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SUMMARY (ENGLISH, ROMANIAN, RUSSIAN) 

Nica Denis, “Phonon engineering in nanodimensional structures”, scientific review of the 

habilitae doctor thesis in physics (based on published articles), Chisinau, 2016. Introduction, 4 

Chapters, General conclusions and recommendations, 176 references, 91 pages, 25 figures, 2 

tables. Based on the obtained results, 150 scientific works were published, including one 

monograph, two books chapters, 6 review papers and 33 research articles in ISI journals, 12 

articles in national scientific journals and over 100 abstracts in proceedings/books of abstracts of 

international or national conferences. 

Keywords: phonons, electrons, thermal transport, semiconductor nanostructures, nanofilm, 

nanowire, graphene, phonon engineering, continuum approach, crystal lattice dynamics. 

Domain of study: physics of nanosystems. 

Goal and objectives: theoretical development of phonon engineering concept for one- and two-

dimensional multilayered semiconductor nanostructures and graphene for improvement of their 

electrical and thermal conductivities. 

Scientific novelty and originality: the theoretically developed phonon engineering concept for 

multilayered semiconductor nanostructures and graphene is fundamentally new approach for 

improvement of thermal and electrical properties of nanostructures by a proper tuning of their 

phonon properties; the phonon states in considered nanostructures are investigated in detail, 

using different models of crystal lattice vibrations; the developed theory of heat transport allows 

interpretation of extremely high values of phonon thermal conductivity in graphene and its 

strong dependence on spatial dimensions of graphene flakes, concentration of crystal lattice 

defects and edge roughness. 

Theoretical importance: accurate models of phonon transport in multilayered semiconductor 

nanostructures and graphene are developed; the peculiarities of phonon processes in such 

nanostructures are theoretically investigated and explained. 

Practical significance of the obtained results is related to a possible improvement of operational 

parameters of modern nanostructure-based devices by proper tuning of their phonon properties. 

 



6 
 

АDNOTARE 

Nica Denis, „Ingineria fononică în structurile nanodimensionale”, referatul științific al tezei de 

doctor habilitat în științe fizice (prezentată în baza lucrărilor științifice publicate), Chișinău, 

2016. Introducere, 4 Capitole, Concluzii generale și recomandări, 176 titluri bibliografice, 91 

pagini, 25 figuri, 2 tabele. În baza rezultatelor obținute au fost publicate 150 lucrări științifice, 

inclusiv o monografie, 2 capitole în monografii, 6 articole de sinteză și 33 articole în revistele 

cotate de  ISI Web of Science, 12 articole în revistele științifice naționale și peste 100 teze la 

conferințele internaționale și naționale. 

Cuvinte-cheie: fononi, electroni, transport termic, nanostructuri semiconductoare, nanostrat, 

nanofir, grafen, inginerie fononică, abordare continuală, dinamica rețelei cristaline. 

Domeniul cercetărilor: fizica nanosistemelor. 

Scopul și obiectivele: dezvoltarea teoretică a conceptului ingineriei fononice în nanostructurile 

semiconductoare multistrat uni- și bidimensionale și în grafen pentru îmbunătățirea 

conductibilității termice și electrice a lor. 

Noutatea științifică și originalitatea: în lucrare este dezvoltată concepția de inginerie fononică 

în nanostructurile semiconductoare și în grafen, care reprezintă o metodă principial nouă de 

îmbunătățire a proprietăților termoconductibile și electroconductibile ale nanostructurilor prin 

dirijarea direcționată a proprietăților fononice ale lor; în cadrul diferitor modele ale oscilațiilor 

rețelei cristaline au fost cercetate detaliat stările fononice în nanostructurile studiate; a fost 

dezvoltată teoria transportului de căldură, care explică valorile înalte ale conductibilității termice 

de rețea a grafenului, cât și dependența puternică a ei de dimensiunile spațiale ale stratului, de 

concentrația defectelor rețelei cristaline și de calitatea frontierelor stratului. 

Importanța teoretică: au fost elaborate modele teoretice exacte ale transportului fononic în 

nanostructurile semiconductoare multistrat și în grafen; au fost cercetate teoretic și explicate 

particularitățile proceselor fononice în astfel de structuri. 

Importanța aplicativă a rezultatelor obținute este legată de posibilitatea îmbunătățirii 

caracteristicilor de lucru ale dispozitivelor electronice moderne prin modificarea proprietăților 

fononice ale lor.   
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АННОТАЦИЯ 

Ника Денис, „Фононная инженерия в наноразмерных структурах”, научный реферат 

диссертации на соискание ученой степени доктора хабилитат физических наук (на основе 

опубликованных научных работ), Кишинев, 2016. Введение, 4 Главы, Общие выводы и 

рекомендации, 176 cсылок, 91 cтраница, 25 рисунков, 2 таблицы. На основе полученных 

результатов опубликовано 150 научных работ, включая монографию, две главы в 

монографии, 6 обзорных и 33 исследовательские статьи в международных журналах, 

индексируемых ISI Web of Science, 12 статей в национальных научных журналах и более 

100 тезисов на международных и национальных конференциях. 

Ключевые слова: фононы, электроны, тепловой транспорт, полупроводниковые 

наноструктуры, нанослой, нанонить, графен, фононная инженерия, континуальный 

подход, динамика кристаллической решетки. 

Область исследований: физика наносистем. 

Цель и задачи: теоретическое развитие концепции фононной инженерии в одно- и 

двумерных многослойных полупроводниковых наноструктурах и графене для улучшения 

их теплопроводящих и электропроводящих свойств. 

Научная новизна и оригинальность: в работе развита концепция фононной инженерии 

в многослойных полупроводниковых наноструктурах и графене, которая представляет 

собой принципиально новый метод улучшения теплопроводящих и электропроводящих 

свойств наноструктур путем целенаправленного управления их фононными свойствами; в 

рамках различных моделей колебаний кристаллической решетки детально исследованы 

фононные состояния в рассматриваемых наноструктурах; развита теория теплового 

транспорта, которая объясняет как высокие значения решеточной теплопроводности 

графена, так и ее сильную зависимость от пространственных размеров слоя, концентрации 

дефектов кристаллической решетки и качества границ слоя. 

Теоретическая значимость: разработаны точные модели фононного транспорта в 

многослойных полупроводниковых наноструктурах и графене; теоретически исследованы 

и объяснены особенности фононных процессов в таких структурах. 

Прикладная ценность полученных результатов связана с возможным улучшением 

рабочих характеристик современных электронных устройств путем изменения их 

фононных свойств. 
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LIST OF ABBREVIATIONS 
 
 

RT  –  room temperature 

1D  –  one-dimensional   

2D  –  two-dimensional 

3D  –  three-dimensional 

MFP  –  mean free path 

GNR  –  graphene nanoribbon 

BvK model  –  Born-von Karman model 

FCC model –  face-centered cubic cell model 

VFF model –  valence force field model 

MD  –  molecular dynamics 

BTE  –  Boltzmann transport equation 

IFC  –  interatomic force constant 

SLG  –  single layer graphene 

FLG  –  few layer graphene 

NW  –  nanowire 

SNW  –  segmented nanowire 

MSNW –  modulated segmented nanowire 

   –  phonon group velocity 

԰  –  Plank’s constant  

Bk   –  Boltzmann’s constant 

T  –  absolute temperature 
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INTRODUCTION 

Relevance and importance of the Thesis. Phonons manifest themselves in all major processes in 

semiconductors: they carry heat, limit electron mobility, affect optical response and transmit 

sound. Reduction of the size of electronic devices below the acoustic phonon mean free path 

creates a new situation for the phonons propagation and interaction. From one side, it may 

complicate heat removal from the downscaled devices due to decrease of phonon group velocity 

and enhancement of phonon boundary scattering. From the other side, it opens up an opportunity 

for engineering phonon spectrum in nanostructured materials. Phonon engineering is an 

approach to tune the phonon properties of materials for enhancement of their thermal and 

electronic properties. This approach is fundamentally different from the conventional – 

packaging level – heat removal techniques or electronic band-gap engineering. The practical 

application of phonon engineering at nanoscale may lead to important advancement in micro- 

and nanoelectronics and to appearance of a novel class of phonon-optimized nanostructured 

materials and devices.  

The goals of the Thesis are:  

 theoretical development of phonon engineering concept for one- and two-dimensional 

multilayered semiconductor nanostructures and graphene; 

 demonstration of a possibility for phonon-engineered enhancement of their electrical and 

thermal conductivities.  

In order to achieve these goals, the following objectives are formulated:  

 Development of theoretical models for phonons and thermal transport in multilayered 

semiconductor nanostructures and graphene; 

 Investigation of electron properties and electron-phonon interaction in planar 

multilayered semiconductor nanostructures; 

  Investigation of phonon scatterings in multilayered semiconductor nanostructures and 

graphene; 

 Optimization of nanostructures over shape and size to achieve optimal thermal 

conductivity and increased electron mobility. 

The following theoretical methods and models are used to accomplish the objectives: 

 Continuum approach and dynamic models of lattice vibrations for phonons; 

 Effective-mass approximation for electrons;  

 Boltzmann transport equation within relaxation time approximation for modeling the 

thermal and electronic properties of considered nanostructures. 



10 
 

 Finite difference method for numerical solving of systems of differential equations; QR 

decomposition approach for numerical solving of eigenvalues/eigenvectors problems; 

rectangle method for numerical integrations. 

Theoretical importance and scientific novelty of the results consists in the following: 

 A continuum approach and three dynamic models of lattice vibrations: face-centered 

cubic cell (FCC), Born-von Karman (BvK) and valence force field (VFF) were developed 

and applied for the investigation of phonon properties of multilayered semiconductor 

nanostructures and graphene; 

 A possibility of tuning the thermal and electrical conductivities in semiconductor 

nanostructures and graphene by proper engineering of their phonon properties is 

theoretically demonstrated; 

 A theoretical model of phonon thermal transport in graphene, few-layer graphene, twisted 

graphene and graphite was developed and applied for the investigation of heat 

conduction; 

 Theoretical interpretation of extremely high values of phonon thermal conductivity in 

graphene materials and its strong dependence on lateral dimensions, thickness and shapes 

of graphene flakes, edge roughness, point defects and isotope is provided. 

