach phonon mean free paths, the thermal conductivity can be
substantially smaller than the bulk value due to the phonon scattering on sample boundaries.
Significant thermal conductivity reductions have been observed in a number of nanoscale
systems, including nanowires [53-55], nanotubes [56] and nanolayers [57], and have been widely
adopted in thermoelectrics applications [58-60]. Below are reviewed some selected advances of
the last decade in studying the phonons and thermal transport in nanostructures. A special
attention was paid to the Si-based one-dimensional and two-dimensional nanostructures and
graphene.

In Ref. [61] authors have investigated the thickness dependence of the thermal conductivity
in ultra-thin free-standing Si nanolayers of high crystalline quality using Raman thermometry.
The power absorption coefficient of the membranes was determined experimentally and
theoretically calculated. It was found that the thermal conductivity of the layers systematically

reduces as their thickness decreases. This was successfully modeled considering the shortening
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of the phonon mean free path due to the diffuse scattering at the boundaries. The thermal
conductivity of the thinnest nanolayer with thickness d = 9 nm resulted in (9 + 2) Wm™ K™,
which approaches the amorphous limit (~0.01 Wm™K™) while still maintaining a high crystalline
quality. The authors argued that the obtained results open new possibilities for building
thermoelectric modules based on suspended two-dimensional systems.

In Ref. [62] were presented experimental measurements and theoretical calculations of the
relaxation times of confined phonons in ultra-thin silicon layers. In Figure 1.7 are presented
phonon lifetimes in free-standing silicon layers as a function of phonon frequency. The thick
dashed lines show the contributions to the finite phonon lifetime from three-phonon interactions

73ph and boundary scattering =m. The total contribution, calculated using Matthiessen’s rule

o =1, + 17, , is shown by the thick solid line. Other models are: intrinsic scattering processes

(grey dotted line: Herring [63], grey dashed line: Akhiezer [63]) and extrinsic scattering

processes (dot-dashed grey lines: with specularity parameter p=0 and p=0.95).
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Fig. 1.7. Phonon lifetime of the dilatational mode in free-standing silicon layers as a function of
frequency. Experimental data of free-standing silicon nanolayers with thickness values ranging
from 222 to 8 nm (circles [62], squares [64],) and bulk silicon (triangles [63]). The figure is
taken from Ref. [62].

The relaxation times of the ultra-thin layers were found to be dominated by boundary
roughness scattering. In the case of thicker nanolayers, phonon-phonon interactions were
predicted to be the dominant scattering processes. The obtained results are important for

nanomechanical resonator and thermal transport applications.
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In Ref. [65] authors have provided a methodology for predicting phononic gaps in thin
semiconductor superlattices. They have shown that several different choices of ultra-thin
superlattices possess one-dimensional phononic gaps and that the greater the difference between
each layer’s vibrational properties the greater is the size of the gaps. The Si/Gen [001] and
GaAs,/AlAsy, [001] superlattices manifested themselves as one-dimensional phononic crystals —
artificial periodic structures with controllable phonon properties, with similar results expected
for other semiconducting superlattices. It was shown that the gap positions in both these
structures vary inversely with the superlattice period. Also, it was presented a method for
predicting gap locations in thicker structures once these have been found in thin structures.
Quantitative predictions have been made for the positions of the LA and TA gaps with the Ge
length fraction L; in Si/Ge superlattices for the period given by n+m=20, and for GaAs/AlAs
structures with differing periods and L=0.5. It has been shown that the technique can be applied
to any superlattice. Furthermore, an empirical formula has been provided for the location of a
one-dimensional phononic gap in Si/Ge [001] superlattices for different length fractions and
periods:

Voa =(—0.563L, +1.406)%,

where v ., is the frequency in terahertz of the center of the gap, L is the superlattice period in

nanometers and L =5.54 nm. It was pointed out that such a relation could be easily found for
other superlattices. Moreover, authors have found that the introduction of mass defects has the
greatest effect for the high acoustic range in shifting frequencies, but does not close any pre-
existing phononic gaps. The results could be useful to both experimentalists and theorists in
understanding vibrational and thermal properties of semiconductor superlattices.

In Ref. [66] authors reported on the experimental observation of coherent heat conduction
through the use of finite-thickness superlattices with varying number of periods. The measured
thermal conductivity increased linearly with increasing total superlattice thickness over a

temperature range from 30 to 150 K (see Figure 1.8 below).
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Fig. 1.8. Measured thermal conductivity of GaAs/AlAs superlattices as a function of the number

of periods for different temperatures. The figure is taken from Ref. [66].

The performed experimental and theoretical studies showed that most of the phonons that
contributed to the measured thermal conductivity in superlattices traversed the structures
ballistically and hence were coherent. Interface roughness was effective in destroying the
coherence of high-frequency phonons but not effective in scattering low-frequency phonons. The
large reduction in thermal conductivity resulted from the loss of coherence of high-frequency
phonons, but the lower-frequency phonons that contribute to the thermal conductivity were
mostly coherent during their transport through the superlattice structures until they were
scattered at the sample’s external boundaries.

In Ref. [67] partial coherent treatment of phonons, where phonons are regarded as either
wave or particles depending on their frequencies, was considered. Phonons with mean free path
smaller than the characteristic size of phononic crystals were treated as particles and the
transport in this regime was modeled by Boltzmann transport equation with phonon boundary
scattering taken into account. Phonons with mean free path longer than the characteristic size
were treated as waves. In this regime, phonon dispersion relations were computed and it was
found that they are modified due to the zone folding effect. The folded phonon spectra were then
used to compute phonon group velocity and density of states for thermal conductivity modeling.
The presented partial coherent model agreed well with the existent experimental results on in-
plane thermal conductivity of phononic crystals and highlighted the importance of zone folding
effect on thermal transport in phononic crystals.

In Ref. [68] authors presented atomistic VFF calculations of thermal transport in Si
nanowires of diameters from 12 nm down to 1 nm. It was shown that as the diameter is reduced,
the phonon density of states and transmission function acquire a finite value at low frequency, in

contrast to approaching zero as in the bulk material. This effect is also known as the “problem of
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long longitudinal waves”, which states that the thermal conductivity of a material increases as its
length is increased due to the vanishing scattering for long wavelength phonons. The authors of
Ref. [68] demonstrated that this thermal transport improvement also appears in nanowires as
their diameter is decreased below d=5nm (not only as the length increases) originating from the
increase in the density of states of the short wavelength phonon modes. The observation was
present under ballistic transport conditions, and further enhanced with the introduction of
phonon-phonon scattering. Because of this, in such ultra-narrow nanowires, as the diameter is
reduced, phonon transport is dominated more and more by lower energy phonons with longer
mean free paths. It was concluded, that almost 80% of the heat is carried by phonons with
energies less than 5 meV, most with mean free paths of several hundreds of nanometers.

In Ref. [69] was presented a kinetic model to investigate the anomalous thermal
conductivity in silicon nanowires by focusing on the mechanism of phonon-boundary scattering.
The developed theoretical model took into account the anharmonic phonon-phonon scattering
and the angle-dependent phonon scattering from the nanowire surface. For silicon nanowires
with diameter of ~27 nm, it was found that in the case of specular reflection at lateral boundaries,
the thermal conductivity increases as the length increases, even when the length is up to 10 mm,
which is considerably longer than the phonon mean free path. Thus the phonon-phonon
scattering alone was not sufficient for obtaining a normal diffusion in nanowires. However, in
the case of purely diffuse reflection at lateral boundaries, the phonons diffused normally and the
thermal conductivity converged to a constant when the length of the nanowire was greater than

100 nm. See Figure 1.9 for schematics of phonon scattering processes in nanowires.
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Fig. 1.9. Schematic illustration of phonon scattering in nanowires. The figure is taken from Ref.

[69].

These results demonstrate that for observing the length dependence of thermal conductivity
experimentally, nanowires with smooth and non-contaminated surfaces, and measuring at
low temperature, are preferred.

31



Another interesting way in controlling the phonon and thermal properties of nanostructured
materials was recently demonstrated using thermocrystals — periodic structures made of alloys
containing nanoparticles [70]. In thermocrystals the heat flow can be managed like sound waves
[70]. The basic idea is to manipulate the heat frequency spectrum such that low-frequency
phonons carry a considerable part of the heat. In this manner, heat-carrying phonons are subject
to coherent reflection and transmission at interfaces, and thus many applications designed for
sound management can be applied to heat flow. In thermocrystals [70], high-frequency phonons
are blocked by including alloy atoms and nanoparticles (with diameters d ~ 1 nm). The alloy
atoms and nanoparticles scatter a wide range of high-frequency phonons. Because high-
frequency phonons are severely restricted from carrying heat, the proportion of heat carried by
low-frequency phonons increases. To concentrate heat around a specific frequency range the
contribution of very low-frequency phonons is also reduced by considering a thin-film material
with rough surfaces. As a result of blocking the highest and lowest frequencies, most heat is thus
concentrated to a relatively narrow low-frequency band. Specifically, for a SigoGejo alloy with a
10% filling fraction of d ~ 1 nm Ge nanoparticles, the frequency band is 0.1 THz < f < 2 THz,
with up to 40% of the heat restricted to a narrow ‘hypersonic’ 100-300 GHz range [71]. This
matching of the heat frequency spectrum and of the phononic band gaps demonstrates that
thermal phonons can be managed through coherent interference effects. Thermocrystals lay the
foundation for various applications such as heat waveguides, thermal lattices, heat imaging,
thermo-optics, thermal diodes and thermal cloaking [71].

An intriguing example of phonon engineering approach is phonon thermal rectification.
Thermal rectification refers to a phenomenon predicted for materials systems where thermal
conduction in one direction is different from that in the opposite direction [72-75]. Controlling
phonon transport by the structure asymmetry, lattice nonlinearity or heterostructuring opens up
possibilities, such as a practical realization of the thermal diode. Such a device acts as a thermal
conductor if a positive thermal bias is applied, while in the opposite case of a negative thermal
bias it exhibits poor thermal conduction, thus effectively acting as a thermal insulator. The
proposed applications of the thermal rectifier vary from thermal management [73] to information
processing [76]. One can distinguish several physical mechanisms leading to thermal
rectifications and the corresponding material systems where they can be realized [73, 77-81].
The first type is related to non-linear lattices with strong anharmonicity [75] or asymmetric mass
or defect distributions [72, 80]. There have been a number of theoretical predictions of thermal
rectifications in such systems [73-74], while there is a lack in experimental data. The second type
of thermal rectification is more straightforward and feasible for practical applications. It is

pertinent to the asymmetric structures operating in the ballistic or nearly-ballistic phonon
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transport regime where the acoustic phonon scattering from the boundaries is significant [78]. By
modifying the geometry of the structure, introducing asymmetric edges or defects, one can make
the phonon-boundary scattering stronger in one direction than in the opposite [78-79]. Another
type of the thermal rectification is the use of heterostructures with special focus on interface
thermal resistance. Because phonons are strongly scattered due to the mismatch in vibrational
properties of the materials forming the interface, which in addition depends on the sign of the
applied thermal bias, this produces an asymmetric interface thermal resistance. In Ref. [82] an
amorphous silicon - polyethylene thermal rectifier was designed, in which the heat current from
the polymer to the silicon was larger than vice versa. To examine the origin of this thermal
rectification, the density of states of phonons on each side of the interface was investigated. It
was shown, that the phonon density of states significantly softens in the polymer as it becomes
warmer. This increases the density of states in the polymer at low frequencies. Thus the
transmission probability of those low-frequency acoustic modes in silicon increases, yielding an
enhanced thermal transport. The design and the experimental realization of the thermal diode
present a striking step toward the practical elaboration of a thermal transistor [83], which allows
for an a priori control of heat flow similar to the control of charge flow in a field-effect
transistor. Similar to its electronic counterpart, a thermal transistor would consist of three
terminals: the drain, the source, and the gate. When one applies a constant temperature bias
between the drain and the source, the thermal current flowing between the source and the drain
could be fine-tuned by the temperature that is applied to the gate.

Intense interests for phonon engineering represent carbon nanomaterials. Among them,
graphene is seen as one of the most perspective candidates for future nanoelectronic and
nanophononic applications. Graphene is a two-dimensional material, formed of a lattice of
hexagonally arranged carbon atoms. Graphene has generated huge interest since it was first
obtained in 2004 [84-85]. Phonons are the main heat carriers in carbon materials including
graphene. The first measurements of thermal conductivity of suspended graphene were carried
out in 2008 [86-87] and revealed extraordinary high values at RT in the range of 2000 — 5000 W
m™? K™, depending on sample size and quality. The experimental observation was explained
theoretically by the specifics of the 2D phonon transport [88-90]. It was concluded, that the low-
energy acoustic phonons in graphene make a substantial contribution to the heat conduction due
to their extraordinary large mean free paths and weak anharmonic scattering [87]. The large
values of thermal conductivity make graphene an excellent candidate for heat removal
applications. The thermal transport in 2D graphene can be tuned more readily than in the
corresponding bulk 3D graphite [91-92]. However, it should be pointed out that the thermal

conductivity of the supported graphene is lower than that of suspended and constitutes ~ 600 W
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m™ K™ for graphene on SiO./Si substrate near RT [93], due to the strong phonon-interface and
phonon-disorder scatterings [94]. Nevertheless, it is still rather high, exceeding considerably the
thermal conductivity of bulk Si (148 W m™ K™) and Cu (400 W m™ K™).

It is interesting to examine the evolution of the thermal properties of few-layer graphene
with increasing thickness (number of atomic planes, n). One has to clearly distinguish two cases:
thermal transport limited by (i) intrinsic properties of the few-layer graphene lattice, that is,
crystal anharmonicity; and (ii) extrinsic effects, for example, by phonon-boundary or defect
scattering. The optothermal Raman study [95] found that thermal conductivity of suspended few-
layer graphene decreases with increasing n, approaching the bulk graphite limit (see Figure
1.10). This evolution of thermal conductivity was explained by considering the intrinsic quasi-
2D crystal properties described by the phonon Umklapp scattering [95]. As number of
monolayers n increases, the phonon dispersion changes and more phase-space states become

available for phonon scattering leading to a decrease in thermal conductivity.
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Fig. 1.10. Measured and calculated thermal conductivity of suspended few-layer graphene as a
function of number of monolayers n. The figure is taken from Ref. [95].

The phonon scattering from the top and bottom boundaries in suspended few-layer graphene is
limited if constant n is maintained over the layer length. The small thickness (n < 4) also means
that phonons do not have a transverse component in their group velocity, leading to even weaker
phonon-boundary scattering rate from the top and bottom boundaries. In few-layer graphene
films with n > 4 the boundary scattering can increase, because transverse group velocity is non-
zero and it is harder to maintain constant n through the whole area of a graphene flake, resulting

in thermal conductivity below the graphite limit. The graphite value recovers for thicker films.
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An intriguing open question in the theory of phonon transport in graphene is the relative
contribution to heat conduction by LA, TA and ZA phonon polarizations (see Figure 1.11 below

for phonon dispersion in graphene [38]).
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Fig. 1.11. Phonon dispersion in graphene along I'-K direction.

There have been opposite views expressed as to the importance of ZA phonons, from negligible
[91-92, 96] to dominant [90, 93, 97-98]. The argument against ZA contributions originates from
the fact that ZA modes have large Gruneisen parameters [92-93] - which defines the scattering
strength - and zero group velocity near the zone centre, resulting in a negligible contribution to
heat transport [91-92, 96]. The argument for the strong contributions of ZA modes is made on
the basis of a selection rule in ideal graphene, which restricts the phase space for phonon-phonon
scattering, and increases the lifetime of ZA modes [90]. However, graphene placement on any
substrates and the presence of nanoscale corrugations in the graphene lattice can break the
symmetry selection rule, which restricts ZA phonon scattering. It is also possible that ZA
dispersion undergoes modification, for example, linearization, owing to the substrate coupling.

In Ref. [99] authors have performed molecular dynamics simulations with phonon spectral
analysis to predict the mode-dependent phonon relaxation times of suspended and supported
graphene at RT. The per-branch phonon relaxation times for both suspended and supported
single-layer graphene at 304 K as a function of phonon frequency are shown in Figure 1.12. It
was concluded that the majority of LO and TO phonons were found to have relaxation times
about 1-4 ps at RT and reduced by about half when put on substrate, which is consistent with the
optical phonon relaxation times of supported few-layer graphene measured by Raman

spectroscopy [100-102].
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As can be seen from Figure 1.12 in case of low frequency phonons a considerable suppression of
their relaxation times was observed. For frequency below 18 THz, the relaxation times values
monotonically decreased as frequency continuously reduced to zero, indicating the substrate
couples most efficiently to low frequency acoustic phonons. Authors argued that one of the most
significant implications of such observation is that the thermal conductivity of supported
graphene will not be sensitive to graphene flake size. This is because long wavelength near-zone-
center phonons in larger samples would have minimal relaxation times due to substrate scattering
and thus would barely contribute to thermal transport. The relaxation time reduction was found
to be especially strong for ZA modes. This was due to the fact that the presence of the substrate
breaks various symmetries (mirror-reflection, translational, etc.) in single-layer graphene and
alters the out-of-plane vibrations by introducing graphene-substrate scattering which largely
shortens the relaxation time of ZA phonons. In this case, higher-order anharmonic interactions
would be no longer important. As a proof of their findings, authors referred to a Brillouin
scattering experiment on multilayer graphene supported on SiO,/Si substrate [103], which
suggested that the relaxation times of long wavelength LA/TA phonons are about 10-30 ps,
which is shorter than that of suspended graphene, thus in line with the presented conclusions.

In Ref. [104] ab initio density functional theory approach was used to calculate the lattice
vibration, phonon dispersion and density of states of graphene under uniaxial strain along the
zigzag direction. Zigzag and armchair are two typical configurations of graphene along the
directions perpendicular or parallel to C-C bonds, respectively. The crystal symmetry and
reciprocal lattice were changed under strain, depending on the strain direction. For the ideal

graphene, G, M, and K high-symmetry crystallographic points were selected to calculate the
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phonon dispersion, while G, N, and M points were for the strain along the zigzag direction. The
strain was exerted by changing the lattice constant along a given direction and relaxing the atom
position in the perpendicular direction. The convergence of the total energy was chosen as 10™
eV, and structure optimization was performed until the force acting on each atom was less than
0.01 eV/nm. Supercells with periodic boundary conditions in all directions were utilized to

calculate the phonon dispersion curves and density of states of graphene with or without uniaxial

strain.
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Fig. 1.13. Phonon dispersion curves of graphene under uniaxial strain of (a) 0%, (b) 8%, (c)
16%, and (d) 23% along the zigzag direction, and (e), (f), (g), and (h) present corresponding total
density of states. The figure is taken from Ref. [104].

Figures 1.13(a) and 1.13(e) display the phonon dispersion curves and density of states of ideal
graphene without strain, respectively. Figures 1.13(b)-1.13(d) depict the phonon dispersion
curves of graphene under uniaxial strain of 8%, 16%, and 23% along the zigzag direction; the
corresponding phonon density of states is shown in Figures 1.13(f)-1.13(h). Authors noted that
the two degenerate optical branches split near the G points due to the reduced crystal symmetry
in the presence of lattice strain and that this split becomes more evident at a larger strain. This
resulted in a frequency gap of about 10 THz near 35 THz at a strain of about 16%, as was
demonstrated in Figures 1.13(c) and 1.13(g). It was concluded, that the phonon modes in this
frequency region were forbidden, similar to the band gap in electronic crystals and photonic
crystals. This could be utilized in the applications such as thermal rectifiers, thermal transistors,

and thermal memories [105]. When the strain increased up to 23%, imaginary frequencies
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appeared near the G points as indicated by the red arrows in Figures 1.13(d) and 1.13(h). The
structure became unstable and the phonon modes were softened. Similar results were obtained
when the strain was along the armchair direction, but the instability appeared at 20% strain.
Finally, the important questions are related to the identification of stacking configuration
and how the interlayer coupling strength changes for different stacking arrangements and
number of layers in few-layer graphene, since its electronic and phononic properties are found to
be depended on the number of layers as well as the rotational angle between the interacting
sheets of graphene (also known as twisted graphene) [38, 106-109]. Recently, it was reported on
the observation of low-frequency shear phonon modes in few-layer graphene [110]. Shear modes
involve the relative motion of atoms in adjacent graphene planes and provide a direct
measurement of the interlayer coupling. The authors of Ref. [110] performed polarized Raman

measurements and found a pronounced peak at low-frequency which they denoted as C-peak.

=0T

ntemsity

Raman shift {cm™}

Fig. 1.14. Raman spectra for the C-peak spectral region.

Figure 1.14 plots the Raman spectra for few-layer graphene with increasing thickness. It is seen
that position of the C-peak shifts to higher frequencies from two-layer graphene to bulk graphite.
Considering a simple linear-chain model and assuming that a layer interacts strongly only with
adjacent layers, the analytical expression for C-peak position was obtained:

Pos(C),, :—\leﬂ'c \/% /l+ cos(%},

where N is the number of graphene layers, x is the mass per unit area in a graphene sheet, c is

the speed of light and « is the interlayer coupling strength. From fitting to the experimental data
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it was found that « =12.8x10'® N m™. The authors concluded, that the hardening of the C mode
when going from bilayer graphene to bulk graphite is not due to a variation of interlayer
coupling, but rather to an increase of the overall restoring force i.e. surface layers are less bound
in few-layer than in the bulk.

Concluding, one can state that the strong dependence of phonon processes on stacking
arrangements and interlayer coupling make few-layer graphene an ideal material for phonon

engineering.

1.4.  Conclusions to chapter 1 and objectives of the Thesis.

The presented highlight on recent theoretical and experimental investigations of electron and
phonon processes in graphene and silicon-based nanostructures demonstrate a huge interest from
both scientific and engineering community in further developments of nanoelectronic and
nanophononic materials and applications. Successful realization of these plans requires the
detailed investigation of electron and phonon processes in one-dimensional and two-dimensional
nanostructures, as well as determination of novel nanoscale geometries and materials with high
electron and phonon engineering abilities. It constitutes the main scientific problem and the goal
of this Thesis.

