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C.Z.U: 517.925

ADNOTARE

Bujac Cristina, “Sisteme diferenţiale cubice cu drepte invariante de multiplicitate

totală opt”, doctor ı̂n ştiinţe matematice, Chişinău, 2016.

Lucrarea este scrisă ı̂n limba engleză, conţine 154 pagini text de bază şi are următoarea

structură: introducere, 4 capitole, concluzii generale şi recomandări, bibliografia (care in-

clude 140 titluri). Rezultatele obţinute sunt publicate ı̂n 19 lucrări ştiinţifice.

Cuvintele cheie: sistem differenţial cubic, polinom afin invariant, dreaptă invariantă, mul-

tiplicitatea curbei algebrice, configuraţie de drepte invariante, sistem perturbat.

Domeniul de studiu al tezei: teoria calitativă a sistemelor dinamice, teoria invarianţilor

algebrici a ecuaţiilor diferenţiale.

Scopul şi obiectivele lucrării: de a efectua clasificarea completă a familiei de sisteme

cubice cu drepte invariante de multiplicitate totală 8; această clasificare presupune deter-

minarea tuturor configuraţiilor de drepte invariante posibile pentru această familie de sisteme

cubice şi construirea condiţiilor necesare şi suficiente afin invariante pentru realizarea fiecarei

dintre configuraţiile depistate.

Noutatea şi originalitatea ştiinţifică. În lucrare au fost construite pentru prima dată

toate configuraţiile posibile de drepte invariante de multiplicitate totală opt ale familiei

de sisteme diferenţiale cubice. Această mulţime de configuraţii conţine, ı̂n calitate de cazuri

particulare, toate configuraţiile depistate de alţi autori pentru unele clase speciale de sisteme

cubice. Adiţional, s-au determinat condiţiile necesare şi suficiente afin-invariante de realizare

ale configuraţiilor construite. De asemenea a fost completată clasificarea realizată de Llibre

şi Vulpe depistând o noua clasă de sisteme cubice cu drepte invariante de multiplicitate

totală nouă.

Problema ştiinţifică importantă soluţionată constă ı̂n clasificarea completă a familiei

de sisteme cubice cu drepte invariante de multiplicitate totală opt ı̂n raport cu configura̧tiile

acestor drepte; aceasta clasificare este un element foarte util ı̂n vederea clasificării topologice

complete ale acestei familii de sisteme şi ı̂n vederea studiului integrabilităţii acestor sisteme.

Semnificaţia teoretică şi valoarea aplicativă a lucrării. Rezultatele ce ţin de sis-

temele cubice cu drepte invariante de multiplicitate totală opt obţinute ı̂n teză reprezintă

un pas important ı̂n studiul algebro-geometric al familiei de sisteme cubice diferenţiale bi-

dimensionale.

Implementarea rezultatelor ştiinţifice: (i) drept bază pentru determinarea integralelor

prime ale acestor sisteme; (ii) pentru investigarea ulterioară a sistemelor cubice cu drepte

invariante de multiplicitate mai mică decât 8; (iii) ı̂n studiul diverselor modele matematice

care descriu diferite procese din fizică , chimie, medicină ş.a.m.d.; (iv) ı̂n calitate de suport

pentru perfectarea cursurilor speciale universitare şi post-universitare.
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УДК 517.925
АННОТАЦИЯ

Bujac Cristina, “ Кубические дифференциальные системы с инвариантными

прямыми суммарной кратности восемь”, степень доктора математических

наук, Chişinău, 2016.

Работа написана на английском языке. Она состоит из введения, 4-х глав, общих

выводов и рекомендаций, 140 источников литературы, 154 страниц основного текста.

Полученные результаты опубликованы в 19 научных работах.

Ключевые слова: кубическая дифференциальная система, аффинно-инвариантный

полином, инвариантная прямая, кратность прямой, конфигурация инвариантных пря-

мых, возмущенные системы.

Цель и задачи диссертации: построить полную классификацию семейства плоских

кубических систем дифференциальных уравнений в соответствии с конфигурациями

инвариантных прямых общей кратности восемь, а именно: определить все возможные

такие конфигурации и построить необходимые и достаточные аффинно-инвариантные

условия для реализации каждого из обнаруженных конфигураций.

Область исследования: Качественная теория динамических систем, теория инва-

риантов дифференциальных уравнений.

Научная новизна и оригинальность. В диссертации впервые построены все возмож-

ные конфигурации инвариантных прямых суммарной кратности восемь для семьи плос-

ких кубических систем дифференциальных уравнений. Этот набор конфигураций со-

держит все конфигурации, определенные другими авторами для частных классов ку-

бических систем. Кроме того, мы определили необходимые и достаточные условия

для реализации каждой из полученных конфигураций. Дополнительно обнаружили

новый класс кубических систем с инвариантными прямыми суммарной кратности 9,

тем самым дополняя классификацию Llibre и Vulpe.

Основная решенная научная задача состоит в полной классификации двумерных

кубических систем дифференциальных уравнений в соответствии с их конфигурациями

инвариантных прямых общей кратности 8, основанной на применении теории инвариан-

тов дифференциальных уравнений. Эта классификация генерирует полезную базу для

дальнейшей полной топологической классификации данного семейства систем.

Теоретическое и практическое значение работы. Полученные в данной работе

результаты, касающиеся кубических систем с инвариантными прямыми суммарной

кратностью 8, представляют собой важный шаг в классификации всего множества

кубических систем.

Реализация научных результатов. Результаты могут быть применены: (i) в качес-

тве основы для определения первых интегралов таких систем; (ii) для дальнейших

исследований более общих кубических систем с инвариантными прямыми суммарной

кратностью менее чем 8; (iii) в изучении некоторых математических моделей, описыва-

ющих процессы в физике, химии, медицине и т.д.; (iv) для разработки специальных

курсов в системе высшего образования.
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C.Z.U: 517.925

ANNOTATION

Bujac Cristina, “ Cubic differential systems with invariant lines of total multi-

plicity eight ”, Doctor degree in Mathematics, Chişinău, 2016.

The language of the Thesis is English. It comprises 154 base pages and has the following

structure: Introduction, 4 Chapters, General Conclusions and Recommendations, Bibliogra-

phy with 140 References. Research outcomes were reflected in 19 scientific publications.

Keywords: cubic differential system, affine invariant polynomial, invariant straight line,

multiplicity of a line, configuration of invariant straight lines, perturbed system.

Field of study: Qualitative Theory of Dynamical Systems, Invariant Theory of Differential

Equations.

The purpose and objectives: to give a full classification for the family of cubic systems

with invariant straight lines of total multiplicity eight; this classifications supposes the de-

tection of all possible configurations of invariant lines for this family and the construction of

affine invariant criteria for the realization of each one of the detected configurations.

Novelty and scientific originality. In our Thesis for the first time there are constructed

all the possible configurations of invariant lines of total multiplicity eight for cubic systems.

Our set of configurations contains as particular cases all the configurations detected by

other authors in special cases. Additionally we give necessary and sufficient conditions for

the realization of each one of the corresponding configurations. Moreover we completed the

classification of Llibre and Vulpe detecting a new class of cubic systems with invariant lines

of total multiplicity nine.

The main scientific problem which is solved in this Thesis consists in classifying the

whole family of cubic differential systems possessing invariant lines of total multiplicity eight

according to configurations of these lines; this classification is very helpful for obtaining the

complete topological classification of this family and is useful for the study of integrability

of these systems.

The significance of theoretical and practical values of the work. The obtained

in this thesis results concerning cubic systems with invariant lines of total multiplicity eight

represent an important step in algebraic and geometric studies of cubic differential systems.

Implementation of the scientific results. They could be applied: (i) as a basis for

determining of the first integrals of such systems; (ii) for further investigations of cubic

systems with invariant lines of total multiplicity less then 8; (iii) in the study of some

mathematical models which describe processes in physics, chemistry, medicine and so on;

(iv) as a support for teaching courses in higher education.
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INTRODUCTION

Actual research status and importance of investigated problem. The polynomial

differential systems are objects of numerous scientific investigations. These systems occur in

many branches of applied mathematics and they also have theoretical importance. A major

driving force in the development of their theory was a collection of very difficult problems

some of which are over one hundred years old. A source of these difficulties is nonlinearity

of mathematical models of complicated real processes and devices. These problems also

motivated the work we present in this paper.

The study of planar polynomial vector fields began to be pursued after the publication

of the famous papers of Darboux [59] (1878) and of Poincaré [89] (1881), [91] (1885), [92]

(1891). Darboux’work was on integrability in terms of existence of algebraic invariant curves

of complex polynomial differential equations over the complex projective plane (a modern

presentation of the theory of Darboux can be found in [42, 107]). This very beautiful work

which could also be applied to compute first integrals of real polynomial differential equa-

tions, was very much admired by Poincaré and motivated his statement in 1891 [92] of a

very hard problem still open today, on planar polynomial differential systems (see further

below). The main motivation of Poincaré for studying these systems came from his interest

in the problem of the stability of the solar system. This problem asks if in the very long

term the solar system will preserve its present state or whether major changes such as a

planet escaping from the system or a collision among bodies in the system will occur. As

this problem is very hard, Poincaré decided to begin by first studying the simplest non-linear

differential equations which are the planar polynomial ones and he wrote the two seminal

papers [89], [91] which founded the qualitative study of differential equations. More precisely,

even if the differential equation can not be solved in terms of known functions, yet from

the very form of the equation, a wealth of information about the geometric properties and

behavior of the solutions can be found. Rather than emphasizing calculations of specific

solutions, Poincaré took the global approach by considering the solutions in their totality.

In these works he introduced many new notions, for example for special types of singularities

such as foci, nodes, saddles, centers which distinguished the behavior of solutions around

singularities; the notion of limit cycle - an isolated periodic solution in the set of all peri-

odic solutions of a system; the notion of the Poincaré first return map, etc. In these papers

Poincaré proved a number of theorems, among them the theorem saying that a necessary and
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sufficient condition for a polynomial vector field on the plane to have a center at a singular

point with purely imaginary eigenvalues, is that the system admit a non-zero local analytic

first integral in a neighborhood of this singular point. In his Mémoire The general problem of

the stability of motion [79], Liapunov extended this theorem for analytic differential systems

(actually Liapunov studied differential systems in n variables but when results are applied

to the case n = 2 systems we obtain this more general theorem for analytic two-dimensional

systems). In this mémoire Liapunov developed the theory of stability of motion.

Poincaré stated two problems on polynomial differential equations on the plane: the

problem of the center [91] and the problem of algebraic integrability [92] of such equations.

One way in which we can state the problem of the center is the following: given a positive

integer n find the necessary and sufficient conditions for a polynomial system of degree n

to have a singularity which is a center. In fact Poincaré only considered singularities with

a non-degenerate linear part of focus or center type. More precisely he considered the case

where the eigenvalues are purely imaginary ±βi, β ∈ R\{0} and in this case the problem

of the center is to give conditions for distinguishing between a center and a focus. The

problem of algebraic integrability was stated by Poincaré in 1891 in [92]. This problem asks

for necessary and sufficient conditions for a polynomial differential system to have a rational

first integral. Both problems are of a global nature involving whole classes of polynomial

differential systems and this is one of the reasons they are so hard. Apart from the quadratic

case for which only one of these two problems, the problem of the center, was solved, both

problems remain open for any natural number n ≥ 3.

A third famous problem on planar polynomial systems is the second part of Hilbert’s 16th

problem stated in the list of 23 problems posed by Hilbert in his address at the International

Mathematical Congress in Paris in 1900. This problem asks to determine for any natural

number n the maximum number of limit cycles which a planar polynomial differential system

of degree n could have and it remains to be one of the most difficult problems to be solved.

The interest is in the global behavior of all solutions in the whole plane and even at infinity

(cf. [66]) and this for a whole family of systems, which is why this problem is so hard.

In [93] Poincaré posed the individual finiteness problem which asks to prove that any

individual polynomial differential system has a finite number of limit cycles. Poincaré solved

this problem in a special case by proving the individual finiteness theorem for systems which

could only have simple graphics.

An even harder problem than Hilbert’s 16th problem for polynomial differential systems

10



is the problem of topologically classifying all phase portraits of polynomial systems of a given

degree n. This problem is very hard even in the simplest case of quadratic differential systems.

There are several subclasses of the quadratic and cubic classes for which this problem was

solved (we refer the reader to [117, 127, 128]).

Our work in Theses was partly motivated by the problem of topologically classifying the

cubic differential systems. We are interested in the investigation of the polynomial differential

cubic systems with invariant straight lines. Here we pose the problem of its classification

according to the configurations of invariant straight lines, which generates an useful base for

a further total topological classification of this family of systems.

The existence of sufficiently many invariant straight lines of planar polynomial systems

could be used for integrability of such systems. During the past 15 years several articles

were published on this theme. Investigations concerning polynomial differential systems

possessing invariant straight lines were done by Popa, Sibirski, Kooij, Sokulski, Zhang Xi

Kang, Schlomiuk, Vulpe, Dai Guo Ren, Artes, Llibre as well as Dolov and Kruglov.

The set CS of cubic differential systems depends on 20 parameters and for this reason

people began by studying particular subclasses of CS. We mention here some references on

polynomial differential systems possessing invariant straight lines. For quadratic systems see

[62,101,102,108,110–112] and [114]; for cubic systems see [16,17,27,28,78,83,85,86,103,127]

and [128]; for quartic systems see [123] and [139]; for some more general systems see [74,96,97]

and [100].

According to [5] the maximum number of invariant straight lines taking into account

their multiplicities for a polynomial differential system of degree m is 3m when we also

consider the infinite straight line. This bound is always reached if we consider the real and

the complex invariant straight lines, see [43].

So the maximum number of the invariant straight lines (including the line at infinity

Z = 0) for cubic systems with non-degenerate infinity is 9. A classification of all cubic sys-

tems possessing the maximum number of invariant straight lines taking into account their

multiplicities has been made in [83]. The authors used the notion of configuration of in-

variant lines for cubic systems (as introduced in [114]) and detected 23 such configurations.

Moreover using invariant polynomials with respect to the action of the group Aff(2,R) of

affine transformations and time rescaling in this paper, the necessary and sufficient condi-

tions for the realization of each one of 23 configurations were detected. A new class of cubic

systems omitted in [83] was constructed in [16].
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This paper is a continuation of [83]. More exactly, here we shall consider the family of

cubic systems with invariant lines of total multiplicity eight, including the line at infinity

and considering their multiplicities (we denote this family by CSL8). The results concerning

these systems are exhibit in [12–30]

Some systems in CSL8 have been also investigated by Lyubimova [86], Şubă, Puţuntică

and Repeşco [127, 128]. Lyubimova considered such cubic systems with invariant lines, all

real and distinct, and constructed 3 configurations of invariant straight lines (and 4 phase

portraits). Şubă and his coauthors using the notion of parallel multiplicity arrived at 17

configurations of invariant lines which coincide with those obtained in our classification in

the case of cubic systems with four distinct infinite singularities. But in contrast with their

work, for each configuration we give the necessary and sufficient conditions for its realization

in terms of invariant polynomials with respect to the group of affine transformations and time

rescaling. We note that the invariant polynomials was constructed applying the Invariant

Theory of Differential Equations, founded by C. Sibirschi and developed by his disciples

(Lunchevici, Marinciuc, Gasinschi–Chirniţchi, Dang Dini Bic, Tacu, Vulpe, Popa, Boularas

Driss, Baltag, Calin, Daniliuc, etc.).

The invariant theory is one of the important tools used in the qualitative study of polyno-

mial differential systems. This theory allows to characterize geometric properties of a given

differential systems which remain invariant under the action of a given group of transfor-

mations, with the help of algebraic or semi-algebraic relations depending on the coefficients

of these systems. Thus the theory of invariant is proven useful in the qualitative studies of

polynomial differential systems, in particular to establish invariant (necessary and/or suffi-

cient) conditions in relation to the given group of transformations, that give the existence

and the nature of singular points, characterize normal forms or the number of complete

lines, give the existence of parallel invariant straight lines, and so on. The computation of

invariants, however still difficult. Indeed, for planar cubic differential systems, the invariants

are polynomials of 20 indeterminate. The Computer algebra become an indispensable mean

when using the theory of invariants. Indeed, the qualitative study of polynomial differential

systems leads on algebraic systems. The spectacular progress of the computer algebra and

the efficient of the software ( Maple, Wolfram Mathematica, P4, etc.) motivate our work.

As it was mentioned above that the main object of our investigations are cubic systems

possessing invariant lines of total multiplicity eight. Of course we realize that, at the first

glance, the class CSL8 of cubic systems is a very specific one and we have to point out
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that this class is even a class of integrable systems (see for instance [128] where this fact is

proved for a subclass of CSL8). The cases of integrable systems are rare, but as Arnold said

in [1, p.405] “...these integrable cases allow us to collect a large amount of information about

the motion in more important systems...”.

The purpose and objectives of the thesis. The main goal of the Thesis is to give a full

classification of cubic systems with invariant straight lines of total multiplicity eight. This

classification involves the realization of the following objectives:

1. to detect all possible configurations of invariant straight lines for this family of systems;

2. to construct necessary and sufficient affine invariant conditions for the realization of

each one of the detected configurations.

Novelty and scientific originality. In our Thesis for the first time there are constructed

all possible configurations of invariant lines of total multiplicity eight for cubic systems. Our

set of configurations contains as particular cases all the configurations detected by other

authors for special cases of systems in CSL8 (see [86], [127, 128]). But in contrast with

these papers in the Thesis we have constructed necessary and sufficient conditions for the

realization of each one of the corresponding configurations. Moreover we detect a new class

of cubic systems with invariant lines of total multiplicity nine.

Methodology of scientific study. The reaserch carried out in the current Thesis is based

on methods of Qualitative Theory of Dynamical Systems, Invariant Theory of Differential

Equations, methods of Bifurcation Theory of Dynamic Systems, methods of Algebraic Com-

putations.

The main scientific problem which is solved in this Thesis consists in classifying the

whole family of cubic differential systems possessing invariant lines of total multiplicity eight

according to configurations of these lines; this classification is very helpful for obtaining the

complete topological classification of this family and is useful for the study of integrability

of these systems.

Principal scientific results to be defended:

(a) all possible 51 configurations of invariant straight lines for cubic systems possessing

invariant lines of total multiplicity eight;

(b) the necessary and sufficient affine invariant conditions for the realization of each one

of 51 configurations;

(c) the representatives of the family of systems with invariant lines of total multiplicity

13



eight modulo the action of the affine group and time rescaling;

(d) the perturbed canonical systems which characterize the vicinities of cubic systems in

CSL8;

(e) a new class of cubic systems possessing invariant lines of total multiplicity nine which

completes the classification given by Llibre and Vulpe in [83].

Implementation of the scientific results. The scientific results obtained could be used

for a deeper investigation of cubic systems possessing invariant straight lines of total multi-

plicity eight (including the line at infinity), and namely:

- the configurations of invariant lines detected, and canonical forms could be used for a

complete topological classification of cubic systems in this class;

- the canonical forms constructed for cubic systems in CSL8 can serve as a basis for

determining of the first integrals of such systems;

- the necessary and sufficient affine invariant conditions can be applied for any cubic

system in order to detect if it belongs to CSL8 and if so, then to specify its configuration of

invariant lines;

- this classification could be helpful for further investigations of cubic systems with in-

variant lines of total multiplicity less than 8;

- scientific results obtained can be applied in the study of some mathematical models

which are described by polynomial differential systems and which are related with some

problems in physics, chemistry, medicine and so on.

- these investigations could serve as a support for teaching courses in higher education.

Approval of obtained scientific results. The scientific results obtained and to be defined

were examined and approved by various research seminars, which are as follows: Qualitative

Theory of Differential Equations of Moldova State University, 2015; Differential Equations

and Algebras of Tiraspol State University, 2013, 2014; seminar of the Department of Differ-

ential Equations and Systems Analysis of Belorussian State University, Minsk, 2013; seminar

of the Department of Mathematics of the Shanghai Normal University, Shanghai (China),

2015.

Main scientific results included in the Thesis were presented at several scientific confer-

ences: International Conference of Young Researchers, X-th Edition, Chişinău, 2012; Con-

ference on Applied and Industrial Mathematics (CAIM), Chişinău: U.S.T., 2012, 2014, 2015;

International Conference “Mathematics and Information Technologies: Research and Educa-
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tion” (MITRE), Chişinău: U.S.M., 2013-2015; Conferinţa Ştiinţifică Internaţională a doctor-

anzilor “Tendinţe Contemporane ale Dezvoltării Ştiinţei: Viziuni ale Tinerilor Cercetători”,

Chişinău: AŞM, 2014, 2015; The Third Conference of Mathematical Society of Moldova

(IMCS-50), Chişinău: AŞM, 2014; Conferinţa Ştiinţifică Internaţională cu participare interna-

ţională “Probleme actuale ale ştiinţelor exacte şi ale naturii”, Chişinău: U.S.T., 2015.

Research papers. Research outcomes are reflected in 19 publications: 3 preprints, 6

scientific peer-reviewed articles, 10 proceedings and abstracts of international conferences; 2

articles and 6 abstracts are published as single-author papers.

Keywords: cubic differential system, group of affine transformations, invariant polynomial,

invariant straight line, multiplicity of a line, configuration of invariant straight lines, type of

configuration, canonical form, perturbed system.

The thesis is devoted to the research in the following scientific field: Qualitative

Theory of dynamical systems, Invariant Theory of differential equations.

Structure of the Thesis. The Thesis is written in English on 154 base pages and has the

following structure: Introduction, 4 Chapters, General Conclusions and Recommendations,

Bibliography with 140 References. Additionally the Thesis includes 28 figures.

The Introduction reveals the actual status of the conducted research, main reasons for

carrying on the proposed research, the purpose and objectives of the thesis, the importance

and advantages of the conducted scientific investigations, novelty and scientific originality,

scientific and research problems solved, the scientific results to be defended, as well as the

approval of obtained scientific results.

Chapter 1 contains a survey of the most important results related to the purpose and

objectives of the Thesis. In the fist section we give a brief survey on cubic differential

systems with invariant straight lines. More exactly, we discuss about the qualitative theory

of differential systems and the importance to study the configurations of invariant lines for

cubic systems which serve as a a basis for completing the phase portraits of the corresponding

systems. So, our Thesis was partly motivated by the problem of topologically classifying

the cubic differential systems. In the second section we describe the problem of integrability

concerning planar differential systems. Having obtained all canonical forms for cubic systems

possessing invariant lines of total multiplicity eight, the problem of integrability of such

systems could be resolved and this also motivated our work. The last section is devoted to

the concept of invariant polynomial and its use in classification problems. We briefly review
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the classical theory of invariants and its analog for the theory of polynomial vector fields

developed by Sibirskii school and its new developments by the joint work of the Chişinău

school, the Barcelona school and by Schlomiuk.

In Chapter 2 In Chapter 2 we firstly give the preliminary definitions and results needed

in the work. This section is devoted to some aspects concerning the Invariant Theory and

besides some invariant polynomials earlier constructed we exhibit 52 new invariant poly-

nomials, which are in fact CT−comitants. We also describe the scheme of the proofs of

the main theorems. In Paragraph 2.2 we state and prove the classification theorem (Main

Theorem A) of cubic systems in CSL8 having four distinct infinite singular points (denoted

by ISPs) according to configurations of invariant lines and for each configuration we give

the corresponding necessary and sufficient conditions for its realization in terms of algebraic

invariants and comitants with respect to the group of affine transformations and time rescal-

ing. For the family of such cubic systems we also construct their representatives modulo

action of the group under consideration.

Chapter 3 is devoted to the proofs of two classification theorems: Main Theorem B

which deals with cubic systems in CSL8 possessing three distinct ISPs and Main Theorem

C which is related to cubic systems in CSL8 possessing exactly one infinite singularity. So

we detect all possible configurations of ISLs for these two subfamilies of systems and for

each configuration we give the necessary and sufficient conditions for its realization. In order

to prove the multiplicity of multiple lines we construct in this case the perturbed systems

corresponding to the given canonical forms associated to the configurations of invariant lines.

In Chapter 4 we state and prove the classification theorem (Main Theorem D) of the

cubic systems in CSL8 with two distinct ISPs. For this family of systems we construct all

possible configurations of invariant lines and affine invariant criteria for the realization of each

one of the detected configurations. Surely we construct in this case the perturbed systems

corresponding to the given canonical forms associated to the configurations of invariant

lines. Besides the proof of Main Theorem D we detect a new class of systems in CSL9 which

completes the classification given by Llibre and Vulpe in [83].
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1. ADVANCES IN THE STUDY OF CUBIC SYSTEMS WITH

INVARIANT STRAIGHT LINES

We consider real planar polynomial differential systems, i.e. systems of the form

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (1.1)

where p and q are polynomials in x and y with real coefficients and max
(
degP, degQ

)
= n.

We call such systems polynomial systems of degree n. In particular, a planar polynomial

system of differential equations of degree 2 or 3 will be called simply, a quadratic system

or a cubic system, respectively. We denote by CS the whole class of real cubic differential

systems. To a system (1.1) one can associate the vector field X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

1.1. Polynomial differential systems with invariant straight lines

The polynomial differential systems are objects of numerous scientific investigations. For

reasons, which have, apparently, philosophical character, the majority of differential equa-

tions born in engineering practice, are not integrable. More precisely, they cannot be solved

in quadrature, i.e. it is not possible to reduce the problem to integration of known functions.

A source of these difficulties is nonlinearity of mathematical models of complicated real pro-

cesses and devices. Poincaré wrote a series of memoirs [89–91] where he built a new branch

of mathematics, called qualitative theory of differential equations. More precisely, even if the

differential equation can not be solved in terms of known functions, yet from the very form

of the equation, a wealth of information about the geometric properties and behavior of the

solutions can be found. In other words, the solutions of the differential equation are a family

of functions. Graphically, this can be plotted in the phase plane like a two-dimensional vec-

tor field. Vectors representing the derivatives of the points with respect to a parameter (say

time t), that is (dx/dt, dy/dt), at representative points are drawn. With enough of these

arrows in place the system behavior over the regions of plane in analysis can be visualized

and limit cycles can be easily identified. A phase portrait is a geometric representation of

the trajectories of a differential system in the phase plane. Phase portraits are an invaluable

tool in studying dynamical systems. They consist of a plot of typical trajectories (invariant

algebraic curves) in the state space.

These curves or trajectories can be defined on the Poincareé disc using the Poincaré

compactification [113], which is define as follows. Consider the x, y plane as being the plane

Z = 1 in the space R3 with coordinates X, Y, Z. The central projection of the vector field
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X on the sphere of radius one yields a diffeomorphic vector field on the upper hemisphere

and also another vector field on the lower hemisphere. Poincaré indicated briefly in [90] that

one can construct an analytic vector field V on the whole sphere such that its restriction on

the upper hemisphere has the same phase curves as the one induced by the phase curves of

(1.1) via the central projection. A complete proof was given much later in [66]. The analytic

vector field V on the whole sphere obtained in this way is called the Poincaré field associated

to a system (1.1). The phase curves of V coincide in each chart with phase curves induced by

planar polynomial vector fields, in particular in the chart corresponding to Z = 1, denoting

the two coordinate axes x, y corresponding to the OX and OY directions, they coincide with

the phase curves induced by (1.1). The two planar polynomial vector fields U, V associated

to the charts for X = 1 (with local coordinates (u, z)) and for Y = 1
(
with local coordinates

(v, w)
)

and changes of coordinates u = y/x, z = 1/x, or v = x/y, w = 1/y are as follows.

U :
du

dt
= C⋆(1, u, z),

dz

dt
= zP ⋆(1, u, z); V :

dv

dt
= C⋆(v, 1, w),

dw

dt
= −wQ⋆(v, 1, w),

where P ⋆(X, Y, Z), Q⋆(X, Y, Z) are the homogeneous polynomials associated to the polyno-

mials P (x, y), Q(x, y). By the compactification of the planar polynomial vector field asso-

ciated to (S) we understand the restriction V |H1 (where by H1 we understand the upper

hemisphere H completed with the equator) of the analytic vector field V on the sphere.

Our aim of the Thesis is to classify CS according to their geometric proprieties, i.e. in the

construction of the configurations of invariant straight lines of these systems on R2 completed

with its points "at infinity", i.e. on the equator S1 of S2. Since the vertical projection is a

diffeomorphism of H1 on the disk {(x, y)|x2 + y2 ≤ 1} we can view the such configurations

of our systems (1.1) on this disk, called the Poincaré disk.

In this Thesis are approached the planar differential cubic systems. The set CS depends

on 20 parameters and for this reason people began by studying particular subclasses of

CS. We are interested in the investigation of the cubic polynomial differential systems with

invariant straight lines.

Following [114, Schlomiuk], we call configuration of invariant straight lines of these sys-

tems, the set of (complex) invariant straight lines (which may have real coefficients) of the

system, each endowed with its own multiplicity and together with all the real singular points

of this system located on these invariant straight lines, each one endowed with its own

multiplicity.

It was observed (see, for instance [85,86,103,104,110,112,127,128]) that the configurations
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of invariant straight lines which were detected for various families of systems (1.1) using

Poincaré compactification, could serve as a base to complete the whole Poincaré disc with

the trajectories of the solutions of corresponding systems, i.e. to give a full topological

classification of such systems.

According to [5] the maximum number of invariant straight lines taking into account

their multiplicities for a polynomial differential system of degree m is 3m when we also

consider the infinite straight line. This bound is always reached if we consider the real and

the complex invariant straight lines, see [43]. So the maximum number of the invariant

straight lines (including the line at infinity Z = 0) for cubic systems is 9.

In [5] some basic results on the invariant straight lines of a polynomial differential system

of degree n were given. We emphasis these properties for n = 3, i.e. for the case of a real

differential cubic system in CS:

(a) either all the points on an invariant straight line are singular or the line contains no

more than 3 singular points;

(b) no more than 3 invariant straight lines can be parallel;

(c) the set of all invariant straight lines passing through a single point cannot have more

than 4 different slopes;

(d) either it has infinitely many finite singular points, or it has at most 9 finite singular

points.

At infinity a system in CS has at most four distinct singular points (in the Poincaré

compactification) if C3(x, y) = yP3(x, y)−xQ3(x, y) 6= 0 and for a system in CS the infinity

represents a non-singular invariant straight line. In the case C3(x, y) = 0 the infinity is

degenerate, i.e. consists only of singular points. According to [4] (see also [130]) systems

in CS with the degenerate line at infinity possess at most six invariant lines. Since in the

Thesis we investigate only systems in CS with invariant lines of total multiplicity eight, we

shall focus only on the case C3 6= 0 when the systems have the non-degenerate infinity.

Over the years many researchers have approached various problems concerning the qual-

itative study of polynomial systems. Since we are interested on cubic systems possessing

invariant straight lines, we shall give here below a survey of some of results in this area in

the case of arbitrary n and also for the simplest nonlinear systems (1.1) with n = 2 and

n = 3. We underline that in the case of cubic systems we will give a more detailed review

because this is the domain of our Thesis and, of course, we will compare the results and

point out what are the main important distinctions with respect to the results obtained till
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now by other authors.

In the papers by Popa and Sibirski [96,97,100, 1987-1992] the conditions for the existence

and the number of invariant straight lines of a system (1.1) with homogeneous nonlinearities

of degree n > 1, as well as the conditions with the maximal multiplicity of an invariant line

were determined.

Robert Kooij [71, 1995] considered polynomial systems (1.1) with n + 1 invariant lines.

As a particular result it was proved that under some circumstances there are no limit cycles,

whereas in other situations it is shown that limit cycles do exist.

In the paper [123, 1996] Sokulski has studied the problem of the existence of invariant

straight lines of planar polynomial systems (1.1). In particular for n = 4 he has shown that

the maximum number of isolated real invariant straigt lines of such systems is 9.

In [139, 1993] Zhang Xi Kang has proposed a conjecture regarding the maximum number

of invariant straight lines for systems (1.1) of degree n (this conjecture was proved for

n = 3 and n = 4). However the author has committed a mistake which he has corrected

in [140, 1998].

The class of all real polynomial systems (1.1) with n > 1 and with a finite number of

invariant straight lines is considered by Artes, Llibre and Grünbaum in [4, 1996] and [5, 1998].

The authors estimated the maximum number of such lines, possible in this class, as well as

the number of slops of invariant lines for systems (1.1).

The Chinese mathematician Dai Guo Ren [55, 1996] also has considered polynomial

systems (1.1) with invariant lines. He has estimated the number of non-parallel invariant

lines for n ≥ 3 as well as the number of parallel ones in the case n ≥ 2.

In one of the most recent publication [61, 2015] Dolov and Kruglov have obtained a

sharp bound for the number of distinct invariant straight lines of non-degenerate systems

(1.1) with n ≥ 2. However we have to point out that this result have been obtained earlier

by other authors and namely, in the paper [5]. Moreover this result was generalized by

Llibre and Medrado in the article [81, 2007], where the number of invariant hyperplanes for

d-dimensional polynomial vector fields was given.

A lot of papers are dedicated to the polynomials (1.1) possessing invariant lines in the

simplest case of these systems, i.e. in the case n = 2. We give here only several publications

which in our opinion are relevant.

In 1991 Popa and Sibirski [100, 101], using the invariant polynomials of quadratic sys-

tems (1.1) with respect to linear group of transformations GL(2,R), have constructed the
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necessary and sufficient conditions for the existence of a non-homogeneous invariant affine

line as well as for the number of homogeneous invariant lines.

Voldman and Vulpe [133, 1999] have constructed affine invariant coefficient conditions

for a quadratic system to possess two conjugate imaginary invariant straight line as well as

two couples of such invariant lines. Moreover, for some classes of quadratic systems with

two imaginary invariant straight lines necessary and sufficient affine invariant conditions for

possessing just one limit cycle are determined.

Between 2004 and 2015 there were published a set of articles by Schlomiuk and Vulpe

dedicated to the family of planar quadratic systems (1.1) possessing invariant lines of total

multiplicity greater then or equal to three. First we mention the articles [108, 111, 114] in

which for this family are constructed all the possible configurations of invariant lines of given

total multiplicity. Moreover applying the invariant theory of differential systems the neces-

sary and sufficient conditions for the realization of each one of constructed configurations

are determined.

Other set of papers [110, 112, 113, 115, 116] deals with the above mentioned families of

systems, but solving other problems, and namely: i) the construction of the corresponding

first integrals and ii) the global topological classification of these systems. We remark that

in this case the necessary and sufficient affine invariant conditions for the realization of each

one of the detected phase portraits are established.

In what follows we shall focus on systems in CS and we shall describe the current situation

in this domain.

The Russian mathematician Liubimova in [85, 1977] showed that cubic systems (1.1)

could possess at most 8 real distinct invariant affine lines. Moreover she has investigated

cubic systems with the maximum number of such lines and constructed the corresponding

canonical form (which turned out to be a specific system with numerical coefficients), as well

as its phase portrait. The paper [86, 1984] is a continuation of [85] and it is devoted to cubic

systems with 7 distinct real invariant affine straight lines. The author also has constructed

three canonical forms depending on the number of triplets of parallel invariant lines. As a

result there were determined four topologically distinct phase portraits.

The mathematicians from Republic of Moldova Cozma and Şubă also have considered the

family of cubic systems possessing invariant straight lines (see [50–54,124–126, 1992-2005]).

More exactly, in these papers they have investigated a special family of cubic systems (1.1)

having at the origin of coordinates a singularity O(0, 0) with pure imaginary eigenvalues.
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In addition they force the systems to possess three or four invariant straight lines and con-

structed the necessary and sufficient conditions for the singularity O(0, 0) to be a center.

Cozma have generalized this problem in [45–49, 2009-2012] considering cubic systems with

the singularity O(0, 0) of the same type, which besides two invariant straight lines possess

one invariant conic. As a result for such systems the center problem was solved and this leads

to the construction of some new conditions for the existence of a center for cubic systems.

A group of mathematicians, Llibre, Mahdi, Vulpe (form Spain, Turkey and Republic

of Moldova), have considered cubic systems (1.1) having a quadratic rational first integral

[80, 2011]. It turned out that such systems possess invariant straight lines which play a

central role in the topological classification of these systems. The authors have proved

the existence of 38 topologically distinct phase portraits (among which 11 correspond to

degenerate systems).

The Chinese mathematician Chan Guo Wei has considered some families of cubic systems

possessing either two invariant conjugate imaginary lines [38, 1991] or two pairs of such

conjugate lines [39, 1995] [40, 1997] or just two real intersecting invariant straight lines [41,

1998]. In these papers the author has investigated the problem of the existence or the non-

existence of limit cycles. In particular, in the last paper, it is shown that a cubic system

(1.1) has no limit cycles when the two real invariant straight lines intersect each other. On

the other hand necessary and sufficient conditions for the existence of a unique limit cycle

are given in the case of two parallel invariant straight lines.

Cubic systems with either six or seven invariant straight lines are also investigated by

mathematicians Şubă, Puţuntică and Repeşco [103,104,127,128]. In these papers they used

the notion of parallel multiplicity. The authors say that an invariant line f(x, y) = 0 where

f(x, y) = ux + vy + w of a cubic system (1) has parallel multiplicity 1 ≤ k ≤ 3 if the

identity X(f) = fkR(x, y) holds for some polynomial R(x, y) with coefficients in C (here X

are the vector fields associated to systems (1.1)). If in the case of cubic systems with seven

invariant straight lines one also takes into account the line at infinity as invariant line, then

in fact the authors have considered the family of cubic systems possessing configurations

of invariant straight lines of total parallel multiplicity 8. Considering the whole family of

cubic systems authors proved that there exist exactly 17 configurations of invariant lines.

These configurations coincide with the configurations detected in this Thesis but only for

the subfamily of cubic systems possessing four distinct infinite singularities (see Chapter 2).

This coincidence is a natural one because it is clear that a system in such a family could not
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have invariant straight line of, say, ”non-parallel” multiplicity, as for these lines we must have

at least one infinite singular point defined by a multiple linear factor of the form C3(x, y) =

yp3(x, y) − xq3(x, y) (when we factorize C3 over C). The case of singularities at infinity

defined by multiple factors of C3 are considered in Chapters 3 and 4 and the constructed

configurations could not be obtained applying only the notion of ”parallel” multiplicity.

We would like also to mention one more difference between the results obtained in the

classification given by these authors and those from our Thesis (for the above mentioned

subfamily). And namely, in contrast to the results obtained in the papers [127] and [128], in

our Thesis in addition we find out the necessary and sufficient conditions for the realization

of each one of the 17 configurations.

Finally we would like to discuss some results obtained by Llibre and Vulpe [83, 2006] which

strongly correlate with the results contained in our Thesis. More precisely in [83] the cubic

systems (1.1) possessing the maximum number of invariant straight lines were considered.

The authors introduced the notion of the configurations of invariant lines of cubic systems

and detected 23 such configurations for cubic systems. Moreover using invariant polynomials

with respect to the group Aff(2,R) of affine transformations and time rescaling in this paper

the necessary and sufficient conditions for the realization of each one of 23 configurations were

constructed. However, as it was proved in this Thesis (see also [16, 2014]), the classification

given in [83] is not complete. Indeed, in Chapter 4 of the Thesis we exhibit a new class of

cubic systems with invariant lines of total multiplicity 9.

We would like to underline that for some special families of polynomial systems (1.1)

possessing invariant lines, the knowledge of configurations of lines allows us easily to detect

the corresponding phase portraits. For example, in papers [110, 112] for quadratic systems

with invariant lines grater or equal to 4, it was proved that the existence of 57 distinct config-

urations of invariant lines leads to the existence of 135 topologically distinct phase portraits.

In [103,104,127,128] for cubic systems with invariant lines of total parallel multiplicity six or

seven, taking into consideration constructed configurations of invariant lines it was proved

the existence of 113 topologically distinct phase portraits.

In the Thesis for systems CSL8 there have been obtained 51 distinct configurations of

invariant straight lines, this number summarizing all possible configurations obtained in all

cases examining in Chapters 2-4.

The question of determining all topologically distinct phase portraits of systems in CSL8

is expected to be examined by the author in the future.
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1.2. Invariant algebraic curves in the study of integrability of planar polynomial

systems

As it was mentioned earlier, one of the goal of the curent Thesis is the determination of

all configurations of invariant straight lines for systems in CSL8. Therefore, in order to

construct these configurations, we have to determine all possible invariant straight lines,

the sum of multiplicities of which equals eight. Our hypothesis is that these invariant lines

could serve as a base for determining the first integral (integrating factor) of corresponding

systems applying the method of integration of Darboux. In what follows we shall examine

this point of view.

The question to determine the invariant algebraic curves of a given planar polynomial

vector field, or to decide that no such curves exist, is part of a problem set forth by Poincaré,

and is also essential in deciding whether the vector field is integrable (admits an integrating

factor). See the interesting and profound survey of Schlomiuk [105] on these questions. One

of the first publications in this direction was the paper of Darboux [59, 1878] where the

existence of invariant curves plays an important role in order to determine the first integrals

of these systems. Since Darboux had found connections between algebraic geometry and

the existence of first integrals of polynomial systems, invariant algebraic curves have been

a central object in the theory of integrability of planar polynomial systems. Today, after

more than a century of investigations, the theory of invariant algebraic curves is still full of

open questions which are not easy to solve. One of the reasons for this is the fact that it is

very difficult to tell if any nonsingular trajectories of the system are contained in algebraic

curves.

The method of integration of Darboux uses multiple-valued complex functions of the

form: (a) F = eG(x,y)f1(x, y)
λ1 · · · fs(x, y)λs, G = G1/G2, Gi ∈ C[x, y], and fi irreducible

over C. It is clear that in general the last expression makes sense only for G2 6= 0 and for

points (x, y) ∈ C2 \
(
{G2(x, y) = 0} ∪ {f1(x, y) = 0} ∪ · · · ∪ {fs(x, y) = 0}

)
.

Consider the polynomial system of differential equations (1.1). The equation f(x, y) = 0

(f ∈ C[x, y], where C[x, y] denotes the ring of polynomials in two variables x and y with

complex coefficients) which describe implicitly trajectories of of systems (1.1), can be seen as

an affine representation of an algebraic curve of degree m. Suppose that (1.1) has a solution

curve which is not a singular point, contained in an algebraic curve f(x, y) = 0. It is clear

that the derivative of f with respect to t must vanish on the algebraic curve f(x, y) = 0, so
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df

dt
|f=0 =

( df
∂x
P (x, y) +

df

∂y
Q(x, y)

)
|f=0 = 0.

In 1878 Darboux introduced the notion of the invariant algebraic curve for differential

equations on the complex projective plane. This notion can be adapted for systems (1.1).

According to [59] an algebraic curve f(x, y) = 0 in C2 with f ∈ C[x, y] is an invariant

algebraic curve (an algebraic partial integral) of a polynomial system (1.1) if X(f) = fK

for some polynomial K(x, y) ∈ C[x, y] called the cofactor of the invariant algebraic curve

f(x, y) = 0. It could be observed that for the points of the curve f(x, y) = 0 the right

hand side of (1.1) is zero. This means that the gradient (∂f/∂x, ∂f/∂y) is orthogonal to the

vector field X = (P,Q) at these points. Therefore the vector field X is tangent to the curve

f = 0. This explains why the algebraic curve f = 0 is invariant under the flow of the vector

field X.

In view of Darboux’s definition, an algebraic solution of an equation (1.1) is an invariant

algebraic curve f(x, y) = 0, f ∈ C[x, y] (deg f ≥ 1) with f an irreducible polynomial over

C. Darboux showed that if a system (1.1) possesses a sufficient number of such invariant

algebraic solutions fi(x, y) = 0, fi ∈ C, i = 1, 2, . . . , s, then the system has a first integral

of the form (a) (see the previous page).

According to [59], we say that a system (1.1) has a Darboux first integral (respectively

Darboux integrating factor) if it admits a first integral (respectively integrating factor) of the

form eG(x,y)
s∏

i=1

fi(x, y)
λi, where G(x, y) ∈ C(x, y) and fi ∈ C[x, y], deg fi ≥ 1, i = 1, 2, . . . , s,

fi irreducible over C and λi ∈ C. If a system (1.1) has an integrating factor (or first integral)

of the form F =
∏s

i=1 f
λi

i then ∀i ∈ {1, . . . , s}, fi = 0 is an algebraic invariant curve of (1.1).

In [59] Darboux proved the following remarkable theorem of integrability using invariant

algebraic solutions of systems (1.1):

Theorem. Consider a differential equation (1.1) with p, q ∈ C[x, y]. Let us assume that

m = max(degP, degQ) and that the equation admits s algebraic solutions fi(x, y) = 0,

i = 1, 2, . . . , s (deg fi ≥ 1). Then we have:

I. If s = m(m + 1)/2 then there exists λ = (λ1, . . . , λs) ∈ C
s \ {0} such that R =

∏s
i=1 fi(x, y)

λi is an integrating factor of (1.1).

II. If s ≥ m(m + 1)/2 + 1 then there exists λ = (λ1, . . . , λs) ∈ Cs \ {0} such that

F =
∏s

i=1 fi(x, y)
λi is a first integral of (1.1).

In 1979 Jouanolou proved the next theorem which improves part II of Darboux’s Theo-

rem: Consider a polynomial differential equation (1.1) over C and assume that it has s al-
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gebraic solutions fi(x, y) = 0, i = 1, 2, . . . , s (deg fi ≥ 1). Suppose that s ≥ m(m+1)/2+2.

Then there exists (n1, . . . , ns) ∈ Zs \ {0} such that F =
∏s

i=1 fi(x, y)
ni is a first integral of

(1.1). In this case F ∈ C(x, y), i.e. F is rational function over C.

The above theorems shows that we can reduce the study of the invariant algebraic curves,

to the study of the irreducible invariant algebraic curves in C[x, y], (see, for instance Christo-

pher and Llibre [42]).

According to the above stated theorems, if a system in CS possesses 7 distinct affine

invariant straight lines (algebraic curves of the first degree) then this systems has a first

integral which could be constructed with these lines and so, the coordinates of the vector λ

could easily be determined. Moreover, if cubic systems (1.1) possess 6 distinct affine invariant

lines, then it exists an integrating factor determined by these lines.

As it was mentioned above the main object of our investigations is the class CSL8 of cubic

systems, which is, at the first glance, very specific one. The next question which comes to

mind is the following: could a system (1.1) in CSL8 having ≤ 5 distinct affine invariant

straight lines of total multiplicity 8 be Darboux integrable? Our assumption concerning

this problem is that a first integral (or an integrating factor) also could be constructed for

considerated systems.

This conviction is based on the fact that in [127, 128, Şubă, Repeşco, Puţuntică](also

see [85, 85]) the authors have been proved that cubic systems (1.1) with invariant lines of

parallel multiplicity 7 are integrable. Particularly a first integral for cubic systems with four

distinct affine invariant lines is constructed.

It is worth to point out that the problem of integrability in the case of cubic systems with

the maximum number of invariant straight lines (i.e. 9), considered in [83], is still unsolved.

Thus, we arrive at the conclusion that, having all canonical forms of systems in CSL8,

constructed in the current Thesis, the problem of integrability of such systems could be

solved. This question is expected to be examined by the author in the future.

1.3. Invariant theory of polynomial differential systems in the problem of clas-

sification

The roots of the invariant theory of polynomial vector fields lie in the classical invariant

theory. The idea to adapt to polynomial vector fields the concepts of classical invariant

theory is due to C.S. Sibirsky, the founder of the Chişinău school. In this chapter we first

describe briefly classical invariant theory and then explain how the ideas of this theory were
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used by Sibirsky and his school to built an analogous theory for polynomial vector fields.