The theoretically developed phonon engineering concept at nanoscale is fundamentally new 

approach for improvement of thermal and electrical conduction in semiconductor nanostructures 

and graphene. 

The theoretical significance of the results consists in developing of accurate models for phonons 

and thermal transport in multilayered semiconductor nanostructures and graphene; in 

investigations of peculiarities of phonon processes at nanoscale and in demonstration of a 

possibility to achieve phonon-engineered enhanced thermal or electrical properties of 

multilayered semiconductor nanostructures and graphene. 

The applied significance of the results is related to a possible improvement of operational 

parameters of modern nanostructure-based devices by proper tuning of their phonon properties. 

Main items to be defended:  

1. Phonon energy spectra and group velocities in semiconductor planar heterostructures and 

coated nanowires can be efficiently tuned by a proper selection of cladding layers material 

and thickness. 
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2. Cladding layers with higher (lower) sound velocity than that in a core layer increases 

(decreases) both average group velocity of phonons and thermal conductivity. 

3. New types of hybrid phonon modes appear in planar heterostructures and coated nanowires: 

(i) core-like modes with atomic vibrations in the core layer; (ii) cladding-like modes with 

atomic vibrations in the cladding layers and (iii) propagating modes with atomic vibrations 

both in the core and cladding layers. 

4. A two- to fivefold increase of the room temperature electron mobility can be achieved in 

wurtzite AlN/GaN/AlN heterostructures by the compensation of built-in electric field by the 

external electric field or by creation in the middle of GaN well ultra-narrow InXGa1-XN 

nanogroove with small In content x ~ 0.05.  

5. The electron mobility in silicon nanolayers can be increased if they are embedded within 

cladding layers with higher sound velocity. 

6. The phonon thermal conductivity in semiconductor segmented nanowires and cross-section-

modulated nanowires can be decreased by an order of magnitude in comparison with that in 

straight nanowire due to the phonon filtering, i.e. trapping of the certain phonon modes in 

nanowire segments. 

7. The in-plane lattice thermal conductivity of single layer graphene strongly depends on the 

temperature, lattice anharmonicity, point defects concentration, edge roughness, shape and 

linear dimensions of the graphene flake. 

8. The in-plane lattice thermal conductivity in few-layer graphene decreases rapidly with 

increasing number of graphene monolayers n and approaches the highly-oriented pyrolitic 

graphite limit for n=4. 

9. The in-plane thermal conductivity of micrometer size rectangular graphene ribbons 

demonstrates non-monotonic dependence on flake size due to the long mean-free path of 

long-wavelength acoustic phonons. 

10. Twisting bilayer graphene leads to the emergence of hybrid folded phonons, which depend 

on the twisting angle and originate from the mixing of phonon modes from different high-

symmetry directions in the Brillouin zone. 

Approbation of the results: over 100 presentations at the international and national scientific 

conferences were given in United States of America, Russia, Japan, Germany, Italy, Belorussia, 

Ukraine, Poland, Greece, Turkey and Moldova, including 5 invited plenary talks and 19 regular 

oral presentations, presented directly by the Thesis author. 
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Publications: based on the results presented in the Thesis 150 scientific works were published, 

including one monograph, two books chapters, 6 review papers and 33 research articles in ISI 

journals, 12 articles in national scientific journals and over 100 abstracts in proceedings/books of 

abstracts of international or national conferences. 

Structure of the Scientific Review: the Review consists of Introduction (General characteristic of 

the work), 4 Chapters and Conclusions. It contains 176 References, 87 Pages, 25 Figures and 2 

Tables. 

Keywords: phonons, electrons, thermal transport, semiconductor nanostructures, nanofilm, 

nanowire, graphene, phonon engineering, continuum approach, crystal lattice dynamics. 
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1. PHONON ENGINEERING AT NANOSCALE 

Phonons, i.e. quanta of the crystal lattice vibrations, affect all physical processes in solids [1-

3]. They limit the electron mobility near room temperature (RT), and affect optical properties of 

crystalline materials. Acoustic phonons are the main heat carriers in insulators and 

semiconductors [1]. The long-wavelength phonons give rise to sound waves, which explains the 

name phonon. Phonons are characterized by their dispersion (q), where  is an angular 

frequency and q is a wave vector of a phonon [1-3]. In bulk semiconductors with g atoms per 

unit cell, there are 3g phonon dispersion branches for each q [2]. Three types of vibrations at 

long wavelength limit describe the motion of the unit cell, and form three acoustic phonon 

branches. The other 3(g-1) modes describe the relative motion of atoms inside a unit cell, and 

form the optical phonon branches. The acoustic polarization branches are commonly referred to 

as longitudinal acoustic (LA) and transverse acoustic (TA). In case of graphene the out-of-plane 

transverse vibrations are denoted as z-axis acoustic (ZA) phonons [4-6]. In the long-wavelength 

limit, acoustic phonons in bulk crystals have nearly linear dispersion, which can be written as 

sound q   where sound  is the sound velocity, while the optical phonons are nearly dispersion-

less and have a small group velocity / .d dq   

1.1. Phonons and thermal transport in semiconductor nanostructures 

Spatial confinement of acoustic phonons in nanostructures affects their dispersion [7-10]. It 

modifies acoustic phonon properties such as phonon group velocity, polarization, density of 

states, and changes the way acoustic phonons interact with other phonons, defects and electrons 

[8-11]. Such changes create opportunities for engineering phonon spectrum in nanostructures for 

improving electrical or thermal properties. The average phonon mean free path (MFP) Λ in 

semiconductors is ~50-300 nm near RT. The wavelength of the thermal phonon 0=1.48

/( )sound Bk T  is ~1-2 nm (  is Planck’s constant, kB is the Boltzmann constant, T is absolute 

temperature) [10]. Thus, in order to engineer the acoustic phonon spectrum at RT, one needs to 

have materials structured at the nanometer length-scale. 

Embedding nanostructures in materials with the large acoustic impedance mismatch, gives 

one greater flexibility for tuning the phonon spectrum [11-15]. The acoustic impedance is 

defined as = sound , where  is the mass density. In the acoustically mismatched nanostructures 

the phonon dispersion depends not only on their diameter and the boundary conditions at the 

external surface but also on the material of the nanostructure layers [11-15]. 
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Engineering of the optical phonons in nanostructures via the boundary conditions requires 

different approaches than engineering of the acoustic phonons. In the long-wave limit the optical 

phonons correspond to the motion of atoms within the same unit cell, which cannot be changed 

by imposing new outside boundaries. However, the electron – phonon scattering rates can be 

modified by tuning the confined electronic states energy difference with respect to the optical 

phonon energy [16]. This effect – referred to as “phonon bottleneck” – can be used for 

optimization of solid-state lasers or other devices. Heterostructures, which consist of the layers 

with the distinctively different optical phonon energies, allow one to localize optical phonons 

within their respective layers [3, 17-18], which can also be used for practical purposes. 

Although phonon engineering became a mainstream research direction only recently, the 

interest to modification of the acoustic phonon spectra in layered materials has a long history. In 

1950s, the changes in acoustic vibrations leading to appearance of folded phonons were analyzed 

in the “artificial thinly-laminated media” – structures, which now would be called superlattices 

[19]. The folded phonons were later observed experimentally in GaAs/AlGaAs quantum well 

superlattices [20]. In 1990s, many calculations were performed for the confined acoustic phonon 

– electron scattering rates in freestanding thin films and nanowires (NWs) [21-24]. 

The interest to the subject substantially increased when it was pointed out that the 

confinement-induced changes in the acoustic phonon dispersion can lead to strong effects on 

thermal conductivity [7-8]. Decreased averaged phonon group velocity in thin films and 

nanowires can lead to the increased acoustic phonon relaxation on point defects (vacancies, 

impurities, isotopes, etc.), dislocations and phonon-phonon Umklapp processes [25-29]. 

Enhancement of phonon relaxation decreases the lattice thermal conductivity in nanostructures in 

comparison with corresponding bulk materials [25-29]. Thermal conductivity reduction, being a 

bad news for thermal management of downscaled electronic devices, is good news for the 

thermoelectric devices, which require materials with high electrical conductivity, Seebeck 

coefficient and low thermal conductivity [7, 30]. Measure of the efficiency of the thermoelectric 

energy conversion - figure of merit ZT - contains the electrical conductivity in the numerator and 

the lattice thermal conductivity in the denominator: ZT = S2σT/(κph + κel), where S is the Seebeck 

coefficient, σ is the electrical conductivity, T is the absolute temperature, κph and κel are the 

phonon, i.e., lattice and electron thermal conductivities, respectively. A possibility of the strong 

increase of ZT in quasi one-dimensional (1D) and two-dimensional (2D) nanostructures due to 

enhancement of electrical conductivity and suppression of electron-phonon interaction was also 

theoretically demonstrated [31-32]. 
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When the structure size L is comparable to the phonon MFP but still much larger that the 

dominant thermal phonon wavelength, the phonon dispersion remains bulk-like. In this case, the 

acoustic phonon transport is only affected by phonon scattering from the boundaries. The 

phonon boundary scattering rate can be evaluated as [1] 1/B=(VS/D)[(1-p)/(1+p)], where D is 

the nanostructure size and 0≤p≤ 1 is the specularity parameter defined as a probability of 

specular and diffuse scattering at the boundary. In nanostructures, where the phonon - boundary 

scattering is dominant, thermal conductivity scales with the size D as

2~ ~ ~p p sound p sound B p soundc c c D     , where pc  is the thermal heat capacity at the constant 

pressure. 