In order to achieve this goal, the following objectives are formulated:

e Determination of novel one-dimensional and two-dimensional nanostructures with
specific geometrical and material parameters, as perspective candidates for electron and
phonon engineering.

e Development of theoretical models to describe phonon and electron states in novel one-
dimensional and two-dimensional nanostructures.

e Investigation of electron, phonon and thermal properties of novel and generic one-
dimensional and two-dimensional nanostructured materials.

The methods which are used in order to accomplish the objectives are:

e Lattice dynamics theory for the investigation of phonon processes in novel one-
dimensional and two-dimensional nanostructures such as cross-section modulated
nanowires and multilayer graphene with different atomic stacking.

e Effective mass approach for the investigation of electrons in novel nanostructures.

e Boltzmann transport equation approach for modeling the thermal properties of novel one-

dimensional and two-dimensional nanostructures.
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2. PHONON PROCESSES IN Si NANOLAYERS AND PLANAR Si/Ge
SUPERLATTICES

2.1. Born-von Karman lattice dynamics model for nanolayers and planar superlattices

Let us consider a freestanding homogeneous layer and a superlattice made from such layers.
The characteristic thickness of the layers is of a few nanometers. The schematic view of the
considered structures is shown in Figure 2.1. The X and Y axes of the Cartesian coordinate
system are in the plane of the nanolayer, while the Z axis is perpendicular to it. In the XY plane

the layers are assumed to have infinite size.

(a) (b)

Fig. 2.1. Schematic view of a freestanding homogeneous layer (a) and planar superlattice (b).

The main difference between the nanolayer and bulk material is the absence of translational
symmetry along the Z axis. Atoms from different monolayers are translationally unequivalent

and the amplitude of the atomic displacement is a function of monolayer number U (s), where s

numerates monolayers. In case of a superlattice the translational symmetry along the Z axis is
preserved by definition. However, within one translational element (superlattice period) atoms
from different monolayers are also translationally unequivalent and the amplitude of atomic
displacement is similarly dependent on the monolayer number s. As a result, the total number of
equations of motion for atoms is determined by the number of monolayers and equals to 3N,
where N is the number of monolayers in superlattice period.

In the framework of BvK lattice dynamics theory for nanolayers and planar superlattices, the
system of equations of motion for atoms from monolayer s can be represented, in a harmonic
approximation, as:
m.w’U,(s,q) = Z ZN;DU. (s,8,4M(s,G) i=xy.z (2.1)

j=xy,z 8'=

where s, s' — numerate monolayers and take values between 1 and N, m, — mass of the atom

from monolayer s, @ — phonon frequency, g — phonon wavevector, U,(s) — i-th component of
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the atomic displacement amplitude vector of the s-th monolayer, D; — dynamic matrix element,

given by expression:
Dy (s,5',0) = 2@ (n,,n) exp(igx(r(nt) -1(n,))). 2.2)

where r(n,) — radius-vector of the atom n; and ®(n,,n/) — matrix of the force constants

describing interaction between a pair of atoms (n,,n.). It is taken into account the interaction
within two nearest neighbor coordination spheres, therefore the summation in Equation (2.2) is
performed over all atoms n" from two nearest spheres of atom n. The index n here denotes atom
lying in the center of the coordination sphere for which the equations of motion are written. One
should note also, that atoms n and n" can belong to the same monolayer (n,,n.), as well as to

the different monolayers (n,,n.,,), (n,,n.,). The lattice dynamics is described by two force

a(n,ng)  pn,ny)  An,ng)

constant matrices: ®(n,,n.)=—| A(n,,n.) a(n,n,) p(n,n,) | for the nearest sphere and

ﬁ(n57 S) ﬂ(ns’ S) a(ns’ S)

(ns' s’ ) 7(n51 s’ ) 0
@d(ng,n,)=—| y(n,n.) y(n,n,) 0] for the second nearest sphere. Thus, the developed BvK
0 0 0

model contains three independent interatomic force constants: «, £ and y. In case when
interacting atoms n, and n. are from different materials, it is taken the arithmetic average

between force constants in corresponding materials. For instance, if Si atom interacts with Ge
atom, which takes place on the interfaces of a Si/Ge superlattice, than force constants are

si T aGe

, B(Si-Ge) = PatPe 'BGG and

calculated according to the following formulas: «(Si-Ge) =

]/(S|'Ge) — 7Si _;76‘3 .

Solving Equations (2.1) in the long-wavelength limit qg—0 and approximating the
frequency of transverse optic (TO) and longitudinal optic (LO) phonons at the BZ center as
@,010(0=0) = 270,00,/ @, Where vy =+/C1 / p is the longitudinal sound velocity in [100]
crystallographic direction, a is the lattice constant and p is the mass density, the interatomic

force constants can be expressed through independent elastic moduli of a bulk crystal ¢, and c,,

as: a=arn’c, /16, B=,|a(a(c,—2c,)+a)/2 and y=(ac,—a)/8. Hence, the proposed
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BvK model does not contain any fitting parameters and allows one to simulate phonon properties
of different materials with diamond crystal lattice without additional fitting procedures.

An important step in the modeling of the lattice dynamics of nanostructures is the choice of
the boundary conditions on external surfaces. In case of a homogeneous nanolayer the external
surfaces are considered to be free, i.e. the components of the forces on the surface are equal to

zero and therefore = =y =0. In case of a planar superlattice the external surfaces are absent
(the structure is considered infinite along the Z axis) and on the superlattice period are applied

the  periodic  boundary conditions in  the  form: U(nN+l):U(n1)exp(iqu);

U(n,)=U (nN)exp(—iqu) , Where L — thickness of one superlattice period.

2.2.  Phonon processes in Si nanolayers
2.2.1. Phonon energy spectra and scattering processes

In order to obtain the phonon energy spectra the system of equations of motion (2.1) with
dynamic matrix (2.2) was solved numerically. Diagonalization of the dynamic matrix was
performed using standard numerical procedures within double precision LAPACK library.
Material parameters and interatomic force constants of silicon used in the calculations are

presented in Table 2.1.

Table 2.1. Material parameters and interatomic force constants used in calculations of phonon

energy spectra in bulk silicon and silicon nanolayers.

a (nm) p (kg/m®) c,, (GPa) c,, (GPa) | a (N/m) [ g (N/m) |y (N/m)

0.5431[111] |2329.0[111] |166.0[112] |79.6[112] |55.6 40.6 43

In Figure 2.2 are shown phonon energy spectra in [100] crystallographic direction in bulk
silicon (Figure 2.2(a)) and silicon nanolayer with 10 nm thickness (Figure 2.2(b)).
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Fig. 2.2. Phonon energy spectra of bulk Si (a) and Si nanolayer with 10 nm thickness (b).
Squares denote experimental points from Ref. [113].

It is seen from Figure 2.2(a) that the developed three-parameter BvK model reproduces

reasonably well all the features of the bulk silicon phonon spectra, except for the overestimation
of TA and TO phonon energies for q>0.5-q,, , Where g, =11.57 nm™. This overestimation

is explained by the fact that the short-range interatomic interactions are only considered in this
model [114]. The behavior of phonon dispersion curves in the [110] and [111] directions is
analogous. In Figure 2.2(b) we present the phonon energy spectra for a Si nanolayer with
d =10 nm in the [100] crystallographic direction calculated within the BvK model with
interatomic force constants from Table 2.1. The strong dimensional confinement along the Z-axis
results in a quantification of the phonon energy spectra, i.e. the appearance of a large number of
size-quantized energy branches. Analogously to the bulk silicon phonon spectrum in nanolayer’s
spectrum one can distinguish three bunches of phonon branches: TA-like, LA-like and TO(LO)-
like branches. However, unlike in the bulk case, where all atomic vibrations are exactly
distinguished on transversal/longitudinal and acoustic/optic, in nanolayers appear essentially new
transverse-longitudinal acousto-optical mixed vibrations. As a result, a numerous phonon modes
in the nanolayers possess low phonon group velocity. Thus these modes do not contribute to the
thermal transport. Similar results were also obtained in the framework of continuum approaches
[115-116] and different models of lattice vibrations [33, 117-120] for nanolayers and nanowires
made from GaN, AIN, Si or Ge material.

In nanolayers it was taken into account two basic mechanisms of phonon scattering:
Umklapp phonon-phonon scattering and phonon-boundary scattering. Total scattering time of a
phonon with wavevector G from s-th energy level was calculated according to Matthiessen’s

rule:
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-1
)

Tis (0) = (20, (A) + 7,2 (@) ) 2.3)

where 7z, (q) and z,.(q) are phonon lifetimes in Umklapp and boundary scattering process,

respectively.

A) Umklapp scattering processes
There are two types of phonon-phonon scattering processes: normal (N-processes) and

umklapp (U-processes). In N-processes the total momentum of interacting phonons is zero, while

in U-processes the total momentum is preserved with a precision of a reciprocal lattice vector G .
The N-processes do not influence on thermal flux directly, but through redistribution of the
momentum between heat-carrying phonons. U-processes affect the thermal transport directly,
since they change the total momentum of the phonon system. Due to the momentum and energy
conservation laws for phonons in silicon the N-processes are significant only at very low
temperatures. At medium and high temperatures the U-processes prevail and the N-processes can
be disregarded with a good approximation. The most intensive U-processes limiting the heat
transfer are scattering processes involving three phonons. Such processes satisfy the following
momentum (with a precision of a vector G ) and energy conservation laws:

1) U-processes of the I-st type:

{q +4'=0"+G

o+ ="

These processes can be described as an absorption by phonon (G, ) of the phonon (', ')
with creation of the third phonon (g", ") in the second BZ. Or as a decay of a phonon (q", ")
from the second BZ into two phonons (g, ) and (g, @') in the first zone.

2) U-processes of the I1-nd type:
{q +G=q+q"

o=0'+a0"

Analogously, these processes can be described as a decay of a phonon (qa)) from second

~I

BZ into two phonons (G',»') and (G",") in the first zone, or as an absorption by phonon
(G, ") of the phonon (G", ") with creation of a third phonon (4, @) in the second BZ.

In order to evaluate the scattering time of the phonons in three-particle U-processes of the
both types the following model formula from Ref. [119] was used:

7(9) = B(@,(q)) T exp(-C/T), (2.4)
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According to [119] this form of the Umklapp scattering rate ensures an adequate temperature
dependence of the thermal conductivity both at high as well as low temperatures. Parameters B
and C are fitted to reproduce the experimental thermal conductivity of bulk silicon [121].

B) Phonon-boundary scattering processes

One of the most significant phonon scattering mechanisms in nanolayers is scattering on
external boundaries. For calculation of the phonon-boundary scattering time a phenomenological
formula first introduced by Ziman [122] was used:
1-p(q) |o.(@)]
1+p(a) d

In this approach the p-th part of the phonons is reflected specularly from the boundary, while

75 (0) = ; (2.5)

all the other phonons are scattered diffusively, i.e. uniformly in all directions independently on
the initial direction of the phonon wave before impact with the boundary. In this context, the
parameter p characterizes the degree of boundary roughness, namely, the values of p close to 0
correspond to a very smooth boundary, while p close to 1 correspond to a very rough boundary.
Moreover, it is clear, that boundary roughness parameter p should depend on the wavelength
of the incident phonon as well as on the boundary (surface) profile. The same surface can be
rough for short wavelengths and smooth for long wavelengths. According to authors of Refs.
[122-124] the parameter p can be determined from the following expression:

p(q) = eXp(—Zﬂq252), where & — average height of the surface roughness. This expression was

used to calculate the phonon-boundary scattering time from Equation (2.5). This form of the
parameter p takes into account that when the average height of the surface roughness is much
higher than the wavelength of the incident phonon, then the scattering is very strong and phonon
“feels” even the smallest surface imperfections. In this case the parameter p is close to 0. In the
case when phonon wavelength is much larger than ¢ then surface details are hardly
distinguishable for such waves and the scattering will take place almost specularly with p close
to 1.

It is important to analyze the phonon scattering mechanisms, determined by Equations (2.4)
and (2.5), through their relative influence on thermal conductivity of nanolayers for different
temperatures, phonon frequencies and phonon group velocities. First, let us consider the
temperature dependence. According to (2.4), at low temperatures the lifetime of phonons in U-

processes is large (7, — o0 when T — 0), while lifetime of phonons in boundary scattering does

not depend on temperature and it is the same in the whole temperature range. Due to

Matthiessen’s rule (2.3) the total phonon scattering time z,, is limited by the smallest scattering
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time, i.e. at low temperatures by the phonon-boundary scattering time z,. Thus, in the low-

temperature range the dominant mechanism of phonon scattering in nanolayers is scattering on

the external boundaries. When temperature rises the Umklapp scattering rate increases and at

high temperatures it scales as £ T . Therefore, in the range of high temperatures the dominant
Ty

phonon scattering mechanism limiting the thermal conductivity of nanolayers is Umklapp
scattering.
Let us consider the dependence of total phonon scattering time on phonon frequency and

phonon group velocity. According to Equation (2.4) 7, is inverse proportional to the squared
phonon frequency, while 7, (2.5) is independent on frequency and is inverse proportional to the

phonon group velocity. As a result, low-frequency high-speed acoustic phonons practically do
not participate in U-processes and mainly scatter on the nanolayer’s external boundaries. In the

high-frequency range the picture is opposite, the total phonon lifetime is limited by U-processes

as T,

~ 1, ~ which is caused by their weak boundary scattering due to the low group

velocity (see Figure 2.2(b), where high-frequency phonons are almost dispersionless).
2.2.2. Phonon thermal conductivity

The microscopic definition of the thermal flux is a sum of contributions from all phonons

with energy %, (q), group velocity o,(q) and nonequilibrium distribution function n,(q) [88]:
6 =" heo, ()0, (@)n, (@), (2.6)
5.4

where s — numerates phonon branches, ¢ — phonon wavevector.

According to the Boltzmann transport equation in the relaxation time approximation,

phononic nonequilibrium distribution function is given by relation [88]:

ON,(q)

N, (0) = —(VT, 0, (0)) 7 s (@) —— =

(2.7)

The “—* sign in the right hand side of the Equation (2.7) shows that thermal flux is directed

opposite to the temperature gradient vector VT, i.e. toward the fastest temperature decrease. In

(2.7) N.(G)= — Bose-Einstein equilibrium distribution function, r, .(q) — total

exp( (q)) 1

B
phonon scattering time, determined by Equations (2.3)-(2.5). Substituting (2.7) in (2.6), for

phonon thermal flux we will obtain:
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From comparison of formula (2.8) with phenomenological definition of thermal conductivity

(Fourier law): 6 =—« VT, results the following expression for phonon thermal conductivity
[88]:

= 20, @0, @) (c0s0) 7, (@) T L, @9)

where ¢ —angle between ¢ and X axis. In Equation (2.9) was assumed that the thermal flux is

directed along the X axis.

Thermal conductivity coefficient «, is related to the thermal conductivity « through a
simple relation: x, :E, where V is the volume of the nanolayer. Taking into account two-
dimensional phonon density of states one can change in Equation (2.9) the summation over g to

the integration as: Z—>( S J.J. dg,dg, , where S is the area of one of the nanolayer’s surfaces
27)

(S= \di d is the nanolayer thickness). In the approximation of isotropic phonon dispersion in the

Omax

XY plane the integration can be performed in the polar coordinates: quxdqy I qdqj do.

Thus, the phonon thermal conductivity coefficient in nanolayers is given by the following
formula [88, 125]:

e (q))
k,T

(exp(" D) gy

B

1 qmax eXp(

K = 27 2 j(w(q» (0, () 7,0 (@) qdq . (2.10)

In Figure 2.3 is presented the comparison between the experimental [121] (black dashed
curve) and calculated (gray curve) temperature dependence of the bulk silicon thermal

conductivity limited by the Umklapp scattering only.
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Fig. 2.3. Experimental [121] (black dashed curve) and calculated (gray curve) temperature
dependence of the bulk silicon thermal conductivity.

In the considered temperature range the proposed BvK model with the Umklapp scattering
parameters B =1.76x10"°s/K and C = 137.39 K allows one to obtain a good agreement between
theoretical and measured thermal conductivity even with overestimated energies of TA and TO

phonons for q>0.5q,,,, because these phonons weakly participate in the heat transport due to

the small group velocities of TO phonons and the strong Umklapp scattering of the short-
wavelength TA phonons. Therefore overall correction of the thermal conductivity from them is
small. At temperatures T<80 K the experimental thermal conductivity decreases with
temperature decrease due to the phonon relaxation on the lattice defects. These mechanisms of
the phonon scattering were not accounted in the theory, therefore the difference between
theoretical and experimental results reinforces with temperature decrease.

In Figure 2.4 we plot the temperature dependence of the phonon thermal conductivity in

silicon nanolayers with d =5, 10, 20 and 30 nm.
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Fig. 2.4. Calculated temperature dependence of the phonon thermal conductivity of silicon
nanolayers with d = 5, 10, 20 and 30 nm for average roughness height & =0.23 nm. The red
dashed line corresponds to the thermal conductivity of 20-nm-thick layer calculated with the

constant roughness parameter p = 0.08. The experimental data points from Ref. [126] are also

shown for comparison.

In thermal conductivity calculations for silicon nanolayers were used the same Umklapp

scattering parameters as in the bulk silicon: B=1.76x10"°s/K and C = 137.39 K. One should
note a sharp drop of thermal conductivity in comparison with bulk case, which is explained by
quantification of phonon energy spectrum, decrease of the phonon group velocity and additional
scattering of phonons on nanolayer’s external boundaries. A drop by a factor of 5 — 20 is found
at the RT depending on nanolayer thickness. The experimental data points for nanolayers with d
= 20 and 30 nm from Ref. [126] are also shown in Figure 2.4 for comparison. A good agreement
is achieved for the average roughness height 6 = 0.23 nm. As one can see from the figure, the
maximum thermal conductivity shifts to higher temperatures with decrease of d, from T ~ 130 K
for 30-nm-thick layer to T ~ 320 K for 5-nm-thick layer. This behavior can be explained as
follows: the position of the thermal conductivity maximum separates the low-temperature region,
where phonon scattering is mainly due to the boundary, from the high-temperature region, where
Umklapp scattering is dominant. In a thinner nanolayer the boundary scattering is stronger in a
comparison with a thicker one (7, ~d according to Equation (2.5)) and dominates up to higher
temperatures, therefore the position of the thermal conductivity maximum on the temperature
dependence curves shifts to the right. In Figure 2.4 is also shown the thermal conductivity of a
20-nm-thick silicon layer calculated using a momentum-independent roughness parameter p =

0.08 (red dashed line). The results show that the major difference between two approaches with

49



p(gq) and p = const is at low temperatures. These findings are in line with the recent theoretical

predictions from Ref. [124]. However phonon scattering on the lattice defects (point defects or
dislocations) in real nanoscale structures which is dominant at low temperatures could eliminate
the difference between approaches with p(g) and p=const.

Comparison between the dependencies of the RT thermal conductivity on the nanolayer
thickness calculated using BvK (solid and dotted lines) and Face-centered cubic cell (FCC)
(dashed lines) models of lattice dynamics is shown in Figure 2.5. The detailed description of the
FCC model and its application for the calculation of the phonon energy spectra is presented in
Refs. [33, 118, 125].
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Fig. 2.5. Room temperature phonon thermal conductivity as a function of silicon layer thickness
for different values of a boundary roughness parameter & . The theoretical curves are obtained
within BvK model (solid and dotted lines) and FCC model (dashed lines). Dotted line shows the
thermal conductivity of acoustic phonon branches only. The experimental data points from Ref.

[126] are also shown for comparison.

The results are presented for different values of the boundary roughness parameter 6 =0.12,
0.20 and 0.28 nm. The dotted line shows the thermal conductivity calculated with taking into

account the acoustic phonon modes only, i.e. modes with energy %o <50meV (see Figure 2.2).

The experimental data points for silicon nanolayers with thicknesses d =20nm and d =30nm
from Ref. [126] are also shown for comparison. The rise of the thermal conductivity with
increase of nanolayer thickness is explained by the reduction of the phonon boundary scattering
rate. One should note also, that calculations based on both BvK and FCC models reproduce well
the available experimental data, but for the different values of 6. The best agreement between
BvK calculations and experimental data is obtained for 6 = 0.2 nm, while for the FCC

calculations for 6 = 0.12 nm. This discrepancy is attributed to the difference between FCC and
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BvK phonon energy dispersions. Note also that for the same values of the boundary roughness
parameter the FCC thermal conductivities are smaller than those obtained within BvK model.
Growth of the nanolayer thickness leads to the increase of the number of phonon branches.
Therefore the difference in the thermal conductivities calculated using FCC and BvK models
strongly depends on the layer thickness and increases from ~ 0 % for 1 nm-thick-nanolayer to ~
20-25 % for 50-nm-thick nanolayer. The lower values of the thermal conductivity obtained in
FCC model is explained (1) by a smoother slope of the FCC phonon dispersion branches in
comparison with BvK branches and (2) by the taking into consideration acoustic phonon
branches only within the FCC model [33, 118].

An interesting question is the contribution of optic phonons in the thermal transport of silicon
nanolayers. In order to establish the quantitative estimation of this contribution, in Figure 2.5 is
also shown the thermal conductivity curve, obtained taking into account acoustic phonons only
(red dotted line). It was found, that the contribution of the optic phonon branches to the thermal
conductivity in the considered Si nanolayers constitutes ~ 5 % and is almost independent on the
nanolayer thickness. This weak contribution of optic phonons is due to their small group

velocities and strong umklapp scattering.
2.3.  Phonon processes in planar Si/Ge superlattices
2.3.1. Phonon energy spectra
Material parameters and interatomic force constants of germanium used in the calculation of
phonon energy spectra in Si/Ge planar superlattices are presented in Table 2.2. The material

parameters of silicon where taken from Table 2.1.

Table 2.2. Material parameters and interatomic force constants of germanium used in
calculations of phonon energy spectra in Si/Ge planar superlattices.

a (nm) p (kg/im®) c, (GPa) |c, (GPa) |a (N/m) [ A(N/m) [ y(N/m)

0.5658 [127] | 5323.4[127] | 126.0[128] | 67.7[128] | 44.0 29.2 3.4

The values of the force constants «, # and y were adjusted to reproduce the phonon spectra of

bulk germanium (see Figure 2.6).
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Fig. 2.6. Phonon energy spectrum of bulk Ge in [100] crystallographic direction. Open circles

denote experimental points from Ref. [129].