Classical invariant theory. In the Introduction of his book [87], Olver defines classical

invariant theory as the study of the intrinsic or geometrical properties of polynomials. By

geometric property we mean a property which is not affected by changes of coordinates.

These changes are usually assembled in groups such as for example the group GL(n,C) of

linear transformations of Cn or its subgroup SL(n,C) of special linear transformations of

determinant 1. In his famous Erlangen Program, Felix Klein called a property geometric if

it is invariant under a group action. Depending on the groups we consider we could have

the Euclidean geometry for the group of rigid motions, the affine geometry for the group

of affine transformations, the projective geometry for the group PGL(3,C) of projective

transformations.

We can trace the beginning of classical invariant theory to Gauss who in 1801 published

in Latin his book Disquisitiones arithmeticae where Gauss observed invariant behavior in the

theory of quadratic forms over C. Gauss considered binary quadratic forms Q(x, y) = ax2 +

2bxy+ cy2 over C. On these forms acts the group GL(2,C) of linear transformations, i.e. for

every 2×2 non-singular matrix M over C and every quadratic form Q(x, y) we can associate

a quadratic form Q̃(x̃, ỹ) = Ax̃2 + 2Bx̃ỹ + Cỹ2 where (x, y)t = M(x̃, ỹ)t. The discriminant

of a quadratic form Q over C is the number ∆ = b2 − ac. For the transformed form we

have ∆̃ = B2 − AC and calculations yield ∆̃ = (detM)2∆ = C∆ with C = (detM)2 ∈ C, C

depending only on the element M of the group GL(2,R) and not on the quadratic form. If

det(M) = 1 then ∆ is an invariant. In [64] Gauss was interested in number theory and used

quadratic forms over Z with the action of the group SL(2,Z) on these forms.

The classical theory of invariants deals with transformations of forms, i.e. homogeneous

polynomials in n variables x = (x1, ..., xn) of degreem with coefficients in C. In particular, for

the specials case of binary forms we have f(a, x) =
∑m

i=0


m
i


 aix

m−i
1 xi2 with a = (a1, ..., an).

If x =Mx′ is a non-singular linear transformation, then this induces a transformation of f ,

i.e. f(a, x) = f(a,Mx′) = f ′(a′, x′) where f ′ is a new n-form with coefficients a′ = (a′1, ..., a
′
n).

Then the coefficients a′ of f ′ are related to those of f by a linear transformation a = ν(M)a′.

Furthermore if M = M1M2 then ν(M) = ν(M1M2) = ν(M1)ν(M2), so the map M → νM

is an automomorphism of the group GL(n,C). If we only consider M in a subgroup G of

GL(n,C) then this map is a group homomorphism G → GL(n,C). As Thomas Hawking

observed in [69], this property was ignored in the first phase of the development of classical
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invariant theory but it was later emphasized by Lie and by Klein in his Erlangen program

of 1872. In fact there is a close relation between invariant theory and group theory. In

his book [60] Dieudonné talking about the revival prompted by developments of Schur,

Weyl and Cartan, on the semi-simple groups and their representations around 1935, it was

realized that classical invariant theory was really a special case of that theory." In modern

terms the invariants of the form f are called invariants of the representation M → ν(M) in

GL(m+ 1,C) induced by the action of GL(n,C) on Cn.

A polynomial I(a) in the ai is a relative invariant of f (or of a family of such forms f) if

I(a′) = (det(M))−µI(a) for all M ∈ GL(2,C) and µ is called the weight. In case I(a′) = I(a)

then I is called an invariant (or an absolute invariant).

A polynomial g(a, x) in the ai and xj of f(a, x) is called a relative covariant of f if

g′(a′, x′) = (detM)νg(a, x) for all M ∈ GL(2,C). The classical theory of invariants is the

study of these invariants and covariants of n-form over C and finding all of them.

The classical invariant theory began to be developed in the 1840s. The British math-

ematician George Boole launched this theory by publishing the treatise "Exposition of a

General Theory of Linear Transformations" in 1841. The basic example considered by Boole

was the set of monic polynomials Q(x) = x2 + 2b1x+ b2 on which acts the group of transla-

tions, Q(x+c) = x2+2(b1+c)x+c
2+2b1c+b2. The discriminant of Q(x) is ∆ = b21−b2 and

calculations yield that the discriminant ∆′ of Q(x+ c) coincides with ∆. Thus the discrimi-

nant is an invariant of monic quadratic polynomials under the action of translations. Boole

used elimination theory to construct an invariant of homogeneous polynomials of degree m

in n variables, namely the discriminant K. In 1845, in [35] Cayley gave a technique for gen-

erating invariants, distinct from that of Boole. Cayley’s goal was to elaborate a theory that

would allow for the production of some sort of minimal set of invariants for a given form

and also of a minimal set of relations or syzygies among invariants. For example Cayley

constructed two simpler invariants I, J than the ones of Boole and it turned out that K, I, J

are related by the "syzygy" K = I3 − 27J2. The term "syzygy" was introduced in 1853 by

James Joseph Sylvester who was also a leader of the British school of invariants.

The German school led by Otto Hesse, included his student S. Aronhold, also A. Clebsch

and P. Gordan. Paul Gordan proved the first fundamental theorem of invariant theory

in 1868 in [67]. Gordan considered only binary forms over a field K under the action of

the group GL(2, K). His theorem says that all covariants are explicitely constructible as

polynomials in a finite number of them over the underlying field. The syzygy problem, i.e.
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find a finite basis for syzygies, remained unsolved.

For over twenty years, extending the theorem of Gordan to n-ary forms proved to be

a difficult task but in 1890 Hilbert, who obtained his doctorate in 1885 with a thesis on

invariant theory and with an Habilitationsschrift (1886) also on invariant theory, succeeded

in generalizing the result of Gordan to n-ary forms over C, i.e. homogeneous polynomials

in n variables F (x1, ..., xn) with coefficients in C, of any degree. Hilbert’s first proof of this

result was existential, i.e. he proved the existence of a finite basis of invariants by reductio

ad absurdum. It was only in 1893 that he gave a constructive proof for this theorem which

says that any finite system of homogeneous polynomials admits a basis for its invariants, as

well as for its covariants. A collection of invariants I1, ..., Is of n-forms f1, ..., fl of degree m

such that any invariant I is a polynomial function I = P (I1, ..., Is) is called a Hilbert basis.

Similarly a finite collection of covariants J1, ..., Jk forms a Hilbert basis if every covariant J

is a polynomial function J = P (J1, ..., Jk).

In 1893 Hilbert solved also the problem of finding a finite basis for syzygies of invariants

of n-ary forms. Hilbert’s work went beyond invariant theory since in these papers he proved

results of modern algebra which are now at the basis of commutative algebra: Hilbert’s basis

theorem and the Nullstellensatz. Thus invariant theory played an important role in the

development of abstract algebra at the beginning of the twentieth century.

In 1900, at the International Congress of Mathematicians in Paris, Hilbert included in

his list of problems for the XX-th century [76] also a problem on invariant theory. This

is his 14-th problem on his list. However, after his work [75], Hilbert abandoned invariant

theory and with few exceptions, this theory remained rather stagnant until the middle of the

twentieth century when it was revived and infused with new ideas ultimately giving birth to

modern invariant theory or geometric invariant theory as it was called by Mumford [70].

We note that we have a relation between classical invariant theory and group represen-

tation theory, relation which was not perceived in the initial stages of invariant theory but

which was highlighted in the work of Lie and Klein. This relation is pervasive in modern

invariant theory.

Sibirsky’s school in invariant theory of planar polynomial vector fields. Classi-

cal invariant theory involved vector spaces of n-forms over C of degree m, where n and m are

natural numbers. It was a natural problem to try to develop an analogous theory in which

the vector space of n-forms is replaced by a vector space of differential equations such as for

example the vector space of polynomial differential systems of degree m. Although algebraic
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invariants in the theory of differential equations were used in work of some 19th century

mathematicians, the development of a full invariant theory for polynomial differential sys-

tems only began in the second part of the XXth century. The initial steps in this direction

were made by Constantin Sibirsky who wrote several books and published numerous works

on this theme. He established the connection between the algebraic invariants of the classical

groups (rotation groups, O(2,R), GL(2,R), Aff(2,R)) and the qualitative theory of pla-

nar polynomial differential systems. Sibirsky was the founder of the Chişinău school in the

theory of invariants of planar polynomial vector fields. He had many students, among them

V. Baltag, D. Bularas, I. Calin, Dang Din’ Bik, V.I. Daniljuc, F. Gasinskaja-Kirnickaja, V.

Lunchevich, A.V. Marincuk, I.I. Pleshkan, M. Popa, A.M. Stakhi, A. Şubǎ, V.D. Taku, N.

Vulpe. Most of them had students and they continue to be active.

In his book [121], Sibirskii wrote that the first works on the theory of invariants of dif-

ferential equations were done by Laguerre. His papers, published in 1879, are on linear

differential equations. From 1879 on, other articles on invariants of linear differential equa-

tions were published, among them the work of Halphen. Beginning with the work of Liouville

(1886) and of Appell (1889), the theory of invariants was extended to non-linear differential

equations and new contacts between this theory and algebraic geometry appeared (see [121]

for more information).

Sibirsky began to work on developing the invariant theory of polynomial vector fields

during the 1950’s. The first successful articles on classifying families of planar polynomial

systems were done by Sibirsky and Vulpe, one published in 1975 [137] and another in 1977

[138]. A few unsuccessful attempts to classify quadratic systems with a center were done

before 1975. Vulpe’s article [135] published in 1983 contained the first correct classification

for this important class of all quadratic systems with a center. Vulpe not only listed there

all 31 phase portraits of this family but also gave necessary and sufficient conditions in

terms of invariant polynomial for the realization of each one of the phase portraits, when

the center is placed at the origin. Thirty two years have passed since the publication of this

article and in this period of time over 50 articles appeared solving classification problems

for quadratic or cubic differential systems. These articles are of two kinds: (A) those listing

phase portraits but without proving with the help of topological invariants that the lists

contain topologically distinct phase portraits and without characterizing the phase portraits

(whenever possible) in terms of invariant polynomials (for this concept see the next section);

(B) those proving that the phase portraits are indeed distinct and characterizing each phase
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portrait in terms of polynomial invariants (see [117]) whenever this was possible. Here below

we give a very brief survey of results obtained by Sibirsky and by members of the Chişinău

school and their collaborators.

With his students, Sibirsky constructed algebraic invariants and comitants (analogs in

this theory, of the covariants in the classical theory) for polynomial vector fields under the

action of the groups O(2,R), GL(2,R) and Aff(2,R).

The basic problem of giving polynomial bases for invariants and comitants for quadratic

and cubic differentials systems for the action of the group GL(2,R) was solved by Sibirsky

and his students Bularas, Calin, Daniljuc, Dan Ging’Bik, Gasinskaja-Kirnickaja and Vulpe

(see [33, 56, 57, 63, 134]). In addition to the construction of polynomial bases, Calin con-

structed algorithms for creating rational bases of the GL(2,R)-comitants for polynomial

differential systems (see [37, 44]).

The problem of giving polynomial bases for invariants and comitants for the quadratic

differential systems with respect to the group Aff(2,R) was solved by Bularas in [31],

[32]. He obtained 36 affine comitants such that every invariant or comitant with respect to

Aff(2,R) is obtained as a polynomial in these 36 elements. Using these elements as well

as the elements of polynomial bases of GL(2,R)-comitants, in [34], the minimal polynomial

basis of T -comitants (see definition in Section 2.1) was constructed up to and including the

degree 12.

For cubic differentials systems the problem of giving polynomial bases for invariants and

comitants, for the action of the group Aff(2,R) is still unsolved.

These bases play a fundamental role in the study of families of quadratic or cubic dif-

ferential systems. In particular they were used for the purpose of classifying families of

polynomial differential systems. This work was an important contribution because, unlike

other classification results on these systems which were non-intrinsic, the results obtained by

Sibirskii and his students were intrinsic, i.e. they were invariant under allowable coordinate

changes and hence independent of the specific presentation of the systems (normal forms)

used in the classifications.

Sibirsky determined necessary and sufficient conditions in terms of algebraic invariants

with respect to the GL(2,R) action, for a system with only quadratic or cubic nonlinearities

to have a center at the origin (see [118], [119]). Later Sibirsky with Kirnickaja have con-

structed analogous conditions for the existence of two centers, one of which being placed at

the origin.
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For a general quadratic system in the plane (including a system in which there can be

free terms) Bularas, Vulpe and Sibirsky obtained necessary and sufficient conditions for the

existence of one center, and also of two centers. These conditions are expressed in the form

of equalities and inequalities between affine-invariant polynomials in the coefficients of the

right-hand sides of the system.

The Poincaré-Lyapunov constants intervene in the problem stated by Poincaré of dis-

tinguishing a focus from a center (see [89]). Calin worked on the expression of the general

Poincaré-Lyapunov constants in terms of invariants of the GL(2,R) group action. (In this

case the singular point is placed at the origin.)

Another theme on which Sibirsky and his former student Popa worked was the problem

of determining GL(2,R) invariant necessary and sufficient conditions for the existence of an

invariant straight line [100]. This theme was further pursued by Schlomiuk and Vulpe in a

series of papers where they gave: i) necessary and sufficient conditions, in terms of affine

invariant polynomials, for a quadratic differential system to have invariant straight lines with

total multiplicity four (respectively five or six); ii) the complete list of phase portraits of all

such systems; iii) the bifurcation diagram in the space R12 of the coefficients of the systems

(see [108,110–112]). Schlomiuk and Vulpe also gave necessary and sufficient affine invariant

conditions for a quadratic system to be of Lotka-Volterra type. For these systems they also

gave the full list of phase portraits as well as the bifurcation diagram of Lotka-Volterra

systems in the space R12 of their coefficients.

Llibre and Vulpe classified all cubic systems possessing the maximum number 9 of in-

variant straight lines (real or complex) taking into account their multiplicities and the line

at infinity [83]. They detected 23 topologically distinct configurations of invariant lines for

such systems and proved that modulo the group Aff(2,R) action and time rescaling, each

configuration leads to just one point in the coefficient space R20. Moreover, every configura-

tion is characterized by a set of affine invariant conditions. This classification was completed

by the author of the Thesis Cristina Bujac in [16].

Vulpe in common with Bujac, have characterized in invariant terms the cubic differential

systems having invariant straight lines of total multiplicity 8, including the line at infinity

(see [17, 27–30]).

Baltag together with Calin proved that under generic assumptions the planar system

dx/dt = cx+dy+xC(x, y), dy/dt = ex+fy+yC(x, y), where R(x, y) = −ex2+(c−f)xy+
dy2 6= 0 and C(x, y) 6= 0 is a homogeneous polynomial of degree r ≥ 1, has a first integral of
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generalized Darboux type. The main idea is to express an invariant algebraic curve of the

system using comitants and invariants of the system (see [7]).

Baltag worked together with Vulpe to construct polynomial invariants helpful in the qual-

itative theory of polynomial differential systems. Some invariant polynomials with respect to

affine transformations which they constructed in [10], [11] give affinely-invariant coefficient

conditions for the total multiplicity of finite singularities for generic polynomial differential

systems (see the polynomials µi, i = 0, . . . , n2 for n = 3 in Section 2.1). In particular, for the

quadratic differential systems with real coefficients they found the conditions for the number

and multiplicity of finite singular points (see [8], [9]). These invariant polynomials were used

in many works in classification problems of quadratic or cubic differential systems such as

for example [17, 28–30].

In another paper [9] Baltag and Vulpe provide a classification of planar quadratic differ-

ential systems, in terms of the number and multiplicity of the critical points on the line at

infinity. The results of these papers are essentially based on the classification of the family of

quadratic systems according to the total multiplicity of all finite singular points of systems.

Mihail Popa and his students (A. Braicov, O. Diaconescu, N. Gherstega, Anca-Veronica,

P. Makari, E. Naidenova, V. Orlov, S. Port, V. Pricop) studied the finite-dimensional gradu-

ate algebras of comitants and invariants which he called the Sibirsky algebras [99], and they

obtained characteristics of these algebras (the Krull dimension and the type and number

of generators for autonomous polynomial differential systems, Hilbert series for the graded

algebras of comitants and invariants of two-dimensional autonomous polynomial differential

systems) (see, for instance [98]). They obtained invariant classifications of GL(2,R) and

Aff(2,R)-orbits for some classes of polynomial differential systems.

Popa and Pricop obtained an estimate for the number of algebraically independent

Poincaré-Lyapunov constants for polynomial vector fields possessing a singular point of cen-

ter or focus type (see [99]).

This theory of invariant polynomials also allowed us to classify topologically some classes

of systems which have algebraic-geometric properties such as the Lotka-Volterra differential

systems (see, for instance [116]).

The work of C. S. Sibirsky and the Chişinău school has implications which extend to

modern, geometric invariant theory. For example, in the cubic case we need to classify the

set CS of cubic differential systems according to their configurations of invariant lines. This

set modulo the group action of the group G = Aff(2,R) × R
∗ of affine transformations
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and time rescaling is 13-dimensional. This is a very large number of parameters. Up to

now only 1-parameter families of CS have been classified according to configurations of

invariant lines. In the first part of this classification of CS the invariant theory approach

intervenes in gluing the various charts of this 13-dimensional topological space of orbits

under the G-action on CS. In particular this is what is done in this Thesis for the problem

of geometrically classifying the configurations of invariant lines of systems in the class CSL8.

Of course the invariants and comitants are helpful in completely classifying CS according

to specific algebraic-geometric properties of the systems. In particular it has allowed us

to completely classify these systems according to the number of distinct singular point at

infinity. More precisely, we split the whole set CSL8 of cubic systems with invariant lines of

total multiplicity eight (which have the non-degenerate infinity) in four subfamilies of such

systems with either 4 ISPs or 3 ISPs or 2 ISPs or 1 ISP. Surely that these subfamilie of

systems are distinguished by affine invariant conditions.

All 51 configurations of invariant lines obtained in the Thesis for CSL8 are distinguished

by means of 52 new invariant polynomials, constructed in this work, besides 20 earlier

constructed in [83] (see Section 2.1).

1.3. Conclusions on Chapter 1

Chapter 1 contains a survey of the most important results related to the purpose and

objectives of the Thesis, the directions of investigations.

Our work in the Thesis was partly motivated by the following hard problems concerning

polynomial differential systems and we discuss about this in Chapter 1:

1. the problem of topologically classifying all phase portraits of polynomial systems of a

given degree n;

2. the problem of algebraic integrability (stated by Poincaré).

The subject of the Thesis is the set CSL8 of all cubic systems with invariant straight lines

of total multiplicity eight. One of the main objective of this work is to detect all possible

configurations of invariant straight lines for systems in CSL8.

This classification could serve as a base for either a further total topological classification

of this family of systems or determining of the first integrals (integrating factors) of cor-

responding systems applying the method of integration of Darboux. Our assumptions are

based on some arguments examined in Chapter 1.
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In order to examine some specifical geometrical properties of systems (1.1) authors, as

a rule, apply affine transformations and time rescaling which keeps these proprieties as well

as the degree of the systems. As a result there are obtained some canonical systems (nor-

mal forms) which depend on less number of parameters. For these canonical systems the

necessary and sufficient conditions in terms of their parameters which characterize the cor-

responding geometrical properties are constructed. However it is clear that these conditions

are related with the canonical systems and they are not valid for the initial systems. The

next objective of the current Thesis is to construct necessary and sufficient affine invariant

conditions for the realization of each one of the detected configurations of systems in CSL8.

These conditions, constructed by means of the invariant theory, help us to establish a con-

nection between the canonical and initial systems because the applied affine transformations

theoretically exist but they are unknown.

The roots of the invariant theory of polynomial vector fields lie in the classical invariant

theory. The idea to adapt to polynomial vector fields the concepts of classical invariant

theory is due to C.S. Sibirsky, the founder of the Chişinău school. In Chapter 1 we also

describe briefly classical invariant theory and explain how the ideas of this theory were used

by Sibirsky and his school to built an analogous theory for polynomial vector fields.

The cases of integrable systems are rare, but as Arnold said in [1, p.405] “...these integrable

cases allow us to collect a large amount of information about the motion in more important

systems...”.

As it could be observed from Preliminaries, besides the Invariant Theory we have used in

the Thesis the Qualitative Theory of Dynamical Systems, the Algebraic Theory of Resultants

and Subresultants as well as Poincaré compactification and Bifurcation Theory.
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2. CUBIC SYSTEMS WITH INVARIANT LINES OF TOTAL

MULTIPLICITY EIGHT AND FOUR DISTINCT INFINITE

SINGULARITIES

2.1. Preliminaries

In this subsection we give the basic notions and results which we need in this paper.

Consider planar real differential cubic systems, i.e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P (x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(x, y)
(2.1)

with real coefficients and variables x and y. The polynomials pi and qi (i = 0, 1, 2, 3) are

homogeneous polynomials of degree i in x and y:

p0 = a00, p3(x, y) = a30x
3 + 3a21x

2y + 3a12xy
2 + a03y

3,

p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q3(x, y) = b30x
3 + 3b21x

2y + 3b12xy
2 + b03y

3,

q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) be the 20-tuple of the coefficients of systems

(2.1) and denote R[a, x, y] = R[a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03, x, y].

The systems (2.1) we could write in the coefficient form:

(S)

{
ẋ = a+ cx+ dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

ẏ = b+ ex+ fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3.
(2.2)

2.1.1. Main invariant polynomials associated to configurations of invariant lines

It is known that on the set CS of all cubic differential systems (2.1) acts the group Aff(2,R)

of affine transformations on the plane [108]. Indeed for every g ∈ Aff(2,R), g : R2 → R2

we have:

g :

(
x̄

ȳ

)
=M

(
x

y

)
+B; g−1 :

(
x

y

)
=M−1

(
x̄

ȳ

)
−M−1B

where M = ‖Mij‖ is a 2× 2 nonsingular matrix and B is a 2 × 1 matrix over R. For every

S ∈ CS we can form its transformed system S̄ = g · S :

dx̄/dt = P̄ (x̄, ȳ), dȳ/dt = Q̄(x̄, ȳ)

where
(
P̄ (x̄, ȳ) Q̄(x̄, ȳ)

)t
=M ((P ◦ g−1)(x̄, ȳ) (Q ◦ g−1)(x̄, ȳ))

t
.
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For every g ∈ Aff(2,R) let rg : R20 → R20 be the map which corresponds to g via this

action. We know (see [122]) that rg is linear and that the map r : Aff(2,R) → GL(20,R)

thus obtained is a group homomorphism. For every subgroup G ⊆ Aff(2,R), r induces a

representation of G onto a subgroup G of GL(20,R).

Next we need the following definitions which were used in [108] (see also [122]).

Definition 2.1 ( [108]). A polynomial U(a, x, y) ∈ R[a, x, y] is called a comitant of systems

(2.1) with respect to a subgroup G ⊆ Aff(2,R) if there exists χ ∈ Z such that for every

(g, a) ∈ G× R20 and for every (x, y) ∈ R2 the following relation holds:

U(rg(a), g(x, y)) ≡ (detg)−χU(a, x, y),

where detg = detM . If the polynomial U does not exactly depend on x and y then it is

called invariant. The number χ ∈ Z is called the weight of the comitant U(a, x, y). If

G = GL(2,R) (or G = Aff(2,R)) then the comitant U(a, x, y) of systems (2.1) is called

GL−comitant (respectively, affine comitant).

Definition 2.2 ( [108]). A subset X ⊂ R20 will be called G−invariant, if for every g ∈ G

we have rg(X) ⊆ X.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2, 3,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2, 3.

(2.3)

As it was shown in [122], the polynomials
{
C0(a, x, y), C1(a, x, y), C2(a, x, y), C3(a, x, y),

D1(a), D2(a, x, y) D3(a, x, y)
}

of degree one in the coefficients of systems (2.1) are GL-

comitants of these systems.

Let T (2,R) be the subgroup of Aff(2,R) formed by translations. For every τ ∈ T (2,R)

such that τ : x = x̄+ α, y = ȳ + β we consider rτ : R20 → R20.

Definition 2.3 ( [108]). A GL−comitant U(a, x, y) of systems (2.1) is called a T−comitant

if for every (τ, a) ∈ T (2,R) × R20 and for every (x̄, ȳ) ∈ R2 the relation U(rτ · a, x̄, ȳ) =

U(a, x̄, ȳ) holds.

Let Ui(a, x, y) =
∑di

j=0Uij(a)x
di−jyj, i = 1, . . . , s be a set of GL−comitants of systems

(2.1) where di denotes the degree of the binary form Ui(a, x, y) in x and y. Additionally

we denote by U = {Uij(a) ∈ R[a] | i = 1, . . . , s, j = 0, . . . , di} the set of the coefficients in

R[a] of the GL−comitants Ui(a, x, y), i = 1, . . . , s and by V (U) its associated algebraic set:

V (U) = {a ∈ R20 | Uij(a) = 0 for every Uij(a) ∈ U}.
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Definition 2.4 ( [34, 108]). A GL−comitant U(a, x, y) of systems (2.1) is called a condi-

tional T−comitant (CT−comitant) modulo < U1, . . . , Us > if the following two conditions

are satisfied:

(i) the algebraic subset V (U) ⊂ R20 is affine invariant;

(ii) for every (τ, a) ∈ T (2,R)× V (U) we have U(rτ · a, x̄, ȳ) = U(a, x̄, ȳ) in R[x̄, ȳ].

Notation 2.1. Let f, g ∈ R[a, x, y] and

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
. (2.4)

(f, g)(k) ∈ R[a, x, y] is called the transvectant of index k of (f, g) (see for instance [68], [87]).

Theorem 2.1 ( [136]). Any GL-comitant of systems (2.1) can be constructed from the

elements of the set {Ci, Di, i = 0, 1, 2, 3} by using the operations: +, −, ×, and by applying

the differential operation (f, g)(k).

In order to define the needed invariant polynomials we first construct the following comi-

tants of second degree with respect to the coefficients of the initial system:

S1 = (C0, C1)
(1) , S10 = (C1, C3)

(1) , S19 = (C2, D3)
(1) ,

S2 = (C0, C2)
(1) , S11 = (C1, C3)

(2) , S20 = (C2, D3)
(2) ,

S3 = (C0, D2)
(1) , S12 = (C1, D3)

(1) , S21 = (D2, C3)
(1) ,

S4 = (C0, C3)
(1) , S13 = (C1, D3)

(2) , S22 = (D2, D3)
(1) ,

S5 = (C0, D3)
(1) , S14 = (C2, C2)

(2) , S23 = (C3, C3)
(2) ,

S6 = (C1, C1)
(2) , S15 = (C2, D2)

(1) , S24 = (C3, C3)
(4) ,

S7 = (C1, C2)
(1) , S16 = (C2, C3)

(1) , S25 = (C3, D3)
(1) ,

S8 = (C1, C2)
(2) , S17 = (C2, C3)

(2) , S26 = (C3, D3)
(2) ,

S9 = (C1, D2)
(1) , S18 = (C2, C3)

(3) , S27 = (D3, D3)
(2) .

We shall use here the following invariant polynomials constructed in [83] to characterize the

family of cubic systems possessing the maximal number (i.e. nine) of invariant straight lines:

D1(a) = 6S3
24 −

[
(C3, S23)

(4)
]2
, D2(a, x, y) = −S23,

D3(a, x, y) = (S23, S23)
(2) − 6C3(C3, S23)

(4), D4(a) = (C3, D2)
(4),

V1(a, x, y) = S23+2D2
3, V2(a, x, y) = S26, V3(a, x, y) = 6S25−3S23−2D2

3,

V4(a, x, y) = C3

[
(C3, S23)

(4) + 36 (D3, S26)
(2)
]
,
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L1(a, x, y) = 9C2 (S24 + 24S27)− 12D3 (S20 + 8S22)− 12 (S16, D3)
(2) − 3 (S23, C2)

(2) −

−16 (S19, C3)
(2) + 12 (5S20 + 24S22, C3)

(1) ,

L2(a, x, y) = 32 (13S19 + 33S21, D2)
(1) + 84 (9S11 − 2S14, D3)

(1) − 448 (S18, C2)
(1) +

+ 8D2 (12S22 + 35S18 − 73S20)− 56 (S17, C2)
(2) − 63 (S23, C1)

(2) +

+ 756D3S13 − 1944D1S26 + 112 (S17, D2)
(1) − 378 (S26, C1)

(1) +

+ 9C1 (48S27 − 35S24) , U1(a) = S24 − 4S27,

U2(a, x, y) = 6(S23 − 3S25, S26)
(1) − 3S23(S24 − 8S27)− 24S2

26 + 2C3(C3, S23)
(4) +

+ 24D3(D3, S26)
(1) + 24D2

3S27.

However these invariant polynomials are not sufficient to characterize the cubic systems

with invariant lines of total multiplicity 8. So we construct here the following new invariant

polynomials:

V5(a, x, y) = 6T1(9A5−7A6)+2T2(4T16−T17)−3T3(3A1+5A2)+3A2T4+36T 2
5 −3T44,

V6(a, x, y) = 6D2
3 + S23 + 6S25, L6(a) = 2A3 − 19A4, L7(a, x, y) = (T10, T10)

(2),

K1(a, x, y) =
(
3223T 2

2T140 + 2718T4T140 − 829T 2
2T141, T133

)(10)
/2, K2(a, x, y) = T74,

K3(a, x, y) = Z1Z2Z3, K4(a, x, y) = T13 − 2T11,

K5(a, x, y) = 45T42 − T2T14 + 2T2T15 + 12T36 + 45T37 − 45T38 + 30T39,

K6(a, x, y) = 4T1T8(2663T14 − 8161T15) + 6T8(178T23 + 70T24 + 555T26) +

18T9(30T2T8 − 488T1T11 − 119T21) + 5T2(25T136 + 16T137)−

−15T1(25T140 − 11T141)− 165T142,

K7(a) = A1 + 3A2, K8(a, x, y) = 10A4T1 − 3T2T15 + 4T36 − 8T37,

K9(a, x, y) = 3T1(11T15 − 8T14)− T23 + 5T24,

N1(a, x, y) = S13, N2(a, x, y) = T9, N3(a, x, y) = C2D3 + 3S16,

N4(a, x, y) = −S2
14 − 2D2

2(3S14 − 8S15)− 12D3(S14, C1)
(1) +

+D2(−48D3S9 + 16(S17, C1)
(1)),

N5(a, x, y) = 36D2D3(S8 − S9) +D1(108D
2
2D3 − 54D3(S14 − 8S15)) +

+2S14(S14 − 22S15)− 8D2
2(3S14 + S15)− 9D3(S14, C1)

(1) − 16D4
2,

N6(a, x, y) = 40D2
3(15S6 − 4S3)− 480D2D3S9 − 20D1D3(S14 − 4S15) +

+160D2
2S15 − 35D3(S14, C1)

(1) + 8
(
(S23, C2)

(1), C0

)(1)
,
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N7(a, x, y) = 18C2D2(9D1D3 − S14)− 2C1D3(8D
2
2 − 3S14 − 74S15)−

−432C0D3S2148S7(8D2D3 + S17) + 6S10(12D
2
2 + 151S15)−

−51S10S14 − 162D1D2S16 + 864D3(S16, C0)
(1),

N8(a, x, y) = −32D2
3S2−108D1D3S10+108C3D1S11−18C1D3S11−27S10S11+

+4C0D3(9D2D3 + 4S17) + 108S4S21,

N9(a, x, y) = 11S2
14 − 16D1D3(16D

2
2 + 19S14 − 152S15)− 8D2

2(7S14 + 32S15)−

−2592D2
1S25 + 88D2(S14, C2)

(1),

N10(a, x, y) = −24D1D3 + 4D2
2 + S14 − 8S15,

N11(a, x, y) = S2
14 +D1[16D

2
2D3 − 8D3(S14 − 8S15)]− 2D2

2(5S14 − 8S15) +

+8D2(S14, C2)
(1),

N12(a, x, y) = −160D4
2−1620D2

3S3+D1(1080D
2
2D3−135D3(S14−20S15))−

−5D2
2(39S14−32S15)+85D2(S14, C2)

(1)+81
(
(S23, C2)

(1), C0

)(1)
+5S2

14,

N13(a, x, y) = 2(136D2
3S2 − 126D2D3S4 + 60D2D3S7 + 63S10S11)−

−18C3D1(S14 − 28S15)− 12C1D3(7S11 − 20S15)− 192C2D2S15 +

+4C0D3(21D2D3 + 17S17) + 3C2(S14, C2)
(1),

N14(a, x, y) = −6D1D3 − 15S12 + 2S14 + 4S15,

N15(a, x, y) = 216D1D3(63S11−104D2
2−136S15)+4536D2

3S6+4096D4
2+

+120S2
14+992D2(S14, C2)

(1)−135D3

[
28(S17, C0)

(1)+5(S14, C1)
(1)
]
,

N16(a, x, y) = 2C1D3 + 3S10, N17(a, x, y) = 6D1D3 − 2D2
2 − (C3, C1)

(2),

N18(a, x, y) = 2D3
2 − 6D1D2D3 − 12D3S5 + 3D3S8,

N19(a, x, y) = C1D3(18D
2
1−S6)+C0(4D

3
2−12D1D2D3−18D3S5+9D3S8)+6C2D1S8+

+2
(
9D2D3S1−4D2

2S2+12D1D3S2−9C3D1S6−9D3(S4, C0)
(1)
)
,

N20(a, x, y) = 3D4
2 − 8D1D

2
2D3 − 8D2

3S6 − 16D1D3S11 + 16D2D3S9,

N21(a, x, y) = 2D1D
2
2D3 − 4D2

3S6 +D2D3S8 +D1(S23, C1)
(1),

N22(a, x, y) = T8, N23(a, x, y) = T6, N24(a, x, y) = 2T3T74 − T1T136,

N25(a, x, y) = 5T3T6 − T1T23, N26 = 9T135 − 480T6T8 − 40T2T74 − 15T2T75,

N27(a, x, y) = 9T2T9(2T23 − 5T24 − 80T25) + 144T25(T23 + 5T24 + 15T26)−

−9(T 2
23 − 5T 2

24 − 33T9T76), N28(a, x, y) = T3 + T4,

40



W1(a, x, y) = 2C2D3 − 3C3D2,

W2(a, x, y) = 6C3(S12 + 6S11)− 9C1(S23 + S25)− 8(S16, C2)
(1) − C3D

2
2,

W3(a, x, y) = 12D1C3 − S10, W4(a, x, y) = −27S4 + 4S7,

W5(a, x, y) = 3D2
1C1 + 4D1S2 − 3(S4, C0)

(1),

W6(a, x, y) = 2C2D1 + 3S4, W7(a, x, y) = (S10, D2)
(1),

W8(a, x, y) = 4C2(27D1D3−8D2
2)+2C2(20S15−4S14+39S12)+18C1(3S21−D2D3)+

+54D3(3S4 − S7)− 288C3S9+54(S7, C3)
(1)−567(S4, C3)

(1)+135C0D
2
3,

W9(a, x, y) = 3S6D
2
2 + 4S3D

2
2 − 6D1D2S9,

W10(a, x, y) = 18D2
1C2 + 15S6C2 − 6D1C1D2 + 4C0D

2
2 + 27D1S4 − 6C1S9,

W11(a, x, y) = 9C0D
5
3 − 6D4

3(C1D2 − S7) + 4C2D
3
3(D

2
2 + S14 − 2S15)−

−12C3D
2
3[5D2S14 − 4D2S15 − 7(S14, C2)

(1)],

W12(a, x, y) = −480T6T8 + 9T135 − 40T2T74 − 15T2T75

where

Z1 = 2C1D2D3−9C0(S25+2D2
3)+4C2(9D1D3+S14)−3C3(6D1D2+5S8)+36D3S4,

Z2 = 12D1S17 + 2D2(3S11 − 2S14) + 6D3(S8 − 6S5)− 9(S25, C0)
(1),

Z3 = 48D3
1C3+12D2

1(C1D3−C2D2)+36D1(C0S17−C3S6)−16D2
2S2−16S2S14+

+2C0D2(3S11 + 2S14) + 3D3(8D2S1 + 3C0S8 − 2C1S6)− 9S4S8

−216C3(S5, C0)
(1)) + 6C2(D2S6 − 4(S14, C0)

(1)) + 54D1D2(S4 +D3C0).

Here the polynomials

A1 = S24/288, A2 = S27/72, A3 = (72D1A2 +
(
S22, D2

)(1)
)/24,

A4 =
[
9D1(S24−288A2)+4

(
9S11−2S14, D3

)(2)
+8

(
3S18−S20−4S22, D2

)(1)]
/27/33,

A5 =
(
S23, C3

)(4)
/27/35, A6 =

(
S26, D3

)(2)
/25/33

are affine invariants, whereas the polynomials

T1 = C3, T2 = D3, T3 = S23/18, T4 = S25/6, T5 = S26/72,

T6 =
[
3C1(D

2
3 − 9T3 + 18T4)− 2C2(2D2D3 − S17 + 2S19 − 6S21) +

+2C3(2D
2
2 − S14 + 8S15)

]
/24/32,

T8 =
[
5D2(D

2
3 + 27T3 − 18T4) + 20D3S19 + 12

(
S16, D3

)(1) − 8D3S17

]
/5/25/33,
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T9 =
[
9D1(9T3−18T4−D2

3)+2D2(D2D3−3S17−S19−9S21)+18
(
S15, C3

)(1)−

−6C2(2S20 − 3S22) + 18C1S26 + 2D3S14

]
/24/33,

T11 =
[(
D2

3 − 9T3 + 18T4, C2

)(2) − 6
(
D2

3 − 9T3 + 18T4, D2

)(1) − 12
(
S26, C2

)(1)
+

+12D2S26 + 432(A1 − 5A2)C2

]
/27/34,

T13 =
[
27(T3, C2)

(2) − 18(T4, C2)
(2) + 48D3S22 − 216(T4, D2)

(1) + 36D2S26 −

−1296C2A1 − 7344C2A2 + (D2
3, C2)

(2)
]
/27/34,

T14 =
[(
8S19 + 9S21, D2

)(1) −D2(8S20 + 3S22) + 18D1S26 + 1296C1A2

]
/24/33,

T15 = 8
(
9S19 + 2S21, D2

)(1)
+ 3

(
9T3 − 18T4 −D2

3, C1

)(2) − 4
(
S17, C2

)(2)
+

+4
(
S14 − 17S15, D3

)(1) − 8
(
S14 + S15, C3

)(2)
+ 432C1(5A1 + 11A2) +

+36D1S26 − 4D2(S18 + 4S22)
]
/26/33,

T21 =
(
T8, C3

)(1)
, T23 =

(
T6, C3

)(2)
/6, T24 =

(
T6, D3

)(1)
/6,

T26 =
(
T9, C3

)(1)
/4, T30 =

(
T11, C3

)(1)
, T31 =

(
T8, C3

)(2)
/24,

T32 =
(
T8, D3

)(1)
/6, T36 =

(
T6, D3

)(2)
/12, T37 =

(
T9, C3

)(2)
/12,

T38 =
(
T9, D3

)(1)
/12, T39 =

(
T6, C3

)(3)
/24/32, T42 =

(
T14, C3

)(1)
/2,

T44 =
(
(S23, C3)

(1), D3

)(2)
/5/26/33,

T74 =
[
27C0(9T3 − 18T4 −D2

3)
2 + C1

(
− 62208T11C3 − 3(9T3 − 18T4 −D2

3)×

×(2D2D3 − S17 + 2S19 − 6S21)
)
+ 20736T11C

2
2 + C2(9T3 − 18T4 −D2

3)×

×(8D2
2+54D1D3−27S11+27S12−4S14+32S15)−54C3(9T3−18T4−D2

3)×

×(2D1D2 − S8 + 2S9)− 54D1(9T3 − 18T4 −D2
3)S16 −

−576T6(2D2D3 − S17 + 2S19 − 6S21)
]
/28/34, T133 = (T74, C3)

(1),

T136 =
(
T74, C3

)(2)
/24, T137 =

(
T74, D3

)(1)
/6, T140 =

(
T74, D3

)(2)
/12,

T141 =
(
T74, C3

)(3)
/36, T142 =

(
(T74, C3)

(2), C3

)(1)
/72

are T -comitants of cubic systems (2.1). We note that these polynomials are the elements of

the polynomial basis of T -comitants up to degree six constructed by Iu. Calin [37].

Next we consider the differential operator L = x · L2 − y · L1 constructed in [10] and

acting on R[a, x, y], where

L1 =3a00
∂

∂a10
+ 2a10

∂

∂a20
+ a01

∂

∂a11
+

1

3
a02

∂

∂a12
+

2

3
a11

∂

∂a21
+ a20

∂

∂a30
+

3b00
∂

∂b10
+ 2b10

∂

∂b20
+ b01

∂

∂b11
+

1

3
b02

∂

∂b12
+

2

3
b11

∂

∂b21
+ b20

∂

∂b30
,
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L2 =3a00
∂

∂a01
+ 2a01

∂

∂a02
+ a10

∂

∂a11
+

1

3
a20

∂

∂a21
+

2

3
a11

∂

∂a12
+ a02

∂

∂a03
+

3b00
∂

∂b01
+ 2b01

∂

∂b02
+ b10

∂

∂b11
+

1

3
b20

∂

∂b21
+

2

3
b11

∂

∂b12
+ b02

∂

∂b03
.

Using this operator and the affine invariant µ0 = Resultantx
(
p3(a, x, y), q3(a, x, y)

)
/y9 we

construct the following polynomials: µi(a, x, y) =
1

i!
L(i)(µ0), i = 1, .., 9, where L(i)(µ0) =

L(L(i−1)(µ0)) and L(0)(µ0) = µ0.

These polynomials are in fact comitants of systems (2.1) with respect to the group

GL(2,R) (see [10]). The polynomial µi(a, x, y), i ∈ {0, 1, . . . , 9} is homogeneous of de-

gree 6 in the coefficients of systems (2.1) and homogeneous of degree i in the variables x and

y. The geometrical meaning of these polynomial is revealed in the next lemma.

Lemma 2.1 (see [6], [10]). Assume that a cubic system (S) with coefficients ã belongs to the

family (2.1). Then:

(i) The total multiplicity of all finite singularities of this system equals 9−k if and only if

for every i ∈ {0, 1, . . . , k−1} we have µi(ã, x, y) = 0 in the ring R[x, y] and µk(ã, x, y) 6= 0. In

this case the factorization µk(ã, x, y) =
k∏

i=1

(uix− viy) 6= 0 over C indicates the coordinates

[vi : ui : 0] of those finite singularities of the system (S) which "have gone" to infinity.

Moreover the number of distinct factors in this factorization is less than or equal to four (the

maximum number of infinite singularities of a cubic system) and the multiplicity of each one

of the factors uix−viy gives us the number of the finite singularities of the system (S) which

have collapsed with the infinite singular point [vi : ui : 0].

(ii) The system (S) is degenerate (i.e. gcd(P,Q) 6= const) if and only if µi(ã, x, y) = 0

in R[x, y] for every i = 0, 1, . . . , 9.

The study of cubic systems when the total multiplicity of invariant straight lines (in-

cluding the line at infinity) equals nine was done in [83]. For this propose in [83] there are

proved some lemmas concerning the number of triplets and/or couples of parallel invariant

straight lines which could have a cubic system. In [27] we complete these results proving the

following theorem.

Theorem 2.2. If a cubic system (2.1) possesses a given number of triplets or/and couples of

invariant parallel affine lines real or/and complex, then the following conditions are satisfied,

respectively:
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(i) 2 triplets ⇒ V1 = V2 = U 1 = 0;

(ii) 1 triplet and 2 couples ⇒ V3 = V4 = U2 = 0;

(iii) 1 triplet and 1 couple ⇒ V4 = V5 = U2 = 0;

(iv) 1 triplet ⇒ V4 = U 2 = 0;

(v) 3 couples ⇒ V3 = 0;

(vi) 2 couples ⇒ V5 = 0.

Infinite singular points and associated homogeneous cubic canonical systems.

It is well known that the infinite singularities (real or/and complex) of systems (2.1) are

determined by the linear factors of the polynomial C3(x, y) = yp3(x, y)−xq(x, y). According

to [95] (see also [58]) we have the following result.

Lemma 2.2. The number of distinct factors (real and imaginary) of the polynomial C3 6= 0

is determined by the following conditions:

[i] 4 real if D1 > 0, D2 > 0, D3 > 0;

[ii] 2 real and 2 imaginary if D1 < 0;

[iii] 4 imaginary if D1 > 0 and for every (x, y) where D2D3 6= 0 either D2 < 0 or D3 < 0;

[iv] 3 real (1 double, 2 simple) if D1 = 0, D3 > 0;

[v] 1 real and 2 imaginary (1 real double) if D1 = 0, D3 < 0;

[vi] 2 real (1 triple and 1 simple) if D1 = D3 = 0, D2 6= 0, D4 = 0;

[vii] 2 real (2 double) if D1 = D3 = 0, D2 > 0, D4 6= 0;

[viii] 2 imaginary (2 double) if D1 = D3 = 0, D2 < 0, D4 6= 0;

[ix] 1 real (of the multiplicity 4) if D1 = D2 = D3 = 0

where Di for i = 1, 2, 3, 4 are the T− comitants earlier defined in this subsection.

We consider the polynomial C3(a, x, y) 6= 0 as a quartic binary form. Here a ∈ C is

imaginary if a 6∈ R. It is well known that there exists g ∈ GL(2,R), g(x, y) = (u, v), such

that the transformed binary form gC3(a, x, y) = C3(a, g
−1(u, v)) is one of the following 9

canonical forms:

(i) xy(x− y)(rx+ sy), rs(r + s) 6= 0; (iv) x2y(x− y); (vii) x2y2;

(ii) x(sx+ y)(x2 + y2); (v) x2(x2 + y2); (viii) (x2 + y2)2;

(iii) (px2 + qy2)(x2 + y2), pq > 0; (vi) x3y; (ix) x4.
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We note that each one of the above canonical forms corresponds to one of the cases enumer-

ated in the statement of Lemma 2.2.

On the other hand, applying the same transformation g to the initial system and calcu-

lating for the transformed system its polynomial C3(a(g), u, v) the following relation hold:

C3(a(g), u, v) = det(g)C3(a, x, y) = det(g)C3(a, g
−1(u, v)) = λC3(a, g

−1(u, v)), where we

may consider λ = 1 (via a time rescaling).