The situation for the phonon thermal conductivity and phonon-limited electron transport 

becomes much more interesting when L becomes comparable to 0. In this case, the spatial 

confinement of acoustic phonon and mode quantization open an opportunity for increasing or 

decreasing the thermal conductivity and electron mobility via engineering the phonon spectrum. 

It has been known since 1980 that the electron mobility limited by the elastic scattering, e.g. 

ionized impurity scattering, can be strongly increased in nanowires via the restriction of the 

scattering space available for electrons in a quasi-1D system [33]. However, the RT electron 

mobility in semiconductor crystals is limited by phonons rather than impurities. Recently, it was 

shown theoretically that the electron mobility limited by the phonons in Si nanowires [34] or thin 

films [35] can be enhanced via suppression of electron-phonon interactions in nanostructures 

with synthetic diamond barriers. The acoustically hard diamond barriers result in the 

modification of the phonon dispersion inside Si channel layer beneficial for the electron 

transport, e.g. increasing charge carrier mobility [34-35]. Similarly, one can increase or decrease 

the heat conduction properties of the nanowire or thin film by using the claddings with proper 

sound velocity [36-37]. One should note here that the prediction for thermal and electronic 

conduction in semiconductor nanostructures in the phonon confinement regime initially made 

within the elastic continuum approximation [7-9,12-15,25,30,34-43] have been confirmed by the 

independent molecular-dynamics simulations [44] and direct experimental measurements for 

Ge/Si core/shell nanowires [45]. The described phonon engineering approach can be used in the 

electronic industry for design of nanoscale transistors and phononic band gap materials [38-43]. 

As the transistor feature size approaches 0 the possibilities for engineering phonon dispersion to 

improve the carrier and heat transport increase, correspondingly. 
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1.2. Phonons and thermal transport in graphene materials 

Acoustic phonons are the main heat carriers in carbon materials [46]. Although graphite 

reveals many metal characteristics, its heat transport is dominated by phonons owing the 

exceptionally strong sp2 covalent bonding of its lattice. The thermal conductivity of various 

allotropes of carbon span an extraordinary large range – of over five orders of magnitude – from 

~0.01 Wm-1K-1 in amorphous carbon to above 2000 Wm-1K-1 in diamond or graphite at RT [46]. 

In 2007, the first measurements of the thermal conductivity of graphene carried out by Prof. A. 

Balandin’s group at UC Riverside revealed unusually high values of thermal conductivity 

κ~3000 – 5000 Wm-1K-1 at RT [47-48]. The values measured for the high-quality large 

suspended graphene samples (length above 10 µm) were exceeding those for basal planes of 

graphite [47-48].  

The experimental observation was explained theoretically by the specifics of the 2D phonon 

transport [6, 49]. The low-energy acoustic phonons in graphene, which make substantial 

contribution to heat conduction, have extraordinary large MFP [48]. The anharmonic scattering 

in 2D graphene is very weak for such phonons. The large values of thermal conductivity and 2D 

phonon density of states make graphene an ideal material for phonon engineering. 

The first measurements of heat conduction in graphene [47-48] were made possible by the 

development of the optothermal Raman measurement technique (see Figure 1.1). The 

experiments were performed with the large-area suspended graphene layers exfoliated from the 

high-quality Kish and highly ordered pyrolytic graphite. It was found that the thermal 

conductivity varies in a wide range and can exceed that of the bulk graphite, which is ~2000 

Wm-1K-1 at room temperature [47-48]. It was also determined that the electronic contribution to 

heat conduction in the un-gated graphene near RT is much smaller than that of phonons, i.e. 

κe<<κph. The phonon MFP in graphene was estimated to be on the order of 800 nm near RT [48]. 

Several independent studies, which followed, also utilized the Raman optothermal technique 

but modified it via addition of a power meter under the suspended portion of graphene. It was 

found that the thermal conductivity of suspended high-quality chemical vapor deposited (CVD) 

graphene exceeded ~2500 Wm-1K-1 at 350 K, and it was as high as κ≈1400 Wm-1K-1 at 500 K 

[50]. The reported value was also larger than the thermal conductivity of bulk graphite at RT. 

Another Raman optothermal study with the suspended graphene found the thermal conductivity 

in the range from ~1500 to ~5000 Wm-1K-1 [51]. Another group that repeated the Raman-based 

measurements found κ≈630 Wm-1K-1 for a suspended graphene membrane [52]. The differences 

in the actual temperature of graphene under laser heating, strain distribution in the suspended 

graphene of various sizes and geometries can explain the data variation. 
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Fig. 1.1. Schematic of the experimental set up with the excitation laser light focused on 

graphene suspended across a trench in Si wafer. Laser power absorbed in graphene induces a 

local hot spot and generates heat wave propagating toward the heat sinks. The figure is reprinted 

from Ref. [48] with permission from the American Institute of Physics. 

The data for suspended or partially suspended graphene is closer to the intrinsic thermal 

conductivity because suspension reduces thermal coupling to the substrate and scattering on the 

substrate defects and impurities. The thermal conductivity of fully supported graphene is smaller. 

The measurements for exfoliated graphene on SiO2/Si revealed in-plane κ≈600 Wm-1K-1 near RT 

[53]. Solving the Boltzmann transport equation (BTE) and comparing with their experiments, the 

authors determined that the thermal conductivity of free graphene should be ~3000 Wm-1K-1 near 

RT. 

Despite the noted data scatter in the reported experimental values of the thermal conductivity 

of graphene, one can conclude that it is very large compared to that for bulk  

silicon (κ=145 Wm-1K-1 at RT) or bulk copper (κ=400 Wm-1K-1 at RT) – important materials for 

electronic applications. The differences in κ of graphene can be attributed to variations in the 

graphene sample lateral sizes (length and width), thickness non-uniformity due to the mixing 

between single-layer and few-layer graphene, material quality (e.g. defect concentration and 

surface contaminations), grain size and orientation, as well as strain distributions. Often the 

reported thermal conductivity values of graphene corresponded to different sample temperatures 

T, despite the fact that the measurements were conducted at ambient temperature. For a more 

detail analysis of the experimental techniques and uncertainties the readers are referred to an 

original experimental papers [47-48, 50-53] and comprehensive review [46]. 

The first experimental investigations of the thermal properties in graphene materials [47-48, 

50-54] stimulated numerous theoretical and computational works in the field. Many different 

theoretical models have been proposed for the prediction of the phonon and thermal properties in 

graphite, graphene and graphene nanoribbons (GNRs) during the last few years. The phonon 
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energy spectra have been theoretically investigated using Perdew-Burke-Ernzerhof generalized 

gradient approximation (GGA) [4-5,55], valence force field and Born-von Karman models of 

lattice vibrations [6,49, 56-60], continuum approach [61-63], first-order local density 

approximation [63-64], fifth- and fourth-nearest neighbor force constant approaches [4,65] or 

utilized the Tersoff, Brenner or Lennard-Jones potentials [66-68]. The thermal conductivity 

investigations have been performed within molecular dynamics (MD) simulations [69-85], 

density functional theory [86-87], Green’s function method [88-89] and Boltzmann-transport-

equation (BTE) approach [6, 49, 56-57, 66-68, 90-94]. It has been shown that phonon energies 

strongly depend on the interatomic force constants (IFCs) – fitting parameters of interatomic 

interactions, used in the majority of the models. Therefore a proper choice of interatomic force 

constants is crucial for the accurate description of phonon energy spectra and thermal 

conductivity in graphene, twisted graphene and graphene nanoribbons [29, 58, 95].  

Although various models predicted different values of thermal conductivity, they 

demonstrated consistent results on the strong dependence of graphene lattice thermal 

conductivity on extrinsic parameters of flakes: edge quality, few-layer graphene (FLG) 

thickness, lateral size and shape, lattice strain, isotope, impurity and grain concentration. The 

MD simulations give usually smaller values of thermal conductivity in comparison with BTE 

model and experimental data due to exclusion of long wavelength phonons from the model by a 

finite size of the simulation domain [95].  

The effect of the edge roughness on the thermal conductivity in graphene and GNRs has been 

investigated in Refs. [6, 49, 54, 61, 69, 81, 93, 96-97]. The rough edge can suppress the thermal 

conductivity by an order of magnitude as compared to that in graphene or GNRs with perfect 

edges due to the boundary scattering of phonons. Impurities, single vacancies, double vacancies 

and Stone-Wales defects decrease the thermal conductivity of graphene and GNRs by more than 

50% - 80% in dependence of the defect concentration [6, 49, 57, 76-80]. 

A study of thermal conductivity of graphene and GNRs under strain was performed in Refs. 

[74, 86-89, 98]. An enhancement of the thermal conductivity of up to 36% for the strained 5-nm 

armchair or zigzag GNRs was found in the ballistic transport regime [89]. In the diffusive 

transport regime, the applied strain enhanced the Umklapp scattering and thermal conductivity 

diminishes by ~ 1.4 orders of magnitude at RT in comparison with the unstrained graphene [87]. 

The discrepancy between theoretical findings and experiments requires additional investigations 

of thermal transport in strained graphene and GNRs. The isotope composition is another key 

parameter for thermal conductivity engineering in these materials [29, 46, 93, 95, 99-104]. 

Naturally occurring carbon materials are made up of two stable isotopes of 12C (∼99%) and 13C 
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(∼1%). The change in the isotope composition significantly influences the crystal lattice 

properties. Increasing the “isotope doping” leads to a suppression of the thermal conductivity in 

graphene and GNRs of up to two orders of magnitude at RT due to the enhanced phonon-point 

defect (mass-difference) scattering [93, 95, 99-104]. 

Graphene and GNRs also demonstrated an intriguing dependence of the thermal conductivity 

on their geometrical parameters: lateral sizes and shapes [6, 49, 57, 61, 81-84, 94]. Using BTE 

approach, Nika et al. [57] have demonstrated that RT thermal conductivity of a rectangular 

graphene flake with 5 µm width increases with length L up to L ~ 40 - 200 µm and converges for 

L > 50 – 1000 µm in dependence on the phonon boundary scattering parameter p. The 

dependence of the thermal conductivity on L is non-monotonic, which is explained by the 

interplay between contribution to the thermal conductivity from two groups of phonons: 

participating and non-participating in the edge scattering [57]. The exceptionally large mean free 

path of the acoustic phonons in graphene is essential for this effect. The increase in the flake 

width or phonon edge scattering attenuates the non-monotonic behavior. It disappears in circular 

flakes or flakes with very rough edges (with specular parameter p<0.5). 