Analogously to the bulk Si case (Figure 2.2(a)), the three-parameter BvK model reproduces
reasonably well all the features of the bulk germanium phonon spectra, except for the
overestimation of TA phonon energies near the BZ edge, which is caused by the lack of the long-
range interatomic interactions in the developed model of lattice dynamics.

In Figure 2.7 the phonon energy spectra in Si(23ML)/Ge(5ML) planar superlattice are shown

for two different directions in the BZ.
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Fig. 2.7. Phonon energy spectra of Si(23ML)/Ge(5ML) planar superlattice in
(0,0,0) - (0,0,q;™) direction (a) and (0,q,™,0) — (0,q;™,q;™) direction (b).

One can see from Figure 2.7 that phonon energy spectra in Si/Ge planar superlattices is

strongly modified compared to bulk silicon or silicon nanolayers (see Figure 2.2). Due to the
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superlattice nature of the considered planar Si/Ge nanostructure i.e. the existence of a set of
consecutive Si/Ge interfaces and due to the acoustic mismatch between Si and Ge materials,
there appear a large number of phonons trapped (localized) in different segments of the
superlattice: Si layers, Ge layers or Si/Ge boundary. A clear manifestation of the trapping effect
one can found considering the high-energy phonons from Figure 2.7(a). The maximal phonon
energy in germanium is ~ 40 meV, therefore all phonon modes in a Si/Ge superlattice with
energy more than this value should be localized in Si segments. It is clearly seen from Figure
2.7(a) that phonons with energy more than 40 meV are dispersionless i.e. they posses group
velocity close to zero and therefore they are localized in silicon segments of Si/Ge superlattice.
Moreover, one can see from Figure 2.7(b) that in directions close to BZ edge the short-
wavelength phonons are also dispersionless and posses a very low group velocity.

The peculiarities of the phonon spectra redistribution in Si/Ge planar superlattices in
comparison with bulk Si and Ge can be qualitatively estimated from the calculation of the

phonon group velocities averaged over entire BZ. In Figure 2.8 is shown the dependence of the

average phonon group velocity <u>(E)=g(E)/Z(dES/dqz)‘1 as a function of the phonon

s(E)
energy for Si(23ML)/Ge(5ML) planar superlattice (black solid line), bulk silicon (black dashed
line) and bulk germanium (gray solid line). The g(E) is the phonon density of states i.e. the

number of phonon modes with energy E.

5p —— Si(23ML)/Ge(5ML) superlattice
AT bulk Si
4 — bulk Ge

<v> (km/s)

50 60 70
Phonon energy (meV)

Fig. 2.8. Average phonon group velocity as a function of phonon energy in Si(23ML)/Ge(5ML)
planar superlattice (black solid line), bulk Si (black dashed line) and bulk Ge (gray solid line).

The average phonon group velocity in Si/Ge planar superlattice is smaller than that in the

bulk silicon for all phonon energies. This drop is explained by the phonon localization effect: the
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localized phonon modes represent standing waves existing only in the corresponding segments
of the Si/Ge superlattice or at the Si/Ge interfaces. Another interesting feature of the Si/Ge
superlattice phonon spectrum can be observed in the range of intermediate energies:
30 meV < E <40 meV, where a considerable drop of the average phonon group velocity can be
observed. This drop cannot be explained by the localization of these phonon modes in
superlattice segments, since phonons of this energy are not filtered by the acoustic mismatch at
Si/Ge interface and they exist in the entire Si/Ge structure. The cause of this drop is phonon
hybridization effect i.e. phonons of the same energies but of different polarizations and/or from
different materials are “mixed” with each other, forming different (hybridized) phonon states
with averaged phonon properties. In the considered case, the hybridization takes place between
high-velocity TA and LA acoustic “silicon” phonons and low-velocity TO and LO optic
“germanium” phonons. As a result, for the considered energy interval a strong decrease of the
average phonon group velocity in Si/Ge planar superlattice occurs, as compared to bulk silicon

case.
2.3.2. Phonon scattering processes. Scattering on Si/Ge interface

To model the phonon scattering processes in real planar Si/Ge superlattices it was taken into
account three basic mechanisms of phonon scattering: Umklapp phonon-phonon scattering,
scattering on external boundaries (on the bottom and top segments) and scattering on Si/Ge

interface. Total scattering time of a phonon with wavevector ¢ from s-th energy branch was

calculated according to Matthiessen’s rule:

T (@) = (74 (@D + 755 @ +72(0)) (2.11)

where 7, ,(q), 75,(q) and 7, (q) are phonon lifetimes in Umklapp, boundary and interface

scattering processes, respectively.

Umklapp scattering processes

For calculation of the phonon-phonon Umklapp scattering rate it was used the same formula
as for silicon nanolayers (Equation 2.4). However, for Si/Ge superlattice the parameters B and C
were averaged between silicon and germanium values taking into account a particular

distribution of the phonon mode in one superlattice period:

1
z-U,s (q)

where

=BT (@) exp(—cs%")] , (212
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B,(@)=B(Si) [ |w(za)dz+BGe) [ |w(za)dz, (2.13)

over Si over Ge

segment segment

C,(@)=C(Si) [ |w(z.q) dz+C(Ge) [ |w(z0q) dz. (2.14)
over Si over Ge
segment segment

In Equations (2.13) and (2.14) |Ws(z,q)| is the amplitude of the displacement of atoms from z-th

monolayer in (s,q) vibrational mode. In calculations these amplitudes were normalized to

unity: I |Ws(z,q)|2 dz + I |Ws(z,q)|2 dz=1. In this way, every phonon mode is scattered

over Si over Ge
segment segment

individually. For example, if 90% of the vibration is localized in Si segment

I |Ws(z,q)|2 dz=0.9 and I |Ws(z,q)|2 dz =0.1, then the Umklapp scattering parameters

over Si over Ge
segment segment

will have values <close to that of silicon: I§S(q)=0.9B(Si)+O.1B(Ge);

C,(q) =0.9C(Si) + 0.1C(Ge).

Boundary scattering processes

In a real superlattice there are no phonons with mean free path larger than the total thickness
of the superlattice, because of the scattering of phonons on the external boundaries. This
condition is satisfied if one uses for the phonon-boundary scattering lifetime the following

formula:

oy (@) (q)l

75.(Q) = (2.15)

where L - total thickness of the superlattice along Z axis.
Scattering on Si/Ge interface

Let us consider a superlattice consisted of an infinite number of consecutive layers of two
materials — A and B. At the A/B (B/A) interfaces there exists a domain, where atoms from A and
B materials are intermixed (see Figure 2.9 below). If the perturbation due to such intermixing
(mass defect) is weak, then the phonon scattering on the A/B interface can be described using

perturbation theory. Let us write the perturbation Hamiltonian for one superlattice period [130]:

2

ui

18™

H’ZEZ(mi

au,

g2 -mR

, (2.16)
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where G - number of intermixed atoms in A and B layers (for the sake of simplicity it is
considered the same for both layers, however indices A and B remain for a more clear

understanding), m - average mass of atoms in superlattice.

superlattice period

layer A L layer B
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0000006060 90C0CCOCCCCLECCC0
©0666666L80800C0CCOCLe0e

COCOCCCCOCOEECEC
000000000 C0ECCCCOLCLOOOE
000060600000 CCCCOOLeOeC .
""‘“o“c‘c‘,ccccccccc‘,c‘ v cross-plane direction
©06606608%8¢00c00e0elELe
00666666058 E0O066sS
TcoccooTTCoTchccccTchT
[ gA | g [ gB [ g |

—— scattering regions

Fig. 2.9. Schematics of a planar superlattice with atomic intermixing at interfaces.

In the second quantization formalism, displacement vector of i-th atom is given by

expression:
G, =-i,5 ;v > j%(b+(q,s)—b(—q,s))exp[i((q, F)-o@s)t)], (2.17)

where p - average density in one superlattice period, V - volume of one period, €(q,s) -

vector of the displacement amplitudes corresponding to a vibrational mode (q,s). The first

derivative of (2.17) over time is:

ou, h — o - N .

~ =" ﬁzx/w(q,s)ei(q,s)(b (d,5) -b(-d.s))expi((d.F) - (@ s)t) ]. (2.18)
qg,s

Substituting (2.18) into the perturbation Hamiltonian (2.16), one can obtain:

H':%q%%@(q,s)w(qzs')(b*@s)b(d',s')—b*@s)b*(—q',s')—

—b(~d, $)b(@,8") +b(-G,5)b" (-G, s") )exp[ i ((d, s) - (@', )t ] x

X{G(ZA)(mi ~m)(&.@9).€ (@.s))exp[i(q-a) 1]+

(2.19)
G(B)
+§:(mj—ﬁﬂ(@(@syéﬂqzynexpp(q—qjﬁ]}
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The probability of a phonon to go from state @(q,s) into another state w(q',s’) as a result of

an interface scattering event can be calculated using the Fermi’s golden rule:

Pe’ = 2—?\(”(@ $)-1n(d’,s") +1|H'(d,s,q",s)|n(d,s),n(d’,s")) CS(@(d,9)-oF.s) . (220)

In Equation (2.20) delta-function ensures the energy conservation law for all possible transitions
(6,s) = (G',s") . The bosonic creation b™ and annihilation b operators act on phonon occupation
number n(q,s) as:

b*(d,s)|n(d,s)) = Jn(@, s)+1|n(d,s) +1)

b(d,s)|n(d,s)) = \n(d, s) |n(d,s) -1)

In the matrix element (2.20) the creation and annihilation operators which correspond to a

(2.21)

vibrational mode (q,s) act only on the phononic state |n(q,s),_>, while operators which

correspond to mode (G',s") only on the state |_, n(cj',s’)) . Taking into account Equation (2.21),

Equation (2.20) will take the form:

P 4 090l SN ) () +1) () - )

G(A)
{ > (m—m)(€(d.5).€"(d"s") Jexp[i(d - G)r ]+

G(B)
+2(m—m)(e, (d,s),é,-*(qzs'))exp[i(q—q')r,-]}x (2.22)

)

X

1
._M O._
~ )>

)(87(@.5).6.(d.5))exp[-i(@—d)F ]+

+

(m —m)(€;(d,5),6;(q",s"))exp| -i(G - ﬂ

Here it was taken into account that in the double sum ZZ there are 2! identical elements
G.ss g3

H'(qg,s,G',s") and H'(G—q',s—>5s,§ —[,s'—s), thus one should multiply the matrix

element P2° by (21)? = 4. Opening the brackets in Equation (2.22), one can obtain:
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P = 2/32’\/2 o(,5)(d',s)n(d,5) (n(d',5) +1) 5(e(d, ) - (@', 5") x
G(A) G(A)
x| 2 2 (my—m)(m; —m)(&(,5).8'(¢,5))(&](d.5).&,(d,s) ) exp[ (@~ -F) |+
G(A)G(B)

+2, > (my—m)(m, —m)(€(d.5).&(d"5))(€] (,5).&,(d,5) ) exp[ i@~ )T - F;) |+ (2.23)

£, 2 (m—m)(m, —m)(&(d,s).& (@,5))(€](,5).€,(@.) ) exp[ i(d — )T ~F) | +

G(B) G(B)
£, 2 (m—m)(m; —m)(&(d,s).& (@5))(&](,5).€;(d",5) )exp[ (@~ ~T) ]

J
The best case scenario is the exact calculation of the matrix element (2.23). However, it is a
problem of great complexity, since it requires: (i) knowing the spatial distribution of atoms in

mixed layers and their displacement amplitudes vectors, and (ii) summation of a huge number of

G G
elements ZZ:GZ. Nevertheless, one can greatly simplify the problem if consider the
i

following approximations: (a) segments with mixing atoms have the same crystalline structure as
the segments without mixing, (b) all atoms from one particular monolayer have the same

amplitudes of the displacements and (c) the number of atoms in monolayers is constant and

G
equals to N. In this case, it is convenient to divide the summation Z over atoms in matrix

i
9
element (2.23) into the summation over monolayers Z (where g - number of monolayers with
|

N

mixing in segments A and B) and the summation over atoms in a monolayer Z . Thus, the first
k

sum from Equation (2.23) can be written as:

G(A)G(A)

> > (m—m)(m; —m)(&(d,s), € (d"5))(€; (@5).6, (@8 exp[i@-)(F ~F) ]~
9(A) g(A) N (A) N(A)

~ (€(@.9).6°(d.s")) (6, (@9).6,(d,5)) D D (Myqy —M)(m, ) —M)x (2.24)
I n k(1) p(n)

XeXp[i(q - q’)(ﬁ((l) - Fp(n))}
Here k(l) denotes k-th atom from I-th monolayer, 1, ,, - radius-vector of k(l)-th atom. Once the

displacement amplitudes vectors are taken out from summation over atoms, the calculation of

N(A) N(A)
sums Z Z is becoming possible, if one uses the assumption of a random distribution of
k() p(n)

atoms in monolayers with mixing. Consider as origin of summation the center of a monolayer.
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The radius-vectors of atoms can be represented as a sum of two vectors: f, = R + rk‘(l), where

F?, - vector of I-th monolayer, directed perpendicular to it, and rk”(,) radius-vector of k-th atom

from I-th monolayer, lying in the monolayer plane. In the chosen representation one can write:

N(A) N(A)

Z (mk(') - m)(mp(”) B rﬁ)exp[i(q—q')(rkm - Fp(n))] = EXp[i(q—q')(ﬁ| - ﬁn)]x
kM b
N(A) N(A) ~ B o (2.25)
x% %(mm—m)(mp(n) —m)exp[l(q—q)(rk(l) p(n))]

Assuming a random distribution of atoms in monolayers with mixing, one can obtain:

N (A) N (A) B _ o N (A) N(A) - _
Z(mk(l)—m)(mp(n)—m)exp[l(q—q)(rk”(l) p(n))] > (mk(l) )( p(n)—m)+
k(1) p(n) kr(‘l‘) _pr(”n)
N(A) N(A) T ) (2.26)
+2, 2 (megy =m) (M, —m)expli@-a)(Fy, ~ ) | = Z( (—m)
k) p(n)
Pl

k(™ p(n)

The last sum in Equation (2.26) can be calculated as:

Sin-o-[Sie ] [Som ] [S1r] [$in7 -S|

{izmmA +§2mm8}+[§:(m)z +§(m)z} =[N,m; +N;m; |- (2.27)
—2mk[NAmA+ NBmB]+[NArﬁk2 + NBmZ]k= N, (m,—m)" +Ng (mg —m)’

Here N, and N; - number of atoms in material A and B in monolayer with mixing,

respectively. It is convenient to introduce a parameter x, i.e. part of A atoms in a monolayer with

mixing. Then one can express the following quantities in terms of x and N:

m:mAgA+mBgB+2g(xmA+(l_X)mB)_ 5:pAgA+pBgB+29(XpA+(l_X)pB),
Up+Js+29 ’ 0+ 0s+29  29)
N
No=xXN;  Ng=(1-x)N;  ’(m,=m) =N (x(m,-m)"+(1-x)(m, —m)’)

k

where g, and g, - number of monolayers without mixing in segments A and B

correspondingly.
Using Equations (2.25)-(2.28), the matrix element (2.23) takes the form:
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~NAZ o(d, 8)o(d, $)N(d, 5) (N(d8) +1) 5((d, 5) - (G, §)) %

x[gwg(ﬁ(e. (G,5).€°(d,5))(€:(6,5).6,(d"s") Jexp[ (G- G)(R —R,) |+

23S (6(6,9,8°(@5)) (669, s))exp|i(@-a)(R -R,) |+ (2:29)
+>, > (6(d.9).6(d.5))(6:(d.5).€,(d.s) Jexp[i(G—G)R -R,) ]+

+2 > (€(d.5).€°(d.s))(6:(d.5).€,(d" ) )exp | i(G - F)(R ﬁ)ﬂ

where Az = x(m, —m)’ +(1-x)(mg —m)’.
Once the matrix elements are known one can calculate the relaxation time of phonons in

interface scattering using the formula [130]:

ey
n(d, s)(n(q s)+1)

Taking advantage of 2D layered geometry of a planar superlattice one can go from summation

7,,(0) = (2.30)

over q'to integration using the following scheme:

2r7/a /L

I q,da; | da; . (2.31)
) n

Substitute Equation (2.31) into Equation (2.30):
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| n L _
9(B)g(A) ~ » i N . ‘. a‘
+> > (6(a,.q,.9).€°(a;,9;.5))(€(a,.9,.9).6,(a.,q;,5) )exp i(, -1 -n) |+
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xq; dq’ da;

) . a .
In Equation (2.32) the distance between monolayers was taken equal to 7’ which corresponds to

a diamond crystal lattice. Also it was introduced a parameter o as an amount of mixing atoms in
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superlattice. This parameter is the only adjustable parameter of the model and is used to fit the
experimental data. Integrating the Equation (2.32) over q; finally one can obtain for phonon

relaxation time in interface scattering:

2r7/a

71:(0,,9,) =0 (@(4..,.5) Zj

9(A)g
{z
I
g

(A) g(B

+> > (6(a,,9,.9).6°(a},9;,5))(€(a,.9,.9).6,(a;,a;,5") ) exp i(qz—q;>(l—n)%+ (2.33)

|U (qL’qz’S)|
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«
—

(B) g(A
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| n

«Q
—
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+20 2(6(0,,9,.9).6 (AL 0,8 (€7(0..,,5).6, (0L, ;. ) Jexp| i@, = a))( ~n) | |
| n L _

xq, da;

In order to calculate the phonon lifetime of interface scattering in a Si/Ge superlattice with

Equation (2.33) one should first know the phonon eigenfrequencies and displacement vectors for
the whole BZ taking into account the atomic intermixing at interfaces. The intermixing was
introduced in the BvK model by changing the force constants between atoms from corresponding
layers. For instance, if the x-th part of the atoms in monolayers with mixing is Si atoms, then

force constants in these monolayers were calculated as:

Uiy = X0 +(1=X)Ages Brix = XPsi +(1=X) Boei Vaix = XVsi +(1=X) Ve - (2.34)
In Figure 2.10 are presented phonon lifetimes as a function of wavenumber g, in

Si(35ML)/Ge(9ML) planar superlattice for a fixed wavenumber ¢, =0 and different phonon

branches. The gray lines correspond to the calculations taking into account boundary and
umklapp scattering only, while black lines are results of the calculations with boundary and
interface scattering.
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Fig. 2.10. Phonon lifetime as a function of wavenumber q, in Si(35ML)/Ge(9ML) planar
superlattice with 2 ML interface mixing for a fixed wavenumber g, =0 and three different

phonon branches: (a) s=1, (b) s=5 and (c) s=11. Total number of branches is 132.

In the calculations of phonon scattering rates were used the following parameters: T = 300 K,
L = 1800 nm, x = 0.5, & = 3.1 x 10% and 2 ML interface mixing. The total thickness of the
superlattice L was taken from experimental work [131] and parameter o was found by fitting
the theoretical temperature dependence of the thermal conductivity to the experimental data from
[131]. The Figures 2.10(a)-(c) are insightful in terms of particular influence of different phonon
scattering mechanisms on total phonon lifetime in Si/Ge planar superlattices. From panel (a) one

can see that for the lowest energy branch (s=1) the gray and black lines coincide for

g, <0.4q,™, which means that for low-energy long wavelength phonons the boundary scattering

mechanism is the only mechanism limiting their mean free path and lifetime. For q, > 0.4,

the interface scattering becomes a dominant mechanism of the phonon scattering. Moreover,
from panels (b) and (c) one can see that for higher energy branches the interface scattering is the
dominant scattering of phonons for all wavelengths. The latter means that interface mass-mixing
scattering of phonons plays an extremely important role in the limiting the total phonon lifetime

in Si/Ge planar superlattices.
2.3.3. Phonon thermal conductivity

Taking into account anisotropy of the phonon energy dispersion in the direction

perpendicular to the layers one can go in Equation (2.9) from the summation over ¢ to the

: : % 2 : :

integration as: Z—)W”qquldqz j de, where V is the volume of the planar superlattice.
g 4 0

Thus, for calculation of the phonon thermal conductivity in planar Si/Ge superlattices we used
the following equation:

K (17 G))? q))? q kT dq, $dq (2.35)
ph 21 2 (ha)s (q)) (Uz,s (q)) Ttot,s (q) qL 1 z ! )
kT ! ! (exp(hw (q)) _1y?

B

where ¢ — 2D phonon wavevector ¢ =(q,,0,), @,(¢) — phonon frequency of s -th branch with

wavevector ¢, v,.(d) — z-th component of the phonon group velocity, 7, ,(G) — total phonon
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lifetime, L, — thickness of one superlattice period along Z axis. In Equation (2.35) the BZ was

represented as a cylinder with height Ll along the Z axis and base radius 2?” lying in the XY

plane. In the XY plane the phonon dispersion is considered to be isotropic.

In order to calculate the thermal conductivity of Si/Ge planar superlattices one first should
define the Umklapp scattering parameters for Si and Ge materials from comparison with bulk
thermal conductivity data. The Umklapp parameters of silicon were found previously (see Fig.
2.3 from Section 2.2.3). In Figure 2.11 is presented the experimental [121] (black dashed curve)
and calculated (gray curve) temperature dependence of the bulk germanium thermal conductivity

limited by the Umklapp scattering only.

10000p————rrrr

bulk Ge

1000 #

Kk (W m ! K

100F - = = experiment
: theory

10 100 500
Temperature (K)

Fig. 2.11. Experimental [121] (black dashed curve) and calculated (gray curve) temperature

dependence of the bulk germanium thermal conductivity.

For temperatures 50 K and higher the BvK model with the Umklapp scattering parameters
B=4.08x10"s/K and C = 57.6 K allows one to obtain an excellent agreement between
theoretical and experimental thermal conductivity. As in the case of bulk silicon, at low
temperatures T<50 K the experimental thermal conductivity of bulk Ge is substantially lower
than Umklapp-limited theoretical one due to the scattering of phonons on the crystal lattice

defects.
In Figure 2.12 is presented the calculated phonon thermal conductivity of planar

Si(35ML)/Ge(9ML) superlattice as a function of temperature.
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Fig. 2.12. Temperature dependence of the phonon thermal conductivity in Si(35ML)/Ge(9ML)

planar superlattice. Gray triangles denote experimental points from Ref. [131].