Taking into account that C3(x, y) = yp3(x, y) − xq3(x, y), in [83] were constructed the

canonical forms of the cubic homogeneous systems having as the expressions for their poly-

nomials C3 the indicated canonical forms (i)− (ix):

x′ = (p + r)x3 + (s+ v)x2y + qxy2, C3 = xy(x− y)(rx+ sy),

y′ = px2y + (r + v)xy2 + (q + s)y3, rs(r + s) 6= 0;
(2.5)

x′ = (u+ 1)x3 + (s+ v)x2y + rxy2, C3 = x(sx+ y)(x2 + y2),

y′ = −sx3 + ux2y + vxy2 + (r − 1)y3;
(2.6)

x′ = ux3 + (p+ q + v)x2y + rxy2 + qy3, C3 = (px2 + qy2)(x2 + y2),

y′ = −px3 + ux2y + vxy2 + ry3, pq > 0;
(2.7)

x′ = 3(u+ 1)x3 + (v − 1)x2y + rxy2, C3 = x2y(x− y),

y′ = ux2y + vxy2 + ry3;
(2.8)

x′ = ux3 + (v + 1)x2y + rxy2, C3 = x2(x2 + y2),

y′ = −x3 + ux2y + vxy2 + ry3;
(2.9)

x′ = (u+ 1)x3 + vx2y + rxy2, C3 = x3y,

y′ = ux2y + vxy2 + ry3;
(2.10)

x′ = ux3 + qx2y + rxy2, C3 = (q − v)x2y2,

y′ = ux2y + vxy2 + ry3, q − v 6= 0;
(2.11)

x′ = ux3 + (v + 1)x2y + rxy2 + y3, C3 = (x2 + y2)2,

y′ = −x3 + ux2y + 3(v − 1)xy2 + ry3;
(2.12)

x′ = ux3 + vx2y + rxy2, C3 = x4,

y′ = −x3 + ux2y + vxy2 + ry3.
(2.13)
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Criteria for the existence of an invariant straight line with a given multiplicity.

We consider systems (2.1) and their associated vector fields X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.

It is well known that a straight line L(x, y) = ux + vy + w = 0, (u, v) 6= (0, 0) satisfies

X(L) = uP (x, y) + vQ(x, y) = (ux + vy + w)R(x, y) for some polynomial R(x, y) if and

only if it is invariant under the flow of the systems. If some of the coefficients u, v, w of

an invariant straight line belongs to C \ R, then we say that the straight line is complex,

otherwise the straight line is real.

Definition 2.5 (see [108]). We say that an invariant affine straight line L(x, y) = ux+vy+

w = 0 (respectively the line at infinity Z = 0) for a cubic vector field X has multiplicity m

if there exists a sequence of real cubic vector fields Xk converging to X, such that each Xk

has m (respectively m− 1) distinct invariant affine straight lines f j
k = ujkx+ vjky + wj

k = 0,

(ujk, v
j
k) 6= (0, 0), (ujk, v

k
i , w

j
k) ∈ C3 (j ∈ {1, . . .m}, converging to f = 0 as k → ∞ (with the

topology of their coefficients), and this does not occur for m+ 1 (respectively m).

Consider an arbitrary affine line. In a natural way there arises the question: what are

the necessary and sufficient conditions for an arbitrary affine line to be invariant line of the

multiplicity k? In order to construct these conditions we shall use the algebraic method of

invariants of differential systems, developed by K.Sibirskii and his disciples (see for instance

[122], [136], [98], [6], [37] ). We recall further below some results obtained in [108], [109]

which will be needed.

Let us consider the polynomials Ci(a, x, y) and Di(a, x, y), i = 0, 1, 2, 3 given in (2.3). We

apply a translation x = x′+x0, y = y′+ y0 to the polynomials P (a, x, y) and Q(a, x, y) from

the right-hand part of (2.1). Therefore we obtain P̃ (ã(a, x0, y0), x
′, y′) = P (a, x′+x0, y

′+y0),

Q̃(ã(a, x0, y0), x
′, y′) = Q(a, x′ + x0, y

′ + y0). Let us construct the following polynomials:

Ωi(a, x0, y0) ≡ Res x′

(
Ci

(
ã(a, x0, y0), x

′, y′
)
, C0

(
ã(a, x0, y0), x

′, y′
))
/(y′)i+1,

G̃i(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3)

where Resx′ is the resultant of the above polynomials with respect the variable x′.

Notation 2.2. Assume Gi(a,X, Y, Z) (i = 1, 2, 3) be the homogenization of G̃i(a, x, y), i.e.

G1(a,X, Y, Z) = Z8G̃1(a,X/Z, Y/Z), G2(a,X, Y, Z) = Z10G̃2(a,X/Z, Y/Z),

G3(a,X, Y, Z) = Z12G̃3(a,X/Z, Y/Z),

and H(a,X, Y, Z) = gcd
(
G1(a,X, Y, Z),G2(a,X, Y, Z),G3(a,X, Y, Z)

)
∈ R[a,X, Y, Z].
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The geometrical meaning of the above defined affine comitants is given by the following two

lemmas (see [83]):

Lemma 2.3. The straight line L(x, y) ≡ ux+ vy + w = 0, u, v, w ∈ C, (u, v) 6= (0, 0) is an

invariant line for a vector field X if and only if L(x, y) is a common factor of the polynomials

G̃1(a, x, y), G̃2(a, x, y) and G̃3(a, x, y) over C, i.e. G̃i(a, x, y) = (ux + vy + w)W̃i(x, y) (i =

1, 2, 3), where W̃i(x, y) ∈ C[x, y].

Lemma 2.4. Consider a cubic system (2.1) and let a ∈ R20 be its 20-tuple of coefficients.

1) If L(x, y) ≡ ux+ vy + w = 0, u, v, w ∈ C, (u, v) 6= (0, 0) is an invariant straight line

of multiplicity k for this system then [L(x, y)]k | gcd(G̃1, G̃2, G̃3) in C[x, y], i.e. there exist

Wi(a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2, 3. (2.14)

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(G1,G2,G3), i.e. we have

Zk−1 | H(a,X, Y, Z).

We underline that by P ⋆(X, Y, Z), Q⋆(X, Y, Z) we denote the homogeneous polynomials

associated to the polynomials P (x, y), Q(x, y), i.e.

P ⋆(X, Y, Z) =ZnP (X/Z, Y/Z), Q⋆(X, Y, Z) = ZnQ(X/Z, Y/Z) (2.15)

and C⋆(X, Y, Z) = Y P ⋆(X, Y, Z)−XQ⋆(X, Y, Z).

In order to determine the degree of the common factor of the polynomials G̃i(a, x, y) for

i = 1, 2, 3, we shall use the notion of the kth subresultant of two polynomials with respect to

a given indeterminate (see for instance, [87], [77]).

We say that the k–th subresultant with respect to variable z of the two polynomials f(z)

and g(z) is the (m+ n− 2k)× (m+ n− 2k) determinant

R(k)
z (f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . . . . am+n−2k−1

0 a0 a1 . . . . . . am+n−2k−2

. . . . . . . . . . . . . . . . . . . . . . . .

0 b0 b1 . . . . . . bm+n−2k−2

b0 b1 b2 . . . . . . bm+n−2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





(m− k)− times





(n− k)− times

(2.16)

in which there are m− k rows of a’s and n− k rows of b’s, and ai = 0 for i > n, and bj = 0

for j > m.
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For k = 0 we obtain the standard resultant of two polynomials. In other words we can

say that the k–th subresultant with respect to the variable z of the two polynomials f(z)

and g(z) can be obtained by deleting the first and the last k rows and columns from its

resultant written in the form (2.16) when k = 0.

The geometrical meaning of the subresultants is based on the following lemma.

Lemma 2.5. (see [87], [77]). Polynomials f(z) and g(z) have precisely k roots in common

(considering their multiplicities) if and only if the following conditions hold:

R(0)
z (f, g) = R(1)

z (f, g) = R(2)
z (f, g) = · · · = R(k−1)

z (f, g) = 0 6= R(k)
z (f, g).

For the polynomials in more than one variables it is easy to deduce from Lemma 2.5 the

following result.

Lemma 2.6. Two polynomials f̃(x1, x2, ..., xn) and g̃(x1, x2, ..., xn) have a common factor

of degree k with respect to the variable xj if and only if the following conditions are satisfied:

R(0)
xj
(f̃ , g̃) = R(1)

xj
(f̃ , g̃) = R(2)

xj
(f̃ , g̃) = · · · = R(k−1)

xj
(f̃ , g̃) = 0 6= R(k)

xj
(f̃ , g̃),

where R
(i)
xj (f̃ , g̃) = 0 in R[x1, . . . xj−1, xj+1, . . . , xn].

2.1.2. The scheme of the proofs of the Main Theorems

Let L(x, y) = Ux + V y +W = 0 be an invariant straight line of cubic systems (S). Then,

according to the definition of an invariant line (see p.46), we have UP (x, y) + V Q(x, y) =

(Ux+V y+W )(Ax2+2Bxy+Cy2+Dx+Ey+F ), and this identity provides the following

10 relations:

Eq1 =(a30 − A)U + b30V = 0, Eq2 = (3a21 − 2B)U + (3b21 − A)V = 0,

Eq3 =(3a12 − C)U + (3b12 − 2B)V = 0, Eq4 = a03U + (b03 − C)V = 0,

Eq5 =(a20 −D)U + b20V − AW = 0,

Eq6 =(2a11 − E)U + (2b11 −D)V − 2BW = 0,

Eq7 =a02U + (b02 − E)V − CW = 0, Eq8 = (a10 − F )U + b10V −DW = 0,

Eq9 =a01U + (b01 − F )V − EW = 0, Eq10 = a00U + b00V − FW = 0.

(2.17)

Remark 2.1. Let C3 =
∏4

i=1(αix+ βiy), i = 1, 2, 3, 4. Since infinite singularities of systems

(2.1) are located on the "ends" of the axes αix + βiy = 0, the invariant affine lines must

be of the form Ux + V y + W = 0, where U = αi and V = βi. In this case, considering

W as a parameter, six equations among (2.17) become linear with respect to the parameters
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{A,B,C,D,E, F} (with the corresponding non–zero determinant) and we can determine

their values, which annulate some of the equations (2.17). So in what follows we will examine

only the non-zero equations containing the last parameter W .

According to [4] systems in CSL8 could not have degenerate infinity because such systems

possess at most six invariant lines. So C3(x, y) 6= 0 and hence, at infinity there could be at

most four distinct singularities. Therefore considering the fact that in one direction we could

have maximum three parallel invariant lines we arrive at following possible configurations

(or potential configurations) of invariant straight lines: (3, 3, 1), (3, 2, 2), (3, 2, 1, 1) and

(2, 2, 2, 1) (see definitions below).

Consider a system in CSL8, i.e. this system possesses invariant lines of total multiplicity

eight. These lines form a configuration of type (3, 3, 1) if there exist two triplets of parallel

lines and one additional line, every set with different slopes. And we say that these lines

form a configuration of type (3, 2, 1, 1) if there exist one triplet and one couple of parallel

lines and two additional lines, every set with different slopes. In a similar way are defined

configurations of types (3, 2, 2) and (2, 2, 2, 1) and these four types of the configurations

exhaust all possible configurations formed by 8 invariant lines for a cubic system. Note that

in all configurations the invariant straight line which is omitted is the infinite one.

We say that invariant lines of a system in CSL8 form a potential configuration of type

(3, 3, 1) (respectively, (3, 2, 2); (3, 2, 1, 1); (2, 2, 2, 1)) if there exists a sequence of vector fields

D̃k as in Definition 2.5 having 7 affine distinct lines of type (3, 3, 1) (respectively, (3, 2, 2);

(3, 2, 1, 1); (2, 2, 2, 1)).

As it was proved in [27] systems (2.1) with four distinct infinite singularities could not

have invariant lines of total multiplicity eight in the configuration of type (3, 2, 2), conse-

quently neither the potential configuration (3, 2, 2). Thus in what follows we will consider

only three types of configurations:

(i) (3, 3, 1); (ii) (3, 2, 1, 1); (iii) (2, 2, 2, 1).

Following Lemma 2.2 we split the family of cubic systems CSL8 in 9 subfamilies, according

to the number of infinite singularities (real or complex) of systems (2.1) which are determined

by the linear factors of the polynomial C3(x, y). For each one of these subfamilies the proof

of the corresponding Main Theorem proceeds in the steps indicated below.

1. First we construct the cubic homogeneous parts (P̃3, Q̃3) of systems for which the

corresponding necessary conditions, provided by Theorem 2.2 of the Thesis are satisfied

49



in order to have a given number of triplets or/and couples of invariant parallel lines in

the respective directions.

2. Secondly, taking cubic systems ẋ = P̃3, ẏ = Q̃3 we we perturb them by adding

quadratic, linear and constant terms and using the equations (2.17) we determine these

terms in order to get the necessary number of invariant lines in the respective config-

uration. Thus the second step ends with the construction of the canonical systems

possessing the needed configuration. This leads us to the next remark.

Remark 2.2. If the perturbed systems have a triplet (respectively a couple) of parallel

lines in the direction Ux + V y = 0 then the respective cubic homogeneous systems

with right-hand parts (P̃3, Q̃3) necessarily have the invariant line Ux + V y = 0 of the

multiplicity three (respectively two).

Thus the second step ends with the construction of the canonical systems possessing

the required configuration.

3. The third step consists in the determination of the affine invariant conditions necessary

and sufficient for a cubic system to belong to the family of systems (constructed at the

second step) which possess the corresponding configuration of invariant lines.

4. And finally, in the case of the existence of multiple invariant lines in a potential configu-

ration we construct the corresponding perturbed systems possessing 8 distinct invariant

lines (real and/or complex, including the line at infinity).

2.2. Classification of cubic systems according to their configurations of

invariant lines

According to Lemma 2.2 we split the family of cubic systems having 4 distinct infinite

singularities into three subfamilies depending on the types of these singularities and namely:

systems with four real, systems with two real and two complex and systems with four complex

infinite singularities. On the other hand in [27] (p. 1078) we proved that a cubic system

(S) with four complex distinct infinite singularities could not have invariant lines of total

multiplicity eight. Therefore we examine the first two above mentioned subfamilies and for

each one of these subfamilies the proof of the Main Theorem A proceeds in the first 3 steps

which were described earlier in Paragraph 2.1.2. We note that the 4th step is trivial in

this case because we have only multiple invariant straight lines which could perturb only

50



in parallel lines and the perturbation is very simple to construct. Surely, here we take into

account the types of configurations which these systems can possess.

Our main result concerning these two subfamilies of systems is the following one.

Main Theorem A. Assume that a cubic system possesses invariant lines of total multiplicity

8, including the line at infinity with its own multiplicity. In addition we assume that this

system has four distinct infinite singularities. Then:

I. The system possesses exactly one of the 17 possible configurations of invariant lines

Config. 8.1 – Config. 8.17 given in Figure 2.1.

II. This system possesses the specific configuration Config. 8.j (j ∈ {1, 2, . . . , 17} if and

only if the corresponding conditions included below are fulfilled. Moreover the system can be

brought via an affine transformation and time rescaling to the canonical forms, written below

next to the configuration:

1) Four real distinct infinite singularities ⇔ D1 > 0, D2 > 0, D3 > 0 :

A1) Configuration of type (3, 3, 1) ⇔ V1 = V2 = L1 = L2 = K1 = 0, K2 6= 0 :

• Config. 8.1 ⇔ K3 > 0: ẋ = x(x+1)(x−a), ẏ = y(y+1)(y−a), 0<a 6=1;

• Config. 8.2 ⇔ K3 < 0: ẋ = x
[
(x+a)2+1

]
, ẏ = y

[
(y+a)2+1

]
, a 6=0;

• Config. 8.3 ⇔ K3 = 0: ẋ = x2(1 + x), ẏ = y2(1 + y).

A2) Configuration of type (3, 2, 1, 1) ⇔ V5 = U2 = K4 = K5 = K6 = 0, D4 6= 0 :

• Config. 8.4 ⇔ L1 6= 0 and K7 > 0:

{
ẋ = x(x− 1)(x+ r), r > 0,

ẏ = y(y − 1)
[
(1− r)x+ ry + r

]
;

• Config. 8.5 ⇔ L1 6= 0 and K7 < 0:

{
ẋ = x(x− 1)(x+ r), r < 0,

ẏ = y(y − 1)
[
(1− r)x+ ry + r

]
;

• Config. 8.6 ⇔ L1 = 0: ẋ = rx3, ẏ = (r − 1)xy2 + y3, r 6= 0.

A3) Configuration of type (2, 2, 2, 1) ⇔ V3 = K2 = K4 = K8 = 0, D4 6= 0 :

• Config. 8.7 ⇔ K9 > 0:

{
ẋ = (x2 − 1)(rx+ 2y + ry), r(r2 − 1) 6= 0,

ẏ = (y2−1)(x+2rx+y), (r+2)(2r+1) 6=0;

• Config. 8.8 ⇔ K9 < 0:

{
ẋ = (x2+1)(rx+2y+ry), r(r2 − 1) 6= 0,

ẏ = (y2+1)(x+2rx+y), (r+2)(2r+1) 6=0;

• Config. 8.9 ⇔ K9 = 0:

{
ẋ = x2(rx+ 2y + ry), r(r2 − 1) 6= 0,

ẏ = y2(x+ 2rx+ y), (r + 2)(2r + 1) 6= 0.

2) Two real and two complex distinct infinite singularities ⇔ D1 < 0:

A4) Configuration of type (3, 3, 1) ⇔ V1 = V2 = L1 = L2 = K1 = 0, K2 6= 0;
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• Config. 8.10 ⇔ K3 > 0:

{
ẋ = (1− r2)x/4 + x2 − y2 + x3 − 3xy2,

ẏ = (1−r2)y/4+2xy+3x2y−y3, r2 6=0, 1/9, 1;

• Config. 8.11 ⇔ K3 < 0:

{
ẋ = (1 + r2)x/4 + x2 − y2 + x3 − 3xy2,

ẏ = (1 + r2)y/4 + 2xy + 3x2y − y3, r 6= 0;

• Config. 8.12 ⇔ K3 = 0:

{
ẋ = x/4 + x2 − y2 + x3 − 3xy2,

ẏ = y/4 + 2xy + 3x2y − y3.

A5) Configuration of type (3, 2, 1, 1) ⇔ V5 = U2 = K4 = K5 = K6 = 0, D4 6= 0 :

• Config. 8.13 ⇔ L1 6= 0:





ẋ = (1 + r2)x
[
(x+ r)2 + 1

]
, r 6= 0,

ẏ = (1 + r2)2y + 2r(1 + r2)xy − rx3

+ r2x2y − rxy2 − y3;

• Config. 8.14 ⇔ L1 = 0:

{
x = (1 + r2)x3, r 6= 0,

ẏ = −rx3 + r2x2y − rxy2 − y3.

A6) Configuration of type (2, 2, 2, 1) ⇔ V3 = K2 = K4 = K8 = 0, D4 6= 0 :

• Config. 8.15 ⇔ K9 > 0:





ẋ = x(x−1)(1+r2−2x+2ry), r 6=0,

ẏ = −(1 + r2)y + (3 + r2)xy − rx3

−3x2y − 2ry2 + rxy2 − y3;

• Config. 8.16 ⇔ K9 < 0:





ẋ = 2(1 + x2)(ry − x− r), r 6= 0,

ẏ = r(r2 + 3)x+ (1− r2)y − rx3

−3x2y + rxy2 − y3;

• Config. 8.17 ⇔ K9 = 0:

{
ẋ = −2x2(x− ry), r 6= 0,

ẏ = −2ry2 − rx3 − 3x2y + rxy2 − y3.

III. This system could not have a configuration of invariant lines of the type (3, 3, 2) and

neither could it have 4 complex ISPs.

Remark 2.3. If in a configuration an invariant straight line has multiplicity k > 1, then the

number k appears near the corresponding straight line and this line is in bold face. Real in-

variant straight lines are represented by continuous lines, whereas complex invariant straight

lines are represented by dashed lines. We indicate next to the real singular points of the

system, located on the invariant lines, their corresponding multiplicities. In order to describe

the various kinds of multiplicity for ISPs we use the notation (a, b). By this notation we

point out the maximum number a (respectively b) of infinite (respectively finite) singularities

which can be obtained by perturbation of the multiple point.
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The symbols (D1,D2, . . . ,K8,K9) used above denote invariant polynomials defined in

Paragraph 2.1.1 of the paper.

Corollary. A cubic system with four distinct infinite singularities possesses the configuration

or potential configuration of a given type if and only if the following conditions are satisfied,

respectively:

(3, 3, 1) ⇔ V1 = V2 = L1 = L2 = K1 = 0, K2 6= 0;

(3, 2, 1, 1) ⇔ V5 = U2 = K4 = K5 = K6 = 0, D4 6= 0;

(2, 2, 2, 1) ⇔ V3 = K4 = K2 = K8 = 0, D4 6= 0.

The proof of the Main Theorem A is organized as follows. In Paragraphs 2.2.1 and 2.2.2

we consider two subfamilies of cubic systems with four distinct infinite singularities, and

namely, systems with four real and respectively systems with two real and two imaginary

singular points at infinity following the fist two steps described in Paragraph 2.1.2. Next, in

Subsection 2.3, we construct the necessary and sufficient conditions (mentioned in the Main

Theorem A) for the realization of each one of the configurations, constructed in Subsection

2.1.

2.2.1. Cubic systems with four distinct real infinite singularities

Assuming that systems (2.2) possess four distinct real infinite singularities (i.e. the conditions

D1 > 0, D2 > 0, D3 > 0 hold), according to Lemma 2.2 via a linear transformations they

could be brought to the family of systems

ẋ = a+ cx+ dy + gx2 + 2hxy + ky2 + P̃3(x, y),

ẏ = b+ ex+ fy + lx2 + 2mxy + ny2 + Q̃3(x, y)
(2.18)

where P̃3(x, y) = (p + r)x3 + (s + v)x2y + qxy2, Q̃3(x, y) = px2y + (r + v)xy2 + (q + s)y3

for which we have C3 = xy(x− y)(rx+ sy) and

rs(r + s) 6= 0. (2.19)

Systems with configuration (3, 3, 1). Since we have two triplets of parallel invariant

lines, according to Theorem 2.2 the conditions V1 = V2 = U 1 = 0 are necessary for systems

(2.18). Moreover in [83, Section 5.1] it was proved that in this case via a linear transformation

and time rescaling the cubic homogeneities of these systems could be brought to the forms:

P̃3 = x3, Q̃3 = y3. (2.20)
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Fig. 2.1. Configurations of invariant lines for systems in CSL8 with 4 ISPs

So applying a translation we may assume g = n = 0 in the quadratic parts of systems (2.18)

with the cubic homogeneities of the form (2.20). In such a way we get the family of systems

ẋ = a+ cx+ dy + 2hxy + ky2 + x3, ẏ = b+ ex+ fy + lx2 + 2mxy + y3 (2.21)

for which we calculate C3(x, y) = xy(x− y)(x+ y).
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In order to find out the directions of two triplets according to Remark 2.2 we determine

the multiplicity of the invariant lines of system (2.20). For this system we calculate (see

the definition of the polynomial H(X, Y, Z) on the page 47, Notation 2.2): H(X, Y, Z) =

gcd(G1,G2,G3) = 3X3(X−Y )Y 3(X+Y ). So (2.20) possesses two triple invariant lines x = 0

and y = 0 and by Remark 2.2 systems (2.21) could have triplets of parallel invariant lines

only in these two directions.

(i) The direction x = 0. Considering equations (2.17) and Remark 2.1 we obtain

Eq7 = k, Eq9 = d− 2hW, Eq10 = a− cW −W 3 (2.22)

and obviously we can have a triplet of parallel invariant lines (which could coincide) in the

direction x = 0 if and only if k = d = h = 0. Assuming that these conditions hold we

consider the another direction for the second triplet.

(ii) The direction y = 0. In this case we have

Eq5 = l, Eq8 = e− 2mW, Eq10 = b− fW −W 3 (2.23)

and again we conclude that for the existence of three parallel invariant lines in the direction

y = 0 for systems (2.21) the conditions e = l = m = 0 have to be satisfied.

It remains to examine the directions y = x and y = −x in order to determine the

conditions for the existence of exactly one invariant line in one of these two directions.

For the direction y = x we have

Eq7=−3W, Eq9=f− c−3W 2, Eq10=a+b−cW−W 3

whereas for the direction y = −x we obtain

Eq7=−3W, Eq9=c− f+3W 2, Eq10=a−b−cW−W 3.

We observe that in each one of the cases we could have only one invariant line. Moreover

the necessary and sufficient conditions for the existence of such a line are c− f = a+ b = 0

in the first case and c− f = a− b = 0 in the second case.

Thus we conclude that for the existence of a single invariant line in one of the mentioned

directions the following conditions are necessary and sufficient:

c− f = (a− b)(a+ b) = 0, a2 + b2 6= 0.
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Since the respective family of systems is of the form

ẋ = a + cx+ x3, ẏ = b+ cy + y3 (2.24)

we may assume b = a 6= 0 due to the rescaling y → −y in the case b = −a and we arrive at

the family of systems

ẋ = a + cx+ x3, ẏ = a+ cy + y3. (2.25)

These systems possess the invariant lines defined by the equations

x3 + cx+ a = 0, x− y = 0, y3 + cy + a = 0.

Since the discriminant of the polynomial x3+ cx+ c equals ξ = −(27a2+4c3) (and clearly it

coincides with the discriminant of the polynomial y3+ cy+ a) we conclude that the systems

above possess 7 invariant affine lines which are as follows:

ξ > 0 ⇒ 7 real simple distinct;

ξ < 0 ⇒ 3 real and 4 complex all simple distinct;

ξ = 0 ⇒ 3 simple and 2 double all real distinct.

As we have two triplets of parallel invariant lines it is clear that all 9 finite singularities (real

and/or complex) are located at the intersections of these lines. It remains to observe that

in the case of 4 complex lines we have only one real finite singularity: the intersection of the

three real lines.

Thus we obtain the configuration given by Config. 8.1 if ξ > 0, by Config. 8.2 if ξ < 0

and by Config. 8.3 if ξ = 0 (see Figure 2.1).

Systems with configuration (3, 2, 1, 1). First we need to construct the cubic ho-

mogeneous parts (P̃3, Q̃3) of systems (2.18) for which the conditions V4 = V5 = U2 = 0 are

fulfilled. According to [27, Section 3.3.1] the condition V5 = U2 = 0 implies V4 = 0. More

exactly, we have the next remark.

Remark 2.4. In order to construct the whole class of systems possessing the configuration

or potential configuration (3, 2, 1, 1) it is sufficient to consider the family of cubic systems

with the homogeneous cubic parts of the forms

ẋ = rx3, ẏ = (r − 1)xy2 + y3. (2.26)

Since r 6= 0, due to a translation we may assume g = n = 0 in the quadratic parts of

systems (2.18) with the cubic homogeneities of the form (2.26). Considering Remark 2.4 we

get the next result.
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Lemma 2.7. Assume that a cubic system (2.18) possesses 7 invariant affine straight lines

with configuration or potential configuration (3, 2, 1, 1). Then via an affine transformation

and a time rescaling this system could be brought to a system belonging to the following

family:

ẋ =a + cx+ dy + 2hxy + ky2 + rx3, r(r + 1) 6= 0,

ẏ =b+ ex+ fy + lx2 + 2mxy + (r − 1)xy2 + y3.
(2.27)

In what follows we shall determine necessary and sufficient conditions for a system (2.27)

to have a configuration or potential configuration (3, 2, 1, 1). Considering Remark 2.2 for

the homogeneous systems (2.26) corresponding to (2.27) we calculate

H(X, Y, Z) = gcd(G1,G2,G3) = X3(X − Y )Y 2(rX + Y ). (2.28)

So the invariant line x = 0 (respectively y = 0) of systems (2.26) is of multiplicity three

(respectively two). Hence by Remark 2.2 the systems (2.27) could possess one triplet (re-

spectively one couple) of invariant lines in the direction x = 0 (respectively y = 0). How-

ever for some values of the parameter r the common divisor gcd(G1,G2,G3) could contain

additional factors. To detect them we calculate: ResX(G2/H, G1/H) = (r − 1)(2 + r)(1 +

2r)Y 3, ResX(G3/H, G1/H) = (r−1)(2+r)(1+2r)(4−r)(4r−1)Y 5, ResY (G2/H, G1/H) =

(r − 1)(2 + r)(1 + 2r)X3, ResY (G3/H, G1/H) = (r − 1)(2 + r)(1 + 2r)(r − 4)(4r − 1)X3.

Therefore in order to have a nonconstant common factor of the polynomials G1/H , G2/H

and G3/H the condition (r − 1)(2 + r)(1 + 2r) = 0 has to be satisfied. However in [27]

(see pages 1052-1053) it was proved that in this case systems (2.27) could not have 7 affine

invariant straight lines.

So we assume (r − 1)(1 + 2r)(2 + r) 6= 0 and we shall examine all four directions

(x = 0, y = 0, y = x, y = −rx) defined by the factors of C3(x, y).

(i) The direction x = 0. Considering the equations (2.17) and Remark 2.1 we obtain

Eq7=k, Eq9=d−2hW, Eq10=a−cW−rW 3 (2.29)

and obviously we can have a triplet of parallel invariant line (which could coincide) in the

direction x = 0 if and only if k = d = h = 0.

(ii) The direction y = 0. In this case considering the equations (2.17) and above condi-

tions we have

Eq5 = l, Eq8 = e− 2mW + (r − 1)W 2, Eq10 = b− fW −W 3. (2.30)

So we conclude that for the existence of a couple of parallel invariant lines for systems (2.27)

in this direction it is necessary and sufficient l = 0 and R
(0)
W (Eq8, Eq10) = R

(1)
W (Eq8, Eq10) = 0.
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We calculate R
(1)
W (Eq8, Eq10) = −4m2 + e(r − 1) − f(r − 1)2 = 0 and as r 6= 1 we have

e =
[
4m2 + f(r − 1)2

]
/(r − 1). Then we obtain R

(0)
W (Eq8, Eq10) = [8m3 + 2fm(r − 1)2 +

b(r − 1)3]/(r − 1)3 = 0 and hence we get b = −2m
[
4m2 + f(r − 1)2

]
/(r − 1)3.

Thus in order to have a triplet in the direction x = 0 and a couple in the direction y = 0

in the case r− 1 6= 0 the following conditions are necessary and sufficient for systems (2.27):

k=d=h= l=0, e=
[
4m2+f(r−1)2

]
/(r−1), b=−2m

[
4m2+f(r−1)2

]
/(r −1)3. (2.31)

(iii) The direction y = x. In this case we have

Eq7= l−2h−k+2m−(1+2r)W=0, Eq9=e+f−c−d+2(l−h+m)W−3rW 2=0,

Eq10=b−a+(e−c)W+lW 2−rW 3=0.
(2.32)

Since 2r + 1 6= 0 these equations could have only one common solution. Considering the

conditions (2.31) the equation Eq7 = 0 gives W = 2m/(2r+1). Then the equations Eq9 = 0

and Eq10 = 0 yield

c = fr +
12m2r(2 + r)

(−1 + r)(1 + 2r)2
, a = − 6fmr

(r − 1)(1 + 2r)
− 72m3r(1 + r + r2)

(r − 1)3(1 + 2r)3
. (2.33)

(iv) The direction rx+ y = 0. In this case we have

Eq5= l−2mr−2hr2+kr3−r(2+r)W, Eq10 = b+ar−(f+dr)W+krW 2−W 3,

Eq8=e+cr−fr−dr2−2(m+hr−kr2)W−(1+2r)W 2.
(2.34)

Since r(r + 2) 6= 0, considering the conditions (2.31) and (2.33) the equation Eq5 = 0 gives

W = −2m/(r + 2). Then the equations Eq8 = 0 and Eq10 = 0 take the form

Eq8 = (r + 1)U(f,m, r) = 0, Eq10 = −6m(1 + r)(1 + r + r2)U(f,m, r)

(r − 1)(2 + r)(1 + 2r)
= 0

where U(f,m, r) = f(r − 1) + [12m2(1 + 5r + 15r2 + 5r3 + r4)]/[(r − 1)(2 + r)2(1 + 2r)2].

Since r + 1 6= 0 the condition Eq8 = 0 gives U(f,m, r) = 0 and then Eq10 = 0. In this

case the condition U(f,m, r) = 0 implies f =
12m2(1 + 5r + 15r2 + 5r3 + r4)

(r − 1)2(2 + r)2(1 + 2r)2
and taking

into account (2.31) and (2.33) we arrive at the following relations among the parameters of

systems (2.27) in the case (r − 1)(2 + r)(1 + 2r) 6= 0:

k = d = h = l = 0, f = −12m2(1 + 5r + 15r2 + 5r3 + r4)

(r − 1)2(2 + r)2(1 + 2r)2
,

b = − 8m3(1 + 7r + r2)

(r − 1)(2 + r)2(1 + 2r)2
, c = − 108m2r(1 + r + r2)

(r − 1)2(2 + r)2(1 + 2r)2
,

a =
216m3r

(r − 1)2(2 + r)2(1 + 2r)2
, e =

4m2(r − 1)(1 + 7r + r2)

(2 + r)2(1 + 2r)2
.

(2.35)
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So we obtain the following 2-parameter family of systems

ẋ = r
[
x+

6m

(r − 1)(2 + r)

][
x− 6m

(r − 1)(1 + 2r)

][
x− 6m

(1 + 2r)(2 + r)

]
,

ẏ =
[
y +

2m(r − 1)

(2 + r)(1 + 2r)

][
y +

2m(1 + 7r + r2)

(r − 1)(2 + r)(1 + 2r)

][
y + (r − 1)x− 2m

(r − 1)

]
.

Since (r−1)(2+r)(1+2r) 6= 0 we set a new parameter u as follows: m =
u

6
(r−1)(2+r)(1+2r)

and this leads to the following systems:

ẋ = r
[
x+ u(1 + 2r)

][
x− u(2 + r)

][
x− u(r − 1)

]
,

ẏ =
[
y + u(r − 1)2/3

][
y + u(1 + 7r + r2)/3

][
y + (r − 1)x− u(2 + r)(1 + 2r)/3

]
.

(2.36)

Assume first that u 6= 0. Since r 6= 0 by means of the transformation x1 =
x

3u
+
1− r

3
, y1 =

− y

3ru
− (r − 1)2

9r
, t1 = 9ru2t systems (2.36) become the systems (we keep the old notations

for variables)

ẋ = x(x− 1)(x+ r), ẏ = y(y − 1)
[
(1− r)x+ ry + r

]
. (2.37)

We observe that the above systems possess seven invariant affine lines L1 = x, L2 =

x − 1, L3 = x + r, L4 = y, L5 = y − 1, L6 = x − y, L7 = x + ry in the configuration

(3, 2, 1, 1). Since r(r+ 1) 6= 0 we conclude that we could not have coinciding invariant lines.

On the other hand systems (2.37) possess 9 finite singularities: (0, 0), (0, 1), (0,−1), (1, 0),

(−r, 0), (1, 1), (1,−1/r), (−r, 1), (−r,−r). We observe that 8 singular point are located at

the intersections of the invariant lines, whereas the ninth one (and namely, (0,-1)) is located

on the invariant line L1 = 0. Moreover, the positions of the invariant lines which form the

triplet depends on the parameter r. More precisely, if r > 0 then the line L1 is placed

between the parallel invariant lines L2 and L3 and in the case r < 0 the lines L2 and L3

are located on the right with respect to L1. Thus taking into consideration that on the line

L1 it is located the unique point of the intersection of 4 invariant lines L1, L4, L6 and L7

(the origin of coordinate), we arrive at two different configurations. Namely we obtain the

configuration given by Config. 8.4 if r > 0 and by Config. 8.5 if r < 0 (see Figure 2.1).

Assume now u = 0. Then systems (2.36) become the homogeneous systems (2.26) pos-

sessing invariant lines x = 0 (triple), y = 0 (double), y = x and y = −rx (see (2.28)). This

leads to the configuration Config. 8.6 (see Figure 2.1).

Thus we arrive at the next result.

Lemma 2.8. A system (2.27) possesses the configuration or potential configuration of in-

variant lines of the type (3, 2, 1, 1) only in the case (r − 1)(1 + 2r)(2 + r) 6= 0. Moreover if
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this system possesses such a configuration then it could be written either in the form (2.37)

or (2.26).

Systems with configuration (2, 2, 2, 1). As a first step we need to construct the

cubic homogeneous parts (P̃3, Q̃3) of systems (2.18) for which we force the condition V3 = 0.

In [27, Section 3.4.1] it was proved that in this case the cubic homogeneities could be brought

to the form:

ẋ = rx3 + (2 + r)x2y, ẏ = (1 + 2r)xy2 + y3. (2.38)

Since in systems (2.18) with the homogenous cubic parts of the form (2.38) due to a

translation we may assume n = 0, we arrive at the next result.

Lemma 2.9. Assume that a cubic system (2.18) possesses 7 invariant affine straight lines

with configuration or potential configuration (2, 2, 2, 1). Then via an affine transformation

and a time rescaling this system could be brought to a system belonging to the following

family:

ẋ =a+ cx+ dy + gx2 + 2hxy + ky2 + rx3 + (2 + r)x2y,

ẏ =b+ ex+ fy + lx2 + 2mxy + (1 + 2r)xy2 + y3, r(r + 1) 6= 0.
(2.39)

In what follows we shall determine necessary and sufficient conditions for a system (2.39)

to have a configuration or potential configuration (2, 2, 2, 1). Considering Remark 2.2 for the

homogeneous systems (2.38), corresponding to systems (2.39) we calculate

H(X, Y, Z) = gcd(G1,G2,G3) = X2(X − Y )Y 2(rX + Y )2. (2.40)

So each one of the invariant lines x = 0, y = 0 and rx + y = 0 of systems (2.38) is of

multiplicity two and in the direction y = x there exists one line.

We claim that in order to have exactly three couples of invariant straight lines, for systems

(2.39) the condition (r+2)(2r+1)(r− 1) 6= 0 must hold. Indeed using the equations (2.17)

we evaluate them for each one of the four directions.

(i) For the direction x = 0 we obtain

Eq7 = k, Eq9 = d− 2hW + (2 + r)W 2, Eq10 = a− cW + gW 2 − rW 3 (2.41)

and to have exactly two parallel invariant lines in this direction the condition r + 2 6= 0 is

necessary.

(ii) For the direction y = 0 we have

Eq5 = l, Eq8 = e− 2mW + (1 + 2r)W 2, Eq10 = b− fW −W 3. (2.42)
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and it is evident, the condition 1 + 2r 6= 0 must be satisfied (in order to have exactly two

parallel invariant lines in this direction).

(iii) For the direction y = x we calculate

Eq6 = l−g−2h−k+2m−3(1+r)W, Eq8 = ef−c−d+(l−g+k)W+(1−r)W 2,

Eq10 = −a + b+ dW − fW − kW 2 −W 3.
(2.43)

and as r + 1 6= 0 in this direction could be at most one invariant line.

(iv) For the direction y = −rx we obtain

Eq5= l+(g−2m)r−2hr2+kr3, Eq10=b+ar−(f+dr)W+krW 2−W 3,

Eq8=e+(c−f)r−dr2−2(m+2hr−2kr2)W+(1−r)W 2.
(2.44)

We observe, that to have exactly two invariant lines in this direction it is necessary r−1 6= 0.

So we conclude that the three needed couples of parallel invariant lines could be only in

the directions x = 0, y = 0 and y = −rx and for this the condition (r+2)(2r+1)(r−1) 6= 0

must hold. So our claim is proved.

Since r + 2 6= 0 without loss of generality in systems (2.39) we may assume h = 0 due

to the translation x = x1 + h(1 + 2r)/(3(2 + r)), y = y1 − h/(2 + r), which conserves

the previous relation n = 0. So we have to force the existence of parallel lines in the above

mentioned directions. Considering (2.41), (2.42), (2.44) and h = 0 we obtain: k = l = 0,

r(g − 2m) = 0 and this implies g = 2m.

Now we look for the sufficient conditions under the parameters of systems (2.39) for the

existence of three couples of parallel lines, assuming that the following conditions hold:

k = l = h = 0, g = 2m. (2.45)

(i) Direction x = 0. Considering (2.41) we get Eq9 = d + (2 + r)W 2 = 0, Eq10 =

a − cW + 2mW 2 − rW 3 = 0 and by Lemma 2.5 in order to have two common solutions

the following conditions are necessary and sufficient: R
(0)
W (Eq9, Eq10) = R

(1)
W (Eq9, Eq10) = 0.

Since R
(1)
W (Eq9, Eq10) = −(2 + r)(2c + cr − dr) and r(r + 2) 6= 0 we obtain d = c(2 + r)/r

and we calculate R
(0)
W (Eq9, Eq10) = (2+ r)3(2cm− ar)2/r2 = 0. Therefore we get a = 2cm/r

and this implies Eq9 = (2 + r)(c+ rW 2)/r, Eq10 = (2m− rW )(c+ rW 2)/r and hence, we

have two common solutions, which could be real or complex, distinct or coinciding. On the

other hand for the parameters of systems (2.39) we obtain the following relations:

(r−1)(r+2)(2r+1) 6= 0, k = l = h = 0, g = 2m, d = c(2 + r)/r, a = 2cm/r. (2.46)
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(ii) Direction y = 0. Taking into account (2.42) and (2.46) in this case we obtain

Eq8 = e − 2mW + (1 + 2r)W 2 = 0, Eq10 = b − fW − W 3 = 0 and R
(1)
W (Eq8Eq10) =

e(1 + 2r) − f(1 + 2r)2 − 4m2 = 0 and this implies e = f(1 + 2r) + 4m2/(1 + 2r). Then

we calculate R
(0)
W (Eq8, Eq10) =

[
8m3 + 2fm(1 + 2r)2 + b(1 + 2r)3

]2
/(1 + 2r)3 = 0 and hence

we get b = −2
[
4m3 + fm(1 + 2r)2

]
/(1 + 2r)3. Considering the new obtained conditions we

arrive at the following relations among the parameters of systems (2.39):

(r − 1)(r + 2)(2r + 1) 6= 0, k = l = h = 0, g = 2m, d = c(2 + r)/r, a = 2cm/r,

e = f(1 + 2r) + 4m2/(1 + 2r), b = −2
[
4m3 + fm(1 + 2r)2

]
/(1 + 2r)3

(2.47)

(iii) Direction y = −rx. Considering (2.44) we get

Eq8 = (1 + r)(f − cr) + 4m2/(1 + 2r)− 2mW − (r − 1)W 2 = 0,

Eq10 = 2cm− 8m3/(1 + 2r)3 − 2fm/(1 + 2r)− (2c+ f + cr)W −W 3 = 0,

R
(1)
W (Eq8, Eq10) = 2c(r − 1)− 2fr(r− 1)− 12m2r/(1 + 2r) = 0

and therefore we obtain c = fr + 6m2r/[(r − 1)(1 + 2r)]. Then we calculate

R
(0)
W (Eq8, Eq10) = −144m2r2(1 + r)2

[
f(r − 1)2(1 + 2r)2 + 3m2(1− 2r + 4r2)

]2

(2 + r)6(1 + 2r)4
= 0

and clearly we have either m = 0 or m 6= 0 and f = −3m2(1−2r+4r2)/[(r−1)2(1+2r)2].

1) The case m = 0. Then by (2.47) we get the conditions

(r − 1)(r + 2)(2r + 1) 6= 0, k = l = h = g = m = a = b = 0,

d = f(2 + r), e = f(1 + 2r), c = fr
(2.48)

and for the direction y = −rx we obtain Eq8 = (1 − r)(f + 2fr + fr2 + W 2), Eq10 =

−W (f + 2fr + fr2 + W 2). So we have two common solutions, which could be real or

complex, distinct or coinciding. In this case for the last direction (i.e. y = x) we calculate

Eq6 = −3(1 + r)W, Eq8 = (1 − r)W 2, Eq10 = W (f + fr −W 2) and the common solution

is W = 0. Thus we get the family of systems

ẋ = (f + x2)(rx+ 2y + ry), ẏ = (f + y2)(x+ 2rx+ y) (2.49)

with the condition r(r2 − 1)(r + 2)(2r + 1) 6= 0 and f ∈ {−1, 0, 1} due to the rescaling

(x, y, t) 7→ (|f |1/2x, |f |1/2y, t/|f |) if f 6= 0. These systems possess the following invariant

lines: x2 + f = 0, y2 + f = 0, y − x = 0, (rx + y)2 + f(1 + r)2 = 0. We observe that

the line y = x is real and all other lines are distinct real (respectively complex) if f < 0

(respectively f > 0) and we have three double invariant lines in the case f = 0.
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Thus we obtain the configurations either Config. 8.7 if f < 0 or Config. 8.8 if f > 0 or

Config. 8.9 if f = 0 (see Figure 2.1).

2) The case f = − 3m2(1− 2r + 4r2)

(−1 + r)2(1 + 2r)2
and m 6= 0. We claim that in this case in the

direction y = x we could not have any invariant line. Indeed, considering (2.43) we obtain

Eq6 = −3(1 + r)W = 0, Eq8 = −8m2(2 + r)/[(r − 1)(1 + 2r)]− 2mW + (1− r)W 2 = 0

and we observe that due to r + 1 6= 0 these equations could have only the common solution

W = 0. However in this case we must have m(2 + r) = 0 which contradicts m(2 + r) 6= 0.

So our claim is proved.

2.2.2. Cubic systems with 2 real and 2 complex infinite singularities

According to Lemma 2.2 in this case the condition D1 < 0 holds and the systems (2.2) due

to a linear transformation and time rescaling could be brought to the systems

ẋ = a+ cx+ dy + gx2 + 2hxy + ky2 + (u+ 1)x3 + (s+ v)x2y + rxy2,

ẏ = b+ ex+ fy + lx2 + 2mxy + ny2 − sx3 + ux2y + vxy2 + (r − 1)y3.
(2.50)

For these systems we have C3 = x(sx + y)(x2 + y2) and hence, infinite singular points are

situated at the “ends” of the straight lines: x = 0, y = −sx and y = ±ix. In what follows

we split our examination in three cases depending on the type of configuration of invariant

straight lines which these systems can possess.

Systems with configuration (3, 3, 1). Since we have two triplets of parallel invariant

lines, according to Theorem 2.2 the conditions V1 = V2 = U 1 = 0 are necessary for systems

(2.50). Moreover in [83, Section 6.1] it was proved that providing the conditions above, a

cubic homogenous system with two real and two complex (all distinct) infinite singularities

via a linear transformation and time rescaling could be brought either to the system

ẋ = x3, ẏ = −y3 if L4 < 0,

or to the system

ẋ = x3 − 3xy2, ẏ = 3x2y − y3 if L4 > 0.

For the first system we calculate H(ã, X, Y, Z) = 3X3Y 3(X2+ Y 2), C3(x, y) = xy(x2+ y2),

whereas for the second one we have H(ã, X, Y, Z) = 6XY (X2+Y 2)3, C3(x, y) = −2xy(x2+

y2). In the first case we must have two triplets of parallel lines in the real directions and

hence, forcing the existence of a line in the complex direction we get 8 invariant affine lines.
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Thus it remains to consider only the systems with cubic homogeneities of the second

type. We observe that due to a translation we may assume g = n = 0 in the quadratic parts

of the systems (2.50) and so we examine the family of systems

ẋ = a + cx+ dy + 2hxy + ky2 + x3 − 3xy2,

ẏ = b+ ex+ fy + lx2 + 2mxy + 3x2y − y3.
(2.51)

(i) The direction x+ iy = 0. In this case we obtain

Eq10 = a+ ib− (c+ ie)W + ilW 3 −W 3, Eq6 = l + 2h+ i(k + 2m),

Eq9 = d+ e+ i(f − c)− (l − ik)W.
(2.52)

As all the parameters of systems (2.51) are real we conclude, that to have exactly three

parallel invariant lines (which could coincide) in this direction it is necessary and sufficient

to be satisfied the conditions l = k = h = m = 0, d = −e and f = c.

Thus we arrive to the family of systems

ẋ = a+ cx− ey + x3 − 3xy2, ẏ = b+ ex+ cy + 3x2y − y3 (2.53)

for which we shall examine simultaneously the real directions: x = 0 and y = 0.