A number of studies [81-83] employed the MD simulations to investigate the length 

dependence of the thermal conductivity in graphene and GNRs. The converged thermal 

conductivity in graphene was found for L>16 µm in Ref. [81]. In Refs. [82-83] the thermal 

conductivity increases monotonically with an increase of the length up to 2.8 µm in graphene 

[83] and 800 nm in GNRs [82]. The obvious length dependence in graphene and GNRs can be 

attributed to the extremely large phonon mean free path Λ ~ 775 nm [48], which provides 

noticeable length dependence even for flakes with micrometer lengths. 

Evans et al. [69] found from the MD study that the thermal conductivity of graphene is 

κ≈8000 - 10000 Wm-1K-1 at RT for the square graphene sheet. The κ value was size independent 

for L>5 nm [69]. For the ribbons with fixed L=10 nm and width W varying from 1 to 10 nm, κ 

increased from ~1000 Wm-1K-1 to 7000 Wm-1K-1. The study of the nonlinear thermal transport in 

rectangular and triangular GNRs under the large temperature biases was reported in Ref. [105]. 

The authors found that in short (~6 nm) rectangular GNRs, the negative differential thermal 

conductance exists in a certain range of the applied temperature difference. As the length of the 

rectangular GNR increases the effect weakens. A computational study reported in Ref. [106] 

predicted that the combined effects of the edge roughness and local defects play a dominant role 

in determining the thermal transport properties of zigzag GNRs.  

The experimental data on thermal transport in GNRs is very limited. In Ref. [107] the authors 

used an electrical self-heating methods and extracted the thermal conductivity of sub 20-nm 
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GNRs to be more than 1000 Wm-1K-1 at 700 – 800 K. A similar experimental method but with 

more accurate account of GNRs thermal coupling to the substrate has been used in Ref. [108]. 

Liao et al. [108] found substantially lower values of thermal conductivity of ~ 80 – 150 Wm-1K-1 

at RT. 

The available experimental and theoretical values of phonon thermal conductivity in SLG, 

FLG and GNRs are presented in Tables 1.1 and 1.2 at RT (if not indicated otherwise). Readers 

interested in a more detailed description of theoretical models for the heat conduction in 

graphene materials are referred to review papers [29, 46, 95, 109]. 

Table 1.1. Thermal conductivity of single-layer graphene. 

κ (Wm-1K-1) Method Description Ref. 

experimental data 

~2000 – 5000 Raman optothermal suspended; exfoliated 47,48 

~2500 Raman optothermal 
suspended; chemical vapor deposition 

(CVD) grown 
50 

~1500-5000 Raman optothermal suspended; CVD grown 51 

600 Raman optothermal suspended; exfoliated; T ~ 660 K 52 

600 electrical supported; exfoliated; 53 

310 – 530 electrical self-heating exfoliated and CVD grown; T~1000 K. 110 

2778 ± 569 Raman optothermal suspended, CVD-grown 111 

~ 1700 electrical self heating 
suspended; CVD-grown; flake length ~ 9 

µm; strong length dependence 
112 

theoretical data 

1000 – 8000 BTE, γLA, γTA strong size dependence 49 

2000-8000 BTE, γs(q) 
strong edge, width and Gruneisen 

parameter dependence 
6 

~2430 

BTE, 

3rd-order interatomic 

force constants (IFCs) 

κ (graphene) κ (carbon nanotube)  
113 

 

1500 – 3500 
BTE, 

3rd-order IFCs 
strong size dependence 66 

100 – 8000 BTE 
Strong length, size, shape and edge 

dependence. 
57 
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2000 – 4000 
continuum approach + 

BTE 

strong isotope, point-defects and strain 

influence. 
61, 114 

~ 4000 ballistic strong width dependence 115 

~ 2900 MD simulation 
strong dependence on the vacancy 

concentration 
71 

~ 20000 VFF + MD simulation 
Ballistic regime; flake length ~ 5 µm; 

strong width and length dependence 
116 

100-550 MD simulation 
flake length L<200 nm; strong length and 

defect dependence 
78 

~ 3000  MD simulation 
sheet length ~ 15 µm; strong size 

dependence  
81 

2360 MD simulation L~5 µm; strong length dependence 83 

4000-6000 MD simulation strong strain dependence 87 

~ 3600 

Boltzmann-Peierls 

equation + density 

functional 

perturbation theory  

L=10 µm; insensitivity to small isotropic 

strain  
117 

~ 1250 MD simulation 
L=100 µm; strong length dependence for 

L<100 µm 
118 

1800 MD simulation 6 nm × 6 nm sheet; isolated 

85 
1000-1300 MD simulation 

6 nm × 6 nm sheet; Cu – supported; 

strong dependence on the interaction 

strength between graphene and substrate  

Table 1.2. Thermal conductivity of few-layer graphene and graphene nanoribbons. 

κ (Wm-1K-1) Method Description Ref. 

experimental data 

~1900 Raman optothermal suspended BLG; T~320 K 111 

560-620 electrical self-heating 
suspended BLG; polymeric residues on 

the surface. 
119 

~1400 Raman optothermal suspended twisted BLG; T~320 K 111 

1300 – 2800 Raman optothermal Suspended FLG; exfoliated; n=2-4 54 

50 – 970 heat-spreader method FLG, encased within SiO2; n = 2, …, 21 120 
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150 – 1200 electrical self-heating 
suspended and supported FLG; polymeric 

residues on the surface. 
121 

302-596 modified T-bridge suspended FLG; n=2 – 8.   122 

1100 electrical self-heating supported FLG; exfoliated; n<5 107 

80 – 150 electrical self-heating supported FLG 108 

theoretical data 

1000 – 4000 BTE, γs(q) FLG, n = 8 – 1, strong size dependence 54 

1000 – 3500 
BTE, 

3rd-order IFCs 
FLG, n = 5 – 1, strong size dependence 66 

2000-3300 
BTE, 

3rd-order IFCs 
FLG, n = 4 – 1 67 

580 – 880 MD simulation 
FLG, n = 5 – 1, strong dependence on the 

Van-der Vaals bond strength 
72 

1000 – 7000 
Theory: molecular 

dynamics, Tersoff 

GNR, strong ribbon width and edge 

dependence 
69 

~ 5500 BTE 
GNR with width of 5 μm; strong 

dependence on the edge roughness 
91 

~2000 MD simulation 
GNR, T=400 K; 1.5 nm × 5.7 nm zigzag 

GNR; strong edge chirality influence 
97 

30-80 
AIREBO potential + 

MD simulation 

GNR, 10 - zigzag and 19 -arm-chair 

nanoribbons; strong defect dependence 
77, 79 

3200-5200 MD simulation 

GNR, strong GNRs width (W) and length 

dependence;  

9 nm ≤L≤27 nm and 4 nm≤W≤18 nm 

80 

400 – 600 MD simulation 
GNR, κ~L0.24;  

100 nm ≤  L≤ 650 nm 
82 

100 – 1000 BTE 
GNRs supported on SiO2; strong edge and 

width dependence 
94 

500 – 300 MD simulation few-layer GNRs; 10-ZGNR, n = 1,…,5 84 

1.3. Conclusions to Chapter 1 

This chapter reviews the different possibilities of phonon engineering in semiconductor 

nanostructures and graphene, reported up to date. It was demonstrated that both phonon thermal 

conductivity and electron mobility can be enhanced by proper selection of nanostructures 
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material and geometrical parameters. Graphene-based materials are promising candidates for 

phonon engineering, because their thermal conductivity strongly depends on the extrinsic 

parameters: flake shape and size, defect and isotope concentration, strain and flake edge quality. 

The reviewed results confirm that phonon engineering is a powerful tool for the improvement 

both of thermal and electrical conduction at nanoscale. Therefore the main goals of the Thesis 

are formulated as follows:  

 theoretical development of phonon engineering concept for one- and two-dimensional 

multilayered semiconductor nanostructures and graphene; 

 demonstration of a possibility for phonon-engineered enhancement of their electrical and 

thermal conductivities.  

In order to achieve these goals, the following objectives are formulated:  

 Development of theoretical models for phonons and thermal transport in multilayered 

semiconductor nanostructures and graphene; 

 Investigation of electron properties and electron-phonon interaction in planar 

multilayered semiconductor nanostructures; 

  Investigation of phonon scatterings in multilayered semiconductor nanostructures and 

graphene; 

 Optimization of nanostructures over shape and size to achieve optimal thermal 

conductivity and increased electron mobility. 
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2. PHONON ENGINEERING IN TWO-DIMENSIONAL SEMICONDUCTOR 

NANOSTRUCTURES 

In this chapter the phonon properties and lattice thermal conductivity of two-dimensional Si- 

and GaN-based multilayered nanostructures is reviewed. The development of nanoscale phonon 

engineering concept for 2D nanostructures is described. This concept is found as a powerful tool 

for the improvement both of phonon thermal conductivity and electron mobility in 2D 

nanostructures via modification of their phonon energy spectra. The discussions in this Chapter 

mostly follow author’s original articles [11, 14, 15, 29, 35, 37, 41-43, 123-125]. 