The black dashed and solid lines correspond to calculations for 1 ML and 2 ML interface
mixing without taking into account Umklapp scattering, while solid gray line represents
calculation with 2 ML mixing and all three basic mechanisms of phonon scattering. The black
solid line was obtained with parameters x=0.5 and o = 3.1 x 10° in order to fit the experimental
data from Ref. [131]. A good agreement between theoretical and experimental data was obtained
only in the case when Umklapp scattering was not accounted in calculations, indicating that in a
real Si(35ML)/Ge(9ML) planar superlattice from Ref. [131] the interface mass-mixing scattering
is the dominant mechanism of phonon scattering. Indeed, if Umklapp scattering was dominating

over interface scattering, then one should find a slow decrease of thermal conductivity at high
temperatures, since Umklapp scattering time scales with temperature as z, ~T ", which is

clearly seen from the solid gray curve. However, the experimental data demonstrated no such
behavior (follow gray triangles on the figure) and thermal conductivity remained almost
independent on temperature. Another important conclusion can be made if one compares black
solid and dashed curves i.e. calculations with different number of mixed monolayers at interface.
The thermal conductivity of planar Si(35ML)/Ge(9ML) superlattice with 1 ML interface mixing
is almost 2 times larger than with 2 ML mixing for a wide range of temperatures, which
demonstrates the strongest influence of interface mass-mixing phonon scattering on thermal
conductivity of planar Si/Ge superlattices.

In Figure 2.13 is presented the calculated thermal conductivity of Si/Ge planar superlattices
as a function of thickness of Si and Ge segments. There are two set of curves: top curves

represent calculation without taking into account phonon-interface scattering and bottom curves
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represent calculation with all basic mechanisms of phonon scattering. The calculations were
performed for temperature T = 300 K, interface scattering parameter o = 10°, 1 ML interface
mixing and different values of parameter x i.e. different ratios between amount of Si and Ge
atoms in mixing regions. The thickness of the superlattice period remained constant and equal to
24 ML (~ 3 nm). In the case when interface scattering of phonons is not taken into account the
thermal conductivity possesses its maximal value at ds;=20ML and dg.=4ML (ds; and dge are
thicknesses of silicon and germanium segments, respectively), i.e. when Ge segment is much
thinner than the Si one. It is an expected result since silicon material possesses better thermal
conduction properties than germanium. On the contrary, when phonon-interface scattering is
included in calculations the thermal conductivity have a distinguished maximum when ds; = dge
= 12 ML. This peculiar behavior differs significantly from the case where phonon-interface
scattering was not taken into account (top curves). It is attributed to the non-trivial dependence
of the interface scattering rate on the amplitudes of the atomic displacements in Si/Ge
superlattices (see Equation 2.32). The atomic displacement field can change significantly for
different vibrational modes and different ratios between thicknesses of Si and Ge segments,

because of the strong acoustic mismatch and different vibrational properties of the materials.

Si segment thickness (ML)
20 18 16 14 12 10 8 6 4

w/o Interface scattering c=10
T=300K

1 ML mixing

15

n

_M - x=0.1
'= 10} = x=05
= -o- x=0.9
<

with Interface scattering

4 6 8 10 12 14 16 18 20
Ge segment thickness (ML)

Fig. 2.13. Room-temperature thermal conductivity of Si/Ge planar superlattices with constant

period L,=24 ML and different ratio between thicknesses of Si and Ge segments.

Another valuable conclusion from Figure 2.13 can be made about the dependence of thermal
conductivity on the parameter x when all basic mechanisms of phonon scattering are accounted

in calculations (bottom curves). In Si/Ge superlattices with thin Ge segments the thermal
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conductivity for x=0.9 (red curve) case is higher than for x=0.5 (black curve) and x=0.1 (blue
curve) cases. In Si/Ge superlattices with thin Si segments there is opposite situation, the thermal
conductivity for x=0.1 is higher than for x=0.5 and x=0.9 cases. It is attributed to the specifics of
interface scattering of phonons, since in the case when the interface scattering is not taken into
account (top three curves) the thermal conductivity do not demonstrate such behavior. The
results suggest that Ge atoms act as strong scatterers of Si-like phonons when dsi>>dge. In this
case phonon-interface scattering rate is larger for smaller values of x i.e. for larger amount of Ge
atoms in interface layers with mixing. When Ge segments are much thicker than Si segments the

situation is opposite and Si atoms at the interface strongly scatter Ge-like phonons.

2.4.  Conclusions to chapter 2

In this chapter a three-parameter BvK model of lattice dynamics for nanolayers and planar
superlattices with diamond crystal lattice was developed. The Boltzmann transport equation
approach was proposed for investigation of the phonon and thermal processes in Si nanolayers
and Si/Ge planar superlattices.

For nanometer-wide silicon nanolayers a good agreement between theoretical calculations
and the experimental data for 20-nm-thick and 30-nm-thick silicon nanolayers was obtained. It
was demonstrated that optical phonons contribution to the thermal conductivity of silicon
nanolayers under consideration constitutes only a few percent.

The perturbation theory and second quantization formalism were used in order to model the
scattering of phonons on interfaces in Si/Ge planar superlattices. It was concluded that interface
mass-mixing scattering of phonons plays an extremely important role in the limiting the total
phonon lifetime in Si/Ge planar superlattices and can lead to a peculiar behavior of phonon
thermal conductivity of these structures owing to the non-trivial dependence of the interface
scattering rate on the amplitudes of the atomic displacements. For a wide temperature range from
50 K to 400 K a good agreement between theoretical and experimental phonon thermal
conductivity was obtained for Si(35ML)/Ge(9ML) planar superlattice when phonon-phonon
scattering was not taken into account, indicating that the interface mass-mixing scattering can be
the dominant mechanism for the phonon scattering in real Si/Ge planar superlattices.

The proposed theoretical approaches allow better understanding of the phonon processes in
2D homogeneous layers and acoustically-mismatched heterostructures with diamond crystal
lattice and can be highly useful for an accurate predictive simulation of their phonon and thermal

properties.
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3. PHONON AND ELECTRON PROCESSES IN Si-BASED MODULATED
NANOWIRES

3.1. Effective mass method and electron energy spectra in Si/SiO; core/shell modulated

nanowires

Despite the technological difficulties, modulated nanowires (modulated NWs or MNWs)
have been successfully synthesized during the past few years, using electron deposition in pores
of different materials, thermal evaporation and chemical vapor deposition [132-135].
Experimental successes stimulate the investigation of physical properties of modulated
structures. Electronic states and ballistic electron transport in Si and GaAs MNWs have been
theoretically investigated in Refs. [136-140] in the framework of effective mass method and
density functional theory. It was demonstrated [139-140] that cross-section modulation with only
a few quantum dots leads to an appreciable enhancement of electron conduction properties of
GaAs nanowires.

In Figure 3.1 is shown the schematic view of considered core/shell nanowires. Nanowires
consist of two periodically repeated Si segments with dimensions d} xd;xI; and d}xd; xI?
covered by SiO, shell.
gL d

d;

(a) (b)

1
dx dx
Fig. 3.1. Schematics of a Si nanowire with constant cross section (a) and periodically cross-

section modulated Si nanowire (b). Both wires are covered with a SiO; shell.

Electron states in these structures are described with time-independent Schrodinger equation:
HY =EW,, (3.1)
where E, and V¥, is electron energy and electron wave function with quantum number n,

respectively. Since NW with constant cross-section can be considered as a particular case of a
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MNW (when cross-section of different segments is equal), then it can be obtained a general form

of electronic Hamiltonian H for both modulated and unmodulated nanowires.
Let us direct the Z axis of the Cartesian coordinate system along the NW, while X and Y axes
in the NW’s cross-sectional plane. For a chosen coordination scheme the electronic Hamiltonian

in the effective mass approximation takes the form:

2
ﬁ:-h—[ﬁm (X, y,z)—+% (%Y, 2)— +§ M, (X, y,Z) ]+V (x,y,2), (3.2)

where 7 is the Planck constant, V, (X, Y, z) is potential barrier in (X,y,z) point, M (X,y,z) and
M, (x,y,z) is transversal and longitudinal electron effective masses. Transversal and
longitudinal electron effective masses in Si are equal to 0.19m, and 0.98 m,, correspondingly,

where m, =9.10938215x10"*" kg is electron mass in vacuum. Equation (3.1) with Hamiltonian

(3.2) represents an eigenvalue problem, with electron energies as eigenvalues and electron wave
functions as eigenvectors. For the numerical solution of this problem a discretization of

equations (3.1-3.2) was performed. Thus, a point in continuum space with coordinates (X, Y, z)
was mapped into a point with coordinates (i, j,k) in discrete space. The discrete indices can

have values: i=1..,N,; j=1..,N, and k=1,...,N,, where number of discrete points along the
corresponding axes was taken equal to N, =15, N, =15 and N, =8.

Applying a finite difference method for derivatives from equation (3.2), the equation (3.1)
takes the form:

2 2 2

‘P(Ijk){h M (Ijk)+hy M (Ijk)+h M, (@, j,k)+V, (i, j, k) - E}

150 - 822 (M, (i+1 j.k)~M (-1 }.k))- Z; MG, i, k)}
+‘Pn(i—1,J',k):BZ%(ML(”LLk)—ML(I -1,j,k))- Zj( M., ], k)}

+‘Pn(i,j+1,k): 8A;2(M (i, j+Lk)-M (i, j-1k))- Zzy MG, j, k)} (3.3)
+‘Pn(i,j—1,k)_8A;2(M (i, j+1Lk)—M (i, j-1k))- Z; MG, j, k)_+

+‘Pn(i,j,k+1)_ SAZZ(Ml(l jik+1) =M, (i, j,k-1))- Zz M, (i, j. k)—+
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2 2

+ (i, j,k—l)LSZT(Ml(i, jk+)-M, G, j,k—l))—%Ml(i, j,k)}zo

It is supposed, that considered core/shell Si/SiO, nanowires are suspended in vacuum and are
infinite along the Z axis and in XY plane have nanometric dimensions. In this case the following
boundary conditions are applied:

Yo (N,+1, j,k)=¥,(0, j,k) =0
¥, (i,N, +Lk) =¥ (i,0,k) =0
¥ (i, j,N, +1) =P, (i, j,1)e*"
¥ (i,§,0) =, (i, j,N,)e™"

(3.4)

where L, is the length of one period of NW along the Z axis; k; is electron wave number along

the Z axis. Equation (3.3) with boundary conditions (3.4) determines electron energy and wave
function in (n,k;) state.

In Figure 3.2 are shown ten lowest electron energy branches in Si NW with constant cross-

section d, xd, = 9x9 nm? and Si MNW d} xd} x1;=5x5x1 nm® d? xd? xI?=9x9x1 nm°. Both

wires are covered with SiO; shell in such a way that total cross-sectional dimensions are equal to
15x15 nm?.
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Fig. 3.2. Electron energy dispersion in Si nanowire with constant (a) and periodically modulated
(b) cross-section, covered with SiO, shell.

Due to the nanometric cross-sectional dimensions of the considered wires, electron motion in
XY plane is quantified and its energy can have only discrete values. In case of Si NW with
constant cross-section the electron motion along the NW axis remains free and is described by a
parabolic energy dispersion (see panel (a) in Figure 3.2). In case of a Si NW with modulated
cross-section (panel (b) in Figure 3.2) there is a significant deviation from parabolic law, which
indicates that electron motion along the Z axis is not free and a part of electron wave function

being localized in wide segments of the modulated wire. One can observe also that lowest energy
69



levels in MNW possess higher energy compared to generic NW, suggesting that electron
confinement in nanowires with modulation manifests itself more strongly.

In Figure 3.3 is presented modulus of the electron wave function for lowest (ground) state in
Si NW with constant cross-section 9x9 nm? and Si MNW 5x5x1-9x9x1 nm®.
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Fig. 3.3. Electron function modulus for ground state in Si nanowire with constant (a) and

periodically modulated (b) cross-section, covered with a SiO; shell.

The distribution of wave function in YZ plane of NWs for three different values of coordinate
i=8, 5 and 3 is shown. The YZ section for i=8 is situated in the middle of the wire’s cross-section
(since the total number of discrete i points is N,=15), while for i=3 totally in the SiO; shell. For
i=5 in case of unmodulated nanowire the YZ section totally lies on the Si/SiO, interface and in
case of modulated nanowire one part of it is situated in SiO; shell (corresponds to the narrow Si
segment; k=1,2,3,4) and another part on the Si/SiO, interface (corresponds to the wide Si
segment; k=5,6,7,8).

From Figure 3.3(a) one can observe that for Si NW with constant cross-section the wave
function distribution along the Z axis is homogeneous. In this case the wave function modulus
strongly decreases in the SiO; shell e.g. for i=3 it is ~3 orders lower than for i=8. In case of a Si
NW with modulated cross-section (Figure 3.3(b)) there is an inhomogeneity in the wave function
distribution along the wire’s axis, namely, in the wide segment is concentrated the main part of
the wave function. In particular, for i=5 case it is clearly seen the electron wave function
localization in the wide segment of the MNW. In addition, all graphics demonstrate that electron
wave function is almost completely localized in the silicon channel and very weakly penetrates
into the SiO; shell, which is caused by a high potential barrier on the Si/SiO, interface: V, = 3.2
eV.
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3.2. Phonon processes in Si and Si/Ge core/shell modulated nanowires

In spite of the fact that bulk Si is a poor thermoelectric with room-temperature ZT ~ 0.01
[141], thin Si NWs and Si/Ge segmented NWs are considered promising for thermoelectric
applications [54-55, 125, 142-143] owing to the much lower values of the RT (RT) lattice

thermal conductivity x, <1 W m™ K. It has been demonstrated experimentally that the good

electrical conductivity, as in doped bulk Si, and poor thermal conductivity of Si NWs [55] and
rough Si NWs [54] provide relatively high values of ZT ~ 0.3 to 0.6 at RT. These experimental
results stimulate theoretical search of one-dimensional Si-based nanostructured materials with
the ultra-low thermal conductivity. An up to 30-fold drop of the RT lattice thermal conductivity
in comparison with Si NWs was reported for Si-based segmented nanowires consisting of
acoustically-mismatched materials [125]. The reduction of the RT lattice thermal conductivity up
to 75% was theoretically demonstrated in Si/Ge core/shell NWs with Ge thicknesses of several
monoatomic layers [144]. The corresponding enhancement of ZT in these NWs was also
predicted [145].

Fabrication of the periodically cross-section modulated nanowires is still a major challenge.
It is difficult to precisely control shape and size of the nanowire segments. Nevertheless, the
periodic diameter-modulated GeSi/Si pillar structures were prepared from the multilayer GeSi/Si
islands using the selective etching of Si in KOH [136]. The theoretical models for the cross-
section modulated nanowires have also been reported. Ballistic thermal conductance of Si and
Si/Pb wires with modulation of the cross-sectional width from 0.1 to 0.5 pm was considered in
Ref. [138]. Within the framework of the elasticity theory, thermal conductance was demonstrated
to yield a minimum with a reduction by a factor 0.6 t0 0.7 at T ~ 0.1 K to 0.3 K [138]. Nanowires
of GaAs modulated by several quantum dots reveal the enhanced thermoelectric properties at
low temperatures in the ballistic transport regime due to modification of the electron
transmission coefficients [139-140] and reduction of the low-temperature thermal conductance
[146].

Numerous theoretical investigations of phonon properties of semiconductor nanostructures
were carried out in the framework of a continuum approach. This approach is a powerful tool for
the analysis of the long-wavelength phonon modes. It is completely adequate for the description
of the electron-phonon interaction [46, 147-148] or low-temperature thermal conductivity in
nanostructures when only the low-frequency long-wavelength phonon modes are populated [146,
149]. However, the continuum approach significantly overestimates thermal conductivity for

temperatures T>100 K in comparison with the FCC model of the lattice vibrations due to a steep
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slope of the dispersion curves for high-frequency phonon modes [33]. Different models of lattice
dynamics and molecular dynamics simulations [88, 118, 150-154] allow for an accurate
description of heat transfer and thermal conductivity in a good agreement with experiments.

The schematics of the considered Si NW, Si MNW and Si/Ge core/shell MNW are shown in
Figure 3.4. The external surfaces of the nanostructures under consideration are assumed to be
free [32, 116, 125]. The X and Y axes of the Cartesian coordinate system are located in the cross-
sectional plane of the nanowires (unmodulated or modulated) and are parallel to its sides, while
the Z axis is directed along the wire axis. It is assumed that NW and MNWs are infinite along the

Z axis. The origin of the coordinates is set at the center of the nanowire cross-section. The
translation period of MNW consists of two parts with dimensions d) xd; xI; and d} xd? xI?,
respectively. In case of a core/shell MNW the modulated Si core is covered by Ge shell with
constant thickness dge. The length of one MNW period is | =1} +1>. The sides of unmodulated

NW are denoted as dy and dj.

d,

(a) (b)

dx
Fig. 3.4. Schematic view of a Si nanowire with constant cross-section (a), a cross-section

modulated Si nanowire (b) and a cross-section modulated core/shell Si/Ge nanowire (c).

The crystal lattice of Si consists of two face-centered cubic sublattices, which are shifted
along the main diagonal of a unit cell by 1/4 of its length. For convenience, let us identify the
atoms of the first sublattice as the “blue” atoms while the atoms of the second sublattice as the

“red” atoms (see Fig. 3.5 below).
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Fig. 3.5. Schematics of a diamond-type crystal lattice. Lattice constant is denoted as a.

In nanostructures under consideration, the displacements of the atoms belonging to one
period only are independent. The rest of the atomic displacements are equivalent to those in the
selected period due to the translational symmetry along the Z-axis. In the case of an unmodulated
NW, the translation period consists of two atomic layers of the “blue” atoms and two atomic
layers of the “red” atoms (all layers are perpendicular to the Z axis). For MNW, the number of
atomic layers in the period is determined by I,. The displacements of equivalent atoms have the

form:
u(x, y,z+nl,;q,) =w(x,Yy,zq,)e*", (3.5)
where w(x,Y,z;q,) =w(r;q,) is the displacement of the atom with coordinates X, y and z, the

period is labeled by an integer n, and q; is the phonon wavenumber. The equations of motion for

the displacement are

a)Z\NI(Fk,qZ): z D|J(ﬁ1FIZ)WJ(F|Zqu)l kzls:N’ I :X,y,Z, (36)
j=xy,zi

where

D; (F, ) = @y (R, 1) / ym(B)m(K). (3.7)

In Equations (3.6) and (3.7) Dj are the dynamic matrix coefficients, m(r,) [m(r;)] is the mass
of the atom at 1, 1], @; (%K) is the matrix of force constants and N is the number of atoms in
the NW or MNW translational period. For the atom at 1, the summation in Equation (3.6) is

performed over all the nearest and second-nearest atoms at r, . In case of silicon or germanium,
the atom at r, has 4 nearest neighbors at I, =F +h' (n=1,...,4) and 12 second-nearest

neighbors at T/, =T, +h" (n=1,.,12). The components of vectors h! and h!' are presented in

Table 3.1. In our model, the interaction of an atom with its nearest and second-nearest neighbors
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is described by the following force constant matrices: ®; = (16/a’)(as; + S1-5;))hy;h, ; for

ni n,j

the nearest atoms (n=1,...,4) and ®; =(4/a%)(A5;(a*/4—hh) +ushihy +vA=8)hh' )

n,i'n,i ij ni ni
for the second-nearest atoms (n =1, ..., 12), where a is the lattice constant, «, S, ¢, A and v

are the force constants, &; is the Kronecker’s delta and ij=x,y,z. The force constant matrix
@, (., =1,) is obtained from the condition that the total force acting on the atom r, at the

equilibrium position is equal to 0, i.e. @, (K, = Fk)+Z<Dij(Fk, r,#r)=0.
B

By solving the equations of motion (3.6) at /" and X BZ points of bulk Si, one can express

three constants «, x,and A through g and the frequencies of the LO and TO phonons at I”
point and the LA phonon at X point:
a =Ml (1)18; u=m(20],(X)-als(I)/32

(3.8)
A =m(40f,(X) -2, (X))~ o (D)) /32~ B12.

The constants S and v are treated as fitting parameters and are obtained from the best fit to
experimental dispersion curves for bulk Si [115]. The numerical values of the force constants for
Si are indicated in the last column of Table 3.1.

To calculate the energy spectra of phonons in Si NWs and MNWs, the set of Equations (3.6)
was solved numerically by taking into account the periodic boundary conditions [see Equation
(3.5)] along the Z-axis and free-surface boundary conditions in the XY-plane (i.e. all force

constants outside the nanostructure are set to zero). The calculations were performed for all q,

values in the interval (0, 7 /l;) for MNWs and (0, = /a) for NWs (in the case of NWs, |, = a),
where a = 0.5431 nm is the lattice constant of Si. The notations and dimensions in the
monoatomic layers (ML, 1 ML = a/4) for analyzed Si NWs and MNWs are represented in Table
3.1

Table 3.1. Notations and dimensions for Si nanowires and Si cross-section modulated nanowires

under consideration.

Nanostructure Dimensions Notation
Si NW 14 ML x 14 ML NW #1
Si MNW 14 ML x 14 ML x 6 ML / 22 ML x 22 ML x 6 ML MNW #1
Si MNW 14 ML x 14 ML x 8 ML /18 ML x 18 ML x 8 ML MNW #2
Si MNW 14 ML x 14 ML x 8 ML / 22 ML x 22 ML x 8 ML MNW #3
Si MNW 14 ML x 14 ML x 8 ML / 26 ML x 26 ML x 8 ML MNW #4
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Si MNW 14 ML x 14 ML x 8 ML / 30 ML x 30 ML x 8 ML MNW #5
Si MNW 14 ML x 14 ML x 8 ML / 34 ML x 34 ML x 8 ML MNW #6
Si MNW 14 ML x 14 ML x N,/ 22 ML x 22 ML x N, MNW #7
Si MNW 14 ML x 14 ML x 4 ML / 22 ML x 22 ML x 4 ML MNW #8
Si MNW 14 ML x 14 ML x 12ML / 22 ML x 22 ML x 12 ML MNW #9

The phonon energy spectra of Si NW #1 and Si MNW #1 are shown in Figure 3.6(a) and (b),

correspondingly. In the figure, we show 20 lowest branches 7w,(q,) (s=1,2,...,20) in both

structures as well as several higher branches with s=20,25,30,35,..., 285,290,294 for the NW and
with s=35,50,65,80,...,1515,1530 for the MNW.