For the direction x = 0 we calculate

Eq7 = 3W, Eq9 = −e, Eq10 = a− cW −W 3, (2.54)

whereas for the direction y = 0 we have

Eq5=−3W, Eq8=e, Eq10=b−cW+W 3. (2.55)

We observe that in each one of the cases we could have only one invariant line defined by

W = 0. Moreover the necessary and sufficient conditions for the existence of such line are

e = a = 0 in the first case and e = b = 0 in the second case. We conclude that for the

existence of exactly one invariant line in one of the real directions for systems (2.53), the

following conditions are necessary and sufficient: e = ab = 0, a2 + b2 6= 0. Consequently

we arrive at systems for which we may assume b = 0 due to the change (x, y, t) 7→ (y, x,−t)
in the case a = 0. So we get the family of systems

ẋ = a+ cx+ x3 − 3xy2, ẏ = cy + 3x2y − y3 (2.56)

possessing the following invariant straight lines:

y = 0, (x+ iy)3 + c(x+ iy) + a = 0, (x− iy)3 + c(x− iy) + a = 0.
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Since the discriminant of the cubic polynomial φ(z) = z3 + cz + a, where z = x ± iy

equals ξ = −(27a2+4c3), we conclude that the above systems possess 7 invariant affine lines

(considered with their multiplicities), which are as follows:

ξ 6= 0 ⇒ one real simple and 6 complex distinct simple;

ξ = 0 ⇒ one real simple, two complex simple and 2 complex double, all distinct.

As we have two triplets of parallel complex invariant lines it is clear that all 9 finite singu-

larities (real and/or complex) are located at the intersections of these lines. Moreover, as

there exist three pair of complex conjugate lines we have three real finite singularities, which

are distinct if ξ 6= 0 and two of them coincide if ξ = 0.

We observe that the singular points (xi, 0), i = 1, 2, 3, where xi are the solutions of

the cubic equation x3 + cx + a = 0 are located on the real invariant line y = 0. As the

discriminant of this equation is also ξ, we deduce that all the real singularities are located

on the real line y = 0 if ξ ≥ 0 and there are one real and two complex singularities on this

line if ξ < 0.

Thus we obtain the configuration corresponding to Config. 8.10 if ξ > 0, Config. 8.11

if ξ < 0 and Config. 8.12 if ξ = 0 (see Figure 2.1).

Systems with configuration (3, 2, 1, 1). According to Theorem 2.2, if a cubic sys-

tem possesses 7 invariant straight lines in the configuration (3, 2, 1, 1), then necessarily the

conditions V4 = V5 = U2 = 0 hold. So, as a first step, we need to force these conditions to

be satisfied for systems (2.50). Using the mentioned conditions in [27, Section 3.7.1] we have

determined the corresponding homogeneous cubic parts. More precisely, we have arrived to

the following two homogeneous systems:

ẋ = 2x3, ẏ = 3x2y + y3 (2.57)

and

ẋ = (1 + s2)x3, ẏ = −sx3 + s2x2y − sxy2 − y3. (2.58)

On the other hand using the invariant polynomials we have distinguished the above

systems as it is mentioned in the next remark.

Remark 2.5. We note that for system (2.57) we have V3 = 0, whereas for systems (2.58)

we have V3 = −32(9 + s2)x2(sx+ y)2 6= 0. So for V4 = V5 = U2 = 0 we get system (2.57) if

V3 = 0 and the family of systems (2.58) if V3 6= 0. We also observe that for system (2.57)

we have D4 = 0.
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Thus for the further examination it remains two families of systems with cubic homo-

geneities (2.57) and (2.58).

a) The family of systems with cubic homogeneities (2.57). For system (2.57) we calculate

H(X, Y, Z) = gcd(G1,G2,G3) = 6X3Y (X2+Y 2)2 and by Remark 2.2 the cubic systems with

homogeneous parts (2.57) could possess one triplet of invariant lines only in the direction

x = 0. As regard the two couples of parallel lines we conclude that they must be complex

and in complex directions y = ±ix. Therefore it is clear that in this case we could not have

the configuration or potential configuration of the type (3, 2, 1, 1).

b) The family of systems with cubic homogeneities (2.58). For homogeneous cubic systems

(2.58) we have
H(X, Y, Z) = (1 + s2)X3(sX + Y )2(X2 + Y 2). (2.59)

Hence systems (2.58) possess one triple (x = 0) and one double (sx+y = 0) real lines as well

as two complex invariant lines y = ±ix. So by Remark 2.2 we conclude, that cubic systems

ẋ =a + cx+ dy + 2hxy + ky2 + (1 + s2)x3,

ẏ =b+ ex+ fy + lx2 + 2mxy − sx3 + s2x2y − sxy2 − y3
(2.60)

with the cubic homogeneities (2.58) (here we assume g = n = 0 due to a rescaling) could

have a triplet only in the direction x = 0 and a couple of parallel lines only in the direction

y = −sx. Moreover these systems could have two simple complex conjugate invariant lines.

Using the equations (2.17) we evaluate them for each one of these directions.

(i) The direction x = 0. In this case we obtain

Eq7=k, Eq9=d−2hW, Eq10=a−cW−(1+s2)W 3 (2.61)

and to have exactly three parallel invariant lines in this direction the condition k = d = h = 0

is necessary and sufficient.

(ii) The direction sx + y = 0. Then for the systems (2.60) with k = d = h = 0 we

calculate

Eq5 = l − 2ms, Eq8 = e + s(c− f)− 2mW + 2sW 2, Eq10 = b+ as− fW +W 3 (2.62)

and to have exactly two parallel invariant lines in this direction the conditions l = 2ms

and s 6= 0 are necessary. Moreover in order to have two invariant lines in the direction

sx+y = 0 the following additional conditions are necessary and sufficient: R
(0)
W (Eq8, Eq10) =

R
(1)
W (Eq8, Eq10) = 0. Assuming l = 2ms (then Eq5 = 0) we calculate R

(1)
W (Eq8, Eq10) =

−2
[
es − 2m2 + (c + f)s2

]
= 0 and as s 6= 0 we obtain e =

[
2m2 − (c + f)s2

]
/s. Then
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we calculate R
(0)
W (Eq8, Eq10) = 8(fms2 + bs3 + as4 − m3)2/s3 = 0, and this yields b =

−
[
fms2 + as4 −m3

]
/s3.

(iii) The direction x+ iy = 0. In this case we obtain the equations Eq5 = i(i+ s)
[
2m+

(3 + is)W
]
= 0, Eq8 = c − f + i(2m2/s − cs − fs) − 2mW + (is − 3)W 2 = 0, Eq10 =

a+ i(m3/s3 − fm/s− as)− fW −W 3 = 0. So for the existence of an invariant line in this

complex direction we must have W = −2m/(3 + is) and then we calculate

Eq8 = (c− f) +
48m2s2

(9 + s2)2
− i

[
(c+ f)s+

6m2(s4 − 18s2 − 27)

s(9 + s2)2

]
,

Eq10 = a+
6fm

9 + s2
− 72m3(s2 − 3)

(9 + s2)3
− i

[
as+

3fm(3 + s2)

s(9 + s2)
− 9m3(s2 − 3)(s4 − 18s2 − 27)

s3(9 + s2)3

]
.

Since the coefficients of cubic systems (2.60) are real, the conditions Eq8 = Eq10 = 0 lead to

the following four equalities:

(c− f) +
48m2s2

(9 + s2)2
= (c+ f)s+

6m2(s4 − 18s2 − 27)

s(9 + s2)2
= 0,

a+
6fm

9 + s2
− 72m3(s2 − 3)

(9 + s2)3
= as +

3fm(3 + s2)

s(9 + s2)
− 9m3(s2 − 3)(s4 − 18s2 − 27)

s3(9 + s2)3
= 0.

Herein we obtain the following relations

c = −27m2(s2 − 3)(1 + s2)

s2(9 + s2)2
, f =

3m2(27 + 18s2 + 7s4)

s2(9 + s2)2
, a = −54m3(1 + s2)

s2(9 + s2)2

and therefore we get the following dependencies among the parameters of systems (2.60):

k = d = h = 0, l = 2ms, c = −27m2(−3 + s2)(1 + s2)

s2(9 + s2)2
, e =

8m2s(s2 − 9)

(9 + s2)2

f =
3m2(27 + 18s2 + 7s4)

s2(9 + s2)2
, a = −54m3(1 + s2)

s2(9 + s2)2
, b =

2m3(9 + 17s2)

s(9 + s2)2
.

(2.63)

Thus we arrive to the family of systems

ẋ =(1 + s2)

(
x− 6m

9 + s2

)[
x2 +

6m

9 + s2
x+

9m2

s2(9 + s2)

]
,

ẏ =b+ ex+ fy + 2msx2 + 2mxy − sx3 + s2x2y − sxy2 − y3,

(2.64)

where the parameters b, e and f have the values indicated above.

Assume first m 6= 0. Since s 6= 0 it is easy to find out that via the transformation

x1 =
s(9 + s2)

9m
x − 2s

3
, y1 =

s(9 + s2)

9m
+

2s2

9
, t1 =

81m2

s2(9 + s2)2
t the above systems could

be brought to the 1-parameter family of systems (we keep the old notations of variables)

ẋ =(1 + s2)x
[
(x+ s)2 + 1

]
,

ẏ =(1 + s2)2y + 2s(1 + s2)xy − sx3 + s2x2y − sxy2 − y3.
(2.65)
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These systems possess the following invariant lines: L1 = x, L2 = x + s + i, L3 = x +

s − i, L4 = sx+ y, L5 = sx+ y+ 1+ s2, L6 = y + ix, L7 = y − ix and it is clear that all

these lines are distinct.

Systems (2.65) possess the following 3 real and 6 complex finite singularities: (0, 0),

(0,±(1 + s2)),
(
i− s,±(1 + is)

)
,
(
− i− s,±(1− is)

)
,
(
i− s, s(s− i)

)
,
(
− i− s, s(s+ i)

)
.

We observe that all singular points except (0, 1 + s2) are located at the intersections of the

invariant lines and this leads to the configuration Config. 8.13 (see Figure 1).

Assume now m = 0. Then systems (2.64) become the homogeneous systems (2.58) and

considering (2.59) we deduce that these systems possess two real invariant straight lines

x = 0 (triple) and y + sx = 0 (double), as well as two complex lines y = ±ix. Therefore in

this case we obtain the configuration given by Config. 8.14 from Figure 2.1.

Systems with configuration (2, 2, 2, 1). Firstly, according to Theorem 2.2, for a

system (2.50) we need to force the condition V3 = 0. In [27, Section 3.8.1] it was shown that

in this case systems (2.50) have the homogeneous cubic part

ẋ = −2x3 + 2sx2y, ẏ = −sx3 − 3x2y + sxy2 − y3. (2.66)

Moreover, as due to a translation in the quadratic part of systems (S) we can consider

g = n = 0, we arrive at the following family of systems:

ẋ =a + cx+ dy + 2hxy + ky2 − 2x3 + 2sx2y,

ẏ =b+ ex+ fy + lx2 + 2mxy − sx3 − 3x2y + sxy2 − y3.
(2.67)

Remark 2.6. We remark that due to the change y → −y for (2.67) we may assume s ≥ 0.

For homogeneous cubic system (2.66) we have H(X, Y, Z) = 2X2(sX + Y )(X2 + Y 2)2.

So systems (2.66) possess three double invariant lines: the real line x = 0 and two complex

invariant lines y = ±ix. Hence by Remark 2.2 we conclude, that cubic systems (2.67) could

have three couples of parallel lines only in these directions. Moreover these systems could

have one simple real invariant line in the direction y = −sx.

(i) The direction x = 0. In this case we obtain the following non-vanishing equations:

Eq7 = k, Eq9 = d−2hW +2sW 2, Eq10 = a− cW +2W 3. Therefore to have exactly two

parallel invariant lines in this direction it is necessary and sufficient Eq7 = 0, s 6= 0 and

R
(0)
W (Eq9, Eq10) = R

(1)
W (Eq9, Eq10) = 0. So k = 0 and then we calculate R

(1)
W (Eq9, Eq10) =

4(2h2−ds− cs2) = 0. This yields d = (2h2− cs2)/s and we have R
(0)
W (Eq9, Eq10) = 8(−2h3+

chs2 + as3)2/s3 = 0 which implies a = h(2h2 − cs2)/s3.
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(ii) The direction x+ iy = 0. We obtain Eq7=2m−i(l+2h), Eq10=(2h3−chs2)/s3+ib−
(c+ie)W+ilW 2+(2+is)W 3, Eq9 = (2h2)/s− cs+ e+ i(f − c)−2(l+h+ im)W +(3i−s)W 2

and to have exactly two parallel invariant lines in this direction it is necessary Eq7 = 0. As

the parameters of cubic systems are real the equality Eq7 = 0 gives m = 0, l = −2h. So

considering the relations

k = 0, d = (2h2 − cs2)/s, a = h(2h2 − cs2)/s3, m = 0, l = −2h, (2.68)

determined at this moment among the parameters of systems (2.67), we examine the fourth

direction: sx+ y = 0.

(iii) The direction sx + y = 0. Considering the conditions (2.68) we find out the next

equations which do not vanish

Eq5 = (1 + s2)(3W − 2h), Eq8 = e + (c− f − 2h2)s+ cs3 − 2hsW + 4sW 2,

Eq10 = b− ch+ 2h3/s2 − (f + 2h2 − cs2)W +W 3.
(2.69)

Hence the unique value for the parameter W given by the equality Eq5 = 0 is W = 2h/3.

Then calculations yield: Eq8
∣∣
W=2h/3

= e + (c − f)s + cs3 − 14h2s/9 = 0, Eq10
∣∣
W=2h/3

=

b−h(3c+2f−2cs2)/3+2h3(27−14s2)/(27s2) = 0 and we get e = (f−c)s−cs3+14h2s/9, b =

h
[
(27c+ 18f + 28h2)s2 − 18cs4 − 54h2

]
/(27s2). Therefore, considering the above mentioned

equations for the direction x + iy = 0 we obtain Eq9 = 2h2(9 + 7s2))/(9s) − 2cs + fs −
cs3 + i(f − c) + 2hW + (3i− s)W 2 and Eq10 = h(2h2 − cs2)/s3 − ih(54h2 − 27cs2 − 18fs2 −
28h2s2 + 18cs4)/(27s2)−

[
c + i(fs− cs− cs2 + 14h2s/9

]
W − 2ihW 2 + (2 + is)W 3 and the

conditions
R

(0)
W (Eq9, Eq10) = R

(1)
W (Eq9, Eq10) = 0 (2.70)

have to be satisfied. We calculate

R
(1)
W (Eq9, Eq10) = Φ1(c, f, h, s) + iΦ2(c, f, h, s) = 0,

where Φ1 = (3−s2)(c+2f−cs2)+2h2(27−7s2)/9, Φ2 = 8fs−4cs(s2−1)+4h2(5s2−9)/(3s).

Therefore the relation Φ2 = 0 gives f =
[
3cs2(s2 − 1) + h2(9− 5s2)

]
/(6c2) and then we

obtain Φ1 = h2(s2 − 9)2/9s2 = 0. So we have either s = ±3 or h = 0 and in both cases the

conditions (2.70) are fulfilled.

In the case s = ±3 by Remark 2.6 we may assume s = 3 and we get f = 2(6c − h2)/3.

Then we obtain Φ1(c, f, h, s) = Φ2(c, f, h, s) = 0 and R
(0)
W (Eq9, Eq10) = 0. In such a way we

arrive at the following relations among the parameters of systems (2.67):

s = 3, k = m = 0, l = −2h, d = (2h2 − 9c)/3, e = 2(4h2 − 27c)/3,

f = 2(6c− h2)/3, a = h(2h2 − 9c)/27, b = h(10h2 − 63c)/27
(2.71)
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and this leads to systems (for the further necessity we set here h = h1 and c = c1)

ẋ =
[
(h1+6x)2+3(h21−6c1)

]
(h1−3x+9y)/54,

ẏ =
h1
27

(10h21−63c)+
2

3
(4h21−27c1)x+

2

3
(6c1−h21)y−2h1x

2−3x3−3x2y+3xy2−y3.
(2.72)

In the case h = 0 we arrive at the following relations among the parameters of systems

(2.67):
k = m = h = l = 0, d = −cs, e = −cs(3 + s2)/2,

f = c(s2 − 1)/2, a = b = 0
(2.73)

and this leads to the following family of systems:

ẋ =(c− 2x2)(x− sy),

ẏ =− cs(3 + s2)x/2 + c(s− 1)y/2− sx3 − 3x2y + sxy2 − y3.
(2.74)

We observe that systems (2.72) (respectively systems (2.74)) possess two parallel invariant

lines in the direction x = 0, which are real if 6c1 − h21 > 0 (respectively c > 0); complex if

6c1 − h21 < 0 (respectively c < 0) and they coincide if 6c1 − h21 = 0 (respectively c = 0).

It is easy to check that in the case (6c1 − h21)c 6= 0 as well as in the case 6c1 − h21 = c = 0

systems (2.72) could be brought to the systems (2.74) with s = 3 via the transformation

x1 = αx+h1α/6, y1 = αy+h1α/6, t1 = t/α2, where α =
√

6c/(6c1 − h21) if (6c1−h21)c > 0

and α = 1 if 6c1 − h21 = c = 0.

Thus it was proved the next lemma.

Lemma 2.10. A system (2.67) possesses the configuration or potential configuration of in-

variant lines (2, 2, 2, 1) if and only this system via an affine transformation and time rescaling

could be brought to a cubic system belonging to the subfamily (2.74), which is defined in the

family (2.67) by the conditions

s 6=0, k=m=h= l=0, d=−cs, e=−cs(3+s2)/2, f=c(s2−1)/2, a=b=0. (2.75)

Next we examine systems (2.74), considering each one of the cases: c > 0, c < 0 and

c = 0.

1) The case c > 0. Then we may assume c = 2u2 6= 0 and via the transformation
(
x, y, t) 7→ (−(2x+ 1)u, (s− 2y)u, t/(4u2)

)
systems (2.74) can be brought to the systems

ẋ =x(x− 1)(1 + s2 − 2x+ 2sy),

ẏ =− sx3 − y − s2y + 3xy + s2xy − 3x2y − 2sy2 + sxy2 − y3.
(2.76)

These systems possesses the invariant lines:

x = 0, x = 1, y = −sx, y = ±ix, y ± i(x− 1) + s = 0
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and considering its nine finite singularities: (0, 0), (1,−s), (1/2,−s/2), (1,±i), (0,−s± i),
(
(1 + is)/2, (i− s)/2

)
,
(
(1− is)/2, (−i− s)/2

)
we arrive at the configuration Config. 8.15

(see Figure 2.1).

2) The case c < 0. Then we may assume c = −2u2 6= 0 and due to the rescaling

(x, y, t) 7→ (ux, uy, t/u2) we obtain the systems

ẋ =2(1 + x2)(sy − x− s),

ẏ =s(s2 + 3)x+ (1− s2)y − sx3 − 3x2y + sxy2 − y3.
(2.77)

These systems possess the invariant lines y = −sx, x = ±i, y − ix ± (1 − is) = 0,

y+ ix ± (1 + is) = 0 and the nine finite singularities: (0, 0), (−s,−1), (s, 1),
(
i, is ± 2

)
,

(
− i, −is ± 2

)
,
(
i, −is

)
,
(
− i, is

)
. Therefore we arrive at the configuration Config. 8.16

from Figure 2.1.

3) The case c = 0. Then systems (2.74) become the homogeneous systems (2.66), which

possess the real invariant lines x = 0 (double) and y = −sx (simple) as well as the complex

invariant lines y = ±ix (both doubles). As a result we get the configuration of invariant

lines given by Config. 8.17 in Figure 2.1.

2.3. Invariant criteria for the realization of the configurations with four distinct

infinite singularities

2.3.1. Conditions for Config. 8.1–Config. 8.9

According to Lemma 2.2 the conditions D1 > 0, D2 > 0, D3 > 0 are necessary and sufficient

for a cubic systems to have four real distinct infinite singularities and via a linear transforma-

tion a cubic system could be brought to the form (2.18). Next we will prove the statements

A1), A2) and A3) of the Main Theorem A which lead to the configurations Config. 8.1 -

8.3, Config. 8.4 - 8.6 and Config. 8.7 - 8.9, respectively.

The statements A1). By Theorem 2.2 for the cubic systems with two triplets of

parallel invariant lines the conditions V1 = V2 = U 1 = 0 are satisfied and in this case a cubic

system (2.18) via a linear transformation and a time rescaling could be brought to the form

(2.21). Moreover, it was proved earlier in the previous subsection that systems (2.21) have

the configurations Config. 8.1 - 8.3 if and only if the conditions

k = d = h = l = e = m = c− f = a2 − b2 = 0, a2 + b2 6= 0 (2.78)

are fulfilled. Since for these systems the conditions V1 = V2 = U 1 = 0 hold, according to

the statement A1) of the Main Theorem A it remains to prove that the conditions (2.78) are
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equivalent to L1 = L2 = K1 = 0 and K2 6= 0 and to distinguish Config. 8.1 - 8.3.

For systems (2.21) we calculate L1 = −2834(lx3 + 2mx2y − 2hxy2 − ky3) and hence

the condition L1 = 0 gives l = m = h = k = 0. Then we obtain L1 = 0 and L2 =

2735
[
− ex2 − 6(c− f)xy + dy2

]
and clearly the condition L2 = 0 implies e = d = c− f = 0

and this leads to the family of systems (2.24).

Next for systems (2.24) we calculate K1 = 218315547419 · 41(a2 − b2)(x2 − y2), K2 =

−27x4y4(bx− ay). So clearly the condition a2 − b2 = 0 is equivalent to K1 = 0, whereas the

condition a2 + b2 6= 0 is equivalent to K2 6= 0.

As it was mentioned earlier we could consider b = a and then for systems (2.25) we

need the expression Discrim [a + cx + x3, x] = −(27a2 + 4c3) = ξ which governs the type

of the invariant lines (real, complex or coinciding) of these systems for which we calculate

K3 = −5400(27a2 + 4c3)x4(x− y)2y4(x+ y)2(x2 + y2). So clearly 27a2 + 4c3 = 0 if and only

if K3 = 0 and sign (K3) = −sign (27a2 + 4c3) = sign (ξ).

To complete the proof of the statement A1) of the Main Theorem A we construct the

respective canonical systems corresponding to each of the configurations. We consider sys-

tems (2.25). Since the equation z3 + cz + a = 0 possesses at least one real solution, say

z = z0 then applying the translation x = x1 + z0, y = y1 + z0 to the systems (2.25) we get

the family of systems

ẋ = x(f + gx+ x2), ẏ = y(f + gy + y2). (2.79)

a) Assume first ξ > 0. Then the systems above possess three distinct real lines in the

direction x = 0 as well as three such lines in the direction y = 0. Therefore g2 − 4f > 0

and setting g2 − 4f = u2 > 0 we obtain f = (g2 − u2)/4 where g2 − u2 6= 0 because all the

lines are distinct. Then via the rescaling (x, y, t) 7→
(
2x/(g − u), 2y/(g − u), 4t/(g − u)2

)

we obtain the following 1-parameter family of systems

ẋ = x(x+ 1)(x− a), ẏ = y(y + 1)(y − a), (2.80)

where a = (g + u)/(u− g). These systems possess the invariant lines x = 0, x = −1, x = a

y = 0, y = −1, y = a, y = x.

We claim that the parameter a 6= 0 could be considered positive and different from 1.

Indeed suppose that a < 0. If a < −1 then via the transformation (x, y, t) 7→ (−x− 1, −y−
1, t) we obtain the systems ẋ = x(x+1)(x−a′), ẏ = y(y+1)(y−a′), where a′ = −(1+a) > 0

as a < −1.
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Assume now −1 < a < 0. Then applying the transformation (x, y, t) 7→
(
a(x+ 1), a(y +

1), t/a2
)

we get the above systems with a′ = −(1 + a)/a > 0 as −1 < a < 0.

On the other hand considering the conditions provided by the statement A1) of the Main

Theorem A we calculate for systems (2.80): K2 = (a− 1)(2 + a)(1 + 2a)x4(x− y)y4. So the

condition K2 6= 0 implies a 6= 1. Therefore our claim is proved and for the canonical systems

(2.80) we assume a > 0 and a 6= 1.

b) Admitting ξ < 0 we have g2 − 4f < 0 and we can set g2 − 4f = −u2 < 0. Then

f = (g2 + u2)/4 and after the additional rescaling (x, y, t) 7→
(
ux/2, uy/2, 4t/u2

)
we arrive

at the systems
ẋ = x

[
(x+ a)2 + 1

]
, ẏ = y

[
(y + a)2 + 1

]
, (2.81)

where a = g/u. We remark that these systems possess the invariant lines x = 0, x = −a± i,

y = 0, y = −a ± i, y = x. For these systems we have K2 = 2a(9 + a2)x4(x − y)y4 and

considering the condition K2 6= 0 we obtain a 6= 0.

c) Suppose finally ξ = 0, i.e. the equation z3 + cz + a = 0 possesses a real solution z0

of the multiplicity at least two. Then applying the translation x = x1 + z0, y = y1 + z0 to

the systems (2.25) we get the family of systems ẋ = x2(g + x), ẏ = y2(g + y). For these

systems we calculate K2 = −2g3x4(x − y)y4 and hence the condition K2 6= 0 yields g 6= 0.

Therefore via the rescaling (x, y, t) 7→ (gx, gy, t/g2) we obtain the system

ẋ = x2(1 + x), ẏ = y2(1 + y). (2.82)

The statements A2). According to Lemma 2.8 for the existence of the configuration

(3, 2, 1, 1) the condition (r−1)(2+r)(1+2r) 6= 0 is necessary. On the other hand for systems

(2.27) we have D4 = −1152(r−1)(2+ r)(1+2r) and hence the condition above is equivalent

to D4 6= 0.

Now we concentrate our attention on the conditions (2.35) and according to the statement

A2) of the Main Theorem A we prove that these conditions are equivalent to K4 = K5 =

= K6 = 0. For systems (2.27) we calculate

K4 = l(2 + r)(1 + 2r)x3/9− 2h(−1 + r)rx2y/3 + 2(r − 1)(−h + hr − 3kr)xy2/9− kry3

and due to the condition r(r − 1)(2 + r)(1 + 2r) 6= 0 clearly the condition K4 = 0 gives

k = l = h = 0. Then we calculate

K5 = Z1x
4 + Z2x

3y + Z3x
2y2 + Z4xy

3 + Z5y
4,

where
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Z1 =− 30r
[
3r(1− r)(c− f) + e(4 + r + 4r2)− 4m2(r − 1)

]
,

Z2 =− 10
[
54fr2 − 27dr2(r − 1) + 8e(r − 1)(2 + r)(1 + 2r)− 18cr(1 + r + r2)−

− 8m2(2 + r)(1 + 2r)
]
/3,

Z3 =10(r − 1)
[
5dr(r − 1) + 2c(1 + 7r + r2)− 2f(4 + r + 4r2)− 24m2

]
,

Z4 =10
[
6c(1 + 7r + r2)− d(r − 1)(4− 53r + 4r2)− 6f(4 + r + 4r2)− 72m2

]
/3,

Z5 =30d(1 + 7r + r2).

So we have the following relation: Z3 − (r− 1)Z4 = 20d(r− 1)2(2− 19r+ 2r2)/3. Therefore

the conditions Z3 = Z4 = Z5 = 0 imply d = 0 and then the relations Z1 = Z2 = Z3 = 0 give:

c = − 108m2r(1 + r + r2)

(r − 1)2(2 + r)2(1 + 2r)2
, e =

4m2(r − 1)(1 + 7r + r2)

(2 + r)2(1 + 2r)2
,

f = −12m2(1 + 5r + 15r2 + 5r3 + r4)

(r − 1)2(2 + r)2(1 + 2r)2
.

(2.83)

Thus we obtain the respective conditions from (2.35) and it remains to find out the invariant

conditions corresponding to the expressions for the parameters a and b. For systems (2.27)

with the conditions k = l = h = 0 and (2.83) we calculate: Coefficient[K6, x
9y2] = −6480(r−

1)2r3
[
b(r−1)(2+ r)2(1+2r)2+8m3(1+7r+ r2)]/

[
(2+ r)2(1+2r)2

]
. So due to the condition

r(r − 1)(2 + r)(1 + 2r) 6= 0 the condition K6 = 0 implies b = −8m3(1 + 7r + r2)/[(r −
1)(2 + r)2(1 + 2r)2] and then we calculate: Coefficient[K6, x

8y3] = 7560(1− r)r3
[
216m3r −

a(−1 + r)2(2 + r)2(1 + 2r)2]/
[
(2 + r)2(1 + 2r)2

]
. Therefore the condition K6 = 0 implies

a = 216m3r/
[
(r− 1)2(2 + r)2(1+ 2r)2

]
and we arrive at the conditions (2.35). It remains to

note that in this case K6 = 0.

On the other hand the conditions u 6= 0 and u = 0 (see the notation for the parameter u

on the page 59) lead to different configurations of invariant lines for systems (2.36). So we

need an invariant polynomial which govern this condition. For these systems we calculate

L1 = −6912u(r− 1)r(2 + r)(1+ 2r)x2y and due to the condition r(r− 1)(2 + r)(1+ 2r) 6= 0

the condition u = 0 is equivalent to L1 = 0 and we get Config. 8.6.

As it was shown above in the case u 6= 0 we obtain the family of systems (2.37) which

possess two distinct configurations (Config. 8.4 and Config. 8.5 ) depending on the sign

of the parameter r. On the other hand for systems (2.37) we have K7 = 4r and hence this

invariant polynomial distinguishes the mentioned configurations of invariant lines.

Thus the statement A2) of the Main Theorem A is proved.

The statements A3). We showed earlier in the previous subsection that a system (2.39)

with h = 0 possesses the configuration or potential configuration of invariant lines (2, 2, 2, 1)
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if and only if the following conditions are satisfied:

(r − 1)(r + 2)(2r + 1) 6= 0, k = l = g = m = a = b = 0,

d = f(2 + r), e = f(1 + 2r), c = fr.
(2.84)

Following the statement A3) of the Main Theorem A we shall prove that these conditions

are equivalent to D4 6= 0, V3 = K4 = K2 = K8 = 0. First of all we observe that for systems

(2.39) with h = 0, i.e. for systems

ẋ = a + cx+ dy + gx2 + ky2 + rx3 + (2 + r)x2y,

ẏ = b+ ex+ fy + lx2 + 2mxy + (1 + 2r)xy2 + y3
(2.85)

we have D4 = −1152(r − 1)(2 + r)(1 + 2r). Hence the first condition (2.84) is equivalent to

D4 6= 0. For systems (2.85) we calculate K4 = 2
9

[
l(r − 1)(2 + r)x3 + (2 + r)(3l + g − 2m+

2gr −mr)x2y +

+ 3(2m− kr +mr − 2kr2)xy2 + k(r − 1)(1 + 2r)y3
]

and it is obvious to detect that due to

(r − 1)(r + 2)(2r + 1) 6= 0 the condition K4 = 0 is equivalent to k = l = g = m = 0.

Next we examine the conditions for the coefficients of linear terms given in (2.84). Con-

sidering the conditions above we calculate K8 = Z1x
4 + Z2x

3y + Z3x
2y2 + Z4xy

3 + Z5y
4,

where

Z1 =− 5r2(4c+ e− f + 8cr − 4er − 2fr),

Z2 =r(16c+ 40e− 40f + 89cr − 3dr − 7er − 83fr + 6cr2 − 6dr2 − 60fr2),

Z3 =− 16c− 40e+ 40f − 134cr + 28dr − 49er + 89fr − 89cr2 + 49dr2 − 28er2+

+ 134fr2 − 40cr3 + 40dr3 + 16fr3,

Z4 =− 60c− 6e+ 6f − 83cr − 7dr − 3er + 89fr − 40cr2 + 40dr2 + 16fr2,

Z5 =5(2c+ 4d− 8f + cr − dr − 4fr).

It is not too difficult to detect, that the relations Z1 = Z2 = Z5 = 0 yield c = fr, d = f(2+r)

and e = f(1 + 2r) and then we get K8 = 0. Thus we obtain the respective conditions from

(2.84) and it remains to find out the invariant conditions equivalent to a = b = 0. We observe

that for systems (2.85) in this case we have K2 = −3x2y2(rx+y)2(bx−ay)(x+2rx+2y+ry)2

and evidently the condition K2 = 0 is equivalent to a = b = 0.

In such a way we get the 2-parameter family of systems (2.49) possessing the configuration

Config. 8.7 if f < 0; Config. 8.8 if f > 0 and Config. 8.9 if f = 0 (see Figure 2.1).

On the other hand for these systems we calculate K9 = −180f(1 + r)2x2y2(rx+ y)2 and

as r(r + 1) 6= 0 we conclude that f = 0 if and only if K9 = 0 and sign (K9) = −sign (f).

This completes the proof of the statement A3) of the Main Theorem A.

75



2.3.2. Conditions for Config. 8.10–Config. 8.17

According to Lemma 2.2 the conditions D1 < 0 are necessary and sufficient for a cubic

systems to have two real and two complex all distinct infinite singularities and via a linear

transformation a cubic system could be brought to the form (2.50). Next we will prove the

statements A4), A5) and A6) of the Main Theorem A which lead to the configurations Config.

8.10 - 8.12, Config. 8.13, 8.14 and Config. 8.15 - 8.17, respectively.

The statements A4). It was shown earlier that for having the configurations of the

type (3, 3, 1) the conditions

k = h = l = m = e = d = c− f = ab = 0, a2 + b2 6= 0

must hold for systems (2.51). Following the statement A4) of the Main Theorem A we prove

that these conditions are equivalent to the affine invariant conditions

V1 = V2 = U 1 = L1 = L2 = K1 = 0, K2 6= 0.

For systems (2.51) we calculate L1 = 2834
[
(3l+2h)x3+(k+6m)x2y−(l+6h)xy2−(3k+2m)y3

]

and hence the condition L1 = 0 gives l = h = k = m = 0. Then we obtain L1 = 0, L2 =

2835
[
(7d − 5e)x2 − 2(c − f)xy + (5d − 7e)y2

]
and clearly the condition L2 = 0 implies

e = d = c − f = 0 and we arrive at the family of systems (2.53) with e = 0. So it remains

to determine the invariant polynomials which govern the conditions ab = 0 and a2 + b2 6= 0

for these systems. We calculate K1 = 232315547419 · 43abxy, K2 = −27(bx− ay)(x2 + y2)4.

So clearly the above mentioned condition ab = 0 is equivalent to K1 = 0 and a2 + b2 6= 0 is

equivalent to K2 6= 0, respectively.

As it was mentioned earlier (see page 65) we could consider b = 0 and then for the

corresponding systems we need the expression Discrim [a + cz + z3, z] = −(27a2 + 4c3) = ξ

which governs the type of the invariant lines (distinct or coinciding) of these systems. We

calculate K3 = 2103352(27a2 + 4c3)x2y2(x − y)2(x2 + y2)4. So clearly 4a2 + 27c3 = 0 if and

only if K3 = 0 and sign (K3) = −sign (27a2 + 4c3) = sign (ξ).

To complete the proof of the statement A4) of the Main Theorem A it remains to construct

the respective canonical systems for each one of the configurations. Since on the line y = 0

of systems (2.56) there exist a real solution x0 of the cubic equation x3 + cx + a = 0, then

via the translation (x, y) 7→ (x+ x0, y) we get the family of systems

ẋ = c1x+ d1x
2 − d1y

2 + x3 − 3xy2, ẏ = y(c1 + 2d1x+ 3x2 − y2), (2.86)
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where c1 = c+3x20 and d1 = 3x0. Then on the invariant line y = 0 besides the singular point

(0, 0) there are locate two more singularities: (x1,2, 0), where x1,2 are the solution of the

quadratic equation c1 + d1x+ x2 = 0. The discriminant of this equation equals δ = d21 − 4c1

and obviously we must have sign (δ) = sign (ξ) and δ = 0 if and only if ξ = 0. For systems

(2.86) we calculate K2 = d1(2d
2
1 − 9c1)y(x

2 + y2)4 and by the statement A4) of the Main

Theorem A the condition d1 6= 0 must be satisfied.

a) Assume first ξ 6= 0. Then we can set d21 − 4c1 = u2sign (ξ) and we obtain c1 =

(d21 − u2sign (ξ))/4. Since d1 6= 0 and sign (ξ) = sign (K3) the systems (2.86) after the

rescaling (x, y, t) 7→ (d1x, d1y, t/d
2
1) could be brought to the systems

ẋ =gx+ x2 − y2 + x3 − 3xy2, ẏ = gy + 2xy + 3x2y − y3, (2.87)

where g = [1− a2sign (K3)]/4 6= 0. So depending of the sign of the invariant polynomial K3

we get the corresponding canonical systems given by the Main Theorem A
(
see the statement

A4)
)
.

b) Suppose now ξ = 0. Then we have c1 = d21/4 and due to the same rescaling applied

above we obtain systems (2.87) with a = 0.

The statements A5). According to Remark 2.5 the condition V3 6= 0 distinguishes the

systems (2.57) and (2.58). On the other hand for the existence of the configuration (3, 2, 1, 1)

the condition s 6= 0 is necessary. For systems (2.60) we have D4 = 2304s(9+s2) and hence,

the above condition could be substituted by D4 6= 0.

Now we concentrate our attention on the conditions (2.63). Following the statement A5)

of the Main Theorem A we prove that these conditions for systems (2.60) are equivalent to

the affine invariant conditions K4 = K5 = K6 = 0.

First we claim that the condition K4 = 0 is equivalent to k = h = 0 and l = 2ms. Indeed,

for systems (2.60) we calculate Coefficient[K4, y
3] = k(s2 + 1) and clearly the condition

K4 = 0 implies k = 0. Then we have Coefficient[K4, xy
2] = 8hs2/9 = 0, i.e. h = 0 and in

this case we calculate K4 = (2ms − l)(9 + s2)x3/9 = 0 and this implies l = 2ms. So our

claim is proved. So it remains to prove that for the family of systems

ẋ =a+ cx+ dy + (1 + s2)x3,

ẏ =b+ ex+ fy + 2msx2 + 2mxy + ny2 − sx3 + s2x2y − sxy2 − y3
(2.88)

the conditions

d = 0, c = −27m2(−3 + s2)(1 + s2)

s2(9 + s2)2
, e =

8m2s(s2 − 9)

(9 + s2)2
,

f =
3m2(27 + 18s2 + 7s4)

s2(9 + s2)2
, a = −54m3(1 + s2)

s2(9 + s2)2
, b =

2m3(9 + 17s2)

s(9 + s2)2
.

(2.89)
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are equivalent to the conditions K5 = K6 = 0.

Indeed, if for the above systems the conditions (2.89) are fulfilled then K5 = K6 = 0. Con-

versely, assume that K5 = K6 = 0 for systems (2.88). Calculations yield Coefficient[K5, y
4] =

30d(9 + 5s2) = 0 and this implies d = 0. Then we obtain K5 = 10Z1x
4/3 + 20Z2x

3y/3 +

20Z3xy
2(sx+ y), where

Z1 =cs(81 + 180s2 − 5s4) + fs(5s4 − 108s2 − 81) + e(81 + 162s2 − 47s4) + 136m2s3,

Z2 =c(2s
4 + 27s2 − 27) + f(27 + 9s2 − 2s4) + 8es(9 + s2) + 4m2(8s2 − 9),

Z3 =c(9 + 5s2) + f(7s2 − 9)− 12m2.

Solving the system of equations Z1 = Z2 = Z3 = 0 with respect to the parameters c, f and e

we get the respective expressions from (2.89). Considering these values of the parameters we

calculate Coefficient[K6, x
5y6] = 40(9+5s2)2(225+493s2)

(
as2(9+s2)2+54m3(1+s2)

)
/[9s2(9+

s2)2] = 0 and this implies a = −54m3(1+s2)/[s2(9+s2)2]. Then we obtain

K6 = − 40

9s(9 + s2)2
[
bs(9 + s2)2 − 2m3(9 + 17s2)

]
x6(sx+ y)2

[
(s2 − 3)sx− (9 + 5s2)y

]
×

[
s2(2781 + 5718s2 + 409s4)x2 + 4s(9 + s2)(125s2 − 33)xy + (9 + 5s2)(407s2 − 225)y2

]

and we observe that the condition K6 = 0 implies b = 2m3(9 + 17s2)/[s(9 + s2)2]. So we get

for the parameters a and b the expressions given in (2.89) and this completes the proof of

the fact, that the conditions (2.89) are equivalent to the conditions K5 = K6 = 0.

It remains to find out the invariant polynomial which governs the condition m = 0 for

systems (2.64). For these systems we calculate L1 = 41472m(1 + s2)x2(sx + y) and it is

clear that the condition L1 = 0 is equivalent to m = 0. Thus the statement A5) of the Main

Theorem A is proved.

The statements A6). Considering the statement A6) of the Main Theorem A and

Lemma 2.10 we prove that the affine invariant conditions

D4 6= 0, V3 = K4 = K2 = K8 = 0 (2.90)

applied to a cubic system (2.67) force this system to be from the class determined by Lemma

2.10. Indeed, for the family of systems (2.67) we have D4 = 2304s(9 + s2) and hence the

condition s 6= 0 is equivalent to D4 6= 0. Assume that for a system (2.67) the condition

K4 = 0 is satisfied. Then we obtain Coefficient[K4, y
3] = −2k(9 + s2)/9 and hence the

condition K4 = 0 implies k = 0. In this case we obtain K4 =
2
9

[
(6ms−9h−2ls2−3hs2)x3−

2s(3l+6h+2ms)x2y−(9h+6ms−hs2)xy2
]

and equalizing with zero the first two coefficients
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of the polynomial K4 due to s 6= 0 we get

l = −3h(9 + s2)

9 + 2s2
, m = − 3h(s2 − 9)

2s(9 + 2s2)
, K4 = −4h(s2 − 9)(s2 + 9)xy2

9(9 + 2s2)
. (2.91)

Therefore the condition K4 = 0 gives either h = 0, or s = ±3.

1) The case h = 0. Then we obtain k = l = m = h = 0 and we calculate

K2 = −3x2(bx− ay)(3x+ s2x− 2sy)2(x2 + y2)2,

K8 = Z1x
4 + Z2x

3y + Z3x
2y2 + 3Z4xy

3 + 5Z5y
4,

where Z1 = −2(99d− 63e− 9fs+15ds2− 10es2− 32cs3− 10fs3), Z2 = 2(3c+6f +159ds−
103es−3fs2+50ds3), Z3 = 2(54d+27e+105cs+21fs+45ds2−20es2+8cs3−20fs3), Z4 =

6(−9c− 18f + 3ds− es+ 10cs2 − fs2), Z5 = 10(−3d− cs+ 4fs+ 2ds2).

So setting Z2 = Z4 = Z5 = 0 we find out that d = −cs, e = −cs(3+s2)/2, f = c(s2−1)/2

and then K8 = 0. On the other hand the condition K2 = 0 obviously gives a = b = 0 and

hence in this case we arrive at the conditions (2.75).

2) The case s = ±3. By Remark 2.6 we may assume s = 3. Then K4 = 0 and we calculate

K8 = Z ′
1x

4 + Z ′
2x

3y + Z ′
3x

2y2 + 3Z ′
4xy

3 + 5Z ′
5y

4,

where Z ′
1 = 18(96c− 26d+ 17e+ 33f − 6h2), Z ′

2 = 6(c+ 609d− 103e− 7f − 136h2), Z ′
3 =

−18(59c + 51d − 17e − 53f − 24h2), Z ′
4 = 6(81c − 4l2 + 9d − 3e − 27f), Z ′

5 = −10(3c −
15d− 12f +2h2). Setting Z ′

2 = Z ′
4 = Z ′

5 = 0 we obtain d = (2h2− 9c)/3, e = 2(4h2− 27c)/3,

f = 2(6c−h2)/3 and then K8 = 0 and K2 = −4x2(2x−y)2(x2+y2)2
[
(27b+63ch−10h3)x+

(−27a − 9ch + 2h3)y
]
. Therefore the condition K2 = 0 yields a = h(2h2 − 9c)/27, b =

h(10h2 − 63c)/27 and we arrive at the conditions (2.71) corresponding to the case s = 3.

These conditions lead to the systems (2.72), which via an affine transformation and time

rescaling could be brought to systems (2.74) as it was shown on the page 70.

Next we consider the necessary and sufficient conditions to distinguish the configurations

Config. 8.15 – Config. 8.17. For systems (2.74) we calculate K9 = 90c(1+ s2)2x2(x2+y2)2.

Therefore we obtain that K9 = 0 if and only if c = 0. Moreover if K9 6= 0 then sign (K9) =

sign (c). Thus we get Config. 8.15 if K9 > 0, Config. 8.16 if K9 < 0 and Config. 8.17 if

K9 = 0. This completes the proof of the statement A6) of the Main Theorem A.
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2.4. Conclusions on Chapter 2

In Chapter 2 we give 17 configurations (Config. 8.1 – Config. 8.17, see Figure 2.1) of

invariant lines of systems in CSL8 possessing 4 distinct infinite singularities.

On the other hand in [127] and [128] the same 17 configurations are also obtained by

A. Şubă, V.Repeşco, V.Puţuntică with a minor difference. Namely, in [127] and [128] the

authors do not include in the definition of configuration of invariant lines the real singularities

located on the invariant lines. More precisely, in these articles cubic systems with exactly 7

invariant affine lines considered with their parallel multiplicity are examined. The authors

say that an invariant line f(x, y) = 0 where f(x, y) = ux+vy+w of a cubic system (2.1) has

parallel multiplicity 1 ≤ k ≤ 3 if the identity X(f) = fkR(x, y) holds for some polynomial

R(x, y) with coefficients in C. Taking into account the line at infinity, in fact the authors

considered systems in CSL8. This coincidence is a natural one. Indeed, in our thesis we

consider the class of cubic systems in CSL8 having four distinct ISPs. And clearly a system

in such a family could not have IL of, say, ”non-parallel” multiplicity, because for these lines

we must have at least one infinite singular point defined by a multiple linear factor of the

form C3(x, y) = yp3(x, y)− xq3(x, y) when we factorize C3 over C. The cases of singularities

at infinity defined by multiple factors of C3 are considered in Chapters 3 and 4. We underline

that in contrast to the results obtained in the papers [127] and [128] in this chapter we also

find out the invariant criteria for the realization of each one of the 17 configurations.

The results exhibited in Chapter 2 were published in [20, 27].
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3. CUBIC SYSTEMS WITH INVARIANT LINES OF TOTAL

MULTIPLICITY EIGHT AND EITHER THREE DISTINCT OR ONE

INFINITE SINGULARITIES

According to Lemma 2.2 we split the family of cubic systems having 3 distinct infinite sin-

gularities in two subfamilies: 1) systems with one double and two simple all real infinite

singularities and 2) systems with one double real and two simple complex infinite singulari-

ties. In this chapter we also consider the subfamily of systems possessing exactly one infinite

singularity. For each one of these three subfamilies the proofs of the corresponding theorems

proceed in 4 steps described in Paragraph 2.1.2.

It is clear that if for perturbed systems some condition K(x, y) = 0 holds, where K(x, y)

is an invariant polynomial, then this condition must hold also for the initial (not-perturbed)

systems. So considering the Corollary from the Main Theorem A we arrive at the next

remark.