2.1. Engineering of phonon energy spectra and group velocities in two-dimensional 

semiconductor nanostructures 

2.1.1. Continuum model for phonons in two-dimensional nanostructures 

In order to investigate the role of the cladding (barrier) material on the acoustic phonon 

spectrum of ultra-thin films we consider a free-standing single thin film, e.g. slab, and a free-

standing three-layered structure, e.g. double heterostructure [15, 123-125]. Both structures have 

a nanometer feature size along the growth direction. A schematic view of the slab and three-

layered structure are shown in Figure 2.1 (a-b). The axis X1 and axis X2 in the Cartesian 

coordinate system are in the plane of the layers while the axis X3 is directed perpendicular to the 

layer surfaces. The layer thickness is denoted by di (i=1,2,3). The structure is symmetric, d1=d3, 

with total thickness 1 22d d d  . As an example system we first consider wurtzite 

AlN/GaN/AlN heterostructure. It is further assumed that the layers have hexagonal symmetry 

with a crystallographic axis c directed along a coordinate axis X3. 

 

Fig. 2.1. The schematic view of considered slab (a) and three-layered heterostructure (b). 

The equation of motion for elastic vibrations in an anisotropic medium can be written as [126-

127]: 

2

2
m mi

i

U

t x

  


 
,             (2.1) 
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where 1 2 3( , , )U U U U


 is the displacement vector,   is the mass density of the material, mi  is the 

elastic stress tensor given by mi mikj kjc U  , 1/ 2( / / )kj k j j kU U x U x     is the strain tensor, 

i=1,2,3 and m = 1,2,3. Since the three-layered structure is homogeneous in the plane (X1, X2), the 

solution of the Equation (2.1) can be presented in the following form [15, 125] 

1( )
1 3 3( , , ) ( ) ( 1,2,3)t qx

i iU x x t u x e i  i ,              (2.2) 

where ui are the amplitudes of the displacement vector components, ω is the phonon frequency, q 

is the phonon wave vector and i  is imaginary unit. By substituting Equation (2.2) in Equation 

(2.1) one can obtain a system of two interrelated differential equations for the amplitudes u1 and 

u3 and a separate differential equation for the amplitude u2:  

2
2 22 3 2 344

2 3 44 66 2 32
3 3 3

( ) ( )
( ) ( ),

d u x du xdc
u x c c q u x

dx dx dx
                (2.3) 

2
2 2 1 3

1 3 11 1 3 44 2
3

'
'3 3 1 344

13 44 3 3
3 3 3

2 '
2 ' 2 ' 3 3

3 3 44 3 3 33 2
3

'
33 3 3 1 3 13

44 13 1 3
3 3 3 3

( )
( ) ( )

( ) ( )
( ) ( ( ))

( )
( ) ( )

( ) ( )
[( ) ( )]

d u x
u x q c u x c

dx

du x du xdc
q c c qu x

dx dx dx

d u x
u x q c u x c

dx

dc du x du x dc
q c c u x

dx dx dx dx





    

   

    

   

            (2.4) 

In Equations (2.3 - 2.4) '
3 3u u i , while derivatives 3/ikdc dx  account for the fact that the 

structure is heterogeneous. There are two extreme types of the boundary conditions for these 

equations: free external surfaces (FES) and clamped external surfaces (CES). The progress in the 

technologies of the nanostructure fabrication which was achieved during the last 10 years opened 

up possibilities of growth of nanostructures with nanometer lateral dimensions and free external 

surfaces (free-standing nanostructures) [47-48,53,128-129]. Li et al. [128] reported about 

fabrication of the free-standing individual Si nanowires with diameter ~ 22 – 115 nm. Liu and 

Ashegi were fabricated free standing Si films with thickness of 20 nm and 30 nm [129]. Balandin 

and co-workers [47-48] and Seol et al. [53] investigated the thermal properties of free-standing 

single and few-layer graphene suspended over a trench. In the case of FES, the force components 

on the external surfaces along all coordinate axes equal to zero, e.g., 1 2 3 0,P P P    where 

i ik kP n , and n


 is the vector normal to the surfaces of the structure n


=(0, 0, n3). Thus, on the 

outer surfaces of the structure the following relationship is satisfied  
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'
' 32 1
3 13 1 33

3 3 3

0, 0, 0.
duu du

qu qc u c
x dx dx


     


            (2.5) 

The clamped external surface is a theoretical limit, which is unreachable in the experiments. 

In this case the external surface of the structure is assumed to be immovable, which means that 

all atoms from this surface are frozen and immobile. In the case of CES the displacement vector 

U


 is equal to 0 on the external surfaces, i.e. 

1 2 3 0.u u u                (2.6) 

Equation (2.3) describes the phonons with shear polarization, i.e. phonons with displacement 

vector 2(0, ,0).U U U
 

 Due to the spatial symmetry of the considered three-layered structure and 

the mathematical form of Equation (2.4), the displacement vector 1 3( ,0, )U U U U
 

 should have 

components with amplitudes of an opposite parity, e.g., 1 3( , )S Au u  or 1 3( , )A Su u , where 

3( ) ( 1,3)S
iu x i   is a symmetrical function of x3 while 3( )A

iu x (i=1, 3) is an anti- symmetrical 

function of x3. The upper indexes SA and AS of displacement vector amplitude 1 3( , )SA S Au u u u
 

and 1 3( , )AS A Su u u u
 

distinguish independent vibrational polarizations which, together with the 

shear modes, compose a full set of normal vibrational modes in the structure. In the case of a 

slab the SA modes are referred to as dilatational modes while AS modes are termed the flexural 

modes [15, 130]. 

To obtain the vibrational spectrum, e.g. phonon dispersion, of the three-layered structure one 

should solve the differential Equation (2.3) for shear polarization, and the system of Equations 

(2.4) for SA or AS polarization subject to the boundary conditions of Equation (2.5) in the case 

of FES and Equation (2.6) in the case of CES. Finite difference or finite elements methods are 

powerful tool for the solving these equations [11-13, 15]. 

The characteristic features of the phonon dispersion relations can be easily seen on the plots 

of the phonon group velocity as a function of the wave vector q, which is given as 

, , , ,( ) ( )SA AS sh SA AS sh
s s

d
q q

dq
  .              (2.7) 

Here the superscript denotes the polarization type, while the subscript s is the quantum number 

of the modes with a given polarization. Using the Equation (2.7) one can calculate the group 

velocity for each mode. 

To investigate the evolution of phonon energies in nanometer slabs with free-standing and 

clamped external surfaces we consider free-standing silicon slab, silicon slab with diamond 

cladding layers and silicon slab with CES [35]. In Figure 2.2 (a-d) we show the energy 
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dispersions for the SA phonon modes in the freestanding Si slab (a); Diamond/Si/Diamond 

heterostructures with the different thickness of the diamond (D) barrier layer (b-c); and Si slab 

with the clamped external surfaces (d), which correspond to a film embedded in the “absolutely” 

rigid material. 

 

Fig. 2.2. Energy dispersions of the SA acoustic phonons in free-standing Si slab (a), 

Diamond/Si/Diamond heterostructures (b,c) and Si slab with clamped boundaries (d). The figure 

is reprinted from Ref. [35] with permission from the American Institute of Physics. 

The thickness of the Si layer in all cases is 2 nm to insure the phonon confinement effect at 

RT. As one can see from Figure 2.2, for all phonon wave vectors q, the energies for each phonon 

branch s in the freestanding slab are lower than those in the clamped slab. The D/Si/D 

heterostructures occupy an intermediate position between these two limiting cases depending on 

the barrier layer thickness. Note that in the lowest phonon branch, s=1, in the free-standing slab 

there are always phonons with the infinitesimal energies  , for which the Bose phonon 

distribution / 1
1( ) ( 1) ~ / ( ) 1Bk Tf

s BN e k T q 
      for low but finite T, while in the clamped-

surface slab all phonon modes in the branch s=1 are size-quantized with the distribution 

/
1( ) ~ 1.Bk Tc

sN e  
   

In order to demonstrate a possibility of strong modification of the phonon group velocity by 
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choosing cladding layers, we consider two structures: structure type-I is a GaN layer embedded 

in some “slow” plastic material: plastic/GaN/plastic; and structure type-II is a very thin layer of 

plastic embedded within two layers of “fast” material such as sapphire: Al2O3/plastic/Al2O3.  

 

Fig. 2.3. (a) Population averaged phonon group velocities as the functions of temperature for the 

plastic and GaN slabs and for the type I and type II heterostructures. The results are shown for 

the SA phonon polarization and two different values of the cladding layer thickness. Reprinted 

from Ref. [15] with permission from the Elsevier. (b) Schematic view of diamond-type crystal 

lattice. White and black atoms show atoms from different face-centered cubic sub-lattices. 

Quantitatively, the effect of phonon deceleration and acceleration, e.g. change in the average 

group velocities, in heterostructures can be illustrated with the following ratios, which 

correspond to several points in Figure 2.3 (a), where temperature dependences of average group 

velocities are shown. In type-I heterostructure (3 nm/ 1 nm/ 3nm) at the temperature T=20 K the 

ratio of the average phonon group velocity in heterostructure to the group velocity in the slab is 

(hetero)/ (GaN slab)  =0.17. In the type-I structure with dimensions 10 nm/ 1 nm/ 10 nm, the 

ratio is (hetero)/ (GaN slab)  =0.16. At room temperature (T=300 K) the ratio for both 

heterostructures is the same and equal to 0.26. The latter is a factor of 3.84 decrease in the 

average phonon group velocity in three-layered heterostructure compared to GaN slab (thin film) 

due to the presence of “slow” cladding layers. One should point out here that the average phonon 

group velocity in the slab (ultra thin film) is already smaller than the phonon (sound) velocity in 

corresponding bulk. In type-II heterostructure (3 nm/ 1 nm/ 3nm) at the temperature T=20 K the 

ratio of the average phonon group velocity in heterostructure to the group velocity in the slab is 

(hetero)/ (plastic slab)  =1.06. In the type-II structure with dimensions 10 nm/ 1 nm/ 10 nm, the 

ratio is (hetero)/ (plastic slab)  =1.4. At RT the ratios for these two heterostructures are 1.36 

(a) (b) 
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and 2.36, correspondingly. Such velocity increase is due to the influence of the “fast” cladding 

layer. 