--------

—————
—————
-

Energy (meV)
Energy (meV)
W
()

1 1 0 1 1 1
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

(a) 4. Q) (b) 9 Q)

Fig. 3.6. Phonon energies as a function of the phonon wave vector q (a) in Si NW with the lateral
cross-section 14 ML x 14 ML (the phonon branches with s=1 to 20, 25, 30, 35...290, 294 are
shown) and (b) in St MNW with dimensions 14 ML x 14 ML x 6 ML/ 22 ML x 22 ML x 6 ML.
The phonon branches with s=1 to 20, 35, 50, 65, ..., 1515, 1530 are depicted.

The nanowire cross section is chosen the same as the cross section of narrow segments of the
MNW (see Table 3.1). The volume of a translational period in the MNW is larger than that in the
NW, therefore the number of quantized phonon branches in the MNW is substantially larger as
compared to the NW. In the MNW, there are 1530 branches, while only 294 branches exist in the
NW (see Figure 3.6). As follows from Figure 3.6, a great number of phonon modes in the MNW
with energy Zw > 5 meV are dispersionless and possess group velocities close to zero due to the
trapping into the MNW segments.

The trapping effect is illustrated in Figure 3.7: the average squared displacements of atoms
(see Figure 3.7(a))
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a2 dy/2
j I |vT/s(x,y,z;qZ)|2dxdy, ifo<z<l

—d}/2-d}/2

|U(z;s,0,) = (3.9)

d2/2 dj/2

f J W, (x, y,z;qz)|2 dxdy, if Il <z<I?

-d?/2-d}/2

in the mode (s=8, 9,=0.4q,max) (red line) are relatively large in the wide segments of the MNW
and almost vanishing in the narrow segments. Therefore this mode is trapped into the wide
segments of the MNW. For comparison, it is also shown the average squared displacements of
atoms in a propagating phonon mode (s=992, 9,=0.20;,max) (blue line), which are equally large in

both the wide and narrow MNW segments.

Si MNW 14x14x8-22x22x8 ——SiNW 14x14
| -==-Si MNW 14x14x8-18x18x8
| ---- Si MNW 14x14x8-26x26x8
---- Si MNW 14x14x8-34x34x8

J | I |
1 | [ |
) 1
I I
I I

|
l
i
1

0.14F £ ;
0.12F & 5 5 -2
£ 0.08F ~ - - "]
& [
= 0.04F 5 g g ]
o.ooi\J.: E U E L): E L/
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(a) monolayer number (b) Energy (meV)

Fig. 3.7. (a) Average squared displacements |U(z;s,q,)|* of the trapped (s=8, q,=0.40,max) (red
line) and propagating (s=992, 0,=0.2q;,max) (blue line) phonon modes in Si MNW with
dimensions 14 ML x 14 ML x 8 ML/ 22 ML x 22 ML x 8 ML. (b) Localization of phonon
modes in 14 ML x 14 ML MNW core shown for MNWs #2, #4 and #6.

For illustration of the phonon mode distribution in the cross-section of MNWs in Figure 3.7(b)
we show the integral squared displacements of atoms in 14 ML x 14 ML cross-section channel

as a function of the phonon energy:

di/2 djr2 12

U2.=>. j j j W, (x, y,z; )| dxdydz / g (). (3.10)

(@) _glj2-dlj2 0
Here summation is performed over all phonon modes s(w) with the frequency @; g(w) is the

number of the phonon modes. The results are presented for NW #1 (dashed black line) and
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MNWs #2 (green points), #4 (black points) and #6 (blue points). In Si NW UZ = 1 for all

core
energies due to the orthonormalization of the phonon displacement vectors (see dashed black line

in Figure 3.7(b)). Increase of the cross-section of the wide segments leads to the decrease of

2
core

Uz . for all phonon energies and, corresponding, the rise of (1-U_Z ). The latter is indicative of

the phonon mode localization in the wide segments. Thus, the trapping effect enhances with
increasing cross-section of the wide segments.
The effect of the phonon deceleration in cross-section modulated nanowires is illustrated in

Figure 3.8,  where is shown the average  phonon group  velocity

(V)(w)=9(w)/ D (de, /dg,)™" as a function of the phonon energy for Si NW #1 (dashed line)
s(w)
and Si MNW #1 (solid line).

50 1 I 1 I I 1

s Si MNW 14x14x6 ML -22x22x6 ML
l\l\

>
o

o %}
o o

Average phonon group
velocity (km's™)
o

e
o

0 10 20 30 40 50 60 70
Phonon energy (meV)

Fig. 3.8. Average phonon group velocity as a function of the phonon energy in Si NW with the
lateral cross-section 14 ML x 14 ML and Si MNW with dimensions 14 ML x 14 ML x 6 ML/ 22
ML x 22 ML x 6 ML.

The average phonon group velocity in MNW is smaller than that in the NW for all phonon
energies. As a result, the phonon modes in MNW carry less heat than those in the NW. The drop
in the phonon group velocities in MNWSs in comparison with NWs is explained by the trapping
effect: the trapped phonon modes represent standing waves existing only in the wide segments of
MNWs. These modes do not penetrate into narrov MNW segments (see the red line in Figure
3.7(a)). Therefore, these phonons possess group velocities close to zero. For example, group

velocities of the phonon modes shown in Figure 3.7(a) are v, ;_,(d, =0.2q, )~ 1.5 km/s and
v, 5(q, =0.4q, ...) ~ 0.01 km/s for the propagating and trapped modes, respectively. A similar

strong reduction of the phonon group velocity has been recently demonstrated in the segmented
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NWs, consisting from the acoustically-mismatched materials [125]. The effect was also
explicated by the phonon modes trapping in NW segments.

The following NWs were considered: Si/Ge core/shell MNWSs with 14x14x N, —22x22x N,

ML Si core and different dg. (denoted as MNW # N, - dge), Si MNWSs with dimensions
14x14x N, —22x22xN, ML (denoted as MNW # N,) and Si NW with the cross-section area

d,xd, = 14x14 ML, which are equal to the cross-section area of a thin Si segment of MNWs

(denoted as NW #1).

As well as in the case of Si NWs and Si MNWs the phonon energy spectra in Si/Ge
core/shell MNWs were calculated from equation (3.2). In Figure 3.9, we show dependence of the
phonon energies on g for the Si NW #1 (panel (a)) and Si/Ge MNW#8-4 (panel (b)). The energy
dispersion for phonon branches s=1-5,7,9,11,..,293 of the Si NW#1 and s=1-5,25,50,75,..,4150
of the MNW#8-4 are plotted for comparison. The number of phonon branches N,=4152 in the
MNW#8-4 is substantially larger than Ny=294 in the NW#1.

T T T T 10 v T v T T T v T ]()-8
0r K= 6.76 W nr'K" at RT I ] I 701 K= 0.25 W nr'K”" at RT I
60 : 60 =l
> > 1
2 50 250 %
8540 8340 Z .
2 f g 8
v 30 o 30 3
g 5 %
20 820 2
= = g
10 10 I
0 () ——— | 10%
0.0 0.2 0.4 0.6 0.8 1.0

(b) q- /e qzmax
Fig. 3.9. Phonon energies as a function of the phonon wave vector g, in (a) a generic Si nanowire

with the lateral cross-section area 14x14 ML and (b) a cross-section modulated Si/Ge nanowire
with 14x14x8—-22x22x8 ML Si core and 4 ML — thicker Ge shell. The color in the plot shows

the relative participation of the phonons in heat transfer: from maximum (red) to minimum
(blue).

Flattening of the phonon dispersion branches in MNW leads to a decrease in the phonon group
velocities in MNW in comparison with NW. As a result, the average phonon group velocities in
Si/Ge MNWs are substantially lower than those in both Si NW and corresponding Si MNW. The
color of the curves shows contribution of a given phonon mode (s,q;) to thermal transport: red
(blue) color designates maximum (minimum) participation. Since thermal conductivity is a sum
of contributions of all phonon modes, we also calculated partial contribution of each mode. In Si
NW, phonons with energy o <10meV carry 24% of heat while in the Si/Ge MNW#8-4 these
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modes carry 50% of heat. Therefore, participation of the higher energy phonons in heat transport
is substantially reduced in Si/Ge MNWs.

The average phonon group velocity <u> (o) = g(a))/Z(da)S /dqg,) ™ is shown in Figure 3.10

s(w)
for the Si NW#1, Si MNW#8 and Si/Ge MNWSs #8-4 and #8-10. Here g(w) is the number of the

phonons with frequency o .

5 N 1 ! I ' I ' 1 N T N T
----- SiNW 14x14
4 Hhi — Si MNW 14x14x8-22x22x8 |
LR — Si/Ge MNW, dj;,= 4 ML
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Fig. 3.10. Average phonon group velocity as a function of the phonon energy shown for Si NW
with the lateral cross-section area 14x14 ML, Si MNW with dimensions 14x14x8—22x22x8

ML and Si/Ge core-shell MNWSs with 14x14x8—22x22x8 ML Si core and different dge

Note that Ge shell reinforces the decrease of (u) making it especially strong for the low- and

middle-energy phonons with 7w <40meV . Since these phonons are the main heat carriers in

semiconductor nanostructures, the strong decrease of their group velocities significantly
influences thermal conduction.

In calculations, we take into account all basic mechanisms of phonon scattering: three-
phonon Umklapp scattering and boundary scattering [33, 115, 118, 120, 125, 151-154].

According to the Matthiessen’s rule, the total phonon relaxation time is given by:

1/ 1y s(a,) =1/ 7, ((q,) +1/ 75 (q,) . Here, (i) 7, is the relaxation time for the Umklapp

scattering:

1(q ) =B,(q,)(@.(q,))’T exp(—C,(a,)/T) [120]; (ii) 75, is the relaxation time
Z-U,s z

for the boundary scattering:

1 _1—p|uz,s(qz)|(i+i],

_ (3.11)
75.(q,) 1+p 2 d, d

X y
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in the case of a NW,

dlj2 dj/2 |t
1 1- p|Uzs(Q)|U 1} J' J' .[|V‘\',S(X,y,z;qz)|2dxdydz+

+
75,(0,) 1+ p 2 d, d; —dL/2-di/2 0
: (3.12)
1 1 d2/2 djr2 pe? ,
+(F+d_2] J; J; J. W, (%, Y, Z;0,)| dxdydz]
X y J-dii2-dj/21;+al4
in the case of a MNW and
1 ZZ: 1
TB,s(qz) i=1 T (q )
p|UZS(qZ)| cores(q) _+i +
1+p 2 d, d;
(3.13)
L @) e e L £ (0 (0,) 26
TiB’S(qZ) shell,s \Mz di+dGe di+d ’ core,s \ "1z shell,s \Mz/ = %1
1- Een s(G,)
—pluz,s(qz)| shell. cores(q )/é:shell s(q )<5
1+p dge
in the case of a core/shell MNW, where
_ di/2 dy/2 Ee(i-1)12 ,
Ees@)=[ [ | M(xy.z:0,) dxdydz,
—dy/2-dy/2 (i-)l;
(3.14)

(di+dge)/2 (dy+dee)/2 124(i-1)I2

gsihell,s (qz) = J. I J. |Ws (X1 y1 Z; qz)|2 dXdde - gciore,s (qz)

—(dj+dge)/2 —(dy +dg. )/2  (i-D)1}
In equations (3.11-3.13), v,.(q,)=de,(q,)/dq, is the phonon group velocity along the
nanowire axis, p is the specularity parameter of the boundary scattering. Equations (3.11-3.13)

provide an extension of the standard formula for the rough edge scattering [115] to the case of a
rectangular NW or MNW. In equation (3.12) it was taken into account that a part of the phonon

wave corresponding to the mode (s,q,), concentrated in the MNW segment d ><d§ x 1!, scatters

on the boundaries of this segment, while the rest of this wave scatters on the boundaries of the

segment dfxdjxlf. In equation (3.13) the parameter & was introduced in order to classify
different phonon modes: core-like, cladding-like and propagating. The quantities §Cores(qz) and

Evens(0,) show the relative portion of the phonon mode (s,q;), concentrated in the core or shell

of the ith MNW segment, correspondingly. For Si/Ge core/shell MNWs it was taken into account
that the core-like and propagating modes partially scatter at Si/Ge interfaces and outer

boundaries while cladding-like (Ge-like) modes with & (qz)/é‘heuls(qz)<5 scatter only at

core,s
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Si/Ge interfaces. In this sense, the parameter & represents a threshold value for a ratio between

the integrated phonon amplitudes concentrated in the core &, (q,) and in the shell &, .(q,)

of ith MNW segment. In calculations it was used ¢ =0.1, which means that in the cladding-like
modes more than 90% of lattice vibrations from the ith MNW segment occur in Ge-shell, while
Si core-region is depleted of phonons. A similar effect of the phonon depletion was theoretically
described by Pokatilov etal. in Ref. [155] for the acoustically-mismatched planar
heterostructures, where part of the phonons is pushed out into the acoustically softer layers.

The mode-dependent parameters Bs and Cs in the expressions for the Umklapp scattering in

Si/Ge MNWs were averaged for the values of the Umklapp scattering parameters in bulk Si and

Ge SO that Bs (qz) = (égclore,s (qz) + é:czore,s (qz )) BSi + (érihell S (qz) + é:szhell S (qz )) BGe and

C.(0,) = (Goores (@) + s (0 ))Coi + (S (0,) + Eien s (4;))Coe - In the case of Si NW and Si
MNW, we have &, (d,)+Ere < (0,) = 0 and Bs(d;)=Bsi, Cs(d,)=Csi. The bulk values Bs;j and Cs;
were taken from Ref. [37] while Bge and Cge Were determined by comparing the calculated
thermal conductivity of bulk Ge with experimental data [121]: B, =1.88x107"°s/K, Cs; = 137.39
K, Bg, =3.53x10s/K, Cge =57.6 K.

The Boltzmann transport equation in the relaxation time approximation [37, 118, 125] was
used in order to model the thermal properties of Si-based modulated nanowires. See equations
(2.6)-(2.9) for description of this approach. Within BTE with relaxation time approximation the
phonon flux per unit gradient in the Si NWs and the Si MNWs is given by:

h
l Uz, max exp[ al)(S(-l-qZ)]
2
®: 2 Z I (ha)s (qz)uz,s(qz )) Z-tot,s(qz) : 2 dqz ' (315)
27KsT* o fhn 0 ( (ﬁa) (q )J J
exp _s\1z) -1
kg T
Here z,,, is the total phonon relaxation time, s is the number of a phonon branch, K; is the

Boltzmann constant, 7 is the Planck constant and 7 is the absolute temperature. The Eq. (3.15)
was derived from Egs. (2.8-2.9) taking into account one-dimensional density of phonon states
[125].

In  Figure 3.11, the lattice thermal conductivity ' =@©/(dd,) and
ki =015 +12)/ (dydil; +dzd1?) are plotted as a function of temperature for Si NW #1, as

well as for Si MNWs #2, #3, #4 and #5 (see Table 3.1 for denotations). The results are presented
for a reasonable specularity parameter p = 0.85, which was found in Ref. [118] from a

comparison between theoretical and experimental data for a Si film of 20 nm thickness.
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Fig. 3.11. Temperature dependence of the lattice thermal conductivity in Si NW with the cross-

section 14 ML x 14 ML and Si MNW with different dimensions.

A significant redistribution of the phonon energy spectra and a reduction of the average

group velocities in MNWs strongly decrease their lattice thermal conductivity in comparison
with the NW. At RT, the ratio between the thermal conductivities in NW and MNWSs ranges

from a factor of 5 to 13 depending on S, =d, xd, . However, this result does not mean that the

ratio of the thermal fluxes in NW and MNWs should be the same since the average cross section
of MNWs is larger than that in NW. To compare the abilities of MNWs and NWs to conduct

heat, it was calculated the thermal flux per unit temperature gradient ® using equation (3.15) for

all structures under analysis.
In Figure 3.12(a) we show the thermal flux for Si NW #1 (upper dashed line) and Si MNWs
#2, #4 and #6 for p = 0.85 as a function of temperature.
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Fig. 3.12. (a) Temperature dependence of the thermal flux for Si NW (dashed line) and Si
MNWs with dimensions 14 ML x 14 ML x 8§ ML/ 18 ML x 18 ML x 8§ ML, 14 ML x 14 ML x 8
ML/ 26 ML x 26 ML x 8 ML and 14 ML x 14 ML x 8§ ML/ 34 ML x 34 ML x 8 ML. (b)

Temperature dependence of the ratio between thermal fluxes in Si NW and Si MNWs.

The maxima on the thermal flux curves are determined by the interplay between the three-
phonon Umklapp and the phonon-boundary scattering. At low temperatures, the boundary
scattering dominates; the thermal flux increases with temperature due to the population of high-

energy phonon modes and approaches the maximum value when 7, ~ z,. A subsequent rise of

temperature leads to an enhancement of the Umklapp scattering and diminution of the thermal
flux. An increase of the cross-section of the MNW wide segments attenuates the phonon-
boundary scattering, and the maximum of the thermal flux curves shifts to lower temperatures:
from T =190 K for Si NW #1 to T = 100 K for Si MNW #6. Therefore, at low temperatures
(T<120 K) the thermal flux reduction is stronger in MNWSs with the smaller cross-sections.
Numerous high energy phonon modes in MNWs are trapped in the wide segments and possess a
low group velocity. The population of these modes with increasing temperature almost does not
increase the thermal flux. Thus, at medium and high temperatures the Umklapp-limited thermal
flux in MNWs reduces stronger than that in the generic NW. The ratio of the thermal fluxes in
NW and MNW 7 =0O(Si NW)/O(Si MNW) increases with temperature, and reaches the values
of 3.5 to 4.5 depending on the MNW cross-section (see Figure 3.12(b)). For these temperatures,
the increase of the MNW cross-section makes the reduction of the thermal flux stronger due to
the corresponding rise of the number of the trapped high-energy phonon modes, which do not
carry heat in MNWs. This is distinct from the case of NWs. The strong modification of the
phonon energy spectra and phonon group velocities in MNWs in comparison with NWs also
increases the Umklapp phonon scattering in MNWSs as compared with NWs. The latter is an
additional reason for the thermal flux reduction in MNWs.

An important quantity, which determines the thermal conductivity and thermal flux, is the

mode-dependent phonon mean free path (MFP) A, (q,) [122]. In our model A,(q,) is given by:

VA(q)= 2 1/A(q,), (3.16)

where A, (q,)=7,,(d,)-v,.(q,) and r = B or U. The dependence of the average phonon MFP

<A> (w) = g(a))/Z(llAs) on the phonon energy is presented in Figure 3.13 for the NW #1

s(w)

(solid black line) and MNWs #7 with N, = 4 (solid red line) ML and N, = 12 (dashed blue line).
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Fig. 3.13. Dependence of the average phonon mean free path on the phonon energy in Si NW #1
(solid black) and Si MNWs #8 (solid red line) and #9 (dashed blue line).

The interplay between Ag (q,) and Ay (q,) is insightful. The Umklapp-limited phonon
MFPs A, ((g,) in MNWs are significantly smaller than those in NWs due to both reduction of
the group velocity and enhancement of the phonon scattering. The boundary-limited MFPs
Ag(q,) are larger in MNWs due to the larger average cross-section of MNW in comparison

with that in NW (see equations (3.12-3.13)). As a result, at small energies when the Umklapp

MNW >NW

scattering is weaker than the boundary scattering (A)" >(A)", while for 7w>5 meV

(A

WM << (A)™. Nevertheless, the integrand in equation (3.15) averaged over all phonon

branches is smaller in MNWs for all energies due to the multiplication of A (q,) by v, (q,).

The augmentation of 1> decreases <A>MNW for almost all energies. The energy-averaged phonon
MFP calculated from Figure 3.13 constitutes ~ 9.25 nm for the Si NW, ~ 8.4 nm for the MNW #
8 and ~ 6.9 nm for the MNW #9. The increase in the average MNW cross-section at fixed I} and
I? attenuates boundary scattering and increases the thermal flux.

In Figure 3.14 we show the dependence of the ratio n of the thermal fluxes in Si NW #1 and

Si MNW #3 on temperature for different values of the specularity parameter p = 0.0, 0,3, 0.6,
and 0.9.
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Fig. 3.14. Temperature dependence of the ratio of thermal fluxes in Si NW and Si MNWs. The

results are shown for different values of the specularity parameter p = 0.0, 0.3, 0.6 and 0.9.

For the interpretation of the data in Figure 3.14, it were calculated separately the thermal flux
6, carried out by the long-wavelength phonon modes (s,q;), which are mainly scattered at the
boundaries and described by the inequality 7, (s,q,) > 75(s,q,), and the thermal flux 6, carried
out by the rest of the phonons, the total thermal flux being ® =®; +®, . The results show that
for all values of p under consideration, the RT flux ®; is by a factor of ~ 5 lower in MNW than
that in NW due to the phonon trapping. An increase of p decreases ®, and strongly enhances
®, in NW due to attenuation of the boundary scattering of the high-energy phonon modes.

These modes in MNW do not participate in the heat transfer because of their localization in the
wide segments. For this reason, the ratio between thermal fluxes in the NW and the MNW

appreciably depends on p: for p = 0.0 ©,(NW)/©®,(MNW)~ 1, while for p = 0.9
0, (NW) /6, (MNW) ~ 3. As a result, the flux ratio increases with increasing p in a wide range
of temperatures from 100 K to 400 K. The RT thermal conductivity of the rough Si NWs [54] is

already by a factor of 100 lower than the corresponding bulk value. The obtained results suggest
that the cross-section modulation of the rough NWs allows for an additional decrease of the
thermal conductivity by a factor of 2 to 2.5 with a subsequent increase of ZT.

The dependence of the ratio 7 of the thermal fluxes in Si NW #1 and Si MNW #7 on N, for
the temperatures T = 100 K, T =200 K, T =300 K and T = 400 K and p = 0.85 is presented in
Figure 3.15. The calculated points for N,= 2,4,6,...,18 are joined by the smooth curves as guides

for an eye.
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Fig. 3.15. Ratio of thermal fluxes in Si NW and Si MNWs as a function of N,. The results are
shown for different temperatures T = 100 K, 200 K, 300 K and 400 K.