Remark 3.1. Assume that a cubic system with at most three distinct infinite singulari-

ties possesses a potential configuration of a given type. Then for this system the following

conditions must be satisfied, respectively:

(a1) (3, 3, 1) ⇒ V1 = V2 = L1 = L2 = K1 = 0;

(a2) (3, 2, 1, 1) ⇒ V5 = U2 = K4 = K5 = K6 = 0;

(a3) (2, 2, 2, 1) ⇒ V3 = K4 = K2 = K8 = 0.

In this chapter we prove the following two theorems:

Main Theorem B. Assume that a non-degenerate cubic system (i.e.
∑9

i=0 µ
2
i 6= 0) possesses

invariant straight lines of total multiplicity 8, including the line at infinity with its own

multiplicity. In addition we assume that this system has three distinct infinite singularities,

i.e. the conditions D1 = 0 and D3 6= 0 hold. Then:

I. This system has only real infinite singularities and it possesses one of the five pos-

sible configurations Figure 3.1, endowed with the corresponding conditions included below.

Moreover the system could be brought via an affine transformation and time rescaling to the

canonical forms, written below next to the configurations.

II. This system could not have a configuration of invariant lines of of the type (3, 3, 1)

or (3, 2, 2). And this system has:

B1) Configuration of type (3, 2, 1, 1) ⇔ V4 = V5 = K4 = K5 = K6 = 0 :

• Config. 8.18 ⇔ K7 6= 0, L1 6= 0:

{
ẋ = x(x2 − 9x− xy − y2),

ẏ = −y2(9 + y);
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• Config. 8.19 ⇔ K7 6= 0, L1 = 0:

{
ẋ = x(x2 − xy − y2),

ẏ = −y3;

• Config. 8.20 ⇔ K7 = 0, L1 6= 0,

V5 = L6 = 0
:

{
ẋ = (1− x)x(1 + y),

ẏ = y(1− x+ y − x2).

B2) Configuration of type (2, 2, 2, 1) ⇔ V3 = K4 = K2 = K8 = 0, L7 6= 0 :

• Config. 8.21 ⇔ K9 > 0:

{
ẋ = (x2 − 1)(x+ y),

ẏ = 2x(y2 − 1);

• Config. 8.22 ⇔ K9 < 0 :

{
ẋ = (1 + x2)(x+ y),

ẏ = 2x(1 + y2).

Fig. 3.1. Configurations of invariant lines for systems in CSL8 with 3 ISPs

Main Theorem C. Assume that a non-degenerate cubic system (i.e.
∑9

i=0 µ
2
i 6= 0) pos-

sesses invariant straight lines of total multiplicity 8, including the line at infinity with its own

multiplicity. In addition we assume that this system has exactly one infinite singularity de-

fined by a unique real factor of degree four of C3(x, y), i.e. the conditions D1 = D2 = D3 = 0

hold. Then this system possesses the specific configuration Config. 8.j (j ∈ {48, . . . , 51})
(see Figure 3.2) if and only if the corresponding conditions included below are fulfilled. More-

over it can be brought via an affine transformation and time rescaling to the canonical form,

written below next to the conditions:

Config. 8.48 ⇔
[
V1 = L2 = N23 =W1 =W2 =

= W3 = W4 = 0

]
⇔

{
ẋ = x,

ẏ = −2y−x3;

Config. 8.49 ⇔
[
V1 = L2 = N23 =W1 =W2 =

= N16 = W5 = 0, W6 6= 0

]
⇔

{
ẋ = x,

ẏ = y − x2 − x3;
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Config. 8.50 ⇔
[
V1 = L2 = N3 =W7 = W8 =

= W9 = W10 = 0, N23 6= 0

]
⇔

{
ẋ = x(1 + x),

ẏ = y + xy − x3;

Config. 8.51 ⇔




V5 = K4 = K5 = K8 = K9 =

= N2 = K6 =W11 = W12 = 0,

V1 6= 0


 ⇔

{
ẋ = x2(1 + x),

ẏ = −1−3x+x2y−x3.

Fig. 3.2. Configurations of invariant lines for systems in CSL8 with one ISP

The proofs of the above theorems are organized as follows. In Subsections 3.1 we consider

the family of systems with three singularities at infinity. Since in [28] we have proved that

systems with one real and two complex infinite singularities could not belong to CSL8, then in

this subsection we consider only the subfamily of systems with three real infinite singularities.

So we prove here Main Theorem B following all the steps described in Paragraph 2.1.2.

In Subsections 3.2 in the same manner we examine the family of systems with exactly

one (real) infinite singularity proving Main Theorem C.

3.1. Cubic systems with three distinct infinite singularities

Assuming that systems (2.2) possess three real distinct infinite singularities (i.e. the condi-

tions D1 = 0, D3 > 0 hold), according to Lemma 2.2 via a linear transformation they could

be brought to the family of systems

ẋ = a + cx+ dy + gx2 + 2hxy + ky2 + (u+ 1)x3 + (v − 1)x2y + rxy2,

ẏ = b+ ex+ fy + lx2 + 2mxy + ny2 + ux2y + vxy2 + ry3, C3 = x2y(x− y).
(3.1)

In what follows for the above systems we construct step by step their canonical forms and

corresponding configurations of invariant lines which could be of the types mentioned in

Remark 3.1.

3.1.1. Construction of normal forms and of the corresponding configurations

of invariant lines

We note that due to the existence of 3 distinct infinite singularities, only the configuration

(3, 3, 1) could have 8 distinct invariant straight lines, whereas the configurations of other
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type could be only potential configurations for systems (3.1) (see the respective definition

on p. 49).

Systems with configuration (3, 3, 1). Since we have two triplets of parallel in-

variant straight lines, according to Theorem 2.2 the condition V1 = V2 = 0 is neces-

sary for systems (3.1). For these systems we calculate: V1 = 16
∑4

j=0 V1jx
4−jyj, V2 =

8
∑2

j=0 V2jx
2−jyj, where

V10 = u(3 + 2u), V11 = −2u+ 4uv + 3v, V12 = −1− 2v + 4ru+ 3r + 2v2,

V13 = 2r(2v − 1), V14 = 2r2, V20 = −3v − 2u, V21 = 6r + 4v − 2, V22 = −2r.

Consequently, the condition V14 = 2r2 = 0 implies r = 0 and then we obtain the following

contradictory relations: V10 = u(2u+3) = 0, 4V20+3V21 = −2(4u+3) = 0. So the conditions

V1 = V2 = 0 cannot be satisfied for systems (3.1).

Systems with potential configuration (3, 2, 1, 1). First we construct the correspond-

ing cubic homogeneities for systems (3.1). According to Theorem 2.2, if a cubic system pos-

sesses 7 invariant straight lines in the configuration (3, 2, 1, 1), then necessarily the conditions

V4 = V5 = U2 = 0 hold. So we consider the homogeneous cubic part of systems (3.1)

ẋ = (u+ 1)x3 + (v − 1)x2y + rxy2, ẏ = ux2y + vxy2 + ry3 (3.2)

and we force the conditions V4 = V5 = U2 = 0 to be satisfied. For systems (3.2) we have

V5 =
9

32

4∑

j=0

V5jx
4−jyj, where V52 = 6r2u, V54 = −r2(1 + r + v).

1) The case r 6= 0. Then u = 0, v=−(r+1) and we get V4=18432(r2−1)x2y(x−y) = 0

and U2=−12288(r2−1)(x−y)y(6x2+r2xy−r2y2) = 0. So the condition V4 = 0 implies U2 = 0

(and in this case V5 = 0). Thus in the case r = −1 we get the system

ẋ = x3 − x2y − xy2, ẏ = −y3. (3.3)

In the case r = 1 we obtain the system which via the transformation (x, y, t) 7→ (x, x −
y,−t) can be brought to system (3.3).

2) The case r = 0. We determine V50 = u(−2+v)(1+u+v) = 0, V4 = 9216(v−1)vx2y(y−
x) = 0 and U2 = 12288(1− v)x2

[
u(uv − 3− 3u)x2 + v(2uv − 3− 4u)xy + v(1− v + v2)y2

]

and therefore we get either v = 0 and u(u+1) = 0 or v = 1 and u(u+2) = 0. We note that

in both cases the condition V5 = V4 = 0 holds and this implies U2 = 0.

a) The subcase v = 0. Then for u = −1 we get the system

ẋ = −x2y, ẏ = −x2y. (3.4)

In the case u = 0 we arrive at a system which can be brought to system (3.4) due to the

transformation (x, y, t) 7→ (x, x− y,−t).
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b) The subcase v = 1. Since the additional condition u(u+ 2) = 0 holds, we obtain the

systeme
ẋ = x3, ẏ = xy2 (3.5)

in the case u = 0. If u = −2 we get systems which due to the transformation (x, y, t) 7→
(x, x− y,−t) could be brought to system (3.5).

Thus for the further investigation we will use three different homogeneous systems: (3.3),

(3.4) and (3.5). We observe that for system (3.3) we have K7 = −4 6= 0, whereas for systems

(3.4) and (3.5) the condition K7 = 0 holds. Moreover for system (3.4) we have V6 = 0 and

for system (3.5) we have V6 = 192x3y 6= 0 On the other hand as it was shown above the

condition V4 = V5 = 0 implies U2 = 0. So we arrive at the following remark.

Remark 3.2. If V4 = V5 = 0 then systems (3.2) due to a linear transformation can be

brought to system (3.3) if K7 6= 0; to system (3.4) if K7 = V6 = 0 and to system (3.5) if

K7 = 0 and V6 6= 0.

Next step consists of the construction of the canonical systems which possess the required

configuration. We shall examine each one of the cases, when the homogeneous cubic part of

systems (3.1) corresponds either to system (3.3) or (3.4) or (3.5).

A) Systems with cubic homogeneous parts (3.3). In this case due to a translation

we may assume that in the quadratic part of the cubic systems the condition g = n = 0

holds. So we consider the family of systems

ẋ =a+ cx+ dy + 2hxy + ky2 + x3 − x2y − xy2,

ẏ =b+ ex+ fy + lx2 + 2mxy − y3.
(3.6)

In what follows we shall determine necessary and sufficient conditions for a system (3.6) to

have a potential configuration of invariant lines of type (3, 2, 1, 1).

Taking into consideration Remark 3.1 we observe that in this case for systems (3.6)

the conditions K4 = K5 = K6 = 0 must be fulfilled. We calculate K4 = −lx3 + (7l −
8m)x2y/9 + (l + 4m)xy2/9 + (2h + k + 2m)y3/9 and therefore the condition K4 = 0 gives

l = m = 0 and k = −2h. Then we obtain Coefficient[K5, x
4] = 150e = 0, i.e. e = 0

and we get K5 = 20(7c + 5f + 12h2)x2y(x − y) + 40(c + 4d − f + 16h2)xy3/3 − 10(5c +

47d − 5f − 136h2)y4/3. In this case the condition K5 = 0 implies c = −21h2, d = 8h2

and f = 27h2. As regard, in this case, the third condition we have Coefficient[K6, x
6y5] =

−493000(b+54h3)/9 = 0, Coefficient[K6, y
11] = 40(409a−32b+12178h3)/9 = 0 which gives

b = −54h3 and a = −34h3 and this implies K6 = 0. Therefore we arrive at the family of

systems ẋ = −(2h+ x)(17h2 + 2hx− x2 − 4hy + xy + y2), ẏ = −(3h− y)2(6h + y) which

after the translation of the origin of coordinates to the singular paint (−2h, 3h) becomes

ẋ =x(−9hx+ x2 − xy − y2), ẏ = −y2(9h+ y). (3.7)
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Moreover we may assume h ∈ {0, 1} due to the rescaling (x, y, t) 7→ (hx, hy, t/h2) in the case

h 6= 0. For these systems we have H(a,X, Y, Z) = −X2(X − Y )Y 2(X − Y − 9hZ)(Y + 9hZ).

Thus systems (3.7) possess 5 real invariant affine straight lines (two of them being double)

of total multiplicity 7, and namely: L1,2 = x, L3,4 = y, L5 = y + 9h, L6 = x− y, L7 =

x− y − 9h. On the other hand systems (3.7) possess finite singularities of total multiplicity

9: M1,2,3,4(0, 0) M5,6(9h, 0), M7(0,−9h), M8(−9h,−9h), M9(9h,−9h).

Since h ∈ {0, 1} we get two configurations. More exactly, in the case h = 1 we obtain

Config. 8.18 and in the case h = 0 systems (3.7) become cubic homogeneous, possessing

one triple and two double ILs. This leads to Config. 8.19 (see Figure 3.1).

B) Systems with cubic homogeneous parts (3.4). In this case we may assume (due

to a translation) g = m = 0 and therefore we consider the family of systems

ẋ =a+ cx+ dy + 2hxy + ky2 − x2y, ẏ = b+ ex+ fy + lx2 + ny2 − x2y (3.8)

for which C3(x, y) = x2(x− y)y. For these systems we also could apply Remark 3.1 and we

calculate K4 = 2(y−x)
(
(h−n)x2+2kxy−ky2

)
/9. So the condition K4 = 0 yields k = 0 and

n = h and then we have Coefficient[K5, xy
3] = −40(4d+3h2)/3 = 0, Coefficient[K5, x

2y2] =

20(4c− 3d− f − 3h2) = 0. These relations imply d = −3h2/4, f = (16c− 3h2)/4 and then

we calculate K5 = 10(39c + 13e + 12lh − 12h2)x4/3 − 40(3c + e + 3lh − 3h2)x3y/3. Hence

the condition K5 = 0 gives e = −3(c+ hl− h2) and h(h− l) = 0 and we consider two cases:

h = 0 and l = h 6= 0.

1) The case h = 0. Then K4 = K5 = 0 and for systems (3.8) we calculate

Coefficient[K6, x
5y6] = 6320a/9 = 0, Coefficient[K6, x

6y5] = −40(881a+ 67b)/9 = 0,

Coefficient[K6, x
7y4] = 8(10175a+ 1675b+ 7872c l)/9 = 0,

which gives a = b = c l = 0 and this implies K6 = 0. On the other hand we note that c 6= 0,

otherwise systems (3.8) become degenerate. So l = 0 and we get the family of systems

ẋ =cx− x2y, ẏ = −3cx+ 4cy − x2y, (3.9)

where c 6= 0. Hence we may assume c ∈ {−1, 1} due to the rescaling (x, y, t) 7→ (
√

|c|x,
√

|c|y,
t/c). For the above systems we calculate H(X, Y, Z) = −4cX(X −Y )Z2 and by Lemma 2.4

these systems have invariant lines of total multiplicity 5 (here the line at infinity is a triple

one). Since c ∈ {−1, 1} we deduce that in the case h = 0 we could not obtain a configuration

of invariant lines of type (3, 2, 1, 1).

2) The case l = h 6= 0. Then we have again K4 = K5 = 0 and for systems (3.8) we calculate

K6 = 10x5(x − y)5
[
(364a + 268b + 852ch + 67h3)x − 8(79a + 791ch)y

]
/9. So the condition

K6 = 0 implies a = −791ch/79 ≡ a0 and b = h(220616c− 5293h2)/21172 ≡ b0 and we arrive
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at the 2-parameter family of systems

ẋ =a0 + cx− 3h2y/4 + 2hxy − x2y,

ẏ =b0 − 3cx+ hx2 + (16c− 3h2)y/4− x2y + hy2,
(3.10)

for which we have H(X, Y, Z) = 2−667−279−3Z
[
268h(X−Y )2−1072c(X−Y )Z+h(5476c−

67h2)Z2
]
. So the above systems have invariant lines of total multiplicity 4 and neither in

the direction x = 0 nor in the direction y = 0. However in order to have the configuration

(3, 2, 1, 1) we need at least one line in the direction y = 0. Considering the above systems

and the equations (2.17) for the direction y = 0 we obtain Eq8 = −3c = 0, i.e. c = 0.

This leads to the systems ẋ = (2x − h)(3h − 2x)y/4, ẏ = (y − h)(h2 − 4x2 + 4hy)/4

for which h 6= 0 (otherwise we get a degenerate system). Then via the transformation

(x, y, t) 7→ (h(2x+ 1)/2, h(y + 1), t/h2) we obtain the system

ẋ =(1− x)x(1 + y), ẏ = y(1− x− x2 + y), (3.11)

for which we have H(X, Y, Z) = X2Y Z(X − Y )(X − Z)(Y − X + Z). Thus system (3.11)

besides the double line at infinity (see Lemma 2.4) possesses 5 affine real invariant straight

lines of total multiplicity 6, and namely: L1,2 = x, L3 = y, L4 = x−y, L5 = x−y−1, L7 =

x− 1.

On the other hand we observe that systems (3.11) possess finite singularities of total

multiplicity 6: M1(0, 0), M2,3(0,−1), M4(1, 0), M5(1, 1), M6(−1,−1). Taking into account

Lemma 2.1 for these systems we calculate: µ0 = µ1 = µ2 = 0, µ3 = −x2y. Therefore since

µ3 6= 0 by Lemma 2.1 two finite singular points “have gone" to infinity and collapsed with

the singular point [0, 1, 0] located on the “end" of the invariant line x = 0 and one infinite

singularity “has gone" to infinity and collapsed with the singular point [1, 0, 0] located on

the “end" of the invariant line y = 0. So we get the configuration given by Config. 8.20.

C) Systems with cubic homogeneous parts (3.5). Due to a translation we may

assume that in the quadratic parts of cubic systems the condition g = m = 0 holds. So we

consider the family of systems

ẋ =a+ cx+ dy + 2hxy + ky2 + x3, ẏ = b+ ex+ fy + lx2 + ny2 + xy2 (3.12)

for which C3(x, y) = x2(x − y)y. Taking into consideration Remark 3.1 we impose the

conditions K4 = K5 = K6 = 0 to be satisfied for systems (3.12). We calculate K4 =

2x(lx2−3hxy+hy2−3ky2)/9 and therefore the condition K4 = 0 gives h = k = l = 0. Then we

obtain Coefficient[K5, xy
3] = −40d/3 = 0, i.e. d = 0 and we get K5 = 10x2

[
9(3c−4e−3f)x2+

2(9c−8e+9n2)xy+6(c−4f +3n2)y2
]
/3. Therefore the condition K5 = 0 implies c = −3n2,

e = −9n2/4 and f = 0. Forcing the condition K6 = 0 we have Coefficient[K6, x
5y6] =

−2680(a + 2n3)/9 = 0 and Coefficient[K6, x
9y2] = −1620(4b + 9n3) = 0. These relations
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give us a = −2n3, b = −9n3/4 which implies K6 = 0. However in this case we get a family

of degenerate systems and hence, we conclude that systems (3.12) could not have invariant

straight lines of total multiplicity eight.

Systems with potential configuration (2, 2, 2, 1). As a first step we construct the

cubic homogeneous parts of systems (3.1) for which the condition above is fulfilled. So

we shall consider the family of systems (3.2) and we force the condition V3 = 0 to be

satisfied. A straightforward computation of the value of V3 for systems (3.2) yields: V3 =

32

4∑

j=0

V3jx
4−jyj, where

V30 = −u(3 + u), V31 = 2u(2− v), V32 = 2 + 3r − 2ru+ v − v2,

V33 = −2r(1 + v), V34 = −r2.
(3.13)

So the condition V34 = implies r = 0 and then V33 = 0 and V32 = (2− v)(1+ v). Taking into

account (3.13) we consider two cases: u 6= 0 and u = 0.

1) The case u 6= 0. By (3.13), the conditions V3i = 0, i = 0, 1, 2 yield u = −3 and v = 2

and hence, we arrive at the cubic homogeneous system ẋ = −2x3 +x2y, ẏ = −3x2y+2xy2.

2) The case u = 0. Considering (3.13) and the condition r = 0 we get V30 = V31 = V33 =

V33 = 0 and V32 = (2− v)(1 + v). In the case v = 2 we obtain the system

ẋ = x3 + x2y, ẏ = 2xy2, (3.14)

which can be brought to the above system via the change (x, y, t) 7→ (x, x− y,−t). The case

v = −1 leads to the system

ẋ = x3 − 2x2y, ẏ = −xy2. (3.15)

Thus for the further investigation it remains to use two different homogeneous systems:

(3.14) and (3.15). We observe that for system (3.14) we have L7 = −8x4 6= 0, whereas for

system (3.15) the condition L7 = 0 holds. So we arrive at the following remark.

Remark 3.3. If V3 = 0 then systems (3.2) due to a linear transformation can be brought to

system (3.14) if L7 6= 0 and to system (3.15) if L7 = 0.

In what follows we construct the canonical systems which have either the cubic homo-

geneities (3.14) or (3.15).

A) Systems with cubic homogeneous parts (3.14). Due to a translation we may

assume that in the quadratic part of cubic systems (3.1) the condition g = n = 0 holds. So

we consider the family of systems

ẋ =a + cx+ dy + 2hxy + ky2 + x3 + x2y, ẏ = b+ ex+ fy + lx2 + 2mxy + 2xy2 (3.16)
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and by Remark 3.1 we impose the conditions K4 = K2 = K8 = 0 to be satisfied for these

systems. We calculate K4 = 2
[
lx3 − (6h+m)x2y + 2(2h− 3k)xy2 + 2ky3

]
/9 and hence the

condition K4 = 0 yields h = k = l = m = 0. Then we have K2 = −3x4y2(2x+ y)2(bx − ay)

and K8 = −10(4c − 2e − f)x4 − 6(c − d − 10f)x3y − 8(5c − 5d − 2f)x2y2. Obviously the

condition K2 = 0 implies b = a = 0, whereas the condition K8 = 0 gives d = c, e = 2c and

f = 0. So we get the systems

ẋ = (c+ x2)(x+ y), ẏ = 2x(c+ y2), (3.17)

for which we calculate: H(X, Y, Z) =− 2(X − Y )(X2 + cZ2)2(Y 2 + cZ2). We observe that

c 6= 0, otherwise we get a degenerate system. Moreover due to the rescaling (x, y, t) 7→
(
√
|c|x,

√
|c|y, t/c) we may consider c ∈ {−1, 1}. The above systems possess invariant affine

straight lines of total multiplicity 7, and namely: x2 + c = 0 (both double and either real if

c = −1, or complex if c = 1), y2 + c = 0 (both simple and either real if c = −1 or complex

if c = 1) and y = x (simple).

Considering Lemma 2.1 for these systems we calculate: µ0 = µ1 = 0, µ2 = −8cx2. If

c 6= 0 by the same lemma two finite singular points have gone to infinity and collapsed with

the singular point [0, 1, 0] located on the “end" of the invariant line x = 0. Moreover systems

(3.17) became degenerate if c = 0. As a result we obtain Config. 8.21 in the case c = −1

and Config. 8.22 in the case c = 1 (see Figure 3.1).

B) Systems with cubic homogeneous parts (3.15). In this case due to a translation

we may assume for systems (3.1) the condition g = n = 0 holds. So we consider the family

of systems

ẋ =a+cx+dy+2hxy+ky2+x3−2x2y, ẏ = b+ex+fy+lx2+2mxy−xy2, (3.18)

for which considering Remark 3.1 we calculate K4 = −2
[
2clx3 + (4m − 3h)x2y − (h +

3k)xy2 + ky3
]
/9. So the condition K4 = 0 yields h = k = l = m = 0 and then we have

K2 = −3x4(x−y)2y2(bx−ay), K8 = 5(4c−f)x4−(16c+3d−40f)x3y+4(4c+7d−10f)x2y22.

Therefore the condition K2 = 0 implies b = a = 0 and the condition K8 = 0 gives c = d =

f = 0 and this leads to degenerate systems. Thus we conclude that cubic systems (3.18)

could not possess invariant straight lines in the potential configuration of type (2, 2, 2, 1).

3.1.2. Invariant criteria for the realization of the configurations with three

distinct infinite singularities

I. Conditions for Config. 8.18, 8.19 and 8.20. It was shown earlier that systems

(3.1) could possess the potential configuration of invariant straight lines (3, 2, 1, 1) only if

their homogeneous cubic parts via a linear transformation could be brought to the form

(3.3)
(
respectively (3.4)

)
and for this the conditions V4 = V5 = 0 and K7 6= 0

(
respectively

K7 = V6 = 0
)

necessarily must hold
(
see Remark 3.2

)
.
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1) The case K7 6= 0. Then for V4 = V5 = 0 and K7 6= 0 a cubic system (3.1) due to an

affine transformation could be brought to the form (3.6). And forcing the coefficients of these

systems to satisfy the conditions K4 = K5 = K6 = 0 (see Remark 3.1) and using an additional

translation we arrive at the systems (3.7). These systems possess two configurations, given

by the values of the parameter h. So to distinguish Config. 8.18 (h 6= 0) from configuration

Config. 8.19 (h = 0) it remains to determine the invariant polynomial which is responsible

for this condition. We calculate L1 = 41472hy2(y − x) and therefore the condition L1 = 0

is equivalent to h = 0. Thus if for systems (3.6) the conditions K4 = K5 = K6 = 0 are

satisfied then we get the configuration given by Config. 8.18 if L1 6= 0 and by Config. 8.19

if L1 = 0.

2) The case K7 = 0. As it was mentioned above in this case the condition V6 = 0 must

hold and we consider systems (3.12).

Forcing the coefficients of these systems to satisfy the condition K4 = K5 = 0 we get for

the coefficients of quadratic terms the relations: k = 0, n = h and h(h − l) = 0. It was

proved (see page 86) that in the case h = 0 systems (3.8) could not possess a configuration of

type (3, 2, 1, 1). So we have to distinguish the case h 6= 0 from h = 0. On the other hand for

systems (3.8) with k = 0 and n = h we have L1 = 4608hx(x− y)2. and Hence this invariant

polynomial governs the condition h 6= 0.

If L1 6= 0 then due to the additional condition K6 = 0 systems (3.8) become as systems

(3.10) for which the condition c = 0 has to be satisfied. On the other hand for these systems

we calculate L6 = −16c and hence L6 = 0 is equivalent to c = 0.

Thus systems (3.1) possess the (unique) configuration Config. 8.20 if and only if the

conditions V4 = V5 = V6 = 0, K4 = K5 = K6 = K7 = L6 = 0 and L1 6= 0 are satisfied. This

complete the proof of the statement B1) of Main Theorem B.

II. Conditions for Config. 8.21 and 8.22 . By Remark 3.3 the condition L7 6= 0 must

be satisfied for systems (3.2) and therefore, we arrive at systems (3.16) (after a translation).

So forcing the coefficients of these these systems to satisfy the condition K4 = K2 = K8 = 0

we arrive at the systems (3.17) with c ∈ {−1, 1}. For these systems we calculate K9 =

−180cx4y2 and as c 6= 0 we conclude that sign (K9) = −sign (c).

Thus systems (3.1) belong to CSL8 if and only if the conditions V3 = K4 = K2 = K8 = 0

and L7 6= 0 are satisfied. Moreover we have the configuration given by Config. 8.21 if

K9 > 0 and by Config. 8.22 if K9 < 0 (see Figure 3.1).

This complete the proof of the statement B2) of Main Theorem B.
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3.1.3. Perturbations of normal forms

To finish the proof of the Main Theorem B it remains to construct for the normal forms given

in this theorem the corresponding perturbations, which prove that the respective invariant

straight lines have the indicated multiplicities. Here we construct such perturbations and

for each configuration Configs. 8.j, j = 18, 19, 20, 21, 22 we give: (i) the corresponding

normal form and its invariant straight lines; (ii) the respective perturbed normal form with

its invariant straight lines and (iii) the configuration Configs. 8.jε, j = 18, 19, 20, 21, 22

corresponding to the perturbed system.

Config. 8.18 :




ẋ = −x(9hx − x2 + xy + y2),

ẏ = −y2(9h+ y);

Invariant lines: L1,2 = x, L3,4 = y, L5 = y + 9, L6 = x− y, L7 = x− y − 9;

Config. 8.18ε:





ẋ = − 81ε

(1− ε)2
x− 9x2 − 9εxy + x3 + (ε− 1)x2y − (1 + 2ε)xy2,

ẏ = − 1 + ε

(1 − ε)2
y
[
y(ε− 1)y − 9

][
y(ε− 1)y + 9ε

]
;

Invariant lines:




L1 = x, L2 = (1− ε)(x+ εy) + 9ε, L3 = y, L4 = (1− ε)y − 9ε,

L5 = (1− ε)y + 9, L6 = (1− ε)(x− y) + 9ε, L7 = (1− ε)(x− y)− 9.

Fig. 3.3. Perturbation of normal form corresponding to the configuration

Config. 8.18

Config. 8.19 :




ẋ = x(x2 − xy − y2),

ẏ = −y3;

Invariant lines: L1,2 = x, L3,4,5 = y, L6,7 = x− y;

Config. 8.19ε:





ẋ = − 81ε3

(1− ε)2
x− 9εx2 − 9ε2xy + x3 + (ε− 1)x2y − (1 + 2ε)xy2,

ẏ = − 1 + ε

(1 − ε)2
y
[
y(ε− 1)y − 9ε

][
y(ε− 1)y + 9ε2

]
;
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Invariant lines:




L1 = x, L2 = (1− ε)(x+ εy) + 9ε2, L3 = y, L4 = (1− ε)y + 9ε,

L5 = (1− ε)y − 9ε2, L6 = (1− ε)(x− y)9ε, L7 = (1− ε)(x− y) + 9ε2;

Fig. 3.4. Perturbation of normal form corresponding to the configuration

Config. 8.19

Config. 8.20 :




ẋ = (1− x)x(1 + y),

ẏ = y(1− x+ y − x2);

Invariant lines: L1,2 = x, L3 = y, L4 = x− y, L5 = x− y − 1, L6 = x− 1, L7 : Z = 0;

Config. 8.20ε:





ẋ = x
[ 1 + ε

(1 + 2ε)2
− x+ y + εx2 − (1 + 2ε)xy

]
,

ẏ = y
[ 1 + ε

(1 + 2ε)2
− x+ y + (ε− 1)x2 − 3εxy + εy2

]
;

Invariant lines:




L1 = x, L2 = x+ εy, L3 = y, L4 = x− y, L5 = (1 + 2ε)(x− y)− 1,

L6 = (1 + 2ε)x− 1, L7 = ε(1 + 2ε)(x− y)− 1− ε.

Fig. 3.5. Perturbation of normal form corresponding to the configuration

Config. 8.20

Config. 8.21 :




ẋ = (x2 − 1)(x+ y),

ẏ = 2x(y2 − 1);

Invariant lines: L1,2 = x− 1, L3,4 = x+ 1, L5 = y − 1, L6 = y + 1, L7 = x− y;
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Config. 8.21ε:





ẋ =
1

1 + ε

[
(1 + ε)x2 − 1)

][
x+ (1 + 4ε)y

]
,

ẏ =
2

1 + ε

[
(1 + ε)x+ εy

][
(1 + ε)y2 − 1)

]
;

Invariant lines:




L1,3 = (1 + ε)x2 − 1, L2,4 = (1 + ε)(x+ 2εy)2 − (1 + 2ε)2,

L5,6 = (1 + ε)y2 − 1, L7 = x− y.

Fig. 3.6. Perturbation of normal form corresponding to the configuration

Config. 8.21

Config. 8.22 :




ẋ = (x2 + 1)(x+ y),

ẏ = 2x(y2 + 1);

Invariant lines: L1,2 = x− i, L3,4 = x+ i, L5 = y − i, L6 = y + i, L7 = x− y;

Config. 8.22ε:





ẋ =
1

1 + ε

[
(1 + ε)x2 + 1)

][
x+ (1 + 4ε)y

]
,

ẏ =
2

1 + ε

[
(1 + ε)x+ εy

][
(1 + ε)y2 + 1)

]
;

Invariant lines:




L1,3 = (1 + ε)x2 + 1, L2,4 = (1 + ε)(x+ 2εy)2 + (1 + 2ε)2,

L5,6 = (1 + ε)y2 + 1, L7 = x− y.

Fig. 3.7. Perturbation of normal form corresponding to the configuration

Config. 8.22
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3.2. Cubic systems with exactly one infinite singularity

Assume that a cubic system possesses exactly one infinite singularity which is determined by

one real factor of degree four of the polynomial C3. Then considering Lemma 2.2 we obtain

that systems (2.1) via a linear transformation become:

x′ = p0 + p1(x, y) + p2(x, y) + ux3 + vx2y + rxy2,

y′ = q0 + q1(x, y) + q2(x, y)− x3 + ux2y + vxy2 + ry3
(3.19)

with C3 = x4. Hence, the infinite singular point is located at the “end” of the straight lines

x = 0.

3.2.1. Construction of cubic homogeneities

We split our examination depending on the possible potential types of configurations, i.e.

we consider systems (3.19) and apply Theorem 2.2.

1) Configuration (3, 3, 1). By Theorem 2.2 in order to have the configuration ( 3, 3, 1)

the necessary condition V1 = V2 = U 1 = 0 must be fulfilled. So we calculate

V1 = 32(ux2 + vxy + ry2)2, V2 = 96rx2, U 1 = 128(v2 − 4ru).

Evidently that the condition V1 = 0 which is equivalent to u = v = r = 0 implies V2 = U 1 =

0. Therefore we get the following form of cubic systems

x′ = p0 + p1 + p2, y′ = q0 + q1 + q2 − x3. (3.20)

2) Configuration (3, 2, 1, 1). By the same theorem in this case the conditions V4 = V5 =

U 2 = 0 necessarily hold. Considering (3.19) we force these conditions to be satisfied. We

obtain Coefficient[V5, 9x
4/32] = −3r2+2ruv−v3 = 0, Coefficient[V5, 9xy

3/128] = −r3 = 0.

The above conditions imply r = v = 0 which leads to V5 = 0 and this gives U 2 = V4 = 0.

Thus we have systems with the following cubic part

x′ = p0 + p1 + p2 + ux3, y′ = q0 + q1 + q2 − x3 + ux2y (3.21)

for which we calculate V1 = 32u2x4. We detect that if u = 0, i.e. V1 = 0, we get systems

(3.20). If u 6= 0, i.e. V1 6= 0, applying the rescaling (x, y, t) 7→ (ux, y, t/u3) we can set u = 1

and we get the systems

x′ = p0 + p1 + p2 + x3, y′ = q0 + q1 + q2 − x3 + x2y. (3.22)

3) Configuration (2, 2, 2, 1). By Theorem 2.2 in order to have the mentioned config-

uration the necessary condition V3 = 0 must be satisfied. We get Coefficient[V3, y
4/32] =

−r2, Coefficient[V3, x
2y2/32] = −2ru− v2, Coefficient[V3, x

4/32] = 3v − u2. Thus V3 = 0 is

equivalent to u = v = r = 0 and therefore we obtain again systems (3.20).
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Lemma 3.1. Assume that for a homogeneous cubic system the conditions D1 = D2 =

D3 = 0 hold. Then via a linear transformation and time rescaling this system can be brought

to the one of the canonical form (P̃ , Q̃) indicated bellow if and only if the corresponding

conditions are satisfied. Moreover the cubic systems with these homogeneities can have only

the configurations of invariant straight lines of the type given next to each homogeneity:

(i) V1 = 0 ⇒ (P̃ , Q̃) = (0,−x3) ⇒ (3, 3, 1), (3, 2, 1, 1), (2, 2, 2, 1);

(ii) V1 6= 0, V5 = 0 ⇒ (P̃ , Q̃) = (x3,−x3 + x2y) ⇒ (3, 2, 1, 1).

Also we need the following result:

Remark 3.4. Any invariant line of the form x+α = 0 (i.e. in the direction x = 0) of cubic

systems (2.1) must be a factor of the polynomials P (x, y), i.e. (x+ α) | P (x, y).

Indeed, according to the definition, for an invariant line ux + vy + w = 0 we have

uP + vQ = (ux+ vy + w)R(x, y), where the cofactor R(x, y) generically is a polynomial of

degree two. In our particular case (i.e. u = 1, v = 0, w = α) we obtain P (x) = (x+ α)R(x),

which means that (x + α) divides P (x). We mention that this remark could be applied for

any cubic system when we examine the direction x = 0. Similarly, for an invariant line

y + β = 0 in the the direction y = 0 it is necessary (y + β) | Q(x, y).

3.2.2. Construction of canonical forms and of the corresponding configurations

of invariant lines

In what follows we consider two families of systems, the cubic homogeneities of which are

given by Lemma 3.1. Since each one of these cubic homogeneities leads to the given type of

configurations (see Lemma 3.1), in order to construct the corresponding canonical form we

shall apply first the respective necessary conditions given by Remark 3.1.

3.2.2.1. Construction of the normal form with cubic homogeneities (0,−x3)

In this case due to a translation of the origin of coordinates we can consider l = 0 and hence

we get the cubic systems

ẋ = a+ cx+ dy + gx2 + 2hxy + ky2, ẏ = b+ ex+ fy + 2mxy + ny2 − x3 (3.23)

for which we have H(X, Y, Z) = Z. So we force the necessary conditions given by Remark

3.1 which correspond to each type of configuration. We divide our examination in three

subcases defined by (a1)–(a3) of the mentioned remark.

(a1) For systems (3.23) we calculate: L1 = K1 = 0 and

L2 = −20736[(4h2 + 14km+ hn + 4n2)x2 − 7k(h− n)xy − 7k2y2) = 0.
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The above condition implies k = 0 and as the discriminant of the binary form 4h2+hn+4n2

is negative we obtain h = n = 0.

(a2) In the same manner in the case of the configuration (3, 2, 1, 1) we determine K4 =

K6 = 0 and K5 = −120kx3(2hx+ nx+ ky). Therefore K5 = 0 is equivalent to k = 0.

(a3) We calculate K4 = 0, K2 = −2x4(nx − ky)(mx2 − hxy + nxy − ky2)2 and K8 =

12k(h + n)x4. We detect that the condition K2 = 0 is equivalent to either k = n = 0 or

k = m = 0 and n = −h and this implies K8 = 0.

From the above results the next proposition follows.

Proposition 3.1. Assume that a cubic systems (3.23) possesses a potential configuration of

a given type. Then for this system the following conditions hold, respectively:

( 3, 3, 1 ) ⇒ k = n = h = 0 ⇔ L2 = 0;

( 3, 2, 1, 1 ) ⇒ k = 0 ⇔ K5 = 0;

( 2, 2, 2, 1 ) ⇒ k = n = 0 or k = m = h− h = 0 ⇔ K2 = 0.

Systems with configuration (3,3,1). So considering systems (3.23) for k = n = h = 0

we calculate the equations (2.17) (setting U = 1, V = 0, see Remark 2.1):

Eq1 = . . . = Eq8 = 0, Eq9 = d, Eq10 = a− cW + gW 2.

Remark 3.5. According to [129] a cubic system could not have invariant line of multiplicity

greater than or equal to 8.

So by this remark we need to have at least one invariant affine line and therefore in what

follows we assume d = 0. This leads to the family of systems

ẋ = a+ cx+ gx2 ≡ P (x), ẏ = b+ ex+ fy + 2mxy − x3 ≡ Q(x, y) (3.24)

for which we have H(X,Z) = Z2(gX2 + cXZ + aZ2). We conclude that the degree of H is

four and we need to increase this degree up to seven, i.e. we have to find out a common factor

of degree three of the polynomials Gi/H, i = 1, 2, 3 (see Lemmas 2.3,2.4). We calculate

G1/H ≡ F1(X, Y, Z), G2/H = ZP ∗(X,Z)F2(X, Y, Z), G3/H = 24Z2[P ∗(X,Z)]3

where P ∗(X,Z) is the homogenized form of the polynomial P(x) and F1(X, Y, Z) (respec-

tively F2(X, Y, Z)) is a polynomial of degree 4 (respectively 8) with respect to the variables.

It is clear that systems (3.24) are degenerate if and only if the polynomials P (x) and

Q(x, y) have a non-constant common factor (depending on x), i.e. the following condition

must hold:

Φ(y) ≡ R(0)
x (P (x), Q(x, y)) 6= 0. (3.25)
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We remark that the required common factor of the polynomials Gi/H, i = 1, 2, 3 could

contain as a factor Zλ, λ = 0, . . . , 3. Next we split our examination depending on the value

of the parameter λ.

1) The case λ = 3. Then the following condition must hold:

R
(0)
Z (Z3, F1) = R

(1)
Z (Z3, F1) = R

(2)
Z (Z3, F1) = 0.

For a system (3.24) we calculate R
(0)
X (Z3, F1) = (g + 2m)3X12 which vanishes if and only if

g = −2m. In this case we get

R
(1)
Z (Z3, F1) = X4[(2c+ f)X − 8m2Y ]2, R

(2)
Z (Z3, F1) = X [3aX − 4m(eX + 2fY )].

and the condition R
(1)
Z (Z3, F1) = R

(2)
Z (Z3, F1) = 0 gives m = a = f + 2c = 0. Thus for

g = m = a = 0 and f = −2c we get systems ẋ = cx, ẏ = b+ex−x3−2cy for which we have

Φ = c3(b−2cy) 6= 0. Since c 6= 0 applying the transformation (x, y, t) 7→
(
x, (b+2y)/(2c), t/c

)

we can set c = 1 and b = 0 which leads to the systems ẋ = x, ẏ = ex − 2y − x3 with

H(X,Z) = XZ6. Moreover we may assume e = 0 due to the transformation (x, y, t) 7→
(
x, y + ex/3, t

)
and so, the above systems became

ẋ = x, ẏ = −2y − x3 (3.26)

On the other hand considering Lemma 2.1 for these systems we calculate: µ0 = . . . =

µ7 = 0, µ8 = −2x8. By Lemma 2.1 eight finite singular points from 9 have gone to infinity

and collapsed with the singular point [0, 1, 0] located on the “end" of the invariant line x = 0.

Moreover the remaining finite singular point is (0, 0).

Thus a system (3.26) possess invariant straight lines: L1 : x = 0, L2,...7 : Z = 0 and we

get the configuration Config. 8.48 (see Figure 3.2).

2) The case λ = 2. Then the condition R
(0)
Z (Z2, F1) = R

(1)
Z (Z2, F1) = 0 must be satisfied.

We calculate

R
(0)
Z (Z2, F1) = (g + 2m)2X8, R

(1)
Z (Z2, F1) = X2[(2c+ f)X + 2m(g − 2m)Y ].

It is evident that g + 2m = 2c + f = m = 0 (i.e. g = m = 0, f = −2c) is equivalent to

R
(0)
Z (Z2, F1) = R

(1)
Z (Z2, F1) = 0. Moreover here we consider a 6= 0 otherwise we arrive at the

previous case. So considering these conditions we get systems for which the polynomial H

has degree 6 and therefore we need one additional linear common factor of the polynomials

Gi/H, i = 1, 2, 3. For the corresponding systems we calculate

R
(0)
Z

(
F1/Z

2, P ∗(X,Z)
)
= −3Z[2c4Y − (a3 + bc3 − ac2e)Z]

which cannot vanishes (since a 6= 0). Thus, in the case λ = 2 we cannot obtain systems with

invariant lines of total multiplicity eight.
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3) The case λ = 1. We have F1 |Z=0= (g + 2m)X4 and it is evident that the condition

g = −2m gives F1 = ZF̃1, where F̃1 = (2c + f)X3 − 8m2X2Y + Zf(X, Y, Z), i.e. the

additional condition (2c+ f)2+m2 6= 0 must hold. In this case we obtain systems for which

the polynomial H has degree 5 but must be 7. Therefore we need a common factor of degree

2 depending on X of the mentioned polynomials, i.e. the condition R
(0)
X

(
F̃1, [P

∗(X,Z)]3
)
=

R
(1)
X

(
F̃1, [P

∗(X,Z)]3
)
= 0 must be satisfied. We calculate

Coefficient[R
(0)
X

(
F̃1, [P

∗(X,Z)]3
)
, Y 6Z12] = 512m9(cf+f 2−2am)3(2c2−cf−f 2+18am)3 = 0.

This condition is equivalent to m(cf + f 2 − 2am)(2c2 − cf − f 2 + 18am) = 0 from which it

results the following two subcases:

a) The subcase m 6= 0. Then (cf + f 2 − 2am)(2c2 − cf − f 2 + 18am) = 0 and we have

two possibilities.

First we examine the possibility cf + f 2− 2am = 0. Then a = f(c+ f)/(2m) and in this

case we get

Coefficient[R
(0)
X

(
F̃1, [P

∗(X,Z)]3
)
, Y 3Z15] = 8(c+ 2f)9(f 3 − 4efm2 + 8bm3)3 = 0,

Φ = (f 3 − 4efm2 + 8bm3)ϕ̃(y) 6= 0.

We detect that the above conditions yield c = −2f
(
which gives a = −f 2/(2m)

)
and this

implies

R
(0)
X

(
F̃1, [P

∗(X,Z)]3
)
=0, R

(1)
X

(
F̃1, [P

∗(X,Z)]3
)
=−243(f 3−4efm2+8bm3)5Z10/(16m4) 6=0.

So in this case we could not obtain systems with invariant lines of total multiplicity 8.

Now we consider the possibility 2c2− cf −f 2+18am = 0, i.e. a = (f − c)(2c+f)/(18m).

Then we obtain

R
(0)
X

(
F̃1, [P

∗(X,Z)]3
)
=0,Coefficient[R

(1)
X

(
F̃1, [P

∗(X,Z)]3
)
, Y 5Z5]=−2183−2(c+2f)5m11=0.

Since m 6= 0 from the above equality it results c = −2f which yields a = −f 2/(2m) and

therefore we arrive at the previous possibility.

b) The subcase m = 0. Then 2c+ f 6= 0 and we obtain

R
(0)
X

(
F̃1, [P

∗(X,Z)]3
)
= −(c− f)3(2c+ f)3Z15[c3fY + (a3 + bc3 − ac2e)Z]3 = 0,

Φ = a3 + bc3 − ac2e+ c3fy 6= 0.

Since Φ 6= 0 and 2c + f 6= 0 the above equality is equivalent to f = c 6= 0 and we calculate

R
(1)
X

(
F̃1, [P

∗(X,Z)]3
)
= 27c7(3a2−c2e)2Z10 = 0, i.e. e = 3a2/c2. So we arrive at the systems

ẋ = a + cx, ẏ = b+ cy + 3a2x/c2 − x3

for which we have R
(0)
X

(
G3/H,G1/H

)
= −16ac3Z5. Therefore the condition a 6= 0 do not

allow us to have invariant lines of total multiplicity 9, including the line at infinity. In this
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case we apply the transformation (x, y, t) 7→ (−a(3x+ 1)/c, (2a3 − bc3 − 27a3y)/c4, t/c) and

the above systems became of the form

ẋ = x, ẏ = y − x2 − x3 (3.27)

with H(X,Z) = X3Z4.

Considering Lemma 2.1 for these systems we calculate: µ0 = . . . = µ7 = 0, µ8 = x8. By

the same lemma eight finite singular points from 9 have gone to infinity and collapsed with

the singular point [0, 1, 0] located on the “end" of the invariant line x = 0. On the other

hand system (3.27) possesses the finite singular point (0, 0) and the invariant straight lines:

L1,2,3 : x = 0, L4,...7 : Z = 0. This leads to Config. 8.49 given in Figure 3.2.