2.1.2. Dynamic models of lattice vibrations in two-dimensional nanostructures with 

diamond-like crystal lattice 

Face-centered cubic cell model 

The diamond-like lattice consists of two face-centered cubic sublattices, which are shifted 

along the main diagonal of a unit cell by 1/4 of its length (see Figure 2.3(b)). In the face-centered 

cubic cell (FCC) model two shifted FCC sublattices are considered as a common FCC lattice 

with the double mass at each lattice node. This simplification neglects the optical phonon modes, 

but allows expressing three force constants of the model through independent elastic constants of 

a material. The latter allows one to simulate the acoustic properties of heterostructures consisting 

of layers with different acoustic properties and various dimensions. 

In the FCC model all lattice nodes in a bulk crystal are translationally equivalent. The 

displacement of a lattice atom in the node labeled with the number n


, can be written as 

( )( ; , ) ( ) ,i qn tu n q t w q e 
    

             (2.8) 

where ( )w q
 

 is the time-independent displacement amplitude. The node displacement in a bulk 

crystal is described by the equations of motion: 

( , ) ( , )i imu n q F n q
   

 , , , .i x y z               (2.9) 

where ( , )iF n q
 

 is a component of the force acting on the node n


 from the other nodes of the 

lattice and m is the node mass (double atomic mass in the framework of FCC model). In the 

harmonic approximation 

,

( , ) ( , ) ( , ),
( , )i ij j

n ji

V
F n q n n u n q

u n q 

      
 



     
            (2.10) 

where ( , )ij n n
 

 is the three-dimensional matrix of the force constants and V is the potential 

energy of the lattice. Substituting Equations (2.8) and (2.9) into Equation (2.10), one can obtain 

2

1,2,3,

( ) ( ; ) ( ),i ij j
j h

m w q D q h w q


  

  
            (2.11) 

where ( ; ) (0, ) iqh

ij ijD q h h e
 
is the dynamic matrix and h n n 

  
. 

We take into account the interaction of the node with the nearest and second-nearest nodes. 

The interaction with the 12 nearest nodes is centrally symmetric and it is described by one 

constant 1
FCC  [131]. The matrix of the force constants in this case is 

1 1 1 2
1( ', ) ( ', ) /( )FCC

il i ln n n n h h h  
   

, where 1h


 indicates the positions of the nearest nodes of the 
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node 0n 


, 1
ih  is the projection of the vector 1h


 on the corresponding coordinate axis iX . The 

interaction with the second-nearest nodes is not centrally symmetric and it is described by two 

constants, FCC  and FCC  [132-133]. The vector 2h


 describes the position of the 6 second-

nearest nodes of the node 0 :n 


  

2
11 22 33

2
11 33 22

2
11 22 33

(0, ( 1,0,0)) , ;

(0, (0, 1,0)) , ;

(0, (0,0, 1)) , ; .

FCC FCC
ij ij ii

FCC FCC
ij ij ii

FCC FCC
ij ij ii

h a

h a

h a

      

      

      

      

      

      






         (2.12) 

In Equation (2.12) ij  is the Kronecker’s delta. Comparing the phonon dispersions ( )q for 

three phonon branches (one longitudinal and two transversal) obtained from Equation (2.11) in 

the long-wave limit 0q   with those derived within a continuum approach  

(see Equations (2.3-2.4)), we established the following relations between the constants 

1 , ,FCC FCC FCC    and the elastic moduli of a cubic crystal с11, с12 and с13: 1 12 44( ) / 2,FCC a c c    

11 12 44( ) / 4FCC a c c c     and 44 12( ) / 8.FCC a c c    

Born-von Karman type model 

The real unit cell structure is taken into account in Born-von Karman model of lattice 

dynamics. For convenience, let’s identify the atoms of the first sublattice of diamond – like 

lattice as the “dark” atoms while the atoms of the second sublattice as the “white” atoms as 

depicted in Figure 2.3 (b). 

The dynamic matrix in BvK model has the form: ( , ) ( , ) / ( ) ( ),ij k k ij k k k kD r r r r m r m r   
     

 where 

( )km r


 [ ( )km r


] is the mass of the atom at kr


 [ kr


], ( , )ij k kr r
 

 is the matrix of force constants and 

k kh r r 
  

. For the atom at kr


, the summation in Equation (2.11) is performed over all the 

nearest and second-nearest atoms at kr


. In the case of silicon or germanium, the atom at kr


 has 4 

nearest neighbors at ,
I

k n k nr r h  
 

 (n=1,…,4) and 12 second-nearest neighbors at ,
II

k n k nr r h  
 

 

(n=1,..,12). The components of vectors I
nh


 and II
nh


 are provided in Table I from Ref. [134]. In 

our BvK model, the interaction of an atom with its nearest and second-nearest neighbors is 

described by the following force constant matrices: 

2
, ,(16 / )( (1 ))I I I

ij ij ij n i n ja h h                    (2.13) 

for the nearest atoms (n=1,…,4) and 

2 2
, , , , , ,(4 / )( ( / 4 ) (1 ) )II II II II II II II

ij ij n i n i ij n i n i ij n i n ja a h h h h h h                 (2.14) 
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for the second-nearest atoms (n = 1, …, 12), where , , ,   and   are the force constants of 

BvK model. The force constant matrix ( , )ij k k kr r r 
  

 is obtained from the condition that the total 

force acting on the atom kr


 at the equilibrium position is equal to 0, i.e. 

( , ) ( , ) 0.
k

ij k k k ij k k k
r

r r r r r r


      


     
 By solving the Equations of motion (2.11) at Г and X 

Brillouin zone points of bulk crystal with diamond crystal lattice, we expressed three constants 

, , and   of our model (see Equations (2.13) and (2.14)) through   and the frequencies of 

the LO and TO phonons at Г point and the LA phonon at X point 2 ( ) / 8,LOm Г   

 2 22 ( ) ( ) / 32LA LOm X Г     and  2 2 24 ( ) 2 ( ) ( ) / 32 / 2.TO LA LOm X X Г         

The constants   and   were treated as fitting parameters. For bulk Si and Ge these constants 

were obtained in Refs. [134-135] from the best fit to experimental dispersion curves from Refs. 

[136-137]. The numerical values of the force constants for Si and Ge, used in calculations, are: 

54.85 N/m,Si   35.0 N/m,Si   3.8 N/m,Si   2.5 N/mSi  , 4.42 N/m;Si    

49.6 N/m,Ge   33.0 N/m,Ge   3.03N/m,Ge   3.03 N/mGe  , 3.0 N/m.Ge    

 

 

Fig. 2.4. Phonon energies as the functions of the phonon wavevector for Si layer with d =3.258 

nm plotted for (a) FCC-model and (b) continuum approach.  

The figure is reprinted from Ref. [124]. 

In quasi two-dimensional nanostructures the displacement vector amplitude w


 is a function of 

atomic layer coordinate along axis Z perpendicular to layers surface. Therefore, the solution of 

Equation (2.9) is looking for in the following form: 

( )( ( , ); , ) ( ; ) ,i qn t
xy z zu n n n q t w q n e 

     
            (2.15) 
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where xyn


 and q


 are two-dimensional vectors, nz shows position of the corresponding atomic 

layers. Substituting (2.15) in (2.9) one can obtain 

 

2

, ,

( , ) ( , ) ( , ), , ,

( , ) ( , ) exp[ ( ) ( ) ]
s

i s ij s s j s
n j x y z

ij s s ij s s s s

m w n q D n n w n q i x y z

D n n n n q r n r n




 
 

  

  

     

 
i

 

  
         (2.16) 

Figure 2.4 shows the phonon dispersions in Si nanolayer with thickness d=3.258 nm (13 

atomic layers in FCC lattice), calculated using FCC model of lattice vibrations (panel (a)) and 

elastic continuum model (panel (b)). The important difference between dynamic lattice models 

and continuum approach is a definition of the number of normal phonon modes. In lattice 

dynamic models the number of modes is finite and equal to the number of degrees of freedom for 

the considered nanostructure. In the continuum approach the number of modes is infinite and it is 

necessary to cut off the phonon energy spectra. Here the number of continuum phonon modes is 

determined from the condition: max max
Continuum FCCN N , thus, the highest branch number smax = 13 both 

for FCC and continuum models. 

 

Fig. 2.5. (a) Phonon energy spectra of a 10-nm-thick silicon nanolayer calculated within BVK 

model. (b) The displacement vector amplitudes as the functions of the coordinate z in D/Si/D 

heterostructure. The results are shown for three acoustic phonon modes: for Si-like mode (s=8, 

q=5.25 nm-1) (dotted line), hybrid mode (s=2, q=0.6 nm-1) (solid line) and diamond-like mode 

(s=24, q=6.9 nm-1) (dashed line). The figure is adopted from Refs. [37, 123]. 

The phonon energy spectra for a Si nanolayer with 10 d nm  in the [100] crystallographic 

direction calculated within the BvK model of lattice vibrations are depicted in Figure 2.5(a). It is 

important to note here, that FCC model describes low-energy part of phonon energy spectra in a 

good agreement with BvK model. The difference between results of FCC and BvK models 

(a) (b) 
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reinforces with energy rise. The optical phonon modes with energy higher than 36 meV appear 

only in the spectra, calculated in the framework of BvK model. 

The phonon modes in three-layered planar nanostructures can be divided into three different 

types: hybrid modes, core-like modes and cladding-like modes. The hybrid modes, i.e. modes 

with mixed properties of core and cladding layers, extend over whole heterostructure thickness. 

Core-like modes concentrate mainly in the inner heterostructure layer and their amplitude fast 

decays in claddings materials. Cladding-like modes are confined in cladding layers and weakly 

penetrate into inner core layer. The displacement vector amplitude of core-like, hybrid and 

cladding-like modes in D/Si/D heterostructure is illustrated in Figure 2.5(b). 

2.2. Phonon engineered thermal conductivity in multilayered nanostructures with core Si 

layer 

The heat flux, carried by phonons, is given by [138] 

, , , ,

( , ) ( ) ( , ( )) ( , ) ( ) ( , )s s s s
s q s q

W s q q N q q s q q n q
 

       
 

        
  ,        (2.17) 

The summation in Equation (2.17) is performed over all phonon branches s with polarization .  