The overall trend of these curves is determined by the interplay of two effects: (i) the phonon
modes trapping, which suppresses the heat flux and (ii) augmentation of the MNW average
cross-section, which enhances the heat flux due to the emergence of additional phonon modes for
heat propagation and attenuation of the phonon-boundary scattering. In Si MNW with the ultra-
narrow segments N; = 2 ML, the trapping of phonon modes is weak and the thermal flux is larger
than that in Si NW (7 <1) due to the weakening of the phonon-boundary scattering in MNW in
comparison with NWs. The rise of N, enhances the trapping, and for all temperatures under
consideration the flux ratios rapidly increase with N; rising up to the values 8 ML to 12 ML, and
reach their maximum values at around N, = 16 ML to 18 ML. It is expected that a subsequent

rise of N, should decrease r due to augmentation of the MNW average cross-section.

The following NWs were considered: Si/Ge core/shell MNWSs with 14x14x N, —22x22x N,
ML Si core and different dge (denoted as MNW # N; - dge), Si MNWSs with dimensions
14x14x N, -22x22x N, ML (denoted as MNW # N,) and Si NW with the cross-section area
d,xd, = 14x14 ML, which are equal to the cross-section area of a thin Si segment of MNWs

(denoted as NW #1).
The dependence of thermal conductivity on temperature, T, for Si NW#1, Si MNW#8, Si/Ge
MNWs #8-1, #8-3, #8-7 and #8-10 is presented in Figure 3.16.
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Fig. 3.16. Phonon thermal conductivity as a function of the absolute temperature. Results are
presented for Si NW#1, Si MNW#8 and Si/Ge MNW#8- dg. with different dge.

The thermal conductivity of Si MNWH#8 is lower by a factor of 4.3 — 8.1 than that in Si NW#1,
depending on T. Additional strong decrease of « is reached in Si/Ge MNWs. Increasing the
thickness of Ge shell to dge = 7 ML leads to k decrease by a factor of 2.9 — 4.8 in comparison
with that in Si MNWH#8, and by a factor of 13 — 38 in comparison with that in Si NW#1. The
reduction in k of Si/Ge MNWs is substantially stronger than that reported for core/shell
nanowires without cross-sectional modulation [118, 144, 156-159]. In the generic core/shell
nanowires, the k decrease is due to phonon hybridization, which results in changes in the phonon
DOS and group velocity. In the considered core/shell MNWs, « reduction is reinforced due to
localization of some phonon modes in wider MNW segments. The localization completely
removes such phonons from the heat transport.

A comparison of k of nanowires with the same cross-sections is sufficient to make a
conclusion about their abilities to conduct heat. A lower kK means lower heat transfer. In the case
of nanowires with various cross-sections, a nanowire with the minimum k may not necessarily
possess the minimum thermal transfer properties due to the difference in the cross-section areas.
Therefore, in this case, a comparison of TF is more illustrative. The dependence of the ratio of
TF at RT for MNWs and Si NW on dg is presented in Figure 3.17 for N; = 4, 6, 8, 12. Two
points for N, = 20 and 28 at dge = 4 ML are also shown. All curves demonstrate a maximum
between dg. =3 ML and dge = 6 ML. The increase in N, leads to a shift of the maximum to lower

values of dge.

87



O(Si NW) / O(Si—Ge MNW)

| SiNW 14x14
Si core MNW 14x14xN;-22x22xXN,
| | | | | 1 1

0 1 1 | 1
o 1 2 3 4 5 6 7 8 9 10
Ge shell (ML)
Fig. 3.17. Ratio of thermal fluxes in Si NW and Si/Ge MNWs as a function of dg. for different
values of N,.

In order to explain the non-monotonic behavior of the ratio curves in Figure 3.17 it was

Drmax

calculated the spectral density of TF ¢(w), determined by the equation ® = j p(w)dw, asa
0

function of the phonon energy for Si NW, Si MNW and Si/Ge MNWs. The results show that in
Si MNWs without Ge cladding, TF is strongly suppressed in comparison with Si NW due to
redistribution of phonon energy spectra leading to the reduction of the phonon group velocities
and localization of phonon modes in nanowire segments. The influence of Ge shell on the
spectral density of MNWs is two-fold: (i) it reinforces the decrease in the spectral density in
Si/Ge MNWs as compared with Si MNWSs owing to a stronger decrease of the phonon velocities
and stronger phonon localizations; (ii) it increases TF due to appearance of additional channels
for heat transfer through the Ge shell and attenuation of the phonon boundary scattering of
propagating and cladding-like phonons. An interplay of these two opposite effects explains the
non-monotonic dependence of the TF ratio on dge shown in Figure 3.17. The difference between
TF in MNWSs and NWs becomes larger with growing N and it reaches the maximum values of
10-11 at N, ~ 28 ML — 32 ML. For N,>32 ML, TF ratio starts to decrease due to redistribution of
the phonon energy spectra and heat conduction through Ge shell.

The energy-dependent localization of the phonon modes in the narrow segments of MNWSs

E o on =& +E ) x100% is shown in Figure 3.18 for Si NW (dashed line), Si/Ge MNW#8-2
(red triangles) and MNW#8-7 (blue circles).
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Fig. 3.18. Phonon modes localization as a function of the phonon energy in narrow segment of
MNW. The results are presented for Si NW#1 (dashed line), Si/Ge MNW#8-2 (red triangles) and
Si/Ge MNW#8-7 (blue circles).

Approximately, half of the phonon modes are concentrated in the wide segments of MNW and
have &

narrow

<30%, i.e. less than 30% of the atomic vibrations of these modes take place in the
narrow segments of MNW. Many low-energy phonons in MNWs with #Zw<15meV are
concentrated in Ge shell and possess &; = (&, +£2.) x100% < 20% (not shown in the Figure

3.18). It means that more than 80% of atomic vibrations in these modes occur in Ge shell. The
number of the modes localized in Ge-shell increases with increasing shell thickness. The
demonstrated localization of certain phonons in Ge shell or wide segments of MNWs is one of
the reasons for the strong inhibition of k in Si/Ge MNWs.

For ideally smooth interfaces when all phonon scattering events are specular p =1. In the
present calculations was used p=0.85, which corresponds to smooth NW surfaces with small

average roughness height A~1ML. The estimated A from averaging the mode-dependent

specular parameter p(qg,A) =exp(—20°A?) [36, 115, 124, 160] over all q is: p =

qz,max

j p(g)da/q, ... The small roughness of NWs and MNWs interfaces is beneficial for both

0
maintaining high electron mobility [161-162] and for suppression of the phonon heat conduction
in MNWs [37]. It was already demonstrated (see section 3.2.5 and Ref. [37]) that increase of p
leads to faster growth of the thermal flux in Si NW than in Si MNWs without claddings. This
effect is attributed to the fact that the higher energy phonons in MNW are excluded from thermal
transport while they participate in the heat transfer in NWs. As a result the ratio between TF in Si

NW and Si MNWs increases with increasing p.
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3.3. Electron-phonon interaction in Si-based modulated nanowires

Here the electron-phonon interaction in Si-based modulated nanowires is treated in the

deformation potential approach [163]. The deformation potential is given by relation [163-164]:
W, =c,Vi(r), (3.17)
where ¢, — deformation interaction constant and u — atomic displacement.

In a modulated nanowire electrons and phonons can propagate only along the wire axis Z,
therefore their wavevectors have only one non-zero component i.e. k =(0,0, k,) and
G=(0,0,0,). The atomic dispacement in a modulated nanowire in a second quantization

formalism is determined by the equation:

u(x,y,z)= ZZ:ZS:JZ—;\/ZL 2(s,9,)o(s,q,)

where &(s,q,,X, Y, z) — polarization vector of (s,q,) phonon mode at ¥ =(x,y,z), b and b" —

§(s,0,.%,,2)(b(s,q,) +b*(s,-q,) Jexp(ia,j), (3.18)

phonon annihilation and creation operators, respectively. Index j numerates translational
elements of modulated nanowire. The total length of nanowire is L, = N x L2, where N — number
of translation elements along the wire axis and L2 — length of one translational element i.e.

modulation period. The p(s,q,) in equation (3.18) is the density of the material averaged over

one modulation period:

p(s,0,) = [[[€(s.0,. % y,2) p(x. ¥, 2)€" (5,0, X, ¥, 2)dxdlydz . (3.19)

Electron-phonon coupling Hamiltonian [163-164]:
H g = [ 97 (FW, (F)P(7)d°r (3.20)

where electron wavefunctions are given by the operator: W(x,y,z) = Za kDw(i.nk,, xy,2),
nk,

with a and a® — electron annihilation and creation operators, respectively.

Taking into account equations (3.17) and (3.18) the electron-phonon interaction Hamiltonian

takes the form:

h
H, = — I(n,k,,n" k!,s,q,)x
i quzsnnz\/zup(s,qz)w(s,qz) o)

X(an(kz)ar?(kz')bs(qz)—an(kz)a}(kz')bi(qz))( Zexp(l(k +q, -k )JLo)j

j=1

where 1(n,k,,n’",k},s,q,) —overlap integral of the electron-phonon interaction:

IRAYE R RAVE]
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I(n,k,,n'k.,s,q,) = ngo(n, K,,X,Y,2)D(s,q,,% Y, 2)¢" (0, k., X, y, z)dxdydz , (3.22)
with ¢(n,k,,x,y,z) — electron wavefunction amplitudes and ®(s,q,,X,y,z) — deformation

potential interaction function:

(5.0, %,y.2)=d, {aex (s, qaz),(x, y.2) %, (s, ?;,X' Y, 2) L&, qaZZ X, V, z)] | (3.23)
The matrix element of the electron-phonon interaction by definition is:

M (= £)=(F[Hy . [i). (3.24)
The initial state | i) is determined by electron wavefunction

w(ink, Xy, z):%(p(n,kz,x, y,z)exp(ik, jLO) and phonon occupation number N°(s,q,).

Amplitudes ¢(n,k,,X,y,z) are the solutions of the three-dimensional stationary Schrodinger

equation. The final state <f | after absorption or emission of a phonon (s,q,) is determined by

electron wavefunction w(j,n’,k],x,y,z) and phonon occupation number N°(s,qz)+%i%,

< 2

where ‘+’ superscript corresponds to the phonon absorption, while ‘—’ subscript to the phonon

emission. The difference between energies of the final and initial states equals to:
E, —E =¢e(n,k,)tho(s,q,)—e(n,k;), (3.25)
where £(n,k,) — energy of the n-th quantized electron level with wavevector k, and 7a(s,q,) —

energy of phonon (s,q,). Therefore, one can obtain for the matrix element of the electron-

phonon interaction in a modulated nanowire the following relation:

1,1

h(NO(S,qZ)‘F 5t 2)
— (n,k,,n",K;,$,0,)0 k +q » (3.26)
2Np(s,q,)a(s,q,) e

where Kronecker delta resulted from the summation:

Mg (0K, 0"k}, s,0,) =

1 . H ry 31 0

5 2Pk, £, ~K) L) = 6 s, (3.27)
j=1

In order to obtain the electron-phonon interaction scattering rate from the Fermi golden rule:

re,l_ph(Ei)z%zZ‘Me,_ph(i — f)‘2 S(E, —E,) one needs to summarize over variables n',s,q,.
f

One should keep in mind, that the summation over electron wavevectors k; of the final states is

unnecessary due to the momentum conservation law k; =k, £q,. Thus, one can obtain:
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z[No(s,qZ)+1i1]
[1(n

-1 — 2 2
z-elfph (g(n,kz)) _n;z N,B(S,qz)a)(S,qz)

5(&(nk,) ho(s,q,)—&(n',k}))

koo k!, s, 0,)| x| (3.28)
X0,

kz k; £0,

In equation (3.28) one can substitute the summation over g, with integration using the rule

LN .
> > . quz.

4,

o N"(s,qz)+14_r1

o (e(nk,)) = L — 2_21(nk,,n'k,s,q,) x
ZI 2p(s,qz)w(s,qz)| . (3:29)

5(e(nk,)ho(s,q,)—e(n',k;))dg,

X0,

kj k, £,
For the numerical calculations the equation (3.29) is poorly suited due to the delta-function. One

can greatly simplify the numerical problem if considers one of the well-known properties of the

delta-function: If(x)&(g(x))dx:z“ﬁ, where x, are the roots of the equation g(x)=0.
| X|

Thus, for the electron-phonon scattering rate in a modulated nanowire one can finally obtain:
I'(n.k;.n',s,q,,)

AC LRSI o@ (3.30)
where
1.1
NO(S1qz)+7i7
r(nk,,n,s,q,) =L — 2_2/1(n,k,,n'k, £q,,s,0q,), (3.31)
2p(s,9,)o(s,d,)
and
0(a.) = o(e(n,k,) xho(s,q,)—&(n',k, +q,)) | (3:32)

aq,
In Figure 3.19(a-b) are presented the RT electron-phonon scattering rates with emission and
absorption of a phonon for the electron ground state calculated using confined electron and
phonon dispersion relations. Due to the ultra-low dimensions of the considered nanowires
(limited by available calculation resources) the electron guntization energy for the few lowest
levels is much larger than the maximal phonon energy, which constitutes ~ 65 meV. Therefore,
only the intrasubband transitions within the electron ground state level were accounted in

calculations.
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Fig. 3.19. Electron-phonon scattering rate with emission (a) and absorption (b) of a phonon in
Si/SiO; core/shell modulated nanowires at RT.

The numerical analysis of the obtained results together with the derived analytical expressions
(see equations (3.31-3.32)) showed that electron-phonon scattering processes associated with an
emission of a phonon are characterized by two pronounced peaks at low electron wavevectors
and are practically insensitive to the modulated profile of the investigated Si/SiO, core/shell
nanowires. In case of the electron-phonon scattering processes with phonon absorption the
scattering rate has few pronounced maximums at high electron wavevectors for the modulated

Si/SiO, nanowires, while is almost constant for all k, in case of a non-modulated Si/SiO,

nanowire.
3.4. Conclusions to chapter 3

In this chapter the effective mass method was applied for investigation of electron energy
spectra and electron wave functions in core/shell Si/SiO, nanowires with constant and
periodically modulated cross-section. It was shown, that cross-section modulation strongly
influences the electron energy spectra and electron wave functions in Si nanowires. For ground
state there appear an inhomogeneity in the wave function distribution along the wire’s axis,
namely, the main part of the wave function modulus being localized in the wide segments of the
modulated wire.

The lattice dynamics BvK model and the Boltzmann transport equation were applied for
investigation of phonon and thermal processes in Si nanowires, Si cross-section modulated

nanowires and Si/Ge core/shell cross-section modulated nanowires.
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For Si cross-section modulated nanowires it was theoretically demonstrated that phonon heat
flux can be significantly suppressed in comparison with the generic uniform cross-section Si
nanowires. Redistribution of the phonon energy spectra in the cross-section modulated
nanowires leads to a strong decrease of the average phonon group velocities and a corresponding
suppression of the phonon thermal flux. This effect was explained by the exclusion of the
phonon modes trapped in cross-section modulated nanowires segments from the heat flow. As a
result, an up to 5 times drop of the phonon heat flux at RT is predicted for Si cross-section
modulated nanowires in comparison with uniform Si nanowires.

For Si/Ge core/shell cross-section modulated nanowires it was found theoretically that a
combination of cross-section modulation and acoustic mismatch between Si and Ge materials
can lead to an even more drastic reduction of the thermal conductivity. The performed
calculations indicate that the RT thermal conductivity of Si/Ge core/shell cross-section
modulated nanowires is almost three orders of magnitude lower than that of bulk Si. Thermal
flux in the modulated nanowires is suppressed by an order of magnitude in comparison with
generic Si nanowires. The effect is explained by modification of the phonon spectra in
modulated nanowires leading to decrease of the phonon group velocities and localization of
certain phonon modes in narrow or wide nanowire segments.

The analytical expression for the electron-phonon scattering rate with emission and
absorption of a phonon in Si/SiO, core/shell modulated nanowires was derived in the
deformation potential approach. It was shown that cross-section modulation of the Si core results
in a substantial modification of the RT electron-phonon scattering rate with phonon absorption.

The obtained theoretical results demonstrate that geometry modulation is an efficient
instrument in engineering electrons and phonons in Si-based nanowires, which proved to be
excellent candidates for thermoelectric and thermal insulator applications due to extremely low
values of thermal conductivity.

All numerical simulations presented in this chapter were carried out entirely by the author,
while theoretical derivations and data analysis was done in close collaboration and under
supervision of scientifc advisor. The results of these investigations were published in the
research articles [37, 165].

94



4. PHONON PROCESSES IN MULTILAYER GRAPHENE WITH DIFFERENT
ATOMIC STACKING

4.1. Theoretical model for phonons in multilayer graphene

Graphene i.e. a single layer of carbon atoms arranged in a pristine honeycomb pattern, is a
promising material for future electronics because of its unique electrical [84], thermal [86-87]
and optical [166-167] properties. The high electrical [84, 165] and thermal [86-87] conductivities
of graphene are crucial for its proposed applications in field-effect transistors [168], sensors
[169], solar cells [170], resonators [171] and thermal management of ultra-large scale integrated
circuits and high-power-density devices [87, 172-174]. Multi-layer graphene flakes, which are
easy to produce, also posses unusual physical properties: depending on the stacking
configuration Bernal or rhombohedral, they demonstrate metallic- or semiconductor-like
behavior [175]. Thermal properties of Bernal stacked multi-layer graphene are highly sensitive to
the number of layers [95]: the RT thermal conductivity decreases from ~2800 to ~1300 Wm™K™
as the number of layers increases from 2 to 4 [95], which is explained by the changes in the
phonon energy spectra and phonon scattering space [176-177].

Despite of the fact that numerous scientific studies of the thermal properties in Bernal
stacked multi-layer graphene (ABA, ABAB, ABABA, etc.) have been carried out in the last few
years, the phonon and thermal properties in multi-layer graphene with rhombohedral stacking
order (ABC, ABCA, ABCAB, etc.) as well as in twisted graphene, when parallel carbon layers
are rotated relatively to one another in a specific manner [178], were not studied yet. This
investigation is very important and timely because change in the phonon properties in
rhombohedral stacked or twisted multi-layer graphene in comparison with generic Bernal
stacking may significantly modify its thermal properties.

In order to study the phonon processes in single- and multi-layer graphene it was developed a
lattice dynamics model in framework of the BvK lattice dynamics theory [38]. Within the BvK
model the set of equations of motion for atoms can be written in a harmonic approximation as:
mt, (Jk) = _,;Zk ®,,(jk, jKW,(JK) . B=xY,2, (4.1)

T

where m, and u(jk) is the mass and displacement of the k-th atom in the j-th unit cell
respectively, @_,(jk, j’k’) is the interatomic force constants describing the interaction between
atoms jk and j'’k’. The unit cell of single-layer graphene contains 2 atoms (any pair of nearest-

neighbor “blue” and “red” atoms in Figure 4.1 below), while unit cell of multi-layer graphene
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with Bernal or rhombohedral stacking contains 2n atoms, where n is number of graphene layers.
Thus, the total number of equations of motion is 6n. The solution of differential equations (4.1)

represents a superposition of plane waves with frequency @ and wave vector q:

u, (k) =%Zek,a (@exp(i(ar, - at)). 42)

where €, is the k-th atom vector of displacement amplitudes and T

; Is the radius vector of the j-

th unit cell. Substituting equation (4.2) into the equations of motion (4.1), one obtains:
o’ (G)=D D, (kk';G)e, ,(d), (4.3)
BK
with the dynamic matrix:
1 S .
D, ,(kk; Q) =—=——=) ®D_,(jk, jkK)exp(i(F, —T )q). 4.4
N

After the dynamic matrix (4.4) is constructed, the eigenvalues (i.e. phonon frequencies) and

eigenvectors (i.e. atomic displacement amplitudes) are obtained by solving the secular equation:
|@* —D(@)|=0. (4.5)
In calculations it was taken into account four nearest-neighbor atomic spheres of the

intralayer interaction and two nearest-neighbor spheres of the interlayer interaction. A schematic

view of the in-plane atomic spheres is presented in Figure 4.1.

Fig. 4.1. Four nearest atomic spheres in a graphene plane.

96



The coordination vectors 1, —F, of atoms from the four atomic spheres of a “blue” atom are

listed in Table 4.1. The vectors 1, —T; of the atoms from the four atomic spheres of a “red” atom

can be found by the rotation of the corresponding vector from Table 4.1 by the angle = around
the (0,0)-point.

Table 4.1. Coordination vectors of atoms in a graphene plane.

Atom # () 1% sphere 2" sphere 3" sphere 4" sphere
1 (a,0) (0,4/3a) (-22,0) (5a/2,43a/2)
2 (-ar2,—Bar2) | (3a/23as2) (a3a) (5a/2,—3a/2)
3 (-as2.\Bar2) | (3a/2,—3ar2) (a—3a) | (-a/2-3J3al2)
4 - (0.—3a) - (~2a,—3a)
5 - (-3a/2,—3a/2) - (~2a,3a)
6 - (-3a/2,J3a/2) - (-ar2,3J3a/2)

Note that zth component of all atoms is omitted in the notations, since different parallel
graphene planes posses the same hexagonal symmetry. In the considered multi-layer graphene
structures the graphene sheets can only be shifted (as in Bernal or rhombohedral stacking) or
rotated (as in twisted stacking) in the graphene plane, relative to one another.

Since the components of the dynamic matrix are determined by the interatomic force
constants (see equation (4.4)), the main problem in obtaining the phonon data within a BvK
model of lattice dynamics is the corresponding choice of the set of force constant matrices @ .

The force constant matrix describing the interaction of an atom with its s™ nearest-neighbor

a, 0 0
intralayer sphere has the form: &, =—| 0 g, 0 |. The force constant matrices for all atoms
0 0

from four neighbor atomic spheres can be found from ®_ using the rotations around Z-axis by

cosp sing 0
an angle ¢ in a clock-wise direction R =| —sing cosg 0| and the reflections in XZ-plane:
0 0 1
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1 0 0
o,=|0 -1 0. In Table 4.2 we present a list of corresponding symmetry operations which
0 0 1

map the matrix @, into force constant matrices for all atoms from the first four atomic spheres.