4) The case λ = 0. Then Z does not divide F1, i.e. the condition g+2m 6= 0 must be sat-

isfied and therefore we impose the condition R
(0)
X (F1, [P

∗(X,Z)]3) = R
(1)
X (F1, [P

∗(X,Z)]3) =

R
(2)
X (F1, [P (X,Z)]

3) = 0 to be satisfied. We calculate

Coefficient[R
(2)
X (F1, [P

∗(X,Z)]3), Y 4Z4] = 16g6(g − 2m)4m4 = 0

which due to g + 2m 6= 0 implies three subcases: g = 0, m 6= 0, m = 0, g 6= 0 and

g = 2m 6= 0.

a) If g = 0 (and m 6= 0) then we get Coefficient[R
(2)
X (F1, [P

∗(X,Z)]3), Y Z7] =

−32c6m5 = 0, i.e. c = 0 (due to m 6= 0). However in this case we obtain the contradictory

conditions R
(0)
X (F1, [P

∗(X,Z)]3) = 64a12m6Z24 = 0 (m 6= 0) and Φ = a3 6= 0.

b) If m = 0 (and g 6= 0) then

Coefficient[R
(2)
X (F1, [P

∗(X,Z)]3), Y 2Z6] = −f 2g8[9c2 + 12cf − 9f 2 − 4g(3a+ 2eg)] = 0

and this condition implies other f = 0 or 9c2 + 12cf − 9f 2 − 4g(3a+ 2eg) = 0.

So we suppose first f = 0 which implies

Coefficient[R
(0)
X (F1, [P

∗(X,Z)]3), Z24] = −g3(c2 − 4ag)3Φ3 = 0.

Since Φ 6= 0 the above condition leads to a = c2/(4g). In this case we get

R
(1)
X (F1, [P

∗(X,Z)]3) = −(c3 − 4ceg2 + 8bg3)5Z15/(1024g) = 0

which contradicts the condition Φ = (c3 − 4ceg2 + 8bg3)2/(64g3) 6= 0.

Now we examine the condition 9c2 + 12cf − 9f 2 − 4g(3a + 2eg) = 0, and f 6= 0, i.e.

a = (9c2 + 12cf − 9f 2 − 8eg2)/(12g). Then

Coefficient[R
(0)
X (F1, [P

∗(X,Z)]3), Y 6Z18] = 8f 6g12(3c2 + 6cf − 3f 2 − 4eg2)3/27 = 0

which is equivalent to e = 3(c2 + 2cf − f 2)/(4g2). However in this case we get

Coefficient[R
(1)
X (F1, [P

∗(X,Z)]3), Y 5Z10] = −32f 5g14 6= 0.
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Thus, if m = 0, g 6= 0 then we cannot obtain systems with eight invariant straight lines

(considering the infinite one and their multiplicities).

c) Assume now g = 2m 6= 0/ Then we calculate

Coefficient[R
(2)
X (F1, [P

∗(X,Z)]3), Y 2Z6] = 1024m8(cf − f 2 − 2am)2 = 0

from which it results a = (c − f)f/(2m). This condition implies R
(0)
X (F1, [P

∗(X,Z)]3) = 0

and

R
(1)
X (F1, [P

∗(X,Z)]3)=−[8bm3−(2c−5f)(c−f)2−4efm2]2(f 3−4efm2+8bm3)3Z15/(2m)=0,

Φ = (f 3 − 4efm2 + 8bm3)Φ̃(y) 6= 0.

Therefore it remains to only examine the equality 8bm3 − (2c − 5f)(c − f)2 − 4efm2 = 0,

i.e. b =
[
(2c− 5f)(c− f)2 + 4efm2

]
/(8m3) which implies

R
(2)
X (F1, [P

∗(X,Z)]3) = 24(c− 2f)4(2c− f)3(c− f)m2Z8 = 0,

Φ(y) = (c− 2f)3(2c− f)(3c2 − 6cf + 3f 2 − 4em2 − 8m3y)/(8m3) 6= 0.

We detect that the above conditions are equivalent to f = c 6= 0 (due to Φ 6= 0) and this

gives g = 2m, a = 0 and b = ec/(2m). On the other hand for the corresponding systems

we get R
(0)
X (G2/H,G1/H) = 12c2m2Z3 6= 0, i.e. we could not have invariant lines of total

multiplicity 9. In this case applying an additional transformation (x, y, t) 7→ (cx/(2m), (c2y−
4em2)/(8m3), t/c) we arrive at the systems

ẋ = x(1 + x), ẏ = y + xy − x3 (3.28)

with H(X,Z) = X4Z2(X + Z).

Taking into consideration Lemma 2.1 for the above system we calculate: µ0 = . . . =

µ7 = µ9 = 0, µ8 = x8. By Lemma 2.1 eight finite singular points from nine have gone

to infinity and collapsed with the singular point [0, 1, 0] and the invariant straight lines

L1,2,3,4 : x = 0, L5 : x+ 1 = 0, L6,7 : Z = 0. Therefore we get the configuration given by

Config. 8.50 (see Figure 3.2).

Systems with configuration (3,2,1,1) Considering systems (3.23) for k = 0 (see Propo-

sition 3.1) we evaluate equations (2.17) for the direction x = 0 (i.e. U = 1, V = 0):

Eq1 = . . . = Eq8 = 0, Eq9 = d− 2hW, Eq10 = a− cW + gW 2. (3.29)

It is clear that in the case h 6= 0 we could have only one invariant affine line in the direction

x = 0 and in order to have two such lines the condition h = 0 is necessary. So we split our

examination in two cases: h = 0 and h 6= 0.
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1) The case h = 0. By Remark 3.5 the in order to have invariant lines of multiplicity 8

there must be at least one invariant affine line. So the condition d = 0 must be satisfied and

considering also the condition k = 0 we get the following systems

ẋ = a+ cx+ gx2 ≡ P (x), ẏ = b+ ex+ fy + 2mxy + ny2 − x3 ≡ Q(x, y) (3.30)

for which H(X,Z) = Z2(gX2 + cXZ + aZ2). Since the degree of H is four we have to find

out a common factor of degree three of the polynomials Gi/H, i = 1, 2, 3. We calculate

G1/H ≡ F1(X, Y, Z), G2/H = −nX6 + ZF2(X, Y, Z), G3/H = 24Z2[P ∗(X,Z)]3

where P ∗(X, Y ) is the homogenized form of the polynomial P(x) and F1(X, Y, Z) (respec-

tively F2(X, Y, Z)) is a polynomial of degree 4 (respectively 5) with respect to the variables.

We observe that in the case n = 0 we get systems (3.24) for which we already have

detected all possible configurations of invariant lines of total multiplicity eight.

We claim that in the case n 6= 0 for non-degenerate systems (3.30) the polynomials

G1/H and P ∗(X,Z) could not have a common factor depending on X, i.e. the condition

R
(0)
X (F1, P (X,Z)) 6= 0 holds.

Indeed, since n 6= 0 we may assume n = 1 due to the rescaling (x, y, t) 7→ (x/n, y/n2, nt)

and we calculate Coefficient[R
(0)
X (F1, P

∗(X,Z)) , Y 6Z2] = 4g2. So supposing that the condi-

tion R
(0)
X (F1, P (X,Z)) = 0 holds we get g = 0. Therefore we have

R
(0)
X (F1, P

∗(X,Z)), Y 3Z5] = 2mZ5[−2cY + (c2 − cf + 2am)Z][c3Y 2+

+c2(cf − 2am)Y Z + (a3 + bc3 − ac2e)Z2] = 0

and this implies either m = 0 or c = a = 0, however in the second case we get degenerate

systems. So m = 0 and setting F ′
1 = F1|g=m=0 we calculate

R
(0)
X (F ′

1, P
∗(X,Z)) = Z4(2Y − cZ + fZ)(2Y + 2cZ + fZ)

[
c3Y 2 + c3fY Z+

+(a3 + bc3 − ac2e)Z2
]
= 0, Φ(y) = c3y2 + c3fy + (a3 + bc3 − ac2e) 6= 0.

The contradiction we obtained completes the proof of our claim.

2) The case h 6= 0. Then we may assume h = 1 due to the rescaling (x, y, t) 7→
(x/h, y/h2, ht) and therefore the condition R(0)W (Eq9, Eq10) = d2g − 2cd + 4a = 0 gives

a = d(2c−dg)/4. Therefore applying the transformation (x, y, t) 7→ (x−d/2, y+(dg−h)/2, t)
we get the family of systems

ẋ = gx2 + 2xy ≡ P (x), ẏ = b+ fy + ex+ ny2 + lx2 + 2mxy − x3 ≡ Q(x, y). (3.31)

For these systems we calculate H(X,Z) = XZ and G1/H = 2X6 + Zf(X, Y, Z), G3/H =

24Z3X3(gX + 2Y )4. We observe that the above polynomials cannot have Z as a common

factor. On the other hand evidently the factor gX + 2Y cannot give a line in the direction

101



x = 0. Therefore a common factor of maximum degree of the polynomials G1/H and G3/H

could be only X3. Taking into consideration that for systems (3.31) the polynomial H has

degree two (but should be seven) we conclude that in this case we cannot obtain systems

with invariant lines of total multiplicity eight.

Systems with configuration (2,2,2,1). So we consider systems (3.23) for k = n = 0 and

k = m = n−h = 0 and in both these case we solve the equations (2.17) setting U = 1, V = 0:

Eq1 = . . . = Eq8 = 0, Eq9 = d− 2hW, Eq10 = a− cW + gW 2.

Thus we arrive at the same equations (3.29) as in the case of systems (3.23) for k = 0. Since

setting the condition n = 0 we get a subfamily of the systems which are already examined,

we conclude that in the case under examination we could not have invariant lines of total

multiplicity eight.

The above results lead as to the following proposition:

Proposition 3.2. Non-degenerate systems (3.24) possess invariant lines of total multiplicity

eight if and only if one of the following sets of conditions hold:

g = m = a = 0, f = −2c, c 6= 0; (3.32)

g = m = 0, f = c, e = 3a2/c2, a c 6= 0; (3.33)

a = 0, g = 2m, f = c, b = ec/(2m), m c 6= 0. (3.34)

3.2.2.2. Construction of the normal form with cubic homogeneities (x3,−x3+x2y)

. In this case due to the translation of the origin of coordinates to the point (x0, y0) =

(−m,−l − 3m) we can consider l = m = 0 and hence we get the cubic systems

ẋ = a+ cx+ dy + gx2 + 2hxy + ky2 + x3, ẏ = b+ ex+ fy + ny2 + x2y − x3. (3.35)

Next we force the necessary conditions given by Remark 3.1 which correspond to the type of

configuration (3, 2, 1, 1). We calculate K4 = −x2[(2h+n)x+ky]/9 = 0, K5 = −1200h2x4 = 0

which imply k = h = n = 0. Herein calculations lead to

K6 = −40(96a− 68cg + 1739dg − 136fg)x11/27− 6560dgx10y/27.

It is evident that the condition K6 = 0 implies

d · g = 0, 24a− 17cg − 34fg = 0. (3.36)

Considering systems (3.35) for k = n = h = 0 we calculate the equations (2.17) for the

direction x = 0 (i.e U = 1, V = 0): Eq1 = . . . = Eq8 = 0, Eq9 = d, Eq10 = a −

102



cW + gW 2 −W 3. On the other hand we detect that for the corresponding systems we have

G1/H|Z=0 = X8, therefore all three polynomials Gi/H, i = 1, 2, 3 could not have as a common

factor Z. So we shall examine only the conditions given by the resultants with respect to X.

Clearly the condition d = 0 is necessary for the existence of at least one invariant affine

line and in this case the systems possess exactly three such lines (which could be real or

complex, distinct or coinciding). Therefore we arrive at the systems

ẋ = a + cx+ gx2 + x3 ≡ P (x) ẏ = b+ ex+ fy + x2y − x3 ≡ Q(x, y). (3.37)

For these systems we calculate

G1/H ≡ F1(X, Y, Z), G2/H = P ⋆(X,Z)F2(X, Y, Z), G3/H = 24[P ⋆(X,Z)]3,

H(X,Z) = X3 + gX2Z + cXZ2 + aZ3 ≡ P ⋆(X,Z).

Since the polynomial H has degree 3 we conclude that we need to find out a common factor

of degree four of the polynomials Gi/H, i = 1, 2, 3 depending on X, i.e. the condition

R
(0)
X (F1, [P

⋆]3) = R
(1)
X (F1, [P

⋆]3) = R
(2)
X (F1, [P

⋆]3) = R
(3)
X (F1, [P

⋆]3) = 0 has to be satisfied.

We calculate Coefficient[R
(3)
X (F1, [P

⋆]3), Y 4Z8] = (c−f)4 = 0 and this condition is equiv-

alent to f = c which leads to Coefficient[R
(1)
X (F1, [P

⋆]3), Y 8Z24] = 256(a − cg)8 = 0, i.e.

a = cg. Then considering (3.36) we get cg = 0 and we divide our examination in two cases:

g = 0 and c = 0, g 6= 0.

1) First we examine the case g = 0. Then ϕ(y) = (b + cy)ϕ̃ 6= 0 and R
(1)
X (F1, [P

⋆]3) =

64c5e2ϕ̃3Z32 = 0 which gives ec = 0. If c = 0 then we get R
(2)
X (F1, [P

⋆]3) = −128b7Z21 = 0,

i.e. b = 0 which contradicts with ϕ = b3 6= 0.

So e = 0, c 6= 0 and in this case we have ϕ(y) = (b2+c3)(b+cy) 6= 0 and R
(2)
X (F1, [P

⋆]3) =

−128b(b2+c3)3Z21 = 0, i.e. b = 0. However this condition implies R
(3)
X (F1, [P

⋆]3) = 64c6Z12 6=
0 (since c 6= 0). Therefore if e = 0 and c 6= 0 we could not obtain systems with invariant

lines of total multiplicity eight.

2) Now we consider the case c = 0, g 6= 0. Then R
(0)
X (F1, [P

⋆]3) = R
(1)
X (F1, [P

⋆]3) = 0 and

R
(2)
X (F1, [P

⋆]3) = −32b5(2b− eg − g3)2Z21 = 0.

In addition ϕ(y) = b2(b−eg+g3+g2y) 6= 0 and hence the above relation gives 2b−eg−g3 = 0,

i.e. b = g(e+g2)/2. Then R
(3)
X (F1, [P

⋆]3) = (e+g2)5(e+3g2)Z12 = 0 which implies e = −3g2

since ϕ(y) = g3(e + g2)2(3g2 − e+ 2gy)/8 6= 0. Therefore we arrive at the systems

ẋ = x2(g + x), ẏ = −g3 − 3g2x+ x2y − x3

and since g 6= 0 due to the rescaling (x, y, t) 7→ (gx, gy, t/g2) the above systems become of

the form

ẋ = x2(1 + x), ẏ = −1− 3x+ x2y − x3 (3.38)
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with H(X,Z) = X3(X + Z)4.

Taking into consideration Lemma 2.1 for the above system we calculate: µ0 = . . . =

µ7 = 0, µ8 = x8 and hence eight finite singular points from nine have gone to infinity and

collapsed with the singular point [0, 1, 0] located on the “end" of the invariant line x = 0.

Additionally we determine that system (3.38) possesses the finite singular point (−1,−3)

and the invariant straight lines: L1,2,3 : x = 0, L4,...7 : x + 1 = 0. This leads to the

configuration Config. 8.51.

Proposition 3.3. Non-degenerate systems (3.35) possess invariant lines of total multiplicity

eight if and only if the following set of conditions hold:

k = n = h = a = c = f = 0, b = −g3, e = −3g2, g 6= 0. (3.39)

3.2.3. Invariant criteria for the realization of the configurations with exactly

one infinite singularity

According to Lemma 2.2 the conditions D1 = D2 = D3 = 0 are necessary and sufficient for a

cubic system to have exactly one infinite singularity, namely it is determined by the unique

factor of degree four of C3(x, y). After a linear transformation such a cubic system could be

brought to the form (3.19). By Lemma 3.1 these systems could have one of the following two

cubic homogeneities: (0,−x3) and
(
x3, x2y − x3

)
. Moreover, according to the same lemma,

these two cases of homogeneities are distinguished by the invariant polynomials V1 and V5.

Therefore we consider systems (3.23) and respectively (3.35) and in what follows we find out

the invariant conditions which are equivalent to the conditions given by Propositions 3.2 and

3.3, respectively.

1) Conditions for systems (3.23) According to Proposition 3.2 the condition k = h =

n = 0 which is equivalent to L2 = 0 (see Proposition 3.1) is necessary for systems (3.23) to

have invariant lines of total multiplicity eight. For the corresponding systems we calculate:

N23 = m2x6, W1 = −6(g +m)x5 = 0, W2 = 12(72d+ 13g2 − 54gm+ 53m2)x6.

a) Conditions (3.32). It is evident that N23 = W1 = W2 = 0 is equivalent to m =

g = d = 0. Then we calculate W3 = 8(2c + f)x4 which is equivalent to f = −2c and this

condition implies W4 = 108ax3. Therefore the condition W4 = 0 gives a = 0 and we arrive at

non-degenerate systems (where µ8 = −2c4x8 6= 0) which, as it was shown earlier (see page

97), via a transformation could be brought to systems (3.26).

Thus if for systems (3.23) the conditions L2 = N23 = W1 = W2 = W3 = W4 = 0, µ8 6= 0

hold then we get the configuration Config. 8.48.

b) Conditions (3.33). As it was shown above So the condition N23 = W1 = W2 = 0

implies m = g = d = 0 and then N16 = 12(f − c)x4. So the condition f = c is given by
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N16 = 0. In this case we obtain µ8 = c4x8 and W5 = 12(3a2−c2e)x2. Therefore the condition

W5 = 0 leads to e = 3a2/c2 for c 6= 0, i.e. µ8 6= 0. For the corresponding non-degenerate

systems the condition a 6= 0 does not allow to have invariant lines of total multiplicitynine

and this condition is equivalent to W6 = −12ax3 6= 0. Then due to a transformation the

corresponding systems become of the form (3.27).

W6 = −12ax3 6= 0 is satisfied, i.e.

So if for systems (3.23) the conditions L2 = N23 =W1 = W2 = N16 = W5 = 0, µ8W6 6= 0

hold then we obtain Config. 8.49.

c) Conditions (3.34). According to this set of conditions we have m 6= 0, i.e. N23 6= 0. We

calculate N3 = 12(2m−g)x5 and clearly the condition g = 2m is equivalent to N3 = 0. In this

case we obtain W7 = 48dmx3 and hence the condition d = 0 is governed by the polynomial

W7. So considering the conditions g = 2m and d = 0 we get W8 = 1728(c− f)mx5 and since

m 6= 0 the condition W8 = 0 is equivalent to f = c. Then we obtain W9 = −864am3x2 and

evidently that the conditionW9 = 0 gives a = 0. Setting a = 0 we getW10 = 72m(ce−2bm)x3

and due to m 6= 0 it is clear that the condition b = ce/(2m) is equivalent to W10 = 0.

Assuming that this condition is fulfilled, for the corresponding systems we get µ8 = c4x8 6= 0

and applying a transformation (see page 100) these systems become of the form (3.28).

Thus if for systems (3.23) the conditions L2 = N3 = W7 = W8 =W9 =W10 = 0, µ8N23 6=
0 hold then we get the configuration Config. 8.50.

2) Conditions for systems (3.35). It was proved that the condition k = h = n = 0 is

equivalent to K4 = K5 = 0 (see the page 102). In this case we get K8 = 88dx4/9 = 0 which

implies d = 0 and then we calculate

K9 = 20(f − c)x6/9, N2 = −(c + f)x4/3, K6 = 160(17cg + 34fg − 24a)x11/27.

It is evident that the condition K9 = N2 = K6 = 0 gives c = f = a = 0. Then we

obtain W11 = −9216(b + g3)x11 and therefore b = −g3 is equivalent to W11 = 0. Setting

this condition we calculate W12 = 20g(e + 3g2)x11/9 and µ8 = g8x8 6= 0 (otherwise we get

degenerate systems). So the condition e = −3g2 is equivalent to W12 = 0 and then due to a

transformation (see page 104) we arrive at the system (3.38).

Thus if for systems (3.35) the conditions K4 = K5 = K8 = K9 = N2 = K6 = W11 =

W12 = 0, µ8 6= 0 hold then we have Config. 8.51.

3.2.4. Perturbations of canonical forms

To end the proof of the Main Theorem C it remains to construct for the normal forms

given by this theorem the corresponding perturbations, which prove that the respective

invariant straight lines have the indicated multiplicities. In this section we construct such

perturbations and for each configuration Configs. 8.j, j = 48, . . . , 51 we give:
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• the corresponding normal form and its invariant straight lines;

• the respective perturbed normal form and its invariant straight lines;

• the configuration Config. 8.jε, j = 48, . . . , 51 which corresponds to the perturbed

systems.

Config. 8.48 : ẋ = x, ẏ = −2y − x3;

Invariant lines: L1 : x = 0, L2,...7 : Z = 0;

Config. 8.48ε:




ẋ = x(1 + x2ε− 6y2ε3),

ẏ = −x3 − 2y − 4y3ε3;

Invariant lines:





L1 = x, L2,3 = x2ε− i+ (2− 2i)xyε2 − 2iy2ε3,

L4,5 = x2ε+ i+ (2 + 2i)xyε2 + 2iy2ε3,

L6,7 = 1 + 2x2ε− 4xyε2 + 2y2ε3.

Fig. 3.8. Perturbation of normal form corresponding to the configuration

Config. 8.48

Config. 8.49 : ẋ = x, ẏ = y − x2 − x3;

Invariant lines: L1,2,3 : x = 0, L4,...7 : Z = 0;

Config. 8.49ε:





ẋ = x(9− 6xε+ 4xε2)(9 + 6xε− 10xε2 + 4xε3)/81,

ẏ =
[
3x3(1− ε)(2ε− 3)3 + 3x2(3− 2ε)2

(
y(ε−1)ε2 − 3

)
+

+3xyε2(2ε−3)[6 + y(ε−1)ε2] + y(9+yε3)
(
9 + y(ε−1)ε3

)]
/81;

Invariant lines:





L1 = x, L2 = 2xε−yε2−3x, L3 = 2xε+yε2−3x, L4 = 9−6xε+4xε2,

L5 = 9 + 2xε(3− 5ε+ 2ε2), L6 = 9 + yε3 + xε(2ε− 3),

L7 = 9 + y(ε− 1)ε3 + xε(3− 5ε+ 2ε2).
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Fig. 3.9. Perturbation of normal form corresponding to the configuration

Config. 8.49

Config. 8.50 : ẋ = x(1 + x), ẏ = y + xy − x3;

Invariant lines: L1,2,3,4 : x = 0, L5 : x+ 1 = 0, L6,7 : Z = 0;

Config. 8.50ε:




ẋ = x(1− xε)(1 + x+ xε − 2yε),

ẏ = y + xy − x3 − 2y2ε− x2y(3ε−4)ε+ 6xy2(ε−1)ε2 − 4y3(ε−1)ε3;

Invariant lines:

{
L1 = x, L2 = x− 2yε, L3 = x− yε, L4 = x− 2yε+ 2yε2,

L5 = 1 + x− xε− 2yε+ 2yε2, L6 = xε − 1, L7 = 1+xε−2yε2.

Fig. 3.10. Perturbation of normal form corresponding to the configuration

Config. 8.50

Config. 8.51 : ẋ = x2(1 + x), ẏ = −1− 3x+ x2y − x3;

Invariant lines: L1,2,3 : x = 0, L4,5,6,7 : x+ 1 = 0;

Config. 8.51ε:





ẋ = x(1 + x)(x− ε− 2xε),

ẏ = −
[
1 + 3x+ x3 − x2y − 4y3(ε− 1)3ε4 − y(ε− 1)ε(3 + 2ε)+

+2y2(ε− 1)2ε2(1 + 3ε)− xy(ε− 1)ε(7− 9ε− 24ε2 + 36ε3)+

+3x3(ε− 1)ε(3− 4ε− 12ε2 + 54ε3 − 72ε4 + 36ε5)+

+2xy2(ε− 1)2ε2(1 + 3ε− 18ε2 + 18ε3)+

+3x(ε− 1)ε(2 + 3ε) + x23ε(3ε− 2)(1− 6ε2 + 6ε3)−
−x2yε(18ε+ 12ε2 − 168ε3 + 360ε4 − 324ε5 + 108ε6 − 7)

]
/(ε− 1)2;
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Invariant lines:





L1 = x, L2 = ε+ x(2ε− 1), L3 = 1− 2y(ε− 1)ε+ x(1− 6ε+ 6ε2),

L4 = 1 + x, L5 = 1− 2y(ε− 1)ε+ x(1− 6ε+ 6ε2),

L6 = 1−y(ε−1)ε+x(1−3ε+3ε2), L7 = 1−2y(ε−1)ε2+x(1−6ε2+6ε3).

Fig. 3.11. Perturbation of normal form corresponding to the configuration

Config. 8.51

3.3. Conclusions on Chapter 3

We remark that in Chapter 3 we use for the first time the perturbation of the cubic systems

with multiple lines in order to prove that these systems indeed possess invariant lines of

indicated multiplicity. It arise the question: why this multiplicity could not be deduced

applying the respective definitions and propositions from Chapter 2?

More precisely, according to [43, Definition 5.1] each line (L = ux + vy + w = 0) of

multiplicity k divide E1(X) (≡ −G1) and according to [43, Main Theorem] it follows the

existence of a perturbation of vector filed X which implies the appearance in the vicinity of

the line L = 0 exactly k distinct invariant straight lines. However this is valid for each line

separately and this does not guaranty that there exists such a perturbation which implies

the appearance of the corresponding numbers of lines in the vicinities of several lines simul-

taneously. So the constructed perturbations are necessary to complete the proofs of Main

Theorems B and C and hence, each of the configurations Configs. 8.18-8.22 and Configs.

8.48-8.51 indeed contain invariant lines of total multiplicity eight. We note that we have

constructed the corresponding perturbations also for the family of systems in CSL8 with two

distinct infinite singularities (see the proof of Main Theorem D).

The interesting fact is that all 9 canonical systems constructed in this chapter for systems

in CSL8 with either three or exactly one infinite singular points are with constant coefficients.

Finally we underline that the configurations given by Config. 8.48, 8.49 and Config.

8.51 were also detected by Şubă and Vacaraş in [130–132]. More precisely, the configuration

Config. 8.48 possesses the infinite line of the multiplicity 7 and it was proved in [130] that this

multiplicity is maximal for a cubic system. But it is important to underline that in contrast

with these authors in Chapter 4 necessary and sufficient conditions for the realization of

the configurations given by Config.8.48, 8.49 and Config.8.51 were determined.

The results presented in Chapter 3 were published in [22, 25].
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4. CUBIC SYSTEMS WITH INVARIANT LINES OF TOTAL

MULTIPLICITY EIGHT AND TWO DISTINCT INFINITE

SINGULARITIES

Taking into account Lemma 2.2 we split the family of cubic systems having 2 distinct infinite

singularities in three subfamilies which infinite singularities are determined by the following

factors of the polynomial C3(x, y): 1) two double real factors; 2) two double complex factors

and 3) one triple and one simple real factors. For each one of these three subfamilies the

proof of the corresponding theorem proceeds in 4 steps described in Paragraph 2.1.2.

In this chapter we prove the following theorem ( [17, 29]):

Main Theorem D. Assume that a non-degenerate cubic system (i.e.
∑9

i=0 µ
2
i 6= 0) possesses

invariant straight lines of total multiplicity 8, including the line at infinity with its own

multiplicity. In addition we assume that this system has two distinct infinite singularities,

i.e. the conditions D1 = D3 = 0 and D2 6= 0 hold. Then:

I. This system could not have the infinite singularities defined by two double factors of

the invariant polynomial C3(x, y).

II. The system has the infinite singularities defined by one triple and one simple real

factors of C3(x, y) (i.e. D1 = D3 = D4 = 0 and D2 6= 0) and could possess only one of the

25 possible configurations Config. 8.23 – Config. 8.47 of invariant lines given in Figure 4.1.

III. This system possesses the specific configuration Config. 8.j (j ∈ {23, 24, . . . , 47})
if and only if the corresponding conditions included below are fulfilled. Moreover it can be

brought via an affine transformation and time rescaling to the canonical form, written below:

• Config. 8.23 ⇔ N2N3 6= 0,V1 = V3 = K5 = N1 = N4 = N5 = N6 = N7 = 0:{
ẋ = (x− 1)x(1 + x),

ẏ = x− y + x2 + 3xy;

• Config. 8.24 - 8.27 ⇔ N2 6= 0, N3 = 0, V1=V3=K5=N1=N4=N6=N8=0, N9 6= 0:




ẋ = x(r + 2x+ x2),

ẏ = (r + 2x)y, r(9r − 8) 6= 0;





Config.8.24 ⇔ N11 < 0 (r < 0);

Config.8.25 ⇔ N10>0, N11>0 (0<r<1);

Config.8.26 ⇔ N10 = 0 (r = 1);

Config.8.27 ⇔ N10 < 0 (r > 1);

• Config. 8.28 - 8.30 ⇔ N2 6= 0, N3 = 0, V1=V3=K5=N1=N5=N8=N12=0, N13 6=0:



ẋ=x(r−2x+x2), (9r−8) 6= 0

ẏ=2y(x−r), r(r− 1) 6= 0;





Config.8.28 ⇔ N15 < 0 (r < 0);

Config.8.29 ⇔ N14<0, N15>0 (0<r<1);

Config.8.30 ⇔ N14 > 0 (r > 1);

• Config. 8.31, 8.32 ⇔ N2 = N3=V1=V3=K5=N1=N17=N18=0, N10N16 6= 0:
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


ẋ = x(r + x2),

ẏ = x− 2ry, r ∈ {−1, 1};

{
Config.8.31 ⇔ N10 < 0 (r = −1);

Config.8.33 ⇔ N10 > 0, (r = 1);

• Config. 8.33 ⇔N2=N3=V1=V3=K5=N1=N10=N17=N18=0, N16 6=0:




ẋ = x3,

ẏ=1+x;

• Config. 8.34 - 8.38 ⇔ N2=N3=V1=V3=K5=N1=N16=N19=0, N18 6=0:




ẋ = x(r + x+ x2),

ẏ = 1 + ry, (9r−2) 6=0;





Config. 8.34 ⇔ N21 < 0 (r < 0);

Config. 8.35 ⇔ N20 > 0, N21 > 0 (0 < r < 1/4);

Config. 8.36 ⇔ N20 = 0 (r = 1/4);

Config. 8.37 ⇔ N20 < 0 (r > 1/4);

Config. 8.38 ⇔ N21 = 0 (r = 0);

• Config.8.39, 8.40 ⇔ V1 = L1 = L2 = N22 = N23 = N24 = 0, V3K6 6= 0:


ẋ = x(r + x+ x2),

ẏ = (r + 2x+ 3x2)y;

{
Config. 8.39 ⇔ µ6 < 0 (r < 1/4);

Config. 8.40 ⇔ µ6 > 0 (r > 1/4);

• Config.8.41– 8.43 ⇔ V1 = L1 = L2 = N22 = N23 = K6 = 0, V3N24 6= 0:



ẋ = x(r + x2),

ẏ = 1 + ry + 3x2y;





Config. 8.41 ⇔ µ6 < 0 (r < 0);

Config. 8.42 ⇔ µ6 = 0 (r = 0);

Config. 8.43 ⇔ µ6 > 0 (r > 0);

• Config.8.44–8.47 ⇔ V5 = U2 = K4 = K5 = K6 = N24 = N25 = N26 = N27 = 0,

V1V3 6= 0:




ẋ = x(1 + x)[r + 2 + (r + 1)x],

ẏ = [r + 2 + (3 + 2r)x+ rx2]y;





Config. 8.44 ⇔ µ6 < 0 (−2 < r < −1);

Config. 8.45 ⇔ µ6 > 0, N28 < 0 (r < −2);

Config. 8.46 ⇔ µ6 > 0, N28 > 0 (r > −1);

Config. 8.47 ⇔ µ6 = 0 (r = −1).

We have proved in [26] that systems in CSL8 could not have the infinite singularities

defined by two double factors of the invariant polynomial C3(x, y). So for the further inves-

tigation we consider only cubic systems with infinite singularities defined by one triple and

one simple real factors of C(x, y) and we prove the above theorem taking into consideration

the steps defined in Paragraph 1.2.6. (see page 50).

According to Lemma 2.2 in this case we consider the following family of cubic systems:

x′ =a+ cx+ dy + gx2 + 2hxy + ky2 + (u+ 1)x3 + vx2y + rxy2,

y′ =b+ ex+ fy + lx2 + 2mxy + ny2 + ux2y + vxy2 + ry3
(4.1)

with C3 = x3y. Hence, the infinite singular points are situated at the “ends” of the straight

lines x = 0 and y = 0.

The cubic homogeneous systems in the case under consideration were constructed in

110



Fig. 4.1. Configurations of invariant lines for systems in CSL8 with 2 ISPs

[17, Proposition 9]. More precisely considering the proof of Proposition 9 [17] we have the

next result.
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Lemma 4.1 ( [17]). Assume that for a cubic homogeneous system the conditions D1 =

D3 = D4 = 0 and D2 6= 0 hold. Then via a linear transformation and time rescaling

this system can be brought to one of the canonical form (P̃3, Q̃3) indicated bellow if and

only if the corresponding conditions are satisfied. Moreover the cubic systems with these

homogeneities could have only the configurations of invariant lines of the type given next to

each homogeneity:

• V1 = V3 = 0 ⇒ (P̃3, Q̃3) = (x3, 0) ⇒ (3, 3, 1), (3, 2, 1, 1), (2, 2, 2, 1);

• V1 = 0, V3 6= 0 ⇒ (P̃3, Q̃3) = (x3, 3x2y) ⇒ (3, 3, 1);

• V1 6= 0, V3 = 0 ⇒ (P̃3, Q̃3) = (2x3, 3x2y) ⇒ (2, 2, 2, 1);

• V1V3 6=0, V5=U2 = 0 ⇒ (P̃3, Q̃3)=
(
(u+1)x3, ux2y

)
, u(u+3)(2u+3) 6=0 ⇒ (3, 2, 1, 1).

4.1. Construction of canonical forms and of the corresponding configurations

of invariant lines

We have showed in [17] that systems (4.1) possessing the homogeneity (2x3, 3x2y) could

not have invariant lines of total multiplicity eight and thus, in the further investigation we

consider only the following three cubic parts: (x3, 0), (x3, 3x2y) and
(
(u+1)x3, ux2y

)
(for

u(u+3)(2u+3) 6=0).

4.1.1. Systems with cubic homogeneous parts (x3, 0)

In this case, considering (4.1) via a translation of the origin of coordinates we can consider

g = 0 and hence we get the cubic systems

ẋ = a + cx+ x3 + dy + 2hxy + ky2, ẏ = b+ ex+ lx2 + fy + 2mxy + ny2 (4.2)

for which we have H(X, Y, Z) = Z (see Notation 2.2).

Now we force the necessary conditions given in Remark 3.1 (p. 81) which correspond

to each type of configuration. We claim that if any of the conditions (a1), (a2) or (a3) are

satisfied for a system (4.2) then k = h = n = 0 and this condition is equivalent to K5 = 0.

We divide the proof of this claim in three subcases defined by (a1)–(a3).

(a1). For systems (4.2) we calculate: L1 = 0 and Coefficient[L2, xy] = −20736(12h2 +

7km−6hn+3n2) = 0, Coefficient[K1, y
2] = 3967 ·21839547319k6 = 0. Therefore we get k = 0

and as the discriminant of the binary form 4h2 − 2hn + n2 is negative we obtain h = n = 0

(and this implies L2 = K1 = 0).

(a2). In the same manner in the case of the configuration (3, 2, 1, 1) we determine K4 =

K6 = 0 and K5 = −180m(h−n)x4+60(4h2−3km−2hn+n2)x3y−240k2xy3. From K5 = 0
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it results k = 0 and we get the same binary form 4h2 − 2hn+ n2 which leads to h = n = 0.

Consequently K5 = 0 if and only if k = h = n = 0.

(a3). We calculate K4 = 0 and Coefficient[L2, x
2y7] = 2k3 = 0, i.e. k = 0. Then

calculations yield

Coefficient[K2, x
5y4] = −2n(h−n)2=0

and

Coefficient[K8, x
3y] = 2(4h2 + 14hn+ n2)=0.

Evidently we obtain h = n = 0 (then K2 = K8 = 0) and this completes the proof of the

claim.

Remark 4.1. Since for systems (4.1) the condition k = h = n = 0 is equivalent to K5 = 0

we assume this condition to be fulfilled.

We begin with the examination of the direction x = 0 (U = 1, V = 0). So, considering

(2.17) and Remark 2.1 for systems (4.2) we have:

Eq9 = d, Eq10 = a− cW −W 3.

So in the direction x = 0 we could have three invariant lines (which could coincide) and this

occurs if and only if d = 0. Thus we arrive at the family of systems

ẋ = a + cx+ x3, ẏ = b+ ex+ lx2 + fy + 2mxy (4.3)

for which we calculate
H(X,Z) = Z(X3 + cXZ2 + aZ3). (4.4)

Considering systems (4.3) we calculate

G1/H =lX4 +X3
[
4mY + 2(e− lm)Z)

]
+X2

[
(3f − 4m2)Y Z + (3b− cl − lf−

+−2em)Z2
]
+X

[
− 4fmY Z2 + (−2al − ef − 2bm)Z3

]
+ (cf − f 2−

− 2am)Y Z3 + (bc− ae− bf)Z4 ≡ F1(X, Y, Z),

G2/H =(X3 + cXZ2 + aZ3)
[
2lX3 +

[
X2(6mY + (3e− 2lm)Z

]
+X

[
(3f−

− 4m2)Y Z + (3b− cl − 2em)Z2
]
− 2fmY Z2 + (−al − 2bm)Z3

]
≡

≡ P ∗(X,Z)F2(X, Y, Z),

G3/H =24(lX2 + 2mXY + eXZ + fY Z + bZ2)(X3 + cXZ2 + aZ3)2 ≡
≡ 24Q∗(X, Y, Z) [P ∗(X,Z)]2 .

(4.5)
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It is clear that systems (4.3) are degenerate if and only if the polynomials P (x) andQ(x, y)

have a nonconstant common factor (depending on x) and this implies the existence of such

a common factor (depending on X and Z) of the polynomials P ∗(X,Z) and Q∗(X, Y, Z). So

for non-degenerate systems the condition

R
(0)
X (P ∗(X,Z), Q∗(X, Y, Z)) 6= 0 (4.6)

must hold. We have the next lemma.

Lemma 4.2. For a non-degenerate system (4.3) the polynomial P ∗(X,Z) could not be a

factor of G1/H, i.e. P ∗(X,Z) does not divide F1(X, Y, Z).

Proof. Suppose the contrary that P ∗(X,Z) divides F1(X, Y, Z). Then considering the form

of the polynomial P ∗(X,Z) (which contains the term X3) by Lemma 2.6 the following

conditions are necessary and sufficient: R
(0)
X (F1, P

∗) =R
(1)
X (F1, P

∗) =R
(2)
X (F1, P

∗) = 0. We

calculate R
(2)
X (F1, P

∗) =
[
(3f − 4m2)Y + (3b − 2cl − lf − 2em)

]
Z = 0 and this implies

f = 4m2/3 and b = 2(3cl+3em+2lm2)/9. Then we obtain R
(1)
X (F1, P

∗) = 3−4Z4
[
12m(3c+

4m2)Y + (27al + 18ce − 6clm + 24em2 + 8lm3)Z
]2

= 0 and we consider two cases: m 6= 0

and m = 0.

a) If m 6= 0 then we may assume m = 1 and e = 0 due to the change (x, y, t) →
(mx, y− e/2m, t/m2) and the above condition gives us c = −4/3 and a = −16/27. However

in this case we have R
(0)
X (P ∗, Q∗) = 0, i.e. we get a contradiction with the condition (4.6).

b) Assume now m = 0. Then we obtain

R
(1)
X (F1, P

∗) = (3al + 2ce)2Z6 = 0,

R
(0)
X (F1, P

∗) = (27a2 + 4c3)
[
27a2l3 + 27ae(cl2 − e2) + 2c2l(cl2 + 9e2)

]
Z12/27 = 0,

R
(0)
X (P ∗, Q∗) =

[
27a2l3 + 27ae(cl2 − e2) + 2c2l(cl2 + 9e2)

]
/27 6= 0

and this implies c 6= 0, otherwise the second equality yields a = 0 and then R
(0)
X (P ∗, Q∗) = 0.

So c 6= 0 and the first equation gives e = −3al/(2c) and then we arrive at the contradiction:

R
(0)
X (F1, P

∗) =
l3Z12

216c3
(27a2 + 4c3)3 = 0, R

(0)
X (P ∗, Q∗) =

l3Z6

216c3
(27a2 + 4c3)2 6= 0. This

completes the proof of the lemma.

Now we examine the direction y = 0. The following proposition holds.

Proposition 4.1. For the existence of an invariant straight line of systems (4.3) in the

direction y = 0 it is necessary and sufficient

l = 0, ef − 2bm = 0, f 2 +m2 6= 0. (4.7)

Proof. Indeed, considering the equations (2.17) for a system (4.3) we obtain Eq5 = l, Eq8 =

e− 2mW and Eq10 = b − fW. Clearly, Eq5 = 0 is equivalent to l = 0. On the other hand

in order to have an affine line in the direction y = 0 the condition f 2 +m2 6= 0 is necessary.
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Therefore the condition Res W (Eq8, Eq10) = ef − 2bm = 0 is necessary and sufficient for

the existence of a common solution W = W0 of the equations Eq8 = 0 and Eq10 = 0. This

completes the proof of the proposition.

Now we find out coefficient criteria for a system (4.3) to belong to CSL8.

1) The case m 6= 0, l 6= 0. By Proposition 4.1 we could not have invariant line in the

direction y = 0. So after the transformation (x, y, t) → (mx,−e/2m + ly, t/m2) we can

consider l = m = 1 and e = 0. As a result we arrive at the family of systems

ẋ =a+ cx+ x3 ≡ P (x), ẏ = b+ x2 + fy + 2xy ≡ Q(x, y). (4.8)

Proposition 4.2. Systems (4.8) possess invariant lines of total multiplicity 8 if and only if

a = 0, f = c = −4

9
, b =

4

27
. (4.9)

Proof. First we proof that the conditions (4.9) are sufficient for a system (4.8) to have

invariant lines of total multiplicity eight.

Sufficiency. Assume that (4.9) are satisfied. Then for the corresponding system (4.8)

we calculate H(X, Y, Z) = −3−8X2(3X − 2Z)3Z(3X + 2Z) and hence, we have 8 invariant

straight lines (including the line at infinity).

Necessity. Consider systems (4.8) for which the polynomial H has the form (4.4). The

degree of this polynomial equals four, but should be seven . Therefore we have to find out

the conditions to increase the degree of the polynomial H up to seven, namely we have to

find out additionally a common factor of degree three of the polynomials Gi, i = 1, 2, 3 (see

Lemma 2.4 and Notation 2.2).

Considering (4.5) for systems (4.8) we obtain G1/H|Z=0 = X3(X + 4Y ). Therefore we

conclude that all three polynomials could only have common factors of the form X +α = 0,

which by Remark ?? must be factors of the polynomial P ∗(X,Z). We observe that P ∗(X,Z)

is a common factor of the polynomials G2/H and G3/H and, moreover, in the last one this

factor is of the second degree.

According to Lemma 4.2 the polynomial P ∗(X,Z) could not be a factor of G1/H , i.e. of

the polynomial F1(X, Y, Z). Thus not all the factors of the polynomial P ∗(X,Z) are also

the factors in F1(X, Y, Z). This leads us to the conclusion that the polynomial F2(X, Y, Z)

must have a common factor with P ∗(X,Z), i.e. the condition R
(0)
X (F2, P

∗) = (8 + 27a +

18c)Z3R
(0)
X (P ∗, Q∗) = 0 has to be fulfilled. Due to (4.6) this gives c = −(8+27a)/18 and we

obtain that the polynomial ψ = (3X−2Z) is a common factor of the polynomials F2(X, Y, Z)

and P ∗(X,Z). On the other hand it must be a factor in F1(X, Y, Z). We calculate

R
(0)
X (F1, ψ) = −(8 + 27a+ 18f)Z3(12Y + 9fY + 4Z + 9bZ)/2 = 0,

R
(0)
X (P ∗, Q∗) = (12Y + 9fY + 4Z + 9bZ)Ψ(Y, Z) 6= 0,
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where Ψ(Y, Z) is a polynomial. So the above conditions give us the equality a = −2(4 +

9f)/27 and then we obtain f = c. In this case calculations yield

G1/H =
1

27
(3X − 2Z)

[
9X3 + 12X2(3Y − Z) + 3(9c− 4)XY Z+

+ (27b− 18c− 8)XZ2 − 2(4 + 9c)Y Z2
]
≡ 1

27
(3X − 2Z)F ′

1(X, Y, Z),

G2/H =
1

729
(3X − 2Z)2

[
18X2 + 54XY − 6XZ + 27cY Z + (27b− 9c− 4)Z2

]
×

× (9X2 + 6XZ + 4Z2 + 9cZ2) ≡ 1

729
(3X − 2Z)2F ′

2(X, Y, Z)P̃ (X, Y, Z)

and we obtain

R
(0)
X

(
F ′
1, F̃

′
2

)
=− 729Z2

[
36Y 2 − 3(4 + 9c)Y Z + (4− 27b+ 9c)Z2

]
Γ(Y, Z),

R
(0)
X

(
F ′
1, P̃

)
=729(4 + 9c)Z4Γ(Y, Z),

R
(0)
X (P ∗, Q∗) =

1

729
Z3(12Y + 9cY + 4Z + 9bZ)Γ(Y, Z),

where Γ(Y, Z) is a polynomial. Since R
(0)
X

(
F ′
1, F̃

′
2

)
6= 0 due to R

(0)
X (P ∗, Q∗) 6= 0, we deduce

that for the existence of a common factor of degree 3 of the polynomials G1/H and G2/H

the condition R
(0)
X

(
F ′
1, P̃

)
= 0 is necessary, i.e. c = −4/9 and we get c = f = −4/9 and

a = 0. In this case we obtain

G1/H =
1

9
X(3X − 2Z)(3X2 + 12XY − 4XZ − 8Y Z + 9bZ2) ≡ 1

9
X(3X − 2Z)F ′′

1 ,

P ∗(X,Z) = X(3X − 2Z)(3X + 2Z)/9

and since X could not be a factor of F ′′
1 (X, Y, Z) and, moreover, as it was proved earlier

the polynomial P ∗(X,Z) could not divide G1/H , we deduce that the factor of F ′′
1 (X, Y, Z)

must be 3X − 2Z. So the condition R
(0)
X (F ′′

1 , 3X − 2Z) = 3(27b− 4)Z2 = 0 is necessary and

this implies b = 4/27, i.e. we arrive at the conditions (4.9) and this completes the proof of

Proposition 4.2.

Considering the conditions (4.9) we obtain the family of systems which after the suitable

transformation (x, y, t) → (2x/3, y + 1/3, 9t/4) becomes

ẋ =(x− 1)x(1 + x), ẏ = x− y + x2 + 3xy (4.10)

with H(X, Y, Z) = −X2(X − Z)3Z(X + Z). We observe that these systems possess 3 finite

singularities: (0, 0), (1,−1) and (−1, 0). On the other hand considering Lemma 2.1 for

systems (4.10) we calculate: µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = 8x6 6= 0. So by

Lemma 2.1 all other 6 finite singular points have gone to infinity and collapsed with the

singular point [0, 1, 0] located on the “end" of the invariant line x = 0.