The number of phonons in the flux: 0( , ) ( , ) ( , )N q N q n q   
  

, where 

0 1/( ( /( )) 1)BN exp k T   is the Bose-Einstein distribution function and n is the non-

equilibrium part of N. In the relaxation time approximation n can be expressed through the 

phonon relaxation time as 

0( ) ,
N

n T
T

  
  




              (2.18) 

where T  is the temperature gradient. Substituting Equation (2.18) into Equation (2.17) and 

using the macroscopic definition of the thermal conductivity one can obtain the following 

expression for the thermal conductivity tensor 

0 ,
,

, ,

( )1
( , , ) ( , , ) ( , , ) ( ).s

ij tot i j s
s qx y z

N
s q s q s q q

L L L T






       







   
        (2.19) 

In Equation (2.19) Lx, Ly, Lz are sample sizes and tot  is the total phonon relaxation time. The 

diagonal element of the thermal conductivity tensor, which corresponds to the phonon flux along 

the temperature gradient, can be written as 

0 ,2 2
,

, ,

( )1
( , , ) ( , , ) cos ( ).s

ii tot s
s qx y z

N
s q v s q q

L L L T






      


 




  
        (2.20) 
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Making a transition from the summation in Equation (2.20) to integration and taking into 

account two-dimensional density of states one can obtain for the thermal conductivity the 

following expression 


max

,2
2 , ,2 2

, ,0

( ( ) / )1
[ ( ) ( ))] ( , , ) ,

4 ( ( ( ) / ) 1)

q
s

D s s tot
s s

exp q kT
q q s q q dq

kT d exp q kT


 
 


    

 


  
 





     (2.21) 

where d is the thickness of 2D structure. The summation in Equation (2.21) is performed over all 

phonon branches s from 1 to Smax with polarization .  

The main mechanisms of phonon scattering in semiconductor nanostructures are three-phonon 

Umklapp scattering, point-defect and dislocation scattering and scattering on nanostructure 

boundaries. In the approximation that all mechanisms of phonon scattering are independent, the 

total phonon scattering rate can be determined from Matthiessen's rule [7-10, 38-40]: 

1/ ( , , ) 1/ ( , , ) 1/ ( , , ) 1/ ( , , ) 1/ ( , , ),tot U PD Disl Bs q s q s q s q s q                   (2.22) 

where 

2 2
0 ,max

2
0

4/3 3 2
0

1/ ( , , ) ( ) /( ( ) ),

1/ ( , , ) ( ( ) ) /(4 ),

1/ ( , , ) ( ) /( ) ,

1/ ( , , ) / (1 ) /(1 ).

s
U B s s

PD s s

Disl D s s

B s

s q k T V

s q S q

s q N V

s q d p p

 


 





      

   

    

  



 



   

           (2.23) 

In Equations (2.23)   is the anharmonicity Gruneisen parameter, Г is the measure of the 

strength of the point defect scattering, ND is the density of dislocation lines,   is the weight 

factor to account for the mutual orientation of the dislocation line and temperature gradient, V0 is 

the volume per atom, S0  is the surface per atom, ,max
s
  is the maximal frequency of (s, ,q) – 

phonon mode, and p is the measure of the phonon boundary scattering. For the accurate 

interpretation of temperature dependences of phonon thermal conductivity in semiconductor 

nanolayers and nanowires, the following empirical formula of Umklapp scattering rate is often 

used instead of Equation (2.23) [123, 139]: 

 2
,1/ ( , , ) ( ) exp / .U ss q B q T C T                  (2.24) 

In Equation (2.24) B and C are adjusted from the comparison between calculated and measured 

thermal conductivities of bulk materials. 

Figure 2.6(a) presents the dependence of the phonon thermal conductivity on the temperature 

for different values of boundary scattering parameter p = 0.4, 0,6 and 0,8. The thermal 

conductivity was calculated from Equation (2.21) with total phonon scattering rate determined 
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from Equation (2.23). The following parameters of phonon scattering were used in the 

calculations:  =0.8, 310   0.8356 [140], ND =108 cm-2,  =0.55 [141]. 

 

Fig. 2.6. (a) Lattice thermal conductivity as a function of temperature for different values of 

boundary scattering parameters p = 0.4, 0.6 and 0.8. Results are shown for FCC (solid curves) 

and continuum (dashed curves) models. (b) The dependence of phonon thermal flux Wph on the 

absolute temperature for Si-based heterostructures. The figure is adopted from Refs. [37, 124]. 

The solid and dashed lines on the graph correspond to FCC model and continuum approach, 

respectively. As follows from Figure 2.6(a) the continuum approach significantly overstates the 

thermal conductivity in comparison with FCC model for T>70 K. The overestimation is 

explained by faulty trends of phonon dispersion curves at large q and high values of phonon 

group velocities near the Brillouin zone boundary. The ratio of thermal conductivities calculated 

using the FCC and continuum models increases with rise of the temperature due to the 

population of high-frequency phonon modes: /FCC Continuum   is equal to 1.05 for T=50 K (p=0.4) 

and /FCC Continuum   = 4.5 for T=400 K (p=0.4). The changing of parameter p weakly influences 

on the thermal conductivity ratio: at T=400 K /FCC Continuum   is equal to 4.5 for p=0.4 and 4.8 for 

p = 0.8. 

The possibility of phonon-engineered control of thermal flux/thermal conductivity in three-

layered planar heterostructures is illustrated in Figure 2.6(b). The thermal flux per temperature 

gradient unit and heterostructure width unit is given by: 2 2D DW d  . The dependence of 2 DW  on 

the temperature for Si-based heterostructures is presented in Figure 2.6(b). The thermal flux in 

homogeneous Si slab with thicknesses d = 19 ML is also plotted for comparison. 

The curves for Pl/Si/Pl heterostructures demonstrate unusual effect: additional parallel 

channels for heat removal (plastic claddings) decrease the total thermal flux in heterostructures 

(a) (b) 
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in comparison with corresponding slabs. The thermal flux decreases by a factor of 1.1-1.2 in 

comparison with generic slab without claddings despite the fact that the heterostructure thickness 

by a factor 2.2 larger than that in the slab. This effect is explained by the strong modification of 

acoustic phonon energy spectra in heterostructure and emerging of hybrid phonon modes. The 

phonon modes in Diamond/Si/Diamond or Pl/Si/Pl heterostructures can be divided into three 

different types: hybrid modes propagating both in Si core and claddings; Si-like modes, 

concentrated in Si core layer only and cladding-like modes, spreading in cladding layers mostly. 

The hybrid high-velocity phonon modes in Diamond/Si/Diamond heterostructure significantly 

enhance of the thermal flux in wide temperature range T>100 K. The ratio of thermal fluxes in 

heterostructure with diamond claddings and homogeneous Si slab increases with increasing of 

the temperature due to the population of high-frequency high-speed diamond-like modes. As a 

result the diamond claddings enhance the RT thermal flux by a factor of 3. This enhancement is 

explained by the interplay between modification of phonon energy spectra and increase of 

heterostructure thickness. 

2.3. Phonon engineered enhancement of electron mobility in two-dimensional 

heterostructures with Si and GaN conduction channels 

One of the basic mechanisms of electron scattering in bulk semiconductors, limiting the 

electron mobility at room temperature and above, is electron – phonon scattering [2]. The 

intensity of the electron – phonon interaction in semiconductor nanostructures depends on the 

electron wave function and energy spectrum as well as on the optical and acoustic phonon 

dispersion. Changing geometry, lateral dimensions and material parameters of nanostructures 

one can affect both the carrier and phonon spectrum [7-9, 29, 142-143]. 

The reported calculations of the electron mobility in nanostructures are usually limited to two 

special cases: (i) thick and (ii) ultra-thin conductive channels. In the first case the bulk approach 

is used and the electron confinement, phonon confinement and interaction between electron and 

interface phonons are not taken into account. In the second case it is assumed that only the 

ground electron subband is occupied and the inter-subband electron transitions can be neglected 

[144,145]. However, in heterostructures with nanometer scale conduction channels (d>5 nm), 

which are important for practical applications, the energy distance between the quantized 

electron levels 0 0
, 1 1n n n n       ( 0

n  is the energy of n-th quantized level) can be smaller than 

the phonon energy and the inter-subband electron transitions play an important role [41-42]. 

In order to account for the inter-subband transitions in 2D heterostroctures we derived in Ref. 

[41] the system of two integral equations for the electron kinetic relaxation times. This system is 
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the extension of the Boltzmann transport equation introduced in the convenient form in Ref. 

[146, 147] and modified to include the phonon dispersion. The modified equations, derived 

under the assumption of a spherical electron Brillouin zone, are written as [41] 

0

'0 2
, 1,

, ' 1,2

(1 ( ( ))
[ ( , , ) ( ( ) ( ) )] 1,

(1 ( ))
n

n n
p m n

n

f m q p p
W n p n p p p

f p




   
 



      




 
            (2.25) 

where n=1, 2 is the quantum number of electron subband. In Equation (2.25) ( )W    =

2

int '

2 ˆ ' ( )H E E 
     


 is the probability of a transition of the electron – phonon system 

from the state   with energy E  to the state    with the energy 'E , intĤ  is the Hamiltonian of 

electron-phonon interaction, 0 1( ) (exp(( ) / ) 1)F Bf k T      ,   is the electron energy, p


 and 

'p


 are the electron momentum in the initial and final states,   is the quantum number of the 

confined and interface optical phonon branches, 1( )   is the kinetic relaxation time of an 

electron with energy   in the first (ground) subband, which includes electron transitions within 

the fist subband (11) and transitions from the first to the second subband (12), 2 ( )   is 

the kinetic relaxation time of an electron in the second subband, which includes transitions from 

the second to the first subband (21) and the transitions within the second subband (22). 