Table 4.2. Force constant matrices of intralayer interaction.

Atom# () | 1% sphere 2" sphere 3" sphere 4™ sphere
1 @, @, @, o, (Rs®R % )0}
2 Rz;z/3CD1 Rz_i/s Oy ( Rz;z/sq)z Rz_i/s ) o, ' R27r/3q)3 Rz_i/s Rzz’/B(D4 R;/ls
3 R, PR3 R, PR, 5 R, ®sR. 5 o, (Riys®iRiys )0,
4 - o,D,0, - R, @R/
5 - R, s®,R,rs - o, (R s@iRors) 0
6 — o, (R4,,/3q)2 R;i/s)o'y_l - R47r/3q)4R4_;/3

The intralayer interaction for each atomic sphere is described by three independent force
constants: ¢, B, and y,. In BvK model these constants have a clear physical meaning. A
displacement of an atom induces a force towards its s neighbor. The force constant @ describes
the longitudinal component of the force while constants g and y describe the in-plane and out-
of-plane transverse components, respectively.

The force constant matrix describing the interaction of an atom with its 1% nearest-neighbor

a 0 0
interlayer sphere has the form: ®=—-| 0 ¢, 0 | and for the 2" nearest-neighbor interlayer
0 0 7
a, 0 O
sphere: ®=—| 0 ¢, 0]. Therefore, the total number of the force constants in the proposed
0 0 O

model is 15, i.e. 12 for the intralayer interaction and 3 for the interlayer interaction. One should
note here, that in the case of single-layer graphene the interlayer interaction, obviously, should
not be taken into account since it is only one layer thick and the number of force constants is

reduced to 12 in this case.
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In calculations were used the force constants fitted in Ref. [179] to density functional theory
results, which are in a good agreement with experimental phonon dispersion frequencies of bulk

graphite. The numerical values of the force constants are listed in Table 4.3.

Table 4.3. Interatomic force constants obtained from a fit to experimental phonon frequencies of

graphite (in units N/m).

Intralayer interlayer
o, =398.7 £, =172.8 7,=90.0 a, =-4.0
a,=729 S, =46.1 7,=—10.8 7,=5.8
a,=-150 B,=331 7, =08 é&, =0.55
a, =1.0 B, =179 7, =—6.3

4.2. Phonon processes in single-layer, two-layer, three-layer graphene and graphite

4.2.1. Energy spectra and vibrational properties

The schematic view of the single-layer, AB two-layer, ABA (Bernal) three-layer and ABC

(rhombohedral) three-layer graphene is shown in Figure 4.2.

single-layer graphene ABA three-layer graphene ABC three-layer graphene

AB two-layer graphene

/‘ =

Fig. 4.2. Schematics of single-, two- and three-layer graphene.

In Figures 4.3-4.4 is presented the phonon energy spectrum for single-layer and two-layer

graphene, obtained within BvK model of lattice dynamics.
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Fig. 4.3. Vibrational spectrum of the monolayer graphene. Symbols I", K and M denote high
symmetry points of the first BZ. Experimental data points (gray triangles) for graphite from Refs.

[176-177] are also shown for comparison.
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Fig. 4.4. Vibrational spectrum of the AB-stacked two-layer graphene. Experimental data points

(gray triangles) for graphite from Refs. [176-177] are also shown for comparison.

As can be seen from the figures, our calculated results are in a good agreement with
experimental data from Refs. [176-177] for all phonon branches: in-plane acoustic branches (LA
and TA), in-plane optic branches (LO and TO), out-of-plane acoustic (ZA) and optic (ZO)
branches. A weak interlayer coupling between graphene layers (see Table 4.3, where interlayer
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force constants are much less than intralayer ones) results in appearance of almost doubly
degenerate phonon branches in the case of two-layer graphene compared with monolayer result.
The only exception constitutes the low-frequency ZA, mode with frequency of about 90 cm™ at
I', which arises from interlayer movement (see also Figure 4.6(b) below). An interesting
behavior demonstrates out-of-plane acoustic ZA branch, in contrast to the linear dispersion near
the T point for the in-plane TA and LA branches, it shows a g° dispersion, which is a
characteristic feature for layered crystals [118, 180].

In Figure 4.5 we show the atomic displacements in graphene and two-layer graphene

structures, which correspond to different types of acoustic vibrations at I" point.
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Fig. 4.5. Acoustic vibrational motion in graphene (a) and AB-stacked two-layer graphene (b).

In single-layer graphene there is only three types of acoustic modes at T" point: out-of-plane
(ZA), longitudinal in-plane (LA) and transversal in-plane (TA). As number of graphene layers
increases from 1 to 2 (Figure 4.5(b)) additional vibrational mode appears — in-plane shear, in
which parallel graphene layers slide one over another in opposite directions. An important thing
to note here is that acoustic shear mode has non-zero frequency of about 36 cm™ at the zone
center and it has E; symmetry type, which makes it Raman active and thus it can be observed
experimentally.

Besides acoustic phonons, that are main heat carriers in graphene [87, 95], optical phonon
modes are also of a fundamental importance. It was demonstrated experimentally [181-183], that
optical zone-center modes provide significant information about the layer number and the
stacking geometry of graphene layers. The numerical values of optical phonon frequencies

calculated within BvK model are listed in Table 4.4.

Table 4.4. High-frequency optical phonons (in units cm™) at T for single-layer graphene, two-
layer graphene and graphite. In parenthesis are indicated the mode symmetries.
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AB bilayer )
Graphene Graphene Graphite
graphene )
(BvK model) (VFF model [88]) (experiment [176-177])
(BvK model)
1580 (E,)
I 1581 (E,,) 1554 (E,, ) 1580 (E,,)
1582 (E,)

As can be seen from the Table 4.4 BvK value for frequency of E,q; mode of graphene (1581
cm™) is much closer to the experimental value of graphite (1580 cm™) than the value obtained
within VFF lattice dynamics model (1554 cm™ [88]). This can be attributed to the difference in
fitting precision, since the number of fitting parameters in the proposed BvK model is two times
larger than in Valence Force Field model. Also, compared with the monolayer result, in AB-
stacked two-layer graphene one can observe a splitting of the highest optical mode: E»y mode in
the monolayer evolves into Eg and E, modes for AB two-layer. The splitting is due to the weak
interlayer coupling and constitutes about 2 cm™. Moreover, the group theory predicts that Exq
and E4 modes are Raman active, while E, is infrared active. Therefore, a combination of Raman
and infrared spectroscopic measurements can provide a complete picture of zone-center optical
modes.

In Figure 4.6 is shown the schematic atomic displacements of zone-center optical vibrations

in graphene and two-layer graphene.
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Fig. 4.6. Optical vibrations in graphene (a) and AB-stacked two-layer graphene (b).

As in the case of acoustic vibrations, in graphene exist three types of optical vibrational
motion at I" point (Figure 4.6(a)): out-of-plane (ZO), longitudinal in-plane (LO) and transversal
in-plane (TO). In two-layer graphene system, because of the 4 atoms in one unit cell, the zone-

center optical vibration is more complex. In Figure 4.6(b) are presented few types of optical
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eigenmodes with different frequencies. It is clearly seen from the figure that two splitted high
frequency optical modes Eq4 and E, are characterized by the in-plane vibrations, while the low-
frequency ZA, mode arises from the interlayer motion along the Z-axis. Since in ZA, mode the
top and bottom layers move in opposite directions, it results in compression of graphene bilayer.
In Figure 4.7 is presented the phonon energy spectrum of three-layer graphene with ABA

stacking order, obtained within BvK model of lattice dynamics.
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Fig. 4.7. Vibrational spectrum of the three-layer ABA graphene. Symbols I', K and M denote

high symmetry points of the first BZ. Experimental data points (gray triangles) for graphite from
Refs. [176-177] are also shown for comparison.

Calculations of phonon spectrum for ABC three-layer graphene gave the same result, with a
difference in phonon frequencies less than 1 cm™. Therefore one can conclude, that phonon
spectrum of three-layer graphene is practically insensitive to the stacking geometry. However,
that does not mean that vibrational properties are also the same, since the different phonon
modes can posses different symmetries and can interact differently with electrons, photons, etc.

One can see from Figures 4.7(a-c) that in three-layer graphene there is almost threefold
degeneracy of phonon branches, with a small splitting ~2 cm™ because of the weak interlayer
coupling. The only exception constitutes low-frequency ZA modes, which are characterized by
out-of-plane vibrations (see Figure 4.8 below) and thus are very sensitive to the number of layers
and interlayer interaction. Analyzing the evolution of the ZA modes from single-layer to two-
layer graphene (Figure 4.3 and 4.4), and from two-layer to three-layer graphene, we can reach to
the conclusion that number of ZA phonons is uniquely determined by the number of graphene
layers, namely the number of ZA branches is equal to the number of graphene layers. This

statement is confirmed by the recent doubly resonant Raman measurements of out-of-plane
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phonons in high-quality multilayer graphene [184]. Moreover, it was obtained a good agreement
between calculated values of ZA phonon frequencies in three-layer graphene and corresponding
experimental values from Ref. [184], the discrepancy constitutes only a few cm™.

In Figure 4.8 are presented the schematic atomic displacements in three-layer graphene with

ABA and ABC stacking order, which correspond to out-of-plane vibrations at T" point.
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Fig. 4.8. Different types of out-of-plane vibrations in ABA and ABC three-layer graphene.

From Figure 4.8 one can see that in ABA and ABC three-layer graphene there is three
acoustic out-of-plane modes: ZA;, ZA,, ZA; and three optic out-of-plane modes: ZO;, ZO,, ZOs.
All these modes can be classified by symmetry type according to the group theory and thus can
be predicted whenever a mode is Raman/IR active or silent. For instance, from Figure 4.8 one
can observe that in ZA, mode the top and bottom layers move in opposite directions while the
middle layer remains unmoved, therefore this mode is symmetric and according to the group
theory it is Raman active. The ZA3; modes are not symmetric and should not be observable in

Raman measurements, since the top and bottom layers in these modes move in the same
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direction, while the movement of the middle layer is opposite to them. However, recent
experiments on ZA phonons in graphene multilayers [184] demonstrate that all of the low-
frequency ZA modes can be observed in Raman spectroscopy, leaving the question of correct
theoretical and experimental interpretation of ZA modes in few-layer graphene to be still open.
Another interesting feature of few-layer graphene is the existence of the in-plane zone-center
shear modes (see Figure 4.7(c) and Figure 4.9 below), in which parallel graphene layers slide
one over another. Although these vibrations appear to be acoustic-like and take place only in the
plane of the graphene layers, they demonstrate a nonlinear behavior close to the BZ center and
have a non-zero frequency about ~26 cm™ and ~44 cm™ in the case of three-layer graphene. The

schematic view of the atomic displacements from the shear modes is presented in Figure 4.9.
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Fig. 4.9. Shear vibrational modes in ABA and ABC three-layer graphene.

Since these low-lying shear modes have a non-zero frequency at the I point, their position is
determined by the interlayer coupling and thus they can be used for probing directly the

interlayer interaction strength in multilayer graphene.
4.2.2. Phonon scattering processes and thermal properties

Phonon scattering in graphene is determined by three basic mechanisms: (i) phonon —
phonon umklapp scattering, (ii) phonon — point-defect scattering, i.e. phonons being scattered by
a point defect within a graphene lattice, and (iii) phonon — boundary scattering where phonons
are scattered by the boundaries of the graphene sample. All three mechanisms are treated within

a relaxation rate approach, thus the total phonon relaxation time is given by:
Tioes (@) = 75 () + 7,0, (A) +7,5(0), (4.6)

where 7z, 7, and z, are relaxation times in umklapp, point-defect and boundary scattering,

pd

respectively.
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In the case of Umklapp scattering, only three-phonon scattering processes were taken into
account and the phonon relaxation time was calculated using the Klemens’s approach from [88],
applied to the single-layer graphene case:

kBT7732 a)sz (q)
MOZ (0) Dpays

max,s

7,5(0) = 4.7)

Here m = 19.9442 x 10 kg is the mass of a carbon atom, 7. Is the average Gruneisen parameter
for phonon branch s (7,, =-5.0; 77, =1.0; 7, =2.0; 7,0 =-1.0; 75 =22} 7, =2.0) [185]
and o, , is the maximal phonon frequency of the branch s.

Scattering of phonons on point-defects was modeled by the following expression [88]:

1y SG @ (a)
z-pd,s (q) - 4 v, (q) ) (48)

2
a“ . : : . :
where S, = is the cross-section area per one atom in the graphene lattice (a is the smallest

carbon-carbon distance), G is the measure of the strength of the point-defect scattering. In
present calculations was used a fixed value of the parameter G =0.1 taken from Ref. [88].

The scattering of phonons on graphene boundaries were studied using the Ziman model [88,
122]:

1-p Jo.(@)

: 4.9
1+p d (4.9)

7,5 () =

where d is the width of a graphene layer and p is the specularity parameter, which depends on the
roughness of the graphene edges. Specularity parameter can take values between 0 (fully
diffusive scattering) and 1 (fully specular scattering).

Thermal conductivity in graphene has been investigated both theoretically and
experimentally. Experimental studies of the thermal conductivity were carried out using
optothermal [86-87, 95] or electrical self-heating methods [93, 186]. It was found experimentally
that single-layer graphene possess a record-high thermal conductivity in the range 3000-5000
Wm™K™ [86, 172] at the RT. Since the main heat carriers in graphene are phonons, it is their
unusual properties which determine its extremely high thermal conduction parameters.

Theoretical investigations of graphene’s thermal properties employed different models of
molecular dynamics simulations and BTE approach [88, 172-174, 187-189]. Within the BTE
approach in the relaxation time approximation [88] the thermal conductivity of a graphene flake

is defined by the following equation:

graphene 1 2 eXp (ha)s (q) / kBT )
=———_>((n
K T Z [(no,(@0,(@) 74, (@) (oxp (hen @)/ T )17
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Here k, - Boltzmann’s constant, T — temperature, h is the thickness of graphene flake (e.g.

h=0.35 nm for single-layer graphene), s enumerates phonon branches, % - Planck’s constant,  —

phonon wave vector, @ - phonon frequency, v - phonon group velocity, r,, - total phonon

ot

relaxation time determined by equations (4.6)-(4.9).
In Figure 4.10 is presented the phonon energy spectrum along I'—K direction in BZ and
mode-by-mode contributions to the room-temperature thermal conductivity in 10um-wide

graphene layer.
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Fig. 4.10. Phonon energy spectrum and mode-specific contributions to thermal conductivity in

single-layer graphene.

From Figure 4.10 can be observed that a vast majority of the heat (~99%) is transferred by
low-energy in-plane acoustic phonons LA and TA, while the contribution to the thermal
transport from other phonon modes is significantly reduced. This result is mainly caused by the
difference in average Gruneisen parameters and group velocities. Indeed, at the RT all phonon
modes are excited and umklapp scattering is a dominant mechanism of phonon relaxation. From

equation (4.7) we can see that characteristic time of umklapp scattering process is proportional to

2
ruys~(l_)—sj and thus, LA and TA phonons which posses very large group velocities
Vs

(respectively 20.4 km/s and 13.5 km/s near BZ center) and a relatively small Gruneisen
parameters, have significantly larger lifetimes, while the other acoustic phonon — ZA, due to a
very small group velocity (less than 0.3 km/s near zone center) and a large Gruneisen parameter,

is strongly scattered and therefore eliminated from the heat transfer. Contribution from optical
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phonon modes is also strongly suppressed due to very low group velocities. However, we would
like to note here that the question of the relative contribution of different phonon polarization is
still open, since some of the recent theoretical results, based on the exact solution of BTE and
molecular dynamics simulations [187-188], suggest that ZA phonons could be the main heat
carriers in graphene due to additional selection rules imposed on the phonon-phonon scattering
space.

In Figure 4.11 are shown temperature dependencies of thermal conductivity in graphene for
different layer widths: d = 1,5,10 and 15 um. All calculations were performed for a fixed value

of specular parameter p = 0.9.
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Fig. 4.11. Phonon thermal conductivity of single-layer graphene as a function of temperature for

different layer widths.

One can see from Figure 4.11 that graphene layers of larger width have larger thermal
conductivity in all temperature range due to a weaker boundary scattering from layer edges,
which indicates that besides phonon-phonon umklapp scattering processes boundary scattering
also plays an important role in limiting the heat transfer through graphene layers. The maximum
thermal conductivity value of ~6000 Wm™K™ is reached for 15-um-wide layer at 60 K. An
interesting behavior demonstrates the position of maximum on the temperature dependence
curves. The maximum thermal conductivity shifts to higher temperatures with decrease of d,
from T ~ 60 K for 15-um-wide layer to T ~ 120 K for 1-um-wide layer. This behavior can be
explained as follows: the position of the thermal conductivity maximum separates the low-
temperature region, where phonon scattering is mainly due to the boundary, from the high-
temperature region, where umklapp scattering is dominant. In a narrower layer the boundary
scattering is stronger in a comparison with a wider one (see equation (4.9)) and dominates up to

higher temperatures, therefore the position of the maximum shifts to the right. Also, the
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contribution of the phonon — point-defect scattering processes with parameter G =0.1 has a
much weaker influence on thermal conductivity of graphene than the two above mentioned
scattering mechanisms.

Another interesting question is the influence of the quality of the graphene boundary edges
on its thermal conductivity. In Figure 4.12 is plotted the RT thermal conductivity as a function of

layer width for different values of specularity parameter p.
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Fig. 4.12. Room temperature phonon thermal conductivity as a function of graphene layer width

for different values of boundary roughness parameter p.

The parameter p is explicitly related to the edge roughness: p = 0 means maximum roughness
and p = 1 means no roughness (smoothness). The rise of the thermal conductivity with increase
of layer width is explained by the reduction of the phonon boundary scattering rate. In Figure
4.12 the black dashed line corresponds to a specular boundary scattering (p=1) which does not
add to thermal resistance, so umklapp and point-defect scattering are the only mechanisms
limiting the thermal conductivity in this case. When p is approaching O the boundary scattering
starts to play a dominant role, resulting in a strong decrease of thermal conductivity, e.g. for a
10-pum-wide graphene layer thermal conductivity reduces by almost 40% from 2580 Wm™K™ for
p = 0.8 to 1650 Wm™K™ for p = 0.0.

In Figure 4.13 is presented the phonon energy spectrum along I"—K direction and mode-by-

mode contributions to the RT thermal conductivity of AB two-layer graphene with 10pum width.
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Fig. 4.13. Phonon energy spectrum and mode-specific contributions to thermal conductivity in

two-layer graphene with AB stacking.

In Figure 4.13 maximum contribution to the heat transport corresponds to red color, while
minimum contribution to blue color. The performed calculations show that low-energy in-plane
acoustic LA and TA phonons carry ~ 99% of the heat, while optic phonons together with out-of-
plane acoustic ZA phonons carry less than 1% of the total heat energy. The same result is
obtained for two-layer AA graphene, three-layer ABA and ABC graphene. Comparing the
obtained results with the same data for single-layer graphene, it can be concluded that
polarization-dependent behavior of heat transport in graphene is practically insensitive to the
number of layers and stacking geometry. It means that phonons of the same polarization together
carry an almost constant portion of the heat with respect to its total amount. However, the
absolute value of the thermal conductivity strongly depends on the number of layers, as well as
their width, quality of the boundaries and temperature.

In Figure 4.14 is shown the temperature dependence of thermal conductivity in single-layer
graphene, AB two-layer graphene and ABA three-layer graphene for two different layer widths:
d =1 and 10 um. All calculations were performed for a fixed value of specular parameter p =
0.9.
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Fig. 4.14. Phonon thermal conductivity of single-layer graphene, two-layer AB graphene and

three-layer ABA graphene as a function of temperature for different layers width.

One can see from the figure that with increasing of the number of layers the thermal
conductivity decreases in the whole considered temperature range and for different layers width.
The reason of this reduction can be understood from the following picture. There are two major

factors that determine the dependence of the thermal conductivity on the layer number, these are:
(i) number of heat carrying phonons and (ii) value of the % term in the equation for the thermal

conductivity (see equation (4.10)). Here h is the thickness of the graphene flake. The total
thickness of the graphene multilayer increases directly proportional to the number of layers, e.g.
the three-layer graphene is three times thicker than the monolayer graphene. Although the
dependence of the total number of phonon branches on the number of layers is analogous (e.g.
there are three times more phonon branches in three-layer graphene than in monolayer), the
number of heat carrying phonons is different. The translational symmetry of the graphene lattice
imposes that the number of zone-center in-plane phonons with zero energy (denoted as TA; and
LA; in Figure 4.13) equals to 2 and does not depend on the number of layers. The additional
(quantified) TA,/LA,, TAs/LA3, etc., phonons of multi-layer graphene have an almost zero
group velocity in the direct vicinity of the BZ center and thus are practically excluded from the
heat transfer. However, in-plane acoustic phonons of the same polarization but farther from the
zone-center have almost the same group velocity and contribute equally to the heat transport.
When number of layer increases, the above mentioned mechanisms act opposite to one another,
with a more stronger influence of the mechanism (ii) in comparison with mechanism (i),
resulting in an overall decrease of the thermal conductivity. Moreover, the calculations suggest

that this picture takes place regardless of the stacking geometry.
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4.3. Twisted two-layer graphene. Engineering phonons with atomic plane rotations

In recent years the interest of the physics community has been shifting toward investigation
of the T-FLG systems. When two graphene layers are placed on top of each other they can form
a Moiré pattern [108, 178, 190]. In this case, one layer is rotated relative to another layer by a
specific angle. The synthesis of T-FLG was experimentally demonstrated using the chemical
vapor deposition, mechanical exfoliation or growth on the carbon terminated SiC surface [178,
191-193]. Although twisting only weakly affects the interlayer interaction, it breaks symmetry of
the Bernal stacking resulting in an intriguing dependence of the electronic and phonon properties
on the rotation angle (RA).