Thus this system possesses 3 real distinct invariant affine lines (besides the double infinite

line) and namely: one triple, one double and one simple, all real and distinct. Therefore we

obtain the configuration Config. 8.23 (Figure 4.1). We have proved the proposition.
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2) The case m 6= 0, l = 0. As it was mentioned earlier we may assume m = 1 and e = 0

due to the change (x, y, t) → (mx, y − e/2m, t/m2). So we get the family of systems

ẋ =a+ cx+ x3, ẏ = b+ fy + 2xy (4.11)

which by Proposition 4.1 possess invariant line in the direction y = 0 if and only if b = 0.

a) The subcase b 6= 0. We claim that in this case the above systems could not have

invariant lines of total multiplicity 8. Indeed, due to the rescaling y → by we can consider

b = 1 and we obtain that for systems (4.11) the polynomial H of the form (4.4) has the

degree 4, but should be 7. Moreover we have G1/H|Z=0 = 4X3Y and hence the polynomials

Gk/H, k = 1, 2, 3 (see their values (4.5) for m = b = 1 and l = e = 0) could have only the

common factors of the form X+αZ. Considering Remark ?? and Lemma 4.2 we arrive again

at the conclusion that the polynomial F2(X, Y, Z) must have a common factor with P ∗(X,Z).

We determine that for systems (4.11) F2(X, Y, Z) = (3X − 2Z)P ∗(X,Z)Q∗(X, Y, Z) and

hence due to the condition (4.6) and according to Lemma 4.2 (which says that P ∗(X,Z)

could not divide G1/H) we conclude that 3X−2Z must be a double factor in G1/H . However

we obtain R
(1)
X ((3X − 2Z)2,G1/H) = 162Z3 6= 0, i.e. for systems (4.11) we could not increase

the degree of H(X, Y, Z) up to 7 and this completes the proof of our claim.

b) The subcase b = 0. We obtain the family of systems

ẋ = a+ cx+ x3 ≡ P (x), ẏ = y(f + 2x) ≡ yQ̃(x). (4.12)

Proposition 4.3. Systems (4.12) possess invariant lines of total multiplicity 8 if and only

if one of the following sets of conditions holds:

f = c, a = −2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0; (4.13)

f =
−2(3c+ 2)

3
, a =

2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0. (4.14)

Proof . Sufficiency. Assume that (4.13)
(
respectively (4.14)

)
are satisfied. Then consider-

ing systems (4.12) we calculate H(X, Y, Z) = 3−8Y (3X − 2Z)3Z(9X2 +6XZ +4Z2 +9cZ2)
(
respectively H(X, Y, Z) = 3−92Y Z(3X + 2Z)(9X2 − 6XZ + 4Z2 + 9cZ2)2

)
and hence,

we have 8 invariant straight lines, including the line at infinity. Moreover for the corre-

sponding systems we calculate R
(0)
X (G2/H,G1/H) = 3112(4 + 3c)2(4 + 9c)Z3 (respectively

R
(0)
X (G2/H,G1/H) = −315(4 + 3c)2(4 + 9c)Z3) and this leads to the following condition

(4 + 3c)(4 + 9c) 6= 0 which does not allow us to have 9 invariant lines.

Necessity. For systems (4.12) we have H(X, Y, Z) = Y Z(X3 + cXZ2 + aZ3). Thus

according to Lemma 2.4 we conclude that we need additionally a non-constant factor of the

second degree of H. For systems (4.12) we calculate (see Notation 2.2)

G1/H =4X3 − (4− 3f)X2Z − 4fXZ2 − (2a− cf + f 2)Z3,

G2/H =(3X − 2Z)(2X + fZ)(X3 + cXZ2 + aZ3) ≡ (3X − 2Z)Q̃∗(X,Z)P ∗(X,Z),

G3/H =24(2X + fZ)(X3 + cXZ2 + aZ3)2 ≡ Q̃∗(X,Z) [P ∗(X,Z)]2 .
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We observe that G1/H|Z=0 = 4X3 and we conclude that all three polynomials could not

have Z as a common factor. On the other hand these polynomials do not depend on Y . So

common factors of the above polynomials could be only factors of the form X + αZ, which

by Remark 3.4 must be also factors in P ∗(X,Z). So considering this remark and Lemma 4.2

we arrive at the two possibilities: the linear form 3X − 2Z either is a common factor of the

polynomials G1/H and P ∗(X,Z) or it is not.

i) Assume first that 3X − 2Z is a common factor of G1/H and P ∗(X,Z). Then the

following condition must be satisfied: R
(0)
X (3X − 2Z, P ∗) = (8 + 27a+ 18c)Z3 = 0 and this

implies a = −2(4 + 9c)/27. Herein we have R
(0)
X (3X − 2Z,G1/H, ) = 9(c− f)(4 + 3f)Z3 =

0, R
(0)
X (P ∗(X,Z), Q∗(X,Z)) = (4 + 3f)(16 + 36c − 12f + 9f 2)Z3/27 6= 0 and hence the

condition f = c must hold, which leads to the first two conditions (4.13).

ii) Suppose now that 3X − 2Z is not a common factor of G1/H and P ∗(X,Z). Then

clearly these polynomials must have a common factor of the second degree. So the conditions

R
(0)
X (P ∗,G1/H) = (8a − 4cf − f 3)Φ1(a, c, f)Z

9 = 0, R
(1)
X (P ∗,G1/H) = Φ2(a, c, f)

4 = 0 and

R
(0)
X (P ∗, Q∗) = (4cf + f 3 − 8a)Z3 6= 0 must hold, where Φ1 = 8a + 27a2 + 4c2 + 4c3 +

18af − f 3 − cf(4 + 3f), Φ2 = 16c2 + 2c(8 + 6f + 3f 2) + 3(6af − 8a + 4f 2 + f 3).

Due to R
(0)
X (P ∗, Q∗) 6= 0 we must have Φ1 = Φ2 = 0 and we calculate R

(0)
a (Φ1,Φ1) =

3(4 + 6c+ 3f)2(4c+ 3f 2)(16 + 16c+ 3f 2) = 0.

We claim that the condition 4 + 6c + 3f = 0 has to be satisfied for non-degenerate

systems (4.12). Indeed assuming c = −3f 2/4 (respectively c = −(16 + 3f 2)/16)) we get

that 4a + f 3 (respectively 32a + 16f − f 3) is a common factor of Φ1 and Φ2, however

in this case the polynomial R
(0)
X (P ∗, Q∗) gives the value −2(4a + f 3)Z3 6= 0 (respectively

−(32a+ 16f − f 3)Z3/4 6= 0).

So 4 + 6c + 3f = 0, i.e f = −2(2 + 3c)/3 and in this case the common factor of Φ1 and

Φ2 is (8 − 27a + 18c). Hence the condition Φ1 = Φ2 = 0 implies a = 2(4 + 9c)/27 and this

leads to the conditions (4.14). So the proposition is proven.

Next we construct the respective canonical forms of systems (4.12) when either the con-

ditions (4.13) or (4.14) of Proposition 4.3 are satisfied.

α) Conditions (4.13). We observe that in this case due to a translation and an additional

notation, namely r = (4 + 3c)/3, we arrive at the family of systems

ẋ =x(r + 2x+ x2), ẏ = (r + 2x)y (4.15)

for which we have H(X, Y, Z) = X3Y Z(X2+2XZ+rZ2). So the polynomial H(X, Y, Z) has

the degree 7 and by Lemma 2.4 the above systems possess invariant lines of total multiplicity

8 (including the line at infinity, which is double). Now we need an additional condition under

the parameter r which conserves the degree of the polynomial H(X, Y, Z). For systems (4.15)
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we calculate R
(0)
X (G3/H,G1/H) = 48r3(8 − 9r)2Z5 6= 0. Consequently we get the condition

r(8 − 9r) 6= 0 which for systems (4.12) is equivalent to (4 + 3c)(4 + 9c) 6= 0 (see the last

condition from (4.13)).

Besides the infinite line Z = 0 (which is double) systems (4.15) possess six affine invariant

lines, namely: L1,2,3 = x, L4 = y, L5,6 = r + 2x+ x2.

We detect that the lines L5,6 = 0 are either complex or real distinct or real coinciding,

depending on the sign of the discriminant of the polynomial x2 + 2x + r, which equals

∆ = 4(1 − r). We also observe that systems (4.15) possess 3 finite singularities: (0, 0) and

(−1±
√
1− r, 0) which are located on the invariant line y = 0. On the other hand considering

Lemma 2.1 for systems (4.15) we calculate: µ0 = . . . = µ5 = 0, µ6 = r3x6 6= 0.

So by Lemma 2.1 all other 6 finite singular points have gone to infinity and collapsed

with the singular point [0, 1, 0] located on the “end" of the invariant line x = 0. Moreover

by this lemma systems (4.15) could be degenerate only if r = 0, and we observe that in this

case the system indeed is degenerate.

We consider the three possibilities given by the value of the discriminant ∆.

• The possibility ∆ > 0. Then 1− r > 0, i.e. r < 1. We set the notation 1− r = u2 (i.e.

r = 1− u2) which leads to the systems

ẋ = (1− u+ x)x(1 + u+ x), ẏ = (1− u2 + 2x)y

possessing one triple and three simple distinct real invariant lines. Comparing the line

x = ±u − 1 with x = 0 we conclude that if |u| > 1 (i.e. r < 0) then in the direction x = 0

the triple invariant line is situated in the domain between two simple ones, whereas in the

case |u| < 1 (i.e. 0 < r < 1) the triple line is located outside this domain. As a result we get

Config. 8.24 in the case of r < 0 and Config. 8.25 in the case of 0 < r < 1.

• The possibility ∆ = 0. Then r = 1 and we obtain the configuration Config. 8.26.

• The possibility ∆ < 0. In this case r > 1 and we get systems possessing two complex,

one simple and one triple real all distinct invariant lines and this leads to Config. 8.27.

β) Conditions (4.14). In this case after the translation of the origin of coordinates to

the singular point (−2/3,−e/2) and setting a new parameter r = (4 + 3c)/3 we obtain the

systems

ẋ =(r − 2x+ x2)x, ẏ = 2(x− r)y. (4.16)

For these systems we have H(X, Y, Z) = 2XY Z(X2 − 2XZ + rZ2)2. Besides the double

infinite line systems (4.16) possess 4 affine invariant lines: L1 = x, L2 = y, L3,4 = x2−2x+r,

where the lines L3,4 = 0 are double ones. We denote by ∆ = 4(1 − r) the discriminant of

the polynomial x2 − 2x+ r and we observe that for ∆ = 0 (i.e. r = 1) the systems become

degenerate.
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We also observe that systems (4.16) possess 3 finite singularities: (0, 0) and (1±
√
1− r, 0)

which are located on the invariant line y = 0. On the other hand considering Lemma 2.1

for systems (4.15) we calculate: µ0 = . . . = µ5 = 0, µ6 = 8(1 − r)r2x6. If r(r − 1) 6= 0

by Lemma 2.1 all other 6 finite singular points have gone to infinity and collapsed with the

singular point [0, 1, 0] located on the “end" of the invariant line x = 0. Moreover by this

lemma systems (4.16) became degenerate only if either r = 0 or r = 1 and in both cases we

get degenerate systems.

Thus we have the following two possibilities:

• The possibility ∆ > 0. Then r < 1 and denoting r = 1− v2 we obtain the systems

ẋ =(1 + v − x)x(1 − v − x), ẏ = 2(v2 − 1 + x)y (4.17)

with H(X, Y, Z) = 2XY Z(X −Z − vZ)2(X −Z + vZ)2. Examining the lines x = 1± v and

x = 0 we conclude that if |v| > 1 then we get a simple invariant line between two double

real lines in the directions x = 0 and consequently we arrive at Config. 8.28. In the case of

|v| < 1 these two double real lines are located on the right–hand side of the simple invariant

line. So we get Config. 8.29.

• The possibility ∆ < 0. In this case r > 1 and systems (4.16) possess 2 real simple, 2

complex double invariant lines, all distinct ⇒ Config. 8.30.

3) The case m = 0, l 6= 0. We claim that in this case systems (4.3) could not possess

invariant lines of total multiplicity 8.

Indeed, since l 6= 0 by Proposition 4.1 we could not have a line in the direction y = 0.

Via the rescaling (x → x, y → ly, t → t) we can consider l = 1 and therefore we arrive at

the systems

ẋ =a + cx+ x3, ẏ = b+ ex+ x2 + fy (4.18)

for which the polynomial H has the form (4.4) and Gi/H (i = 1, 2, 3) are the polynomials

(4.5) for the particular case m = 0 and l = 1. We observe that G1/H|Z=0 = X4 and hence

Z could not be a common factor of these polynomials. Since we have no invariant lines in

the direction y = 0, in what follows we shall examine only the conditions given by resul-

tants with respect to X. According to (4.5) and condition (4.6) the polynomial F1(X, Y, Z)

must have a common factor of degree 3 with
[
P ∗(X, Y )]2. For systems (4.18) we calculate

Coefficient[R
(2)
X

(
F1,

[
P ∗]2

)
, Y 4Z4] = 81f 4. Clearly the condition f = 0 is necessarily to get a

common factor of degree 3. Then we have R
(0)
X

(
F1,

[
P ∗]2

)
=(27a2+4c3)2[Φ(a, b, c, e)]2Z24=0

and R
(0)
X (Q∗, P ∗) = Φ(a, b, c, e)Z6 6= 0 where Φ(a, b, c, e) is a polynomial. So the above con-

ditions imply 27a2 + 4c3 = 0. First we examine the possibility a = 0 and we get c = 0.

Then we calculate R
(0)
X (Q∗, P ∗) = b3Z6 6= 0, R

(2)
X

(
F1,

[
P ∗]2

)
= 81b4Z8 = 0 and we ar-

rive at the contradictory condition (0 6= b = 0). So it remains to examine the case when

a 6= 0. Since in this case c 6= 0 we denote a = 2a1c and we obtain c = −27a21. Then we
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calculate R
(0)
X (Q∗, P ∗) = (9a21 + b − 3a1e)

2(36a21 + b + 6a1e)Z
6 6= 0 and R

(1)
X

(
F1,

[
P ∗]2

)
=

23310a51(9a
2
1 + b − 3a1e)

3(36a21 + b + 6a1e)
2Z15 = 0 and we also get a contradiction which

completes the proof of our claim.

4) The case m = 0, l = 0. We split our examination in two subcases: e 6= 0 and e = 0.

a) The subcase e 6= 0. Then due to the rescaling (x, y, t) → (ex, y, t/e2) we can consider

e = 1 and therefore we arrive at the systems

ẋ = a + cx+ x3, ẏ = b+ x+ fy. (4.19)

Proposition 4.4. Systems (4.19) possess invariant lines of total multiplicity 8 if and only

if the following conditions hold:

f = −2c, a = 0. (4.20)

Proof. Sufficiency. Assume that (4.20) is satisfied. Then considering systems (4.19) we

calculate H(X, Y, Z) = XZ2(X2 + cZ2)2 and hence, we have invariant straight lines of total

multiplicity 8 (including the line at infinity). On the other hand we could not have 9 lines,

because R
(0)
X (G2/H,G1/H) = −27(2cY − bZ)3 = 0 if and only if b = c = 0. However in this

case we get a degenerate system.

Necessity. For systems (4.19) we have H(X, Y, Z) = Z2(X3 + cXZ2 + aZ3) and we

observe that the degree of the polynomial H is 5. So we have to increase the degree of H up

to 7. In other words we have to determine the conditions under which the three polynomials

G1/H , G2/H and G3/H have a common factor of degree 2. For these systems we calculate

G1/H =2X3 + 3fX2Y + 3bX2Z − fXZ2 + f(c− f)Y Z2 + (bc− a− bf)Z3,

G2/H =3X(X + fY + bZ)(X3 + cXZ2 + aZ3) ≡ 3XQ∗P ∗,

G3/H =24(X + fY + bZ)(X3 + cXZ2 + aZ3)2 ≡ 24Q∗[P ∗]2.

We observe that G1/H|Z=0 = 2X3+3fX2Y and hence Z could not be a common factor of

these polynomials. For systems (4.19) we get R
(0)
Y (G3/H,G1/H) = −24f(X3+cXZ2+aZ3)3

which vanishes if and only if f = 0 and since m = 0, considering Proposition 4.1, we conclude

that in this case we could not have a line in the direction y = 0. Thus all three mentioned

polynomials could only have common factors of the form X + α = 0, which by Remark ??

must be factors of the polynomial P ∗(X,Z). So considering this remark and Lemma 4.2

we arrive at the two possibilities: the linear form X either is not a common factor of the

polynomials G1/H = F1(X, Y, Z) and P ∗(X,Z) (i.e. a 6= 0) or it is (i.e. a = 0).

i) Assume first that X is not a factor of P ∗(X,Z), i.e. we have to consider a 6= 0.

According to (4.5) and condition (4.6) the polynomial F1(X, Y, Z) must have a common

factor of degree 2 with P ∗(X, Y ). Then considering systems (4.19) the following conditions

must be satisfied:

R
(0)
X (F1, P

∗) = [27a2 + (c− f)(2c+ f)2]Z6Ψ(Y, Z) = 0, R
(0)
X (Q∗, P ∗) = Ψ(Y, Z) 6= 0
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where Ψ(Y, Z) is a polynomial. So the condition 27a2 + (c− f)(2c+ f)2 = 0 is necessary for

the existence of a common factor of the polynomials F1 and P ∗. Then (c − f)(2c+ f) 6= 0

(due to a 6= 0) and denoting u = 2c + f 6= 0 (i.e. f = u − 2c) we obtain c = u/3 − 9a2/u2

and f = u− 2c = (54a2 + u3)/(3u2). In this case we obtain

F1=(uX+3aZ)F ∗
1 (X, Y, Z)/(3u

4), P ∗=(uX+3aZ)(3uX2−9aXZ+u2Z2)/(3u2)

where F ∗
1 (X, Y, Z) is a polynomial of the second degree. Assume first that uX + 3aZ is a

factor in F ∗
1 . In this case it must be a factor in 3uX2 − 9aXZ + u2Z2 and therefore the

following condition must hold: R
(0)
X (uX+3aZ, 3uX2−9aXZ+u2Z2) = u(54a2+u3)Z2 = 0.

Since u 6= 0 we can set a = a1u and thus, we get u = −54a21. Then R
(0)
X (F ∗

1 , uX+3aZ) =

18a1(3a1−b)Z2=0, R
(0)
X (P ∗, Q∗)=(b−3a1)2(6a1+b)Z3 6=0 and we arrive at the contradiction.

Now we consider that uX + 3aZ is not a factor in F ∗
1 . Then the polynomials F ∗

1 and

3uX2 − 9aXZ + u2Z2 must have a common factor, i.e. the following conditions hold:

R
(0)
X (F ∗

1 , 3uX
2 − 9aXZ + u2Z2) = 27u5Z2F ∗∗

1 (Y, Z) = 0, R
(0)
X (P ∗, Q∗) = [(3a − bu)3uZ −

(54a2 + u3)Y ]F ∗∗
1 (Y, Z)/(27u6) 6= 0 where F ∗∗

1 (Y, Z) is a polynomial of the second degree.

Since c 6= 0 in this case we also arrive at the contradictory condition.

ii) Assume now that X is a common factor of P ∗(X,Z), i.e. we have the condition

a = 0 which implies G2/H = 3X2(X2 + cZ2)Q∗. Therefore either X2 or X2 + cZ2 must be

a factor of F1. In order to have X2 as a common factor of the mentioned polynomial the

condition R
(0)
X (X2, F1) = R

(1)
X (X2, F1) = 0 must be satisfied. We calculate R

(1)
X (X2, F1) =

−fZ2 = 0, R
(0)
X (X2, F1) = (c− f)2Z4(fY + bZ)2 = 0 and R

(0)
X (P ∗, Q∗) |{c=f=0}= −b(b2 +

c)Z3. It is evident that in order to have X2 as a factor of the polynomial F1 it is necessary

the conditions f = c = 0 and b 6= 0 to be satisfied, i.e. we get a particular case of the

conditions (4.20). Since b 6= 0, due to the rescaling {x → bx, y → y/b, t → t/b2} we can

consider b = 1. So we arrive at the system

ẋ =x3, ẏ = 1 + x (4.21)

for which H(X,Z) = X5Z2. This system possesses the affine invariant line of the multiplicity

5 in the direction x = 0 and the infinite invariant line is of the multiplicity 3. Considering

Lemma 2.1 for these systems we get µ0 = . . . = µ8 = 0, µ9 = 9x9 6= 0. Therefore by

Lemma 2.1 all 9 finite singular points have gone to infinity and collapsed with the singular

point [0, 1, 0] located on the “end" of the invariant line x = 0. Consequently we get the

configuration Config. 8.33.

Now we assume that X2 + cZ2 is a factor of the polynomial F1, i.e. the condition

R
(0)
X

(
X2 + cZ2, F1 |{a=0}

)
= R

(1)
X

(
X2 + cZ2, F1 |{a=0}

)
= 0 must hold. We calculate

R
(1)
X

(
X2 + cZ2, F1 |{a=0}

)
= −(2c + f)Z2 = 0 from which it results f = −2c 6= 0 and we

obtain the conditions (4.20). Since c 6= 0 we may assume b = 0 (applying the translation

of the origin of coordinates at the point x0 = 0, y0 = b/(2c)). Therefore we arrive at the
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non-degenerate systems depending on the parameter c = {−1, 1} (applying a rescaling)

ẋ =x(c+ x2), ẏ = x− 2cy. (4.22)

For the above systems we have H(X,Z) = XZ2(X2 + cZ2)2. Thus beside the triple infinite

invariant line systems (4.22) possess 5 invariant affine lines. More precisely, we have one

simple and two double, all real and distinct if c = −1 and one simple real and two double

complex if c = 1. On the other hand we observe that systems (4.22) possess 3 finite sin-

gularities: (0, 0) and
(
±

√
−c,∓1/(2

√
−c)

)
. Considering Lemma 2.1 for these systems we

calculate: µ0 = . . . = µ5 = 0, µ6 = −8c3x6 6= 0. Therefore by Lemma 2.1 all other 6 finite

singular points have gone to infinity and collapsed with the singular point [0, 1, 0] located on

the “end" of the invariant line x = 0. Thus we get Config. 8.31 if c = −1 and Config. 8.32

if c = 1. The proposition is proven.

b) The subcase e = 0. Then we get the family of systems

ẋ =a + cx+ x3, ẏ = b+ fy (4.23)

for which H(a,X, Y Z) = Z2(fY +bZ)(X3+cXZ2+aZ3). So the degree ofH is six but should

be seven. Therefore we need an additional common factor of Gi, i = 1, 2, 3. We calculate

G1/H = 3X2 + cZ2 − fZ2,G2/H = 3X(X3 + cXZ2 + aZ3),G3/H = 24(X3 + cXZ2 + aZ3)2

and we observe that these polynomials could not have as a common factor neither Z nor Y.

So we examine their resultants with respect to X. We calculate

R
(0)
X (G1/H, P

∗) =[27a2 + (c− f)(2c+ f)2]Z6 = 0, R
(0)
X (P ∗, Q∗) = (fY + bZ)3 6= 0,

which implies 27a2 + (c − f)(2c + f)2 = 0. We observe that (c− f)(2c+ f) 6= 0, otherwise

we get a = 0 and this leads to systems with invariant lines of total multiplicity 9.

Denoting u = 2c+ f 6= 0 (i.e. f = u− 2c) we obtain c = u/3− 9a2/u2 and f = u− 2c =

(54a2 + u3)/(3u2). So we get the family of systems

ẋ =
1

3u2
(3a+ ux)(u2 − 9ax+ 3ux2), ẏ = b+

54a2 + u3

3u2
y. (4.24)

Without loss of generality we may assume b 6= 0, because in the case b = 0 we must have

54a2 + u3 6= 0 (otherwise we get degenerate systems) and then via a translation y → y + y0

(with y0 6= 0) we obtain b 6= 0. So applying the translation of the origin of coordinates

at the point (−3a/u, 0), after the suitable rescaling {x → −(9ax)/u, y → bu2y/(81a2), t →
tu2/(81a2)} systems (4.24) become

ẋ =rx+ x2 + x3, ẏ = 1 + ry, (4.25)

where r = (54a2 + u3)/(243a2). For these systems we calculate H = X2(rY + Z)Z2(X2 +

XZ + rZ2) and R
(0)
X (G2/H,G1/H) = 3(9r − 2)Z3 6= 0 and this leads to the condition

123



9r − 2 6= 0 which guarantee the non-existence of nine invariant lines. We observe that the

infinite invariant line Z=0 is triple if r 6= 0 and it has multiplicity four in the case r = 0.

i) The possibility r 6= 0. In this case the geometry of the configuration depends on the

sign of the discriminant ∆ of the polynomial x2 + x + r, i.e. ∆ = 1 − 4r. Accordingly we

conclude that besides the triple infinite invariant line the systems (4.24) possess 5 affine lines

which are as follows:

∆ > 0 (i.e. 0 6= r < 1/4) ⇒ 3 simple, 1 double, all real and distinct,

∆ = 0 (i.e. r = 1/4) ⇒ 1 simple, 2 double, all real and distinct,

∆ < 0 (i.e. r > 1/4) ⇒ 2 real simple, 1 complex double.

On the other hand considering Lemma 2.1 we calculate: µ0 = . . . = µ5 = 0, µ6 =

r3x6, µ7 = r2x6(3x − ry), µ8 = rx6(3x2 − 2rxy + r3y2), µ9 = 9x7(x2 − rxy + r3y2). Since

r 6= 0 by Lemma 2.1 only 6 finite singular points have gone to infinity and collapsed with

the singular point [0, 1, 0] located on the “end" of the invariant line x = 0. Other three finite

points are (0,−1/r) and
(
(−1±

√
1− 4r)/2,−1/r

)
(located on the invariant line ry+1 = 0).

Moreover, in the case of ∆ > 0, denoting 1− 4r = v2 (i.e. r = (1− v2)/4 ) we obtain the

systems

ẋ =(1− v + 2x)x(1 + v + 2x)/4, ẏ = 1 + (1− v2)y/4.

We compare the lines x = (−1 ± v)/2 with x = 0 and conclude that if |v| > 1 , i.e. r < 0

(respectively 0 < |v| < 1/4, i.e. 0 < r < 1/4) then the double real invariant line is located

(respectively is not located) between two simple ones and we arrive at the configuration

Config. 8.34 (respectively Config. 8.35.).

Additionally, we have the configuration Config. 8.36 in the case of ∆ = 0 ( i.e. r = 1/4)

and Config. 8.37 in the case of ∆ < 0 ( i.e. r > 1/4).

ii) The possibility r = 0. In this case we get the system

ẋ = x2(x+ 1), ẏ = 1 (4.26)

with H(X,Z) = X3Z3(X+Z). Therefore besides the infinite line of the multiplicity four this

system possesses 2 distinct affine invariant lines (one of the multiplicity 3 and one simple),

and namely: L1,2,3 = x, L4 = x + 1. Since in this case we obtain µi = 0 (i = 0, 1, . . . , 8)

and µ9 = 9x9 6= 0, by Lemma 2.1 all 9 finite singular points have gone to infinity and

collapsed with the the same singular point [0, 1, 0]. As a result we get the configuration

Config. 8.38. Thus considering the above results we arrive at the following proposition.

Proposition 4.5. The systems (4.23) possess invariant lines of total multiplicity eight if

and only if

27a2 + (c− f)(2c+ f)2 = 0, a 6= 0. (4.27)
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4.1.2. Systems with cubic homogeneous parts (x3, 3x2y)

Considering the homogeneities (x3, 3x2y) due to a translation we may assume g = l = 0 for

cubic systems (4.1) and we arrive at the family of systems

ẋ = a+ cx+ dy + 2hxy + ky2 + x3, ẏ = b+ ex+ fy + 2mxy + ny2 + 3x2y (4.28)

with C3 = −2x3y. Taking into account Remark 3.1 for these systems we calculate L1 =

20736x2
[
(2h+n)x+ky

]
and thus, the condition L1 = 0 is equivalent to n = −2h and k = 0.

Then we have K1 = 0 and L2 = 20736x[(21d− 8hm) + 48h2y] = 0 which implies h = d = 0.

So for n = k = h = d = 0 we get the following family of systems:

ẋ = a+ cx+ x3 ≡ P (x), ẏ = b+ ex+ fy + 2mxy + 3x2y ≡ Q(x, y) (4.29)

for which we calculate

H(X, Y, Z) = X3 + cXZ2 + aZ3, G1/H = F1(X, Y, Z),

G2/H = F2(X, Y, Z)(X
3 + cXZ2 + aZ3) = F2(X, Y, Z)P

∗(X,Z),

G3/H=−48Q∗(X, Y, Z)[P ∗(X,Z)]2,

(4.30)

where F1(X, Y, Z), F2(X, Y, Z) are homogeneous polynomials in X, Y and Z of the degree

five and four, respectively. It is clear that these systems are degenerate if and only if the

polynomials P (x) and Q(x, y) have a non-constant common factor (depending on x), i.e. the

following condition must hold:

Φ(y) ≡ R(0)
x (P (x), Q(x, y)) 6= 0. (4.31)

Remark 4.2. Systems (4.29) could not have more then one invariant line in the direction

y = 0. This follows directly form Remark 3.4 and the fact that Q(x, y) in these systems has

degree one with respect to y.

Systems (4.29) possess invariant lines of total multiplicity 4, including the infinite one ,

but we need 8 invariant lines (considered with their multiplicities), i.e. additionally we have

to obtain a common factor of fourth degree of the polynomials Gi/H, i = 1, 2, 3. In order to

reach this situation we examine the directions x = 0 and y = 0.

Since in the direction x = 0 we already have 3 invariant lines x3 + cx + a = 0 (which

could coincide), we consider the equations (2.17) only for the direction y = 0. Considering

systems (4.29) and Remark 2.1 we have Eq5 = −3W, Eq8 = e− 2mW and Eq10 = b− fW.

Evidently that these equations could have only one common solution (W0 = 0) and for this

it is necessary and sufficient e = b = 0. So in what follows we examine two cases: e2+ b2 = 0

and e2 + b2 6= 0.

1) The case e2 + b2 = 0. Then we get the family of systems

ẋ = a + cx+ x3, ẏ = (f + 2mx+ 3x2)y ≡ Q̃(x)y (4.32)
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for which we calculate

H(X, Y, Z) = Y (X3 + cXZ2 + aZ3), G1/H = F̃1(X,Z),

G2/H = F̃2(X,Z)P
∗(X,Z), G3/H = −48Q̃∗(X,Z)[P ∗(X,Z)]2.

The polynomial H is of degree 4 and thus we need to increase its degree up to 7. In order to

reach this situation we have to obtain a common factor of degree 3 of the above polynomials.

By Remark 4.2 systems (4.32) have only one invariant line in the direction y = 0. Moreover

since G1/H |(Z=0)= −6X4 we also could not have Z as a common factor. Therefore all

three polynomials could have only factors of the form X + α, which must be factors of the

polynomial P ∗(X,Z) (see Remark 3.4).

Thus, in order to get a common factor of the third degree of the mentioned polynomials,

the following condition must hold: R
(0)
X ([P ∗]2, F̃1) = R

(1)
X ([P ∗]2, F̃1) = R

(2)
X ([P ∗]2, F̃1) = 0.

Considering systems (4.32) we calculate R
(2)
X ([P ∗]2, F̃1) = [Ψ(a, c, f,m)]2Z8 = 0 where

Ψ(a, c, f,m) = 3(c− f)(3c− f)− 36am+ 8(5c− 3f)m2 + 16m4.

a) Assume first m = 0. Then the last condition is equivalent to (3c− f)(c− f) = 0, i.e.

we need to examine two cases: f = 3c and f = c.

Assuming f = 3c we calculate R
(0)
X ([P ∗]2, F̃1) = 46656a4c6Y 6Z24 = 0 and and considering

(4.31) we have Φ = R
(0)
x (P (x), Q̃(x)) = 27a2 6= 0. Thus we arrive at the condition c = 0

which implies f = 0 and so we obtain the systems

ẋ =a+ x3, ẏ = 3x2y. (4.33)

We remark that this family of systems is a subfamily of (4.34) bellow and we will examine

it together with the family of systems (4.34).

Now we consider f = c 6= 0 which implies Φ = (27a2 + 4c3) 6= 0. In this case we obtain

R
(0)
X ([P ∗]2, F̃1) = R

(1)
X ([P ∗]2, F̃1) = R

(2)
X ([P ∗]2, F̃1) = 0 and R

(3)
X ([P ∗]2, F̃1) = −216aZ3 6= 0

(i.e. the condition a 6= 0 is necessary, otherwise we get invariant lines of the total multiplicity

9). As a result we arrive at the family of systems

ẋ = a+ cx+ x3, ẏ = (c+ 3x2)y (4.34)

for which H(X, Y, Z) = 3Y (X3 + cXZ2 + aZ3)2, i.e. these systems possess invariant line of

total multiplicity 8.

We observe that systems (4.33) belong to this family for c = 0. So we allow the parameter

c to be zero in order to include (4.33) in (4.34). It is clear that the polynomial a+cx+x3 has

at least one real solution, say x0. Therefore due to the translation of the origin of coordinates

to the singular point (x0, 0) systems (4.34) become of the form

ẋ = x(e + gx+ x2), ẏ = (e + 2gx+ 3x2)y (4.35)
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where e = c+3x20 and g = 3x0 and we calculateH(X, Y, Z) = X2Y (X2+gXZ+eZ2)2. On the

other hand considering systems (4.35) we calculate R
(0)
X (G2/H,G1/H) = 24g(9e−2g2)Z3 and

therefore the condition g(9e− 2g2) 6= 0 guaranties us to have no 9 invariant lines considered

with their multiplicities. Taking into account that g 6= 0 we can set g = 1 due to the rescaling

(x, y, t) 7→ (gx, y, t/g2) and we obtain

ẋ = x(r + x+ x2), ẏ = (r + 2x+ 3x2)y. (4.36)

We also observe that systems (4.36) possess 3 finite singularities: (0, 0) and
(−1±

√
1−4r

2
, 0
)

which are located on the invariant line y = 0. On the other hand considering Lemma 2.1

for these systems we calculate: µ0 = . . . = µ5 = 0, µ6 = r2(4r − 1)x6. If r(4r − 1) 6= 0

by Lemma 2.1 all other 6 finite singular points have gone to infinity and collapsed with the

singular point [0, 1, 0] located on the “end" of the invariant line x = 0. Moreover by Lemma

2.1 systems (4.36) become degenerate only if either r = 0 or r = 1/4 and in both cases we

indeed get degenerate systems.

Thus, systems (4.35) possess 7 affine invariant lines and the type of some of these lines

depends on the polynomial 1 − 4r =Discriminant[x2 + x + r, x]. Therefore we have the

following two possibilities:

• The possibility 1− 4r > 0. Then we denote 1− 4r = u2 6= 0
(
i.e. r = (1 − u2)/4 6= 0

)

and considering (4.35) we get the systems

ẋ = x(1 + 2x− u)(1 + 2x+ u)/4, ẏ = (1− u2 + 8x+ 12x2)y/4 (4.37)

with H(X, Y, Z) = 2−6X2Y (2X +Z − uZ)2(2X +Z + uZ)2. So in this case we obtain

1 simple and 3 double invariant straight lines, all real and distinct. Evidently that the

condition r(4r − 1) 6= 0 is equivalent to u(1− u2) 6= 0.

• The possibility 1 − 4r < 0. Then denoting 1 − 4r = −u2 6= 0 (i.e. r = (1 + u2)/4 6= 0)

we arrive at the systems

ẋ = x[(2x+ 1)2 + u2]/4, ẏ = (1 + u2 + 8x+ 12x2)y/4 (4.38)

for which we have H(X, Y, Z) = 2−6X2Y (4X2 + 4XZ + Z2 + u2Z2)2. Clearly, in this

case we obtain the following types of invariant straight lines: one double real, two

double complex and one simple real, all distinct.

More exactly, systems (4.36) possess the configuration Config. 8.39 if 1 − 4r > 0 and

Config. 8.40 in the case of 1− 4r < 0 (see Figure 4.1).

b) Now we assume m 6= 0. We may set m = 1
(
due to the rescaling (x, y, t) 7→

(mx, y, t/m2)
)

and considering systems (4.32) we calculate

R
(0)
X ([P ∗]2, F̃1)=[Ψ1(a, c, f)]

2[Ψ2(a, c, f)]
2Z24=0, Φ(a, c, f)=Ψ2(a, c, f) 6=0,

Ψ1(a, c, f) = 8a+ (c− f)[c(4 + c)− 2cf + f 2].
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Clearly the condition Ψ1(a, c, f) = 0 is necessary and sufficient to have a common factor of

[P ∗]2 and F̃1 for non-degenerate systems (4.32). Then a = (c − f)
(
c(4 + c) − 2cf + f 2

)
/8

and in this case we have

R
(1)
X ([P ∗]2, F̃1) = (4 + 3c− 3f)(4c+ 3c2 − 6cf + 3f 2)3(16 + 16c+ 3c2 − 6cf + 3f 2)2Z15/64,

Φ = (4c+ 3c2 − 6cf + 3f 2)2(16 + 16c+ 3c2 − 6cf + 3f 2)/64 6= 0.

So the equality R
(1)
X ([P ∗]2, F̃1) = 0 implies f = (4+3c)/3 and then R

(2)
X ([P ∗]2, F̃1) = 256(4+

3c)2Z8/9 = 0 which contradicts Φ = 4(4+ 3c)3/27 6= 0. So in the case m 6= 0 systems (4.32)

could not have invariant lines of multiplicity 8.

2) The case e2 + b2 6= 0. We again consider systems (4.29) which already possess 3 lines

in the direction x = 0. Taking into consideration that we are in the case of non-existence of

an invariant line in the direction y = 0, in order to increase the degree of the polynomial H

we need a common factor of the degree 4 of the polynomials Gi/H, i = 1, 2, 3. By Lemma

2.6 this happens if and only if it holds R
(0)
X ([P ∗]2, F1) =R

(1)
X ([P ∗]2, F1) =R

(2)
X ([P ∗]2, F1) =

R
(3)
X ([P ∗]2, F1) = 0. We calculate R

(3)
X ([P ∗]2, F1) =−8[27a − 2m(18c − 9f + 8m2)]Y 3Z3 +

12(3ce+6bm−4em2)Y 2Z4+e3Z6=0 and this condition is equivalent to e=bm=27a−2m(18c−
9f+8m2)=0. Since e2+b2 6= 0 we obtain e = m = a = 0 and b 6= 0. In this case we calculate

R
(0)
X ([P ∗]2, F1) = (c − f)6Z24(3cY − fY − bZ)4(fY + bZ)2 = 0 and since b 6= 0 it results

f = c. Consequently we obtain the family of systems ẋ = x(c + x2), ẏ = b + cy + 3x2y

with H(X, Y, Z) = 3X3(X2 + cZ2)2 and after the rescaling (x, y) → (x, by) we arrive at

the one-parameter family of systems

ẋ = x(c+ x2), ẏ = 1 + cy + 3x2y. (4.39)

Here we may assume c = {−1, 0, 1} due to the rescaling (x, y, t) 7→ (|c|1/2x, |c|−1y, |c|−1t).

According to Lemma 2.1 for these systems we calculate: µ0 = µ1 = µ2 = µ3 = µ4 =

µ5 = 0, µ6 = 4c3x6. If c 6= 0 systems (4.39) possess 3 finite singularities: (0,−1/c) and
(
±

√
−c, 1/(2c)

)
and by Lemma 2.1 all other 6 finite singular points have gone to infinity

and collapsed with the singular point [0, 1, 0] located on the “end" of the invariant line x = 0.

If c = 0 then µ6 = µ7 = µ8 = 0 and µ9 = 9x9. So the system is non-degenerate and all 9

finite singularities have gone to infinity and collapsed with the same singular point.

Thus in the case c 6= 0 a system (4.39) possesses three distinct invariant affine lines (one

triple and two doubles), and namely: L1,2,3 = x, L4,5 = x−
√
−c, L6,7 = x+

√
−c.

Moreover for c < 0 we have real invariant straight lines whereas for c > 0 we get two

complex invariant lines. As a result we obtain the configuration given by Config. 8.41 in

the case c = −1 and by Config. 8.43 in the case c = 1.

If c = 0 then the invariant affine line x = 0 becomes of multiplicity 7 and we arrive at

the configuration given by Config. 8.42.

The above results lead as to the following proposition:
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Proposition 4.6. Systems (4.29) possess invariant lines of total multiplicity eight if and

only if the following set of conditions holds:

e = m = f−c = 0 and either : b = 0 and a(27a2+4c3) 6= 0 or b 6= 0 and a = 0. (4.40)

4.1.3. Systems with cubic homogeneous parts
(
(u+1)x3, ux2y

)

In this case, considering (4.1) and the cubic homogeneity
(
(u+1)x3, ux2y

)
via a translation

of the origin of coordinates we can consider l = m = 0 (since u 6= 0) and therefore we get

the cubic systems

ẋ =a+ cx+ dy + gx2 + 2hxy + ky2 + (1 + u)x3, ẏ = b+ ex+ fy + ny2 + ux2y. (4.41)

Now we force the necessary conditions K4 = K5 = K6 = 0 (see Remark 3.1) which

correspond to the type of configuration (3, 2, 1, 1) to be satisfied. We calculate

Coefficient[K4, x
2y] = ku(3− u)/9 = 0, Coefficient[K5, xy

3] = −40k2(6 + u)(3 + 4u)/3 = 0

which leads to k = 0 and then we obtain K4 = −u(3n+2hu+ nu)x3/9 = 0. Since u 6= 0 the

last condition is equivalent to h = −n(3 + u)/(2u) which implies Coefficient[K5, x
3y] =

10n2(u3 − 54− 90u− 33u2)/u2, Coefficient[K6, x
8y3] = 2n3(13150u6− 125874− 492669u−

774792u2−638868u3−268688u4−23699u5)/(9u2). It is easy to check that Coefficient[K5, x
3y] =

Coefficient[K6, x
8y3] = 0 if and only if n = 0 (which imply h = 0) and in this case we get

K5 = 10du2 = 0 which gives d = 0. In this case it remains to examine only the condition

K6 = 0.

Thus taking into consideration the conditions k = h = n = d = 0 systems (4.41) become

ẋ = a + cx+ gx2 + (u+ 1)x3, ẏ = b+ ex+ fy + ux2y (4.42)

for which we calculate K6 = 40u4(81fg − 369au+ 68cgu+ 136fgu− 96au2)x11/27 = 0 and

V1V3 = −512u2(3 + u)(3 + 2u)x8 6= 0 (see Lemma 4.1), i.e. for these systems the following

conditions hold:

ψ ≡ 81fg − 369au+ 68cgu+ 136fgu− 96au2 = 0 = K6, u(u+ 3)(2u+ 3) 6= 0. (4.43)

In addition, considering (2.17) and Remark 2.1 for systems (4.41) we examine the direction

y = 0: Eq5 = −uW, Eq8 = e, Eq10 = b − fW. We see that the equations Eq8 and Eq10

could have only one common solution (W0 = 0) and for this it is necessary and sufficient

b = e = 0. So need to examine two cases: e2+ b2 = 0 and e2+ b2 6= 0. In [17] we have proved

that in the case of e2 + b2 6= 0 we could not have systems which belong to CSL8.

Here we consider only the case e2 + b2 = 0, i.e. when there exists an invariant line in the

direction y = 0. In this case we get the systems

ẋ = a+ cx+ gx2 + (u+ 1)x3 ≡ P (x), ẏ = y(f + ux2) ≡ yQ̃(x) (4.44)
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for which the conditions (4.43) hold. We consider two possibilities: u+1 6= 0 and u+1 = 0.

1) The subcase u+ 1 6= 0 Then for the above systems we calculate

H(X, Y, Z) = Y [X3(1 + u) + gX2Z + cXZ2 + aZ3] ≡ XP ∗(X,Z),

G1/H = F1(X,Z), G2/H = P ∗(X,Z)F2(X,Z), G3/H = 24Q̃∗(X,Z)
[
P ∗(X,Z))

]2
.

Systems (4.44) are non-degenerate if and only if Φ ≡ R
(0)
X

(
P (x), Q̃(x)

)
6= 0. By Remark

4.2 we could not have invariant lines in the direction y = 0 except the existent invariant line

y = 0. Moreover due to G1/H |(Z=0)= uX4 6= 0 (as u 6= 0) we obtain that Z could not be a

common factor of these polynomials. Therefore the degree of the polynomial H(x, y) could

be increased up to seven only with the factors of the form X + αZ. Considering Remark

3.4 we deduce that these factors must be factors of the polynomial P ∗(X,Z). So F1(X,Z)

must have a common factor of degree 3 with
[
P ∗(X,Z)

]2
. Therefore by Lemma 2.6 the

conditions R
(0)
X

(
F1, [P

∗(X,Z)]2
)
= R

(1)
X

(
F1, [P

∗(X,Z)]2
)
= R

(2)
X

(
F1, [P

∗(X,Z)]2
)
= 0 and

R
(3)
X

(
F1, [P

∗(X,Z)]2
)
6= 0 must hold. We calculate

R
(0)
X

(
F1, [P

∗]2
)
= [Φ]2Γ2

1Z
24, R

(1)
X

(
F1, [P

∗]2
)
= −2ΦΓ2Z

15, R
(2)
X

(
F1, [P

∗]2
)
= Γ3Z

8,

where Γ1(a, c, f, g, u), Γ2(a, c, f, g, u) and Γ3(a, c, f, g, u) are some polynomials of total degree

5, 11 and 12, respectively. Evidently since Φ 6= 0 from the above conditions it results

Γ1 = Γ2 = Γ3 = 0.

We claim that for non-degenerate systems (4.44) the polynomials Γ1 and Γ2 vanish if and

only if they have a common factor depending on the parameter a. Indeed, we observe that

Γ1 is of degree two with respect to a and moreover Coefficient[Γ1, a
2] = (3 + 2u)3 6= 0. This

means that the solution of the equation Γ1 = 0 must depend on a. On the other hand the

degree of Γ2 with respect to a equals 3 and Coefficient[Γ2, a
3] = u2(u+1)(3+2u)(u+2) = 0

if and only if u = −2. In this case we obtain

Γ2 = (f − 2g2)[8a2g + a(3f 2 − 2cf − 12cg2 + 14fg2 − 8g4) + g(2c2f − 7cf 2+

+4f 3 + 4c2g2 − 2cfg2 + 2f 2g2 − 4fg4)]

and hence for u = −2 and f = 2g2 we have Γ2 = 0 and this solution does not depend of a.

However in this case the condition Γ1 = −(a− cg + 2g3)2 = 0 gives a = g(c− 2g2) and this

leads to degenerate systems.

If (f − 2g2) 6= 0 then in order to impose the polynomial Γ2 to vanish for any value of the

parameter a it is necessary g = 0 and then we calculate

Γ1 = cf 2 − f 3 − a2, Γ2 = −a(2c− 3f)f 2, Φ = 8(cf 2 − f 3 − a2) + (2c− 3f)2f.