The electronic structure of the T-BLG with relatively small RAs was theoretically studied
using both the continuum approach [108] and the density functional theory [194-195].
Experimentally, the specifics of the electronic transport in T-FLG were investigated using the
surface X-ray diffraction [191], scanning tunneling microscopy [191-192] and Raman
spectroscopy [190]. It was observed that twisted multilayer graphene grown on the carbon
terminated face of 4H-SiC reveals single-layer graphene electronic properties [191]. More
recently, this observation was confirmed by an independent Raman spectroscopy study [190].
While the electronic properties of T-FLG have been intensively investigated both theoretically
and experimentally the phonon properties of T-FLG remain largely unexplored. Therefore, there
is a strong need for an accurate theory and computation of the phonon energy, dispersion and
DOS in T-BLG for the purpose of interpretation of experimental data.

Let us consider a bilayer graphene structure with a relative rotation angle 6 between parallel
graphene sheets and let us define the initial stacking configuration with 8 =0° as AB stacking. If
one rotates one atomic layer of carbon atoms relative to another layer by an angle 6 one will
obtain a twisted graphene, as shown for example in Figure 4.15(a). Due to hexagonal symmetry
the chosen scheme limits our consideration to rotational angles between 6=0° and €=60°,

which corresponds to AA stacking configuration.
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Fig. 4.15. (a) Rotational scheme. Note that rotational axis R passes through atoms which lie
exactly above each other. (b) BZ of T-BLG with #=21.8°. T" and K denote two high-
symmetry points of T-BLG BZ.

Commensurate structures, i.e. structures with translation symmetry, exist for a certain

rotational angles only, determined by the following condition:
cos@(p,n) =(3p° +3pn+n*/2)/(3p° +3pn+n?), where p and n are coprime positive integer
numbers. The basis vectors of Bravais lattice t, and t, for the commensurate T-BLG are given

by the expression:

(Ho 220
t, —(p+n) 2p+n)la,

where & =(3a/ 2,—/3a/ 2) and &, =(3a/ 2,\3a/ 2) are the basis vectors of Bravais lattice for

the single-layer graphene, a=0.142 nm is the carbon-carbon bond length. The number of atoms in
the commensurate cell is equal to the ratio between the volumes of the rotated and unrotated
cells multiplied by a number of atoms in the unrotated cell:
t xt, |-Z
N =4M,
[8,xd,]-Z|

where Z is the unitary vector normal to the graphene plane. Substituting equations (4.11) into

(4.12)

equation (4.12) one can obtain for N:
N =4(( p+n) + p(2p+n)). (4.13)

The unit cells of T-BLG with larger indices (p,n) contain larger number of carbon atoms. For

instance, the unit cell of T-BLG with €(1,1) =21.8° contains the smallest possible number of

atoms N = 28, while a rotation by £(2,1) =13.2° increases this number to N = 76.
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In order to construct the BZ of the T-BLG with the angle of rotation &(p,n) one should

determine the corresponding reciprocal space. The reciprocal vectors of T-BLG ¢, and §, are

t,xZ Zx
related to the real space vectors t, and t, as: @, =27 —=——-"— [ :| 0, =271 ———=— [ t1:| Using

6] T [exe]

these relations and equations (4.11) one can obtain:

@lJ: 2 1 X( 2p+n p+njk31 | (4.14)
d.) (p+n) +p(2p+n) (—(p+n) p Jib,

where b =(27/3a,—27//3a) and b,=(27/3a,27/+/3a) are the basis vectors of the

reciprocal lattice of the single layer graphene. The BZ of the T-BLG with 6(1,1) =21.8° is
shown in Figure 4.15(b) as a green hexagon.

In the case of the intralayer coupling the hexagonal symmetry of the interatomic interaction
is preserved for different @, while in the interlayer coupling, the atomic configuration and force

constant matrices are dependent on the rotational angle. In this case, one can describe the

interlayer interactions with the Lennard-Jones potential V(r):4g((o/r)12—(o/r)6). The

parameters ¢ = 4.6 meV and o = 0.3276 nm were taken from Ref. [196]. They reproduce the
experimental values of the interlayer space and phonon dispersion along the T"— A direction of
bulk graphite. Thus, the force constant matrix of interlayer interaction is:

r,(n;O)r,(n; 0)

@, (n;0) =-5(r(0)) % oo (4.15)

1560 3 4205°
@) r®9)

where 6(r(6)) :45[ J is the force constant of the interlayer coupling, r(6) is the

distance between the interacting atoms from a given atomic configuration corresponding to angle
0.

The phonon dispersions in T-BLG with the rotation angles 6=21.8° and ¢=13.2° are
shown in Figure 4.16(a-b) along 7-K direction in BZ. The phonon frequencies were calculated

from equations (4.3) for each phonon wave number g from the interval O to q,, (&), where

Uax (0) = 201, (9 =0)sin(6/2) =87sin(0/ 2) /(33) .
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Fig. 4.16. Phonon energy dispersions in twisted bilayer graphene with ¢ =21.8° (a) and
60=13.2° (b).

The directions in BZ of T-BLG depend strongly on the rotational angle and do not coincide
with the directions in BZ of bilayer graphene without a twist (BLG). As shown in Figure 4.15
(b), the I'-K direction in BZ of T-BLG is rotated relative to that in BZ of BLG. Therefore, the
phonon curves in Figure 4.16(a-b) are shown for different directions in BZ of BLG. However,
the /- and K-points in BZ of T-BLG correspond to those in BZ of BLG and the change of the
phonon modes in these points is a direct effect of the twisting. The number of atoms in the unit
cell of T-BLG with #=21.8° (#=13.2°) increases by a factor of 7 (19) as compared with BLG.
The number of phonon branches increases to 84 for T-BLG with §=21.8° and to 228 for T-
BLG with 6=13.2°. The number of phonon modes at /- and K-points in BZ of T-BLG
increases correspondingly. In addition to the degenerate TO/LO phonon modes of BLG at /-
point with the frequency w ~ 1589.5 cm™, the new in-plane phonon modes appear in T-BLG. The
frequencies of these modes depend strongly on the rotational angle and their number increases
with decreasing 6. In T-BLG with 6=21.8°, there appear additional phonon modes at the /-
point related to the in-plane optical phonons with the frequencies w ~ 1378.6 cm™, 1468.8 cm™
and 1589.5 cm™. In T-BLG with #=13.2° one can observe new phonon modes with six
different frequencies: w ~ 1353.0 cm™, 1363.1 cm™, 1367.2 cm™, 1458.8 cm™, 1479.3 cm™ and
1564.1 cm™. Analogously, at K-point of BZ instead of the in-plane phonon modes with « ~
1197.3 cm™ and 1347.4 cm™, which are observed in BLG, one finds the phonon modes with the
frequencies w ~ 1197.4 cm™, 1347.4 cm™, 1350.7 cm™, 1411.6 cm™, 1486.8 cm™ and 1569 cm™
in T-BLG with ¢=21.8°. In T-BLG with =13.2° the number of different frequencies of K-
point phonons rises to 14: w ~ 1197.4 cm™, 1260.5 cm™, 1339.8 cm™, 1347.4 cm™, 1351.4 cm™,
1365.2 cm™, 1390.4 cm™, 1395.6 cm™, 1449.6 cm™, 1491.5 cm™, 1498.2 cm™, 1547.3 cm™,
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1552.8 cm™ and 1584.7 cm™. Overall the phonon spectrum of twisted bilayer graphene becomes
much more complicated.

The twisting influences the phonon spectra of BLG owing to two reasons: (i) modification of
the weak van der Waals interlayer interaction and (ii) alteration of a size of a BZ leading to the
phonon momentum change. To investigate these effects separately in Figure 4.17(a-b) it is
plotted the phonon dispersions in AA-BLG along 75-Kq (red curves) and 73-K; (blue curves)
direction in BZ of AA-BLG.
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Fig. 4.17. Phonon energy dispersions in AA-stacked bilayer graphene shown for I'p-K, and 7'1-Ky
(a) directions of the BZ of AA-BLG. (b) BZs in AA-BLG and T-BLG with 8 =21.8°.

In BZ of AA-BLG there are seven directions 73-K; (i = 0,...,6) which are equivalent to the
direction I'p-Ko in BZ of T-BLG (see Figure 4.15(b), where the BZs for the BLG and T-BLG are
shown). The phonon dispersion in T-BLG with € =21.8°, shown in Figure 4.16(a), corresponds
to the phonon dispersions along 7i-K; (i = 0,...,6) directions in BZ of AA-BLG. Thus, in the
twisted bilayer graphene appear hybrid folded phonon branches resulting from mixing of
different directions from BLG BZ: I'p-Ko, I'1-Ky, .., I5-Kg. The red and blue curves in Figure
4.16(a) appear in the phonon spectra of T-BLG from [-Kq and 71-K; direction in BZ of AA-
BLG. The difference in the frequencies of the phonon modes shown in Figures 4.16(a) (red and
blue curves) and Figure 4.17(a-b) is a manifestation of the twisting. In T-BLG the difference
between the phonon frequencies of all corresponding modes is small due to weak interlayer
interaction.

The frequencies of the shear (LA,, TA,) and flexural (ZA,) phonons are affected stronger by
the twisting. The specific properties of these modes in T-BLG with 6 =21.8° (red curves) and
T-BLG with #=13.2° (blue curves) as well as in AA-BLG (black curves) are presented in
Figure 4.18.
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Fig. 4.18. Zone-center phonon dispersions of the out-of-plane (a) and in-plane (b) acoustic
modes in AA-BLG (black curves), T-BLG with =21.8° (red curves) and T-BLG with
60 =13.2° (blue curves). The region where anti-crossing of LA; and TA; hybrid folded phonon

branches occurs are shown by dashed circle.

At I" — point, the twisting increases the frequency of the shear modes by 1 — 2 cm™ and decreases
the frequency of ZA, modes by ~ 5 — 5.5 cm™ depending on @ (see Figure 4.18(a)). In AA-BLG,
the phonon branches LA; and TA, intersect at g ~ 0.7 nm™. Twisting changes the interaction
between these phonons in T-BLG and leads to anti-crossing of LA; and TA; hybrid folded

phonon branches (see Figure 4.18(b)).
Specific heat, C, is one of the key parameters that characterize the phonon and thermal

properties of materials. It is defined asC = 5Q/ T , where 5Q is the change in energy density of
a material when temperature changes by 6T [122]. For calculation of the phonon specific heat in

T-BLG it is used the following formula [122, 189]:

exp(12)
3N, ko T

_kBT2 0 [ex hia) _12
o )1

c, (T) (ho)’ f(@)do, (4.16)
where @ is the phonon frequency, @, is the maximum phonon frequency, f is the 2D

normalized phonon DOS, T is the temperature, N4 is the Avogadro constant, kg is the Boltzmann

constant and 7 is the Planck constant. The normalized phonon DOS is given by:

f(@=9()/ [ g(@do, (4.17)

where g(w) is the 2D phonon DOS given by the relation:
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Here s numerates phonon branches. In order to calculate g(w) we applied a 200x200 2D grid to

a 1/4" part of BZ of T-BLG (shown as a green segment in Figure 4.15(b)), and then calculated
phonon frequencies for every (qx,qy) point in this grid.

The dependence of specific heat on temperature for single-layer graphene and AB-BLG is
presented in Figure 4.19(a). The experimental values of graphite heat capacity reported in Ref.

[197] are also shown for comparison by the blue triangles.
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Fig. 4.19. Dependence of the specific heat at constant volume on temperature in single-layer
graphene (gray curve) and AB-BLG (black curve). The blue triangles represent the experimental
results for graphite, reported in Ref. [197]. The inset shows the results plotted for a wide
temperature range 100 K — 3000 K.

The low-temperature heat capacity of single-layer graphene is higher than that in graphite
due to inequality of 2D and 3D phonon DOS. The difference in the heat capacity of single-layer
graphene, BLG and graphite diminishes with temperature rise. The heat capacities become
identical within 0.01% deviation for T > 2000 K. At temperatures T > 2500 K, all heat capacities
approach the classical Dulong-Petit limit ¢, = 24.94 J K* mol™. At small frequencies, ZA

phonons demonstrate a quadratic dispersion @ ~q°, leading to ¢, (ZA) ~T, while TA and LA
phonons possess linear dispersions @~ q, resulting in ¢, (LA, TA) ~ T?. We found that total heat

capacity in single-layer graphene varies with temperature as T", wheren=1for T < 15K; n =
11forl15 K<T <3HK;n=13for3bK<T<70Kandn=15for70K<T < 240 K. The
power factor n increases with temperature not only due to greater contribution of LA and TA
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phonons but also due to the deviation of ZA phonon frequency dispersion from the quadratic
law, leading to nearly linear dependence of ZA DOS on frequency for @ > 100 cm™. Our results
for heat capacity in single-layer graphene are qualitatively similar to those described in Refs.
[198-199] with the exception of the power factor values n = 1 [198] and n = 1.1 [199] for T <
100 K. This discrepancy is explained by the fact that in Refs. [198-199] the authors did not take
into account the non-parabolicity of ZA dispersion for @ > 100 cm™. In AA-BLG or AB-BLG

¢, ~ T*° for wide temperature range T < 170 K due to the changes in DOS in comparison with

those in single-layer graphene.
In Figure 4.20 we plot a difference between the specific heat in AB-BLG and T-BLG as a
function of temperature: Ac,(6)=c,(AB)—c, (6) for 6=21.8°, §=13.2° and §=9.4°.
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Fig. 4.20. Dependence of the deviation Ac, () of the specific heat in T-BLG from that in AB-
BLG on the temperature. The inset shows the relative deviation 1 between AB-BLG and T-BLG

specific heats as a function of temperature.

The change in the specific heat due to twisting is relatively weak in a wide temperature range 20
K - 2000 K. It attains its maximum value ~ 0.028 J K> mol™ at T ~ 250 K. At the same time, at
low temperatures the relative difference between specific heat in AB-BLG and T-BLG

n=@1-c,(@)/c,(AB))x100% constitutes substantial 10-15% at T=1 K and ~3-6% at T =5 K

in dependence on & (see blue, red and green curves from the inset to Figure 4.20). The low
temperatures specific heat depends stronger on the twist angle because twisting affects the low-
frequency ZA phonon modes the most [38]. A somewhat similar effect of modulation of the
specific heat was recently reported for single-layer graphene under strain [104]. The authors
found that a stronger modification of the specific heat occurs at temperatures below 1 K. The

temperature dependence of low-temperature specific heat in T-BLG with 6 =21.8° differs from
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single-layer or bilayer graphene: ¢, ~T*® for T <10 K and ~T*® for 10 K < T < 100 K. One

should expect that twisting can produce stronger effects on the specific heat of the T-FLG with

the larger number of the atomic planes rotated with respect to each other as well as in van der

Waals materials with stronger interlayer coupling. The results suggest a possibility of phonon

engineering of phonon and thermal properties of layered materials by twisting the atomic planes.

4.4. Conclusions to chapter 4

The main scientific results of this chapter are:

A BvK model of lattice dynamics for single-, two-layer and three-layer graphene as well
as for twisted bilayer graphene with different angles of rotation was developed.

Phonon energy spectra of these structures in all high-symmetry crystallographic
directions were calculated. The obtained results for phonon frequencies of single-layer
and non-rotated few-layer graphene are in a very good agreement with experimental data
of bulk graphite.

It was found that, since many of the zone-center acoustic and optical vibrational modes of
non-rotated few-layer graphene are Raman or infrared active, they can provide important
information on layer number and stacking configuration of graphene multilayers.

It was found that middle- and high-frequency phonons in twisted bilayer graphene are
practically independent on the twisting angle, while the low-frequency phonons strongly
depend on it.

A phonon mode-specific contribution to the thermal transport of single-, two- and three-
layer graphene was established, suggesting that high-velocity in-plane acoustic LA and
TA phonons are the main heat carriers in these structures.

It was demonstrated, that in single- and non-rotated few-layer graphene umklapp and
boundary scattering are the dominant scattering mechanisms, limiting correspondingly its
thermal conductivity in a wide range of temperatures and layer widths.

It was found, that in non-rotated few-layer graphene phonons of the same polarization
together carry an almost constant portion of the heat with respect to its total amount,
irrespective to the number of layers and stacking geometry.

It was shown that a new type of hybrid folded rotationally-dependent phonon modes
appear in the twisted bilayer graphene due to reduction of the BZ size and changes in the

interaction between graphene layers. These modes can manifest themselves in Raman or
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infrared measurements and, thus, can be used for the non-contact characterization of
twisted bilayer graphene.
e The phonon specific heat in single-layer, bilayer and twisted bilayer graphene was
studied. It was found that at temperature T<15 K, specific heat varies with temperature as
T", where n = 1 for graphene, n = 1.6 for bilayer graphene and n = 1.3 for the twisted
bilayer graphene.
All numerical simulations presented in this chapter were carried out entirely by the author,
while theoretical derivations and data analysis was done in close collaboration and under
supervision of scientifc advisor. The results of the investigation of the phonon processes in
graphene and twisted bilayer graphene were published in the research articles [38, 44, 196,
200].
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GENERAL CONCLUSIONS AND RECOMMENDATIONS

Below the summary of the results obtained in the Thesis is given.

1. A three-parameter Born-von Karman type model of lattice dynamics for nanolayers and
planar superlattices with diamond crystal lattice was developed. The Boltzmann transport
equation approach was used for investigation of the phonon and thermal processes in Si
nanolayers and Si/Ge planar superlattices. For nanometer-wide silicon nanolayers was obtained a
good agreement between theoretical calculations and the experimental data for 20-nm-thick and
30-nm-thick silicon nanolayers. It was demonstrated that optical phonons contribution to the
thermal conductivity of silicon nanolayers under consideration constitutes only a few percent.

2. The perturbation theory and second quantization formalism were used in order to model
the scattering of phonons on interfaces in Si/Ge planar superlattices. It was concluded that
interface mass-mixing scattering of phonons plays an extremely important role in limiting the
total phonon lifetime in Si/Ge planar superlattices and can lead to a peculiar behavior of phonon
thermal conductivity of these structures owing to the non-trivial dependence of interface
scattering rate on the amplitudes of the atomic displacements. For a wide temperature range from
50 K to 400 K a good agreement between theoretical and experimental phonon thermal
conductivity was obtained for Si(35ML)/Ge(9ML) planar superlattice when phonon-phonon
scattering was not taken into account, indicating that the interface mass-mixing scattering can be
the dominant mechanism of phonon scattering in real Si/Ge planar superlattices.

3. The effective mass method was applied for investigation of electron energy spectra and
electron wave functions in core/shell Si/SiO, nanowires with constant and periodically
modulated cross-section. It was shown, that cross-section modulation strongly influences the
electron energy spectra and electron wave functions in Si nanowires. For ground state there
appear an inhomogeneity in the wave function distribution along the wire’s axis, namely, the
main part of the wave function modulus being localized in the wide segments of the modulated
wire.

4. The lattice dynamics Born — von Karman model and the Boltzmann transport equation
were applied for investigation of phonon and thermal processes in Si nanowires, Si cross-section
modulated nanowires and Si/Ge core/shell cross-section modulated nanowires. For Si cross-
section modulated nanowires it was theoretically demonstrated that phonon heat flux can be
significantly suppressed in comparison with the generic uniform cross-section Si nanowires.
Redistribution of the phonon energy spectra in the cross-section modulated nanowires leads to a
strong decrease of the average phonon group velocities and a corresponding suppression of the

phonon thermal flux. An up to 5 times drop of the phonon heat flux at room temperature is
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predicted for Si cross-section modulated nanowires in comparison with uniform Si nanowires.
For Si/Ge core/shell cross-section modulated nanowires it was found theoretically that a
combination of cross-section modulation and acoustic mismatch between Si and Ge materials
can lead to an even more drastic reduction of the thermal conductivity. The performed
calculations indicate that the room temperature thermal conductivity of Si/Ge core/shell cross-
section modulated nanowires is almost three orders of magnitude lower than that of bulk Si.

5. The analytical expression for the electron-phonon scattering rate with emission and
absorption of a phonon in Si/SiO, core/shell modulated nanowires was derived in the
deformation potential approach. It was shown that cross-section modulation of the Si core results
in a substantial modification of the room temperature electron-phonon scattering rate with
phonon absorption.

6. A Born — von Karman model of lattice dynamics for single-, two-layer and three-layer
graphene as well as for twisted bilayer graphene with different angles of rotation was developed.
Phonon energy spectra of these structures in all high-symmetry crystallographic directions were
calculated. The obtained results for phonon frequencies of single-layer and non-rotated few-layer
graphene are in a very good agreement with experimental data of bulk graphite. It was found
that, since many of the zone-center acoustic and optical vibrational modes of non-rotated few-
layer graphene are Raman or infrared active, they can provide important information on layer
number and stacking configuration of graphene multilayers. It was found that middle- and high-
frequency phonons in twisted bilayer graphene are practically independent on the twisting angle,

while the low-frequency phonons strongly depend on it. Thus, an important scientific problem

was solved in the Thesis namely it was demonstrated the possibility to control the phonon
processes in two-layer graphene by rotation of graphene layers one against another around the
axis perpendicular to the graphene plane.

7. It was shown that a new type of hybrid folded rotationally-dependent phonon modes
appear in the twisted bilayer graphene due to reduction of the BZ size and changes in the
interaction between graphene layers. These modes can manifest themselves in Raman or infrared
measurements and, thus, can be used for the non-contact characterization of twisted bilayer
graphene. The phonon specific heat in single-layer, bilayer and twisted bilayer graphene was
studied. It was found that at temperature T<15 K, specific heat varies with temperature as T",
where n = 1 for graphene, n = 1.6 for bilayer graphene and n = 1.3 for the twisted bilayer
graphene.

Based on the conclusions presented above, the following recommendations can be made:

1. The Si/Ge planar superlattices with atomic intermixing at interfaces are perspective

candidates for phonon filtering applications.
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2. The acoustically-mismatched Si-based core/shell modulated nanowires with suppressed
phonon heat transport are perspective for thermoelectric and thermal insulator
applications.

3. The twisted bilayer graphene with different angles of rotation can be recommended for
heat spreading and heat management applications owing to their unusual angle-dependent
phonon processes.

The obtained theoretical results contribute to a better understanding of the electron and

phonon processes in graphene and silicon-based nanostructures and are important for the design
and practical realization of novel nanomaterials with optimized and properly engineered electron

and phonon properties.
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