Clearly the conditions (2c − 3f)f = 0 and Γ1 = 0 implies Φ = 0, i.e. systems become

degenerate and this completes the proof of our claim.
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Thus the polynomials Γ1 and Γ2 must have a common factor depending on a and by

Lemma 2.5 the condition R
(0)
a

(
Γ1,Γ2) = 0 must hold. We calculate

R(0)
a

(
Γ1,Γ2) = (3 + 2u)4Υ1(c, f, g, u)[Υ2(c, f, g, u)]

4Υ3(c, f, g, u)Υ4(c, f, g, u) = 0

where Υ1(c, f, g, u) = f(3 + u)2 − 9c + 3g2 − 6cu− cu2, Υ2(c, f, g, u) = f(1 + u)(3 + 2u) +

6c− 2g2 + 7cu+ 2cu2, Υ3(c, f, g, u) = 4fg2u+ (3f − cu+ 3fu)2 and Υ4(c, f, g, u) = u2[g2 −
c(2+u)2]2+f 2(1+u)2[3+u(3+u)]2−2fu(1+u)[c(2+u)2

(
3+u(3+u)

)
−g2

(
5+u(5+u)

)
].

i) Assume Υ1(c, f, g, u) = 0. Then f = (9c− 3g2+6cu+ cu2)/(3+ u)2 which implies the

existence of the common factor ψ = a(3 + u)3 − g(9c− 2g2 + 6cu+ cu2) of the polynomials

Γi, i = 1, 2. From ψ = 0 it results a = g(9c−2g2+6cu+cu2)/(3+u)3 and this gives Γ1 = Γ2 =

0 and Γ3(c, g, u) = (9c−3g2+6cu+g2u+cu2)2[c(3+u)2(3+2u)2−g2(27+27u+8u2)]/(3+u)8.

Since Φ = (9c− 3g2 + 6cu+ g2u + cu2)3/(3 + u)6 6= 0 and in addition (3 + u)(3 + 2u) 6= 0,

the condition Γ3 = 0 gives c = g2(27 + 27u+8u2)/[(3 + u)2(3 + 2u)2]. Therefore considering

the relations

f = − g2u(9 + 4u)

(3 + u)2(3 + 2u)2
, a =

3g3

(3 + u)2(3 + 2u)2
, c =

g2(27 + 27u+ 8u2)

(3 + u)2(3 + 2u)2
(4.45)

with g(2+u) 6= 0 (otherwise we get degenerate systems) due to the transformation (x, y, t) 7→
(−g(3 + 2u+ 2ux)/[(3 + u)(3 + 2u)], y, t(3 + u)2(3 + 2u)2/[4g2u2]) the last systems could be

brought to the 1-parameter family of systems

ẋ = x(1 + x)
[
u+ 2 + (u+ 1)x

]
, ẏ = y

[
u+ 2 + (3 + 2u)x+ ux2

]
(4.46)

for which H = X3Y (X + Z)2
[
(u+ 1)X + (u+ 2)Z

]
.

Thus these systems possess 3 finite singularities: (−1, 0), (0, 0) and (−(2+ u)/(1+ u), 0)

which are located on the invariant line y = 0. On the other hand considering Lemma

2.1 for these systems we calculate: µ0 = . . . = µ5 = 0, µ6 = (u + 1)(2 + u)3x6. Since

(u+ 1)(2 + u) 6= 0 by Lemma 2.1 all other 6 finite singular points have gone to infinity and

collapsed with the singular point [0, 1, 0] located on the “end" of the invariant line x = 0.

Thus a system (4.46) possesses four distinct invariant affine lines: three in the direction

x = 0 (one triple, one double and one simple) and one line in the direction y = 0, and

namely: L1,2,3 = x, L4,5 = x + 1, L6 = (u + 1)x + (u + 2), L7 = y. Comparing the lines

x = −1 and x = −(u + 2)/(u + 1) with x = 0 we detect the following possibilities which

depend on the value of the parameter u:

• The possibility u < −2. Then the simple invariant line is located on the domain between

the triple and the double ones and we obtain the configuration Config. 8.44 ;

• The possibility −2 < u < −1. Then the triple invariant line is located on the domain

between the simple and the double ones and we have Config. 8.45 ;
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• The possibility u > −1. The double invariant line is located on the domain between

the simple and the triple ones and we get the configuration Config. 8.46.

ii) Now we examine the condition Υ2(c, f, g, u) = 0. Then f = −(6c − 2g2 + 7cu +

2cu2)/[(1 + u)(3 + 2u)] and therefore we get

Γ1(a, c, g, u) = [a(1 + u)(3 + 2u)3 − g(9c− 2g2 + 12cu+ 4cu2)]2/[(1 + u)2(3 + 2u)3] = 0.

Since (1+u)(3+2u) 6= 0 the last condition gives a = [g(9c−2g2+12cu+4cu2)]/[(1+u)(3+2u)3]

which implies Γ1 = Γ2 = 0 and

Γ3 = 4(2 + u)2[φ1(c, g, u)]
3[c(3 + u)2(3 + 2u)2 − g2(27 + 27u+ 8u2)]/[(1 + u)(3 + 2u)6],

Φ = [φ1(c, g, u)]
2φ2(c, g, u)/[(1 + u)(3 + 2u)6] 6= 0

where φ1 and φ2 are polynomials of degree 3 and 4, respectively. Therefore the condition

Γ3 = 0 is equivalent to c = g2(27 + 27u+ 8u2)/[(3 + u)2(3 + 2u)2] and considering the above

conditions we have f = − g2u(9 + 4u)

(3 + u)2(3 + 2u)2
, a =

3g3

(3 + u)2(3 + 2u)2
which all together are

equivalent to the conditions (4.45).

iii) In the case Υ3(c, f, g, u) = 0 we suppose first g 6= 0. Then denoting 3f−cu+3fu = c1

(i.e. c = (3f + 3fu − c1)/u) the condition Υ3 = 0 gives f = −c21/(4g2u). In this case the

polynomial ψ̃ = c31(1 + u) + g2u(c21 − 4agu2) is a common factor of Γ1 and Γ2 and it must

vanish. However the calculations yield: Φ = ψ̃ψ̃1/(g
6u3) 6= 0 (where ψ̃1 is a polynomial) and

we get a contradiction.

Assume now g = 0. In this case we get Υ3 = (3f − cu + 3fu)2 = 0 which implies

c = 3f(1+u)/u. Then the common factor of the polynomials Γ1 and Γ2 is a2u3+4f 3(1+u)2 =

Φ 6= 0, i.e. we again arrive at a contradiction.

iv) Finally we suppose Υ4(c, f, g, u) = 0. Since Υ4 is quadratic in c we must have

Discriminant[Υ4, c] = −16fg2u3(1 + u)2(2 + u)4 ≥ 0. It was proved earlier (see page 130)

that in the case u = −2 the condition Γ1 = Γ2 = 0 leads to degenerate systems. So we

assume u+ 2 6= 0 and we examine two subcases: g 6= 0 and g = 0.

If g 6= 0 then fu ≤ 0 and we set a new parameter: fu3 = −v2 (i.e. f = −v2/u3) and we

calculate Υ4 = Φ± = 0, where Φ± = (1+u)(3+3u+u2)v2±2gu2(1+u)v+u4[c(2+u)2−g2].
It is clear that we could consider only the case Φ− = 0 (due to the change v → −v) and this

condition gives us c =
[
g2u4+2gu2(1+u)v−(1+u)(3+3u+u2)v2

]
/[u4(2+u)2]. Substituting

the expressions for the parameters f and c in the polynomials Γ1 and Γ2 we detect that the

common factor of these polynomials is again Φ 6= 0.

Suppose now g = 0. Then we have Υ4 = f(1 + u)(3 + 3u + u2) − cu(2 + u)2 and as

(1 + u)(3 + 3u + u2) 6= 0 the condition Υ4 = 0 gives f = cu(2 + u)2/[(1 + u)(3 + 3u + u2)]

Herein we calculate Γ1 = (3 + 2u)3Φ/u3 and due to Φ 6= 0 we obtain Γ1 6= 0. Therefore we
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proved that in the case either Υ3 = 0 or Υ4 = 0 systems (4.44) could not have invariant lines

of total multiplicity eight.

2) The subcase u+ 1 = 0 Therefore we have u = −1 and systems (4.44) become

ẋ = a+ cx+ gx2 ≡ P̃ (x), ẏ = y(f − x2) ≡ yQ̃(x), (4.47)

for which we calculate H(X, Y, Z) = Y Z(gX2 + cXZ + aZ2) ≡ Y P̃ ∗(X,Z). Moreover we

have

G1/H =−X4 + (c+ 2f)X2Z2 + 2(a+ fg)XZ3 + (c− f)fZ4 ≡ F1(X,Z),

G2/H =−
[
2X3 − (c+ 2f)XZ2 − (a + fg)Z3

]
P̃ ∗(X,Z) ≡ F2(X,Z)P̃

∗(X,Z),

and G3/H = 24Z2[Q̃∗(X,Z)]
[
P̃ ∗(X,Z))

]2
. So we need to determine a common factor of

degree 3 of the polynomials Gi/H , i = 1, 2, 3, which in fact must contains only the factors of

the polynomial P̃ ∗(X,Z) (see Remark 3.4).

On the other hand we observe that for non-degenerate systems (4.47) the polynomials f−
x2 and P̃ (x) have no common factors, i.e. the following condition must holds: Φ(a, c, f, g) ≡
R

(0)
x (P̃ (x), Q̃(x)) = (a + fg)2 − c2f 6= 0. Thus considering the structure of the polynomial

G3/H we deduce that the polynomial P̃ ∗(X,Z) must be a factor of the polynomial F1. So

the following conditions are necessary: R
(0)
X

(
F1, P̃

∗(X,Z)
)
= R

(1)
X

(
F1, P̃

∗(X,Z)
)
= 0. We

calculate

R
(1)
X

(
F1, P̃

∗(X,Z)
)
= (c− g2)(2ag − c2 + 2fg2)Z3 = 0 (4.48)

and we observe that c−g2 6= 0, otherwise supposing c = g2 and considering (4.48) we obtain

R
(0)
X

(
G1/H, P̃

∗(X,Z)
)
= Φ2Z8 6= 0. Thus for non-degenerate systems the condition (4.48)

gives 2ag − c2 + 2fg2 = 0, where g 6= 0, otherwise we get g = c = 0 which contradicts

c − g2 6= 0. So we obtain a = c2 − 2fg2/(2g) and calculations yield R
(0)
X

(
F1, P̃

∗(X,Z)
)
=

c2(c − 2g2)2(c2 − 4fg2)2Z8/(16g4) = 0, Φ = c2(c2 − 4fg2)/(4g2) 6= 0. Therefore c = 2g2

and considering (4.43) and the relations u = −1 and a = (c2 − 2fg2)/(2g) we calculate

R
(0)
X

(
F1(X,Z)/P̃

∗, P̃ ∗(X,Z)
)

= 4g2(4f − 5g2)Z4, ψ = −82g(4f − 5g2) = 0. Hence due

to g 6= 0 we get the unique condition f = 5g2/4 and this leads to the family of systems

ẋ = g(g + 2x)(3g + 2x)/4, ẏ = y(5g2 − 4x2)/4, which via the changing (x, y, t) 7→ (g(x−
1/2), y, t/g2) could be brought to the system

ẋ = x(1 + x), ẏ = y(1 + x− x2). (4.49)

For this system we have H(X, Y, Z) = X3Y Z(X +Z)2, i.e. it belongs to CSL8. We observe

that system (4.49) has 2 finite singularities: (−1, 0), (0, 0) which are located on the invariant

line y = 0. On the other hand considering Lemma 2.1 for these systems we calculate:

µ0 = . . . = µ6 = 0, µ7 = −x6y. By Lemma 2.1 all other 7 finite singular points have gone

to infinity. Moreover, according to this lemma, six of them collapsed with the singular point
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[0, 1, 0] located on the “end" of the invariant line x = 0 and the remaining one collapses with

the singular point [1, 0, 0] located on the “end" of the invariant line y = 0. Thus besides the

double infinite line a system (4.49) possesses three distinct invariant affine lines: two in the

direction x = 0 (one triple and one simple) and a line in the direction y = 0, and namely:

L1,2,3 = x, L4 = x+ 1, L5 = y. Therefore we get the configuration Config. 8.47.

In such a way taking into account our article [17] we have proved the next result.

Proposition 4.7. Systems (4.42) possess invariant lines of total multiplicity eight if and

only if the following set of conditions holds:

e=b=0, a=
3g3

(3+u)2(3+2u)2
, c=

g2(27+27u+8u2)

(3 + u)2(3+2u)2
, f=

−g2u(9+4u)

(3+u)2(3+2u)2
, g(u+2) 6=0. (4.50)

4.2. Invariant criteria for the realization of the configurations with two distinct

infinite singularities

By Lemma 2.2 the conditions D1 = D3 = D4 = 0, D2 6= 0 are necessary and sufficient for a

cubic system to have two real distinct infinite singularities, and namely they are determined

by one triple and one simple factors of C3(x, y). After a linear transformation a cubic system

could be brought to the form (4.1). According to Proposition 4.1 the above mentioned cubic

systems could have one of the four cubic homogeneities given by this lemma. Since for the

homogeneity (2x3, 3x2y) we get no configurations (see [17]) we restrict our attention to the

remaining three cubic homogeneities: (x3, 0), (x3, 3x2y) and
(
(u+ 1)x3, ux2y

)
.

I. Conditions for Config. 8.23 – Config. 8.38. According to Proposition 4.1, the

condition V1 = V3 = 0 gives systems (4.2) (via a linear transformation and time rescaling).

By Remark 4.1 for these systems the condition K5 = 0 is equivalent to k = h = n = 0.

Moreover, for the existence of invariant lines in the direction x = 0 the additional condition

d = 0 has to be satisfied. So considering the condition K5 = 0 for systems (4.2) we calculate

N1 = 12d and evidently N1 = 0 is equivalent to d = 0 and we arrive at systems (4.3). For

these systems we calculate N2 = −m2x4, N3 = −12x5l. We remark that in the previous

subsections the examination of systems (4.3) was divided in the cases determined by the

parameters m and l. In addition it was proved earlier that in the case m = 0 and l 6= 0

(i.e. N2 = 0 and N3 6= 0) systems (4.3) could not have invariant lines of total multiplicity

8. So in what follows we split our examination here in three cases, defined by the invariant

polynomials N2 and N3:

(i) N2N3 6= 0; (ii) N2 6= 0, N3 = 0; (iii) N2 = N3 = 0.

1) The case N2N3 6= 0 Then l m 6= 0 and as it was shown earlier systems (4.3) could

be brought via an affine transformation to systems (4.8). According to Proposition 4.2 the
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last systems belong to CSL8 if and only if the conditions (4.2) are satisfied. We prove that

these conditions are equivalent to N4 = N5 = N6 = N7 = 0, i.e.

a = 0, f = c = −4

9
, b =

4

27
⇔ N4 = N5 = N6 = N7 = 0.

Indeed, for systems (4.8) we calculate N4 = 5184(c− f)x4 and N5 = 2592(4+ 6c+3f)x4

and clearly the condition N4 = N5 = 0 is equivalent to f = c = −4/9. Then considering

the last conditions we calculate N6 = 8640ax4 and hence N6 = 0 gives a = 0. It remains

to determine the invariant polynomial which governs the condition for the parameter b.

Considering the obtained conditions for systems (4.8) we calculate N7 = 288(27b−4)x6 = 0

which is equivalent to b =
4

27
. So if for systems (4.3) the conditions N2N3 6= 0, N4 = N5 =

N6 = N7 = 0 are satisfied then we arrive at the system (4.10) possessing the configuration

Config. 8.23.

2) The case N2 6= 0, N3 = 0. These conditions imply m 6= 0 and l = 0, and as it was

proved that in this case the condition ef − 2bm = 0 is necessary to be fulfilled for systems

(17) in order to have invariant lines of total multiplicity 8. On the other hand for these

systems we calculate N8 = 1296(ef − 2bm)x6 and the last condition is equivalent to N8 = 0.

Due to a rescaling we may assume m = 1 and then we get b = ef/2 and this leads to systems

(4.12). By Proposition 4.3 these systems belong to CSL8 if and only if either the conditions

(4.13) or (4.14) are satisfied.

In what follows we consider each one of these sets of conditions and construct the cor-

responding equivalent invariant conditions as well as the additional invariant conditions for

the realization of the respective configurations.

(a) Conditions (4.13). We clam that for a system (4.12) the following conditions are

equivalent:

f = c, a = −2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0 ⇔ N4 = N6 = 0, N9 6= 0.

Indeed, for systems (4.12) we calculate N4 = 5184(c−f)x4 and therefore N4 = 0 gives f = c.

Then we have N6 = 320(27a + 18c + 8)x4 = 0 and N9 = 2304(4 + 3c)(4 + 9c)x4 6= 0 which

imply the condition a = −2(4 + 9c)/27.

Thus if the conditions N4 = N6 = 0 are satisfied then systems (4.12) via a translation and

a suitable notation can be brought to systems (4.15), for which the conditionN9 = 6912r(9r−
8)x4 6= 0 holds. Now for these systems we need to determine the invariant polynomials which

govern the conditions under parameter r in order to get different configurations of invariant

straight lines. We calculate N10 = 144(1 − r)x2 and N11 = 3456rx4. Therefore, considering

the obtained earlier for systems (4.15) configurations (see page 118) we conclude that if for

a system (4.3) the conditions N3 = N4 = N6 = N8 = 0, N2N9 6= 0 are satisfied then we get

the configuration given by Config. 8.24 if N11 < 0; by Config. 8.25 if N10 > 0 and N11 > 0;

by Config. 8.26 if N10 = 0 and by Config. 8.27 in the case N10 < 0.
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(b) Conditions (4.14). We clam that for a system (4.12) the next conditions are equiv-

alent:

f = −2(2 + 3c)

3
, a =

2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0 ⇔ N5 = N12 = 0, N13 6= 0.

Indeed, for (4.12) we calculate N5 = 2592(4 + 6c + 3f)x4 and hence N5 = 0 implies f =

−2(2 + 3c)/3. Then we have N12 = 3240(27a − 18c − 8)x4 and, clearly, N12 = 0 gives

a = 2(4 + 9c)/27. For N5 = N12 = 0 we calculate N13 = 1008(4 + 3c)(4 + 9c)x5y and

therefore N13 6= 0 ⇔ (4 + 3c)(4 + 9c) 6= 0.

So, considering the above relations among the parameters a, c and f of systems (4.12)

it was shown earlier that these systems can be brought (via a translation and additional

notation) to systems (4.16).

It remains to determine the invariant polynomial which gives the expression of the

discriminant ∆ = 4(1 − r) . For these systems we calculate N14 = 288(r − 1)x2 and

N15 = 2937rx4.

Therefore if for a system (4.3) the conditions N3 = N5 = N8 = N12 = 0, N2N13 6= 0

are satisfied then we get Config. 8.28 if N15 < 0; Config. 8.29 if N14 < 0, N15 > 0 and

Config. 8.30 if N14 > 0.

3) The case N2 = N3 = 0. Then l = m = 0 and we get systems for which we calculate

N16 = −12ex4. In what follows we split our examination here in two subcases, defined by

the polynomial N16.

a) The subcase N16 6= 0. Then e 6= 0 and systems (4.3) could be brought via a rescaling

(i.e. assuming e = 1) to systems (4.19). According to Proposition 4.4 the last systems belon

to CSL8 if and only if the conditions (4.20) are satisfied. We prove that these conditions are

equivalent to N17 = N18 = 0, i.e. f = −2c, a = 0 ⇔ N17 = N18 = 0.

Indeed, for the corresponding systems we calculate N17 = 12(2c + f)x2 = 0, N18 =

216ax3 = 0 and evidently, the above equalities are equivalent to f = −2c, a = 0.

It remains to determine the invariant condition which governs the value of c. For the

last systems we determine N10 = 72cx2. Next we split our examinations according to the

parameter c.

i) The possibility N10 6= 0. Then c 6= 0 and assuming b = 0 after a translation

we arrive at the system (4.22). So, if for systems (4.3) the conditions N2 = N3 = N17 =

N18 = 0, N10N16 6= 0 are satisfied then we get the configuration Config. 8.31 if N10 < 0

and Config. 8.32 if N10 > 0.

ii) The possibility N10 = 0. Then f = c = 0 and after a rescaling we assume b = 1 and

we get the systems (4.21). So, if for systems (4.3) the conditions N2 = N3 = N10 = N17 =

N18 = 0, N16 6= 0 are satisfied then we get the configuration Config. 8.33.

b) The subcase N16 = 0. Then e = 0 and systems (4.3) became of the form (4.23).
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According to Proposition 4.5 the last systems belong to CSL8 if and only if the conditions

(4.27) hold. We prove that these conditions are equivalent to N19 = 0, N18 6= 0, i.e.

27a2 + (c− f)(2c+ f)2 = 0, a 6= 0 ⇔ N19 = 0, N18 6= 0.

Indeed, for systems (4.23) we have N19 = 24[27a2+(c−f)(2c+f)2]x3y and, evidently, N19 = 0

implies 27a2+ (c− f)(2c+ f)2 = 0. On the other hand we have N18 = 216ax3 and thus, the

condition N18 6= 0 is equivalent to a 6= 0. Therefore if the conditions N19 = 0, N18 6= 0 are

satisfied then systems (4.23) via a transformation and a suitable notation (see page 123) can

be brought to systems (4.25). For these systems we calculate N20 = 48(1 − 4r)x4, N21 =

48rx4.

Therefore if for a system (4.3) the conditions N2 = N3 = N16 = N19 = 0 and N18 6= 0 hold

then we obtain the configuration Config. 8.34 if N21 < 0; Config. 8.35 if N20 > 0, N21 > 0;

Config. 8.36 if N20 = 0 and Config. 8.37 in the case N20 < 0. Moreover if N21 = 0, i.e. r = 0

we obtain Config. 8.38.

II. Conditions for Config.8.39-Config.8.47. So by Proposition 4.1 the conditions

V1 = 0, V3 6= 0 and respectively V5 = U2 = 0, V1V3 6= 0 applying to systems (4.1)

lead us to systems (4.28) and respectively (4.41) (via a linear transformation and time

rescaling). Additionally for a system (4.28) (respectively (4.41) ) we applied Remark 3.1

and we proved that the condition L1 = L2 = 0 (respectively K4 = K5 = 0) is equivalent to

n = k = h = d = 0 which leads to systems (4.29) (respectively (4.42)).

In what follows considering systems (4.29) and (4.42) we find out the invariant conditions

which are equivalent to the conditions mentioned in Propositions 4.6 and 4.7.

1) Conditions for systems (4.29). For these systems we calculate N22 = mx5 and it

is evident that the condition N22 = 0 is equivalent to m = 0 and in this case we calculate

N23 = −3ex6 + 3(c− f)x5y, N24 = 216bx13, K6 = 162000ax11.

Thus N23 = 0 implies e = c − f = 0 and therefore, according to Proposition 4.6, next

we split our examination in two cases: b = 0, a 6= 0 i.e. N24 = 0, K6 6= 0 and b 6= 0, a = 0,

i.e. N24 6= 0, K6 = 0.

a) If N24 = 0 and K6 6= 0 then we arrive at systems (4.34) for which µ6 = (27a2 +

4c3)x6 should be non-zero in order to have non-degenerate systems. Moreover due to a

transformation the last systems became of the form (4.36) with µ6 = r2(4r − 1)x6 6= 0.

So if for systems (4.29) the conditions N22 = N23 = N24 = 0, K6 6= 0 hold then we get

either Config. 8.39 if µ6 < 0 or Config. 8.40 if µ6 > 0.

b) Assume now N24 6= 0 and K6 = 0. Then applying a rescaling we arrive at systems (4.39)

for which µ6 = 4c3x6 6= 0, c = {−1, 0, 1}. Therefore if for a system (4.42) the conditions
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N22 = N23 = K6 = 0, N24 6= 0 are satisfied then we have Config. 8.41 if µ6 < 0; Config.

8.42 if µ6 = 0 and Config. 8.43 if µ6 > 0.

2) Conditions for systems (4.42). For these systems we calculate N24 = 2bu4x13/3,

N25 = 5eu2x10/3. It is evident that the condition N24 = N25 = 0 implies b = e = 0 (since

u 6= 0, see Lemma 4.1). In this case we have N26 = 20u4(9a− cg − 2fg + 3au)x10y/9 and

N27 = 40u4[3(c− f)(12c+ 15f − 4g2)− 3u(c− f)2 − 16g2u(c+ 2f) + 4(c− f)(c+ 2f)u2]/9.

Taking into consideration the expression of K6 (see (4.43)), it is easy to verify that N26 =

N27 = K6 = 0 lead us to the conditions (4.50). Since u(3 + u)(3 + 2u) 6= 0 (due to V1V3 6=
0) and g 6= 0 (as systems are non-degenerate) applying the corresponding transformation

(mentioned on page 131) to systems (4.42) with the conditions (4.50) we arrive at systems

(4.46) for which we have u+2 6= 0 (otherwise these systems become degenerate). For systems

(4.46) we calculate µi = 0, µ6 = (u+1)(u+2)3x6, i = 0, 1, . . . , 5 and N28 = −2(3+2u)x4.

If µ6 6= 0 we obtain sign (µ6) = sign
(
(u+ 1)(u+ 2)). Therefore if µ6 < 0 then −2 < u < −1

and we get Config. 8.44, whereas in the case µ6 > 0 we have either Config. 8.45 for N28 < 0

or Config. 8.46 for N28 > 0. Additionally if µ = 0, i.e. u = −1 then we we arrive at systems

(4.49) and we get Config. 8.47.

4.3. Perturbations of canonical forms

To finish the proof of the Main Theorem D it remains to construct for the normal forms

given in this theorem the corresponding perturbations, which prove that the respective in-

variant straight lines have the indicated multiplicities. In this section we construct such

perturbations and for each configuration Configs. 8.j, j = 23, 40, . . . , 47 we give:

• the corresponding normal form and its invariant straight lines;

• the respective perturbed normal form and its invariant straight lines;

• the configuration Config. 8.jε, j = 23, 24, . . . , 47 which corresponds to the perturbed

systems.

Config. 8.23




ẋ = (x− 1)x(1 + x),

ẏ = x− y + x2 + 3xy;

Invariant lines: L1,2 = x, L3,4,5 = x− 1, L6 = x+ 1, L7 : Z = 0;

Config. 8.23ε:

{
ẋ = x(1 + x)(x+ 3xε− 1),

ẏ = (1 + 3εy)(x+ x2 − y + 3xy − 3εy + 3εxy − 6εy2 − 9ε2y2);

Invariant lines:

{
L1 = x, L2 = x− 3εy, L3 = x+ 3εx− 1, L4 = x− 3εy − 1,

L5 = x− 3ε− 6εy − 9ε2y − 1, L6 = 1 + x, L7 = 1 + 3εy.
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Fig. 4.2. Perturbation of normal form corresponding to the configuration

Config. 8.23

Config. 8.24-8.26




ẋ = x(1− u+ x)(1 + u+ x),

ẏ = (1− u2 + 2x)y, |u| 6= 1,





|u| > 1 ⇒ Config. 8.24;

|u| < 1 ⇒ Config. 8.25;

u = 0 ⇒ Config. 8.26;

Invariant lines: L1,2,3 = x, L4 = x+ 1 + u, L5 = x+ 1− u, L6 = y, L7 : Z = 0;

Config. 8.24ε-8.26ε:

{
ẋ = x(1 − u+ ε2 + x)(1 + u− ε2 + x),

ẏ = y(1 + εy)
[
1− (u− ε2)2 + 2x+

(
ε2(u− ε2)2 − ε2

)
y
]
;

Invariant lines:

{
L1 = x, L2 = x− ε(u+ 1)y, L3 = x− ε(u− 1)y − yε3,

L4 = x+ 1 + u− ε2, L5 = x+ 1− u+ ε2, L6 = y, L7 = 1 + εy.

Fig. 4.3. Perturbations of normal forms corresponding to the configurations:

a) Config. 8.24 ; b) Config. 8.25 ; c) Config. 8.26

Config. 8.27 :




ẋ = x

[
(x+ 1)2 + u2

]
,

ẏ = (1 + u2 + 2x)y, u 6= 0;

Invariant lines: L1,2,3 = x, L4 = x+ 1 + iu, L5 = x+ 1− iu, L6 = y, L7 : Z = 0;
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Config. 8.27ε:

{
ẋ = x

[
(x+ 1)2 + u2

]
,

ẏ = y(1− yε)(1 + u2 + 2x+ yε+ u2yε);

Invariant lines: L1=x, L2,3=x+εy±iuεy, L4,5=x+1± iu, L6=y, L7=−1+yε.

Fig. 4.4. Perturbation of normal form corresponding to the configuration

Config. 8.27

Config. 8.28, 8.29




ẋ = (1− x+ u)x(1− x− u),

ẏ = 2(u2 + x− 1)y, |u| 6= 1,

{
|u| > 1 ⇒ Config. 8.28;

|u| < 1 ⇒ Config. 8.29;

Invariant lines: L1 = x, L2,3 = 1− x+ u, L4,5 = 1− x− u, L6 = y, L7 : Z = 0;

Config. 8.28ε, 8.29ε:

{
ẋ = (1− x+ u)x(1− x− u),

ẏ = y(1 + u− εy)(2u2 + 2x+ εy − uεy − 2)/(1 + u);

Invariant lines:

{
L1 = x, L2 = 1− x+ u, L3 = 1− x+ u− εy, L4 = 1− x− u,

L5 = x− 1 + u2 + ux+ εy − uεy, L6 = y, L7 = 1 + u− εy.

Fig. 4.5. Perturbations of normal forms corresponding to the configurations:

a) Config. 8.28 ; b) Config. 8.29

Config. 8.30 :




ẋ = x(1 + u2 − 2x+ x2),

ẏ = 2y(x− 1− u2), u 6= 0;

Invariant lines: L1=x, L2,3=x−1−iu, L4,5=x−1+iu, L6=y, L7 : Z=0;

Config. 8.30ε:

{
ẋ = x(1 + u2 − 2x+ x2),

ẏ = y(1− εy)(2x− 2− 2u2 + εy + u2εy);
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Invariant lines:

{
L1 = x, L2=x− 1− iu, L3=x− 1− iu+ yε+ iuεy,

L4=x−1+iu, L5=x−1+iu+εy−iuεy, L6 = y, L7=εy−1.

Fig. 4.6. Perturbation of normal form corresponding to the configuration

Config. 8.30

Config. 8.31, 8.32




ẋ = x(x2 + r),

ẏ = x− 2ry,

{
r = −1 ⇒ Config. 8.31;

r = 1 ⇒ Config. 8.32;

Invariant lines: L1 = x, L2,3=x−
√
−r, L4,5=x+

√
−r, L6=y, L6,7 : Z=0;

Config. 8.31ε, 8.32ε:





ẋ = (2r − ε4 + ε6)(4r + 4x2 − 4rε2 − 3ε4 + 6ε6 − 3ε8)×
(x− xε+ 6ryε+ 2ryε2 − 3yε5 − yε6 + 3yε7 + yε8)/(8r),

ẏ = (x− 2ry + ε4y − yε6)(4r − 4rε2 + 16r2ε2y2 − 3ε4+

+6ε6−16rε6y2−3ε8+16rε8y2+4ε10y2−8ε12y2+4ε14y2)/(4r);

Fig. 4.7. Perturbations of normal forms corresponding to the configurations:

a) Config. 8.31 ; b) Config. 8.32

Config. 8.33 :
{
ẋ = x3, ẏ = 1 + x;

Invariant lines: L1,2,3,4,5 = x, L6,7 : Z = 0;

Config. 8.33ε:

{
ẋ = x(9x− 6ε+ 4ε2)(9x+ 6ε− 10ε2 + 4ε3)/81,

ẏ = (3−2ε+yε2)(3−2ε−yε2)(9+9x−15ε+6ε2−ε2y+ε3y)/81;

Invariant lines:





L1 = x, L2 = x− 6ε+ 4ε2, L3 = x+ 6ε− 10ε2 + 4ε3,

L4 = x− 3ε+ 2ε2 + ε3y, L5 =x+3ε−5ε2+2ε3−ε3y+ε4y,
L6 = 3− 2ε+ ε2y, L7 = −3 + 2ε+ ε2y.
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Fig. 4.8. Perturbation of normal form corresponding to the configuration

Config. 8.33

Config. 8.34-8.37




ẋ = x(r + x+ x2),

ẏ = ry, r 6= 0,





r < 0 ⇒ Config. 8.34;

0 < r < 1/4 ⇒ Config. 8.35;

r = 1/4 ⇒ Config. 8.36;

r > 1/4 ⇒ Config. 8.37;

Invariant lines: L1,2 = x, L3,4 = r + x+ x2, L5 = y, L6,7 : Z = 0;

Config. 8.34ε-8.37ε:

{
ẋ = x(r − ε2 + x+ x2),

ẏ = y(r − ε2 − εy + ε2y2);

Invariant lines:

{
L1 = x, L2 = x− εy, L3,4 = r + x+ x2 − ε2,

L5,6 = r − εy − ε2 + ε2y2, L7 = y.

Fig. 4.9. Perturbations of normal forms corresponding to the configurations:

a) Config. 8.34 ; b) Config. 8.35 ; c) Config. 8.36 ; d) Config. 8.37

Config. 8.38 :
{
ẋ = x2(x+ 1), ẏ = 1;

Invariant lines: L1,2,3 = x, L4 = x+ 1, L5,6,7 : Z = 0;
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Config. 8.38ε:

{
ẋ = x(x− ε)(1 + x+ ε− 2εy),

ẏ = (εy − 1)(2εy − 1)(1− 2εy + 2ε2y);

Invariant lines:

{
L1=x, L2=x−ε, L3=x+ε−2yε2, L4=1+x−ε−2yε+2yε2,

L5 = yε− 1, L6 = 2yε− 1, L7 = 1− 2yε+ 2yε2.

Fig. 4.10. Perturbation of normal form corresponding to the configuration

Config. 8.38

Config. 8.39 :




ẋ = x(1 + x)(v + x),

ẏ = (v + 2x+ 2vx+ 3x2)y;

Invariant lines: L1,2 = x, L3,4 = x+ 1, L5,6 = x+ v, L7 = y;

We note that these systems are obtained from (4.37) due to the transformation (x, y, t) 7→
(
(1 − u)x/2, y, 4t/(u − 1)

)
and notation v = (1 + u)/(1 − u), where v 6= {0, 1} (since

u(1− u2) 6= 0).

Config. 8.39ε:




ẋ = x(1 + x)(v + x),

ẏ = y[v + 2x+ 2vx+ 3x2 + ε(y + vy + 3xy + y2ε)];

Invariant lines:

{
L1 = x, L2 = x+ yε, L3 = x+ 1, L4 = x+ 1 + yε, L5 = x+ v,

L6 = x+ v + yε, L7 = y.

Fig. 4.11. Perturbation of normal form corresponding to the configuration

Config. 8.39

Config. 8.40 :




ẋ = (x− 1)(v2 + x2),

ẏ = (v2 − 2x+ 3x2)y;

Invariant lines : L1,2 = x− 1, L3,4 = x− vi, L5,6 = x+ vi, L7 = y;
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We remark that these systems are obtained from (4.38) due to the transformation (x, y, t) 7→
(
(x− 1)/2, y, 4t

)
and changing u by v.

Config. 8.40ε:




ẋ = (x− 1)(v2 + x2),

ẏ = y[v2 − 2x+ 3x2 − 2ε(y − 3xy − 2y2ε)];

Invariant lines:

{
L1 = x− 1, L2 = x− 1 + 2yε, L3 = x− vi, L4 = x− vi+ 2yε,

L5 = x+ vi, L6 = x+ vi+ 2yε, L7 = y.

Fig. 4.12. Perturbation of normal form corresponding to the configuration

Config. 8.40

Config. 8.41 – 8.43 :




ẋ = x(r + x2),

ẏ = 1 + ry + 3x2y;

Invariant lines: L1,2,3 = x, L4,5 = x+
√
−r, L6,7 = x−

√
−r;

Config. 8.41ε – 8.43ε:




ẋ = rx+ x3 − ε+ xε,

ẏ = 1 + ry + 3x2y + ε(y + 6xy2 + 4y3ε);

Invariant lines:
L1 = x+ yε, L2,4,6 = rx+ x3 − ε+ xε,

L3,5,7 = rx+ x3 + ε(1 + x+ 2ry + 6x2y + 2yε+ 12xy2ε+ 8y3ε2).

Fig. 4.13. Perturbations of normal forms corresponding to the configurations:

a) Config. 8.41 ; b) Config. 8.42 ; c) Config. 8.43
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Config. 8.44 – 8.46 :




ẋ = x(1 + x)[u+ 2 + (u+ 1)x],

ẏ = y[u+ 2 + (3 + 2u)x+ ux2];

Invariant lines: L1,2,3 = x, L4,5 = x+ 1, L6 = (u+ 1)x+ (u+ 2), L7 = y;

Config. 8.44ε – 8.46ε:




ẋ = x(1 + x)[u+ 2 + (u+ 1)x],

ẏ = y[(2 + u) + (3 + 2u)x+ ux2 − (3 + u)xyε− (2 + u)y2ε2];

Invariant lines:
L1 = x, L2 = x+ yε, L3 = x+ 2yε+ uyε, L4 = x+ 1,

L5 = 1 + x+ yε, L6 = (u+ 1)x+ (u+ 2), L7 = y.

Fig. 4.14. Perturbations of normal forms corresponding to the configurations:

a) Config. 8.44 ; b) Config. 8.45 ; c) Config. 8.46

Config. 8.47 :




ẋ = x(x+ 1),

ẏ = y(1 + x− x2);

Invariant lines: L1,2,3 = x, L4,5 = x+ 1, L6 = y, L7 : Z = 0;

Config. 8.47ε:




ẋ = x(1 + x− 2xε)(1− ε− xε+ 2xε2)/(2ε− 1)2,

ẏ = xy + xy2(ε− 2)ε− x2y(1 + ε)− y(ε− 1)/(2ε− 1)2 + y3(ε− 1)ε2;

Invariant lines:
L1 = x, L2 = x+ yε, L3 = x+ yε− yε2, L4 = 2xε− yε+ 2yε2 − 1− x,

L5 = x+ 1, L6 = y, L7 = 1− ε− xε+ 2xε2.
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Fig. 4.15. Perturbation of normal form corresponding to the configuration

Config. 8.47

4.4. One new class of cubic systems with maximum number of invariant lines

In this subsection we show that a new class of cubic systems belongs to CSL9 is omitted in

the classification given by J. Llibre and N.Vulpe ( see [16]) in [83].

Indeed, we consider the family of cubic systems with 8 invariant lines (including the line

at infinity and including multiplicities) earlier constructed in this chapter

ẋ = x(r + 2x+ x2), ẏ = y(r + 2x), 0 6= r ∈ R, (4.51)

which depends on one parameter. These systems have the invariant affine lines: x = 0

(triple), y = 0, x2+2x+r = 0 (simple real or complex or real double) and the line at infinity

(Z = 0), which is double. We detected that in the case r = 8/9 the obtained system

ẋ = x(2 + 3x)(4 + 3x)/9, ẏ = 2(4 + 9x)y/9 (4.52)

possesses invariant lines of total multiplicity 9, and namely: x = 0 (triple), x = −2/3

(double), x = −4/3 and y = 0 (both simple) and the line at infinity (Z = 0, double).

To prove this it is sufficient to present the following corresponding perturbed systems

ẋ = x(2 + 3x)(4 + 3x)/9, ẏ = 2y(1 + εy)(4 + 9x− 4εy)/9,

which possess the following 8 invariant affine lines: x = 0, y = 0, x = −2/3, x = −4/3,

3x − 4εy = 0, 3x − 2εy = 0, 1 + εy = 0, 3x − 2εy + 2 = 0. Thus system (4.52) indeed

possesses invariant lines of total multiplicity 9 (including the infinite one).

On the other hand in [83] nine classes of cubic systems with two infinite singularities

determined by one simple and one triple factors of C3 are given and their corresponding

configurations are presented in Figures 14–22.

Considering the configuration of invariant lines of system (4.52) given in Fig. 5 we observe

that this configuration is different from configurations given in Figures 14–22 [83].
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Fig. 4.16. The configuration of invariant lines corresponding to system (4.52)

and its perturbation

4.5. Conclusions on Chapter 4

We observe that the class of cubic systems in CSL8 possessing two distinct infinite singu-

larities examined in Chapter 4 give us 25 distinct configurations of invariant straight lines,

whereas other three classes in CSL8 all together could have 26 configurations of invariant

straight lines. Moreover the class of systems under the discussion is also interesting because

of: 1) it presents a configuration (Config.8.42) possessing one affine invariant line with max-

imum possible multiplicity for cubic systems (i.e. 7) and 2) it was helpful to detect a new

class of cubic systems possessing a configuration with invariant lines of total multiplicity

nine which was omitted in the classification given by J.Llibre and N.Vulpe [83].

Finally we remark that the configuration given by Config.8.42 was also detected by

Şubă and Vacaraş in [129]. But it is important to underline that in contrast with [129] in

Chapter 4 necessary and sufficient conditions for the realization of the configuration given

by Config.8.42 were determined.

The reaserch presented in this Chapter were published in [16, 26, 29].
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GENERAL CONCLUSIONS AND RECOMMENDATIONS

The Thesis is devoted to the problem of classifying a family of cubic systems which pos-

sess invariant straight lines according to the configurations of these lines. This problem in

qualitative study of differential equations, which is very hard even in the simplest case of

quadratic differential systems, is partly motivated by the problem of topologically classifying

all phase portraits of polynomial cubic systems.

As a general observation we note that cubic differential systems are harder to study

than quadratic differential systems because of phenomena which could occur in this class

but which never occur in the quadratic family. For example the joint presence of limit

cycles and singularities which are centers is a phenomenon which occurs in cubic differential

systems but does not occur in the quadratic family. Furthermore cubic systems form a family

depending on 20 parameters while the class of quadratic differential systems depends on only

12 parameters.

Here we consider the family CSL8 of cubic systems with invariant lines of total multiplicity

eight (including the line at infinity). The study of these systems was based on some concepts,

such as the invariant straight line, the multiplicity of lines (of finite/infinite singular points)

and the configuration of invariant lines.

An other aspect of the practical and theoretical values of the work is that having all

canonical forms of systems in CSL8, constructed in the current Thesis, the problem of in-

tegrability of such systems could be solved. Of course we realize that, at the first glance,

the class CSL8 is a very specific one, moreover the cases of integrable systems are rare, but

as Arnold said in [1, p.405] ”...these integrable cases allow us to collect a large amount of

information about the motion in more important systems...“.

The main scientific problem which is solved in this Thesis consists in classifying the

whole family of cubic differential systems possessing invariant lines of total multiplicity eight

according to configurations of these lines; this classification is very helpful for obtaining the

complete topological classification of this family and is useful for the study of integrability

of this systems.

Novelty and scientific originality of the work consists in the fact that for the first time

there are constructed all the possible configurations of invariant lines for systems in CSL8 and

the obtained results are reflected in [8-26]. This set of configurations contains as particular

cases all the configurations detected by other authors in special cases of systems in CSL8

(see [86], [127,128]). In fact, this work is a continuation of [83] where the cubic systems with

the maximum number of invariant lines (i.e. 9) were studied and where 23 configurations of

invariant lines are detected. However a new class of cubic systems possessing invariant lines

of total multiplicity nine which completes the classification given by Llibre and Vulpe in [83]

was detected in this Thesis. Thus, we have obtained 51 different configurations of invariant
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lines. More exactly, we have detected 17 (respectively 5; 25; 4) distinct configurations

for the subfamily of systems possessing four (respectively three; two; one) distinct infinite

singularities, real or/and complex. At the same time we have constructed 33 canonical forms

of the systems possessing invariant lines of total multiplicity eight. We point out that 19

of these canonical forms are one-parameter families, whereas 14 of them are systems with

constant coefficients. One more result obtained in the Thesis is the construction of perturbed

canonical forms which prove that taking jointly the invariant lines they produced a maximum

of eight distinct invariant lines.

The benefits of our elaborations are that this classification, which is taken modulo the

action of the group of the real affine transformations and time rescaling, is given in terms of

invariant polynomials. The author of the current Thesis has constructed 52 new invariant

polynomials besides 20, which were constructed in [83]. It is worth to mention that it was

made a great work, because the process of the construction of invariant polynomials takes

time and it is pretty difficult. These algebraic invariants and comitants allow one to verify

for any given real non-degenerate cubic system with non-degenerate infinity whether or not

it has invariant lines of total multiplicity eight, and to specify its configuration of lines

endowed with their corresponding real singularities of this system. The important fact is

that the calculations can be implemented on computer.

In addition to complex investigations on the research problem, the contribution of the

author is materialized by the following main conclusions of the Thesis:

1) In this Thesis we studied a whole family of cubic systems, i.e those possessing invariant

straight lines of total multiplicity 8. We show that for this class, which we denote by CSL8,

several normal forms are needed each one depending of at most one parameter. To obtain

global results we used the invariant theory of polynomial differential systems as developed

by Sibirschi and his school. This method allowed us to glue in a unique global diagram, the

bifurcation diagrams of the several normal forms needed in the study of this family.

2) The global result mentioned above is a bifurcation diagram in the 20 dimensional

parameter space of cubic differential systems. This gives us an algorithm to decide for each

cubic system whether it belongs to this family or not and in case it belongs to this family, it

allows us to effectively compute its specific configuration of invariant lines. We proved that

this family possesses 51 possible configurations of invariant straight lines.

3) The Thesis also led us to obtain the following new global results:

(i) a system in CSL8 must have at infinity at least one real singularity;

(ii) a cubic system with real infinite singularities defined by two double factors of the invariant

polynomial C3(x, y) = yp3(x, y)− xQ3(x, y) could not belong to the class CSL8 and this is

the unique exception of cubic systems with real infinite singularities.
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The scientific results obtained could be used for a deeper investigation of cubic systems

possessing invariant straight lines of total multiplicity eight (including the line at infinity).

We propose the following recommendations:

(a) the configurations of invariant lines detected, and canonical forms could be used for

a complete topological classification of cubic systems in this class;

(b) the canonical forms of cubic systems in CSL8 constructed can serve as a basis for

determining of the first integrals of such systems;

(c) to use the polynomial invariant we constructed for further investigations of cubic

systems with invariant lines of total multiplicity less than 8;

(d) to apply the scientific results obtained, in the study of some mathematical models

which are described by polynomial differential systems and which are related with some

problems in physics, chemistry, medicine, etc.

(e) these investigations could serve as a support for teaching courses in higher education.
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Moscou: Éditions MIR, 1976.

2. Artés J. C. and Llibre J. Quadratics Hamiltonian Vector Fields. In: J. Differential

Equations 107 (1994), no. 1, p. 80–95.

3. Artés J. C. and Llibre J. Quadratic vector fields with a weak focus of third order

(English summary). In: Publ. Mat. 41 (1997), no. 1, p. 7–39.

4. Artes J., Llibre J. On the number of slopes of invariant straight lines for polynomial

differential systems. In: J. of Nanjing University 13 (1996), no. 2, p. 143–149.
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124. Şubă A., Cozma D. Solution of the problem of the center for cubic system with two

homogeneous and one nonhomogeneous invariant straight lines. In: Bul. Acad. Ştiinţe
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- Proiectul instituţional “15.817.02.03F - Invarianţi algebrici şi geometrici ı̂n studiul calitativ
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ştiinţelor exacte şi ale naturii”. Chişinău: U.S.T., 2015.
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