The drift electron mobility ( )T  was calculated using the equation obtained by extending the 

standard formalism [1] to include the inter-subband transitions [41-42] 
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



 


          (2.26) 

where ,nm  is the effective electron mass, averaged by electron wave functions of n-th energy 

subband. The Hamiltonians of interaction of electrons with the symmetric (S) and asymmetric 

(A) confined (C) and interface (IF) optical phonon modes, i.e., ˆ S
IFH , ˆ A

IFH , ˆ S
CH  and ˆ A

CH , in 

wurtzite AlN/GaN/AlN heterostructures were taken from Ref. [148]. Interaction between 

electron and acoustic phonons in planar heterostructures with Si conduction channel was 

described by the deformation potential Hamiltonian [14, 35]. More detail information on 

developed model and mobility calculations is provided in author’s original works [14, 35, 41-

42]. 
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Electron mobility enhancement in wurtzite AlN/GaN/AlN and Diamond/Si/Diamond 

nanostructures 

The strong built-in electric field, characteristic for AlN/GaN interface, creates a triangular 

potential well in GaN conduction layer. Compensating built-in electric field by the external 

electric field or introduction of shallow InxGa1-xN channel-nanogroove in the middle of the GaN 

potential well allows one to adjustment of energy profile of the potential well and to change the 

position of maximum of electron wave functions. The latter affects electron-phonon interaction 

and may enhance electron mobility under certain conditions. 

The results for room temperature mobility with the low, medium and high electron densities 

are shown in Figure 2.7(a). The first observation is that increasing electron density reduces the 

electron mobility due to enhancement of the inequality 0
2 F    , which make the inter-

subband transitions more intensive. With increasing F=Fbuilt-in – Fext the energy gap between 

subbands widens and the intra-subband scattering becomes the only scattering mechanism. The 

effect of the uncompensated field F≠0 is two-fold. From one side, the field reduces inter-

subband scattering (12), but enhances intra-subband scattering (11). Interplay between 

these two mechanisms leads to non-monotonic dependence of mobility on F. 

 

Fig. 2.7. (a) Electron mobility versus perpendicular electric field in AlN/GaN/AlN 

heterostructure for three values of the electron concentration. Dash-dotted curve shows the 

mobility calculated by taking into account scattering in the ground state subband only (Ns=5·1012 

cm−2). (b) Electron mobility enhancement factor as a function of the temperature for the electron 

sheet density Ns=5·1012 cm−2. The Figure is adopted from Refs. [35, 41] with permission from 

the American Institute of Physics. 

In the diamond/Si/diamond (D/Si/D) heterostructure the electron (or hole) is confined within 

Si layer while the acoustic phonon waves propagate through the whole structure. Although the 

(a) (b) 
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growth of ultra-thin crystalline Si layers on diamond is still a technological challenge the 

diamond-on-Si and Si-on-diamond structures are already available commercially [149]. It is 

reasonable to assume that further development of this technology will lead to thin Si layers with 

diamond claddings and appropriate quality of the interfaces. The modification of phonon energy 

spectra in D/Si/D heterostructures and emerging of hybrid phonon modes leads to the 

suppression of electron-phonon interaction in D/Si/D heterostructures in comparison with 

generic Si nanolayer without claddings. Figure 2.7 (b) shows the mobility enhancement factor R 

= (D/Si/D) / (Si slab)   with respect to the mobility in a free-standing Si slab. The expected 

mobility enhancement is in the range 4 – 10 at low temperature depending on the thicknesses of 

the acoustically fast barriers, and decrease to factor of 2 – 2.5 at room temperature for 2-nm-

thick Si channels. The phonon density of states (DOS) in the free-standing slab is equal to zero 

only for q=0, while in the clamped-surface slab DOS is equal to zero in the interval of phonon 

energies up to the first branch (~5 meV). As a result, the number of phonons available for 

scattering in the free-standing slab is larger than in the clamped-surface slab for all temperatures. 

The latter explains a much higher mobility in the clamped-surface slabs, particularly at low 

temperature. 

2.4. Conclusions to Chapter 2 

The phonon and thermal properties of two-dimensional GaN-based and Si-based 

nanostructures are theoretically investigated using three models for phonons: elastic continuum 

model, face-centered cubic cell and Born-von Karman models of crystal lattice vibrations. The 

acoustically mismatched cladding layers strongly influence both phonon energy spectra and 

thermal conductivity. The claddings with high (low) sound velocities increase (decrease) the 

thermal flux in multilayered nanostructures in comparison with generic slab without claddings. 

These effects are explained by the redistribution of phonon branches in heterostructures, 

emergence of hybrid phonon modes and change of the phonon group velocities and density of 

states.  

The electron mobility in AlN/GaN/AlN heterostructures can be enhanced by a compensation 

of built-in electric field by an external electric field or by a creation in the middle of GaN well 

ultra-narrow InxGa1-xN nanogroove with small In content x ~ 0.05. The electron mobility in 

silicon nanolayers can be increased if they are embedded within cladding layers with higher 

sound velocity. 

The outlined approach for the engineering of heat conduction and electron mobility in 

semiconductor 2D nanostructures at wide temperature region allows optimization of heat 
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management and heat removal in nanoscale circuits as well as enhancement of thermoelectric 

properties of two-dimension nanostructures. 

 

  



41 
 

3. PHONON ENGINEERING IN ONE-DIMENSIONAL SEMICONDUCTOR 

NANOSTRUCTURES 

In this chapter the phonon properties and heat propagation in quasi one-dimensional 

semiconductor nanostructures, such as nanowires, are described. As example systems the 

following types of nanowires are considered: (i) smooth GaN nanowires with AlN and plastic 

barrier layers, (ii) smooth and cross-section modulated Si nanowires, embedded with Ge, SiO2 or 

plastic layers; (iii) segmented nanowires Si/Ge, Si/SiO2, Si/Plastic. The discussions in the 

Chapter mostly follow the author’s original works [9, 12, 13, 40, 125, 134, 135, 156]. 

3.1.Engineering of phonon energy spectra and group velocities in GaN and Si nanowires 

with elastically dissimilar cladding layers 

3.1.1. Continuum model for phonons in rectangular and cylindrical GaN-based nanowires 

We consider a generic smooth rectangular GaN nanowire, which forms a potential quantum 

well, confined in a rectangular barrier shell (see Figure 3.1). At the same time, following 

calculation procedure can be applied to any combination of the nanowire and barrier materials. It 

is assumed that GaN crystal lattice has wurtzite structure with reference axis c  along the 

nanowire axis. The axis X3 of the Cartesian coordinate system is directed along the c  axis, while 

axis X2 and axis X3 are in the cross-sectional plane of the nanowire, parallel to its sides. The 

origin of the coordinate system is in the center of the nanowire. The lateral dimensions of the 

rectangular nanowire itself are denoted by (1)
1d  and (1)

2d  while the total lateral dimensions 

(nanowire thickness plus barrier thickness) are 1d  and 2d , correspondingly. The lateral 

dimensions of the nanowire are chosen in nanometer range in order to ensure size quantization of 

the acoustic phonon spectrum.  

 

Fig. 3.1. Schematic view of a rectangular core/shell nanowire.  

Since the considered nanostructure is homogeneous along the direction of X3, and 

inhomogeneous in the (X1, X2) plane, we look for the solution of the Equation (2.1) in the 

following form 

3( )
1 2 3 1 2( , , , ) ( , ) t qx

i iU x x x t u x x e   i , (i=1,2,3).             (3.1) 
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Substituting Equation (3.1) in Equation (2.1), we can write three equations for the 

components of the displacement vector [12]: 

2 2 2
2 2 661 1 11 1 1 2 12 2

44 1 11 66 12 662 2
1 2 1 1 2 2 1 2 1 2

66 3 132
13 44 3

2 1 1 1

2 2
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1 2 1 1
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       (3.2) 

In deriving these equations, the substitution 3 3u u i  was made first and then variable '
3u  was 

renamed again as 3 3u u  . 

The considered structure has two distinctively different symmetry planes. From the invariance 

of the system of Equations (3.2) for reflection operations in these planes, there are four possible 

types of solution [12]. These solutions can be denoted as Dilatational modes (D), Flexural1 (F1), 

Flexural2 (F2) and Shear (Sh): 

1

2

1 1 2 2 1 2 3 1 2

1 1 1 2 2 1 2 3 1 2

2 1 1 2 2 1 2 3 1 2

1 1 2 2 1 2 3 1 2

: ( , ); ( , ); ( , ) ;

: ( , ); ( , ); ( , ) ;

: ( , ); ( , ); ( , ) ;

: ( , ); ( , ); ( , ) .

AS SA SS D
i

FSS AA AS
i

FAA SS SA
i

SA AS AA Sh
i

D u x x u x x u x x u

F u x x u x x u x x u

F u x x u x x u x x u

Sh u x x u x x u x x u









            (3.3) 

Here SA and AS (symmetric and asymmetric) indicate whether the mode is even or odd with 

respect of the operation of the sign conversion of the corresponding variable, i.e., 

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )SSf x x f x x f x x f x x     , 1 2( , )f x x  = 1 2( , )f x x   = 1 2( , )f x x   

1 2( , ),AAf x x  etc. The equations of motion for cylindrical nanowires were derived in detail in 

author’s original works [13]. 

Figure 3.2 shows the plots of the phonon dispersion for the dilatational polarization in the 

“bare” rectangular GaN nanowire of 4 nm x 6 nm cross-section (Figure 3.2 (a)), GaN nanowire 

with AlN barriers of 4 nm x 6 nm and 2 nm x 3 nm nanowire cross-section (Figure 3.2(b, d)) and 

GaN nanowire with plastic barriers of 4 nm x 6 nm and 2 nm x 3 nm nanowire cross-section 

(Figure 3.2(c)). The phonon dispersions in Figure 3.2 (d) are plotted for the CES condition at the 
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outside surface of the barrier layers. The rest of the curves are plotted for the FES condition at 

the outside surface of the barrier layers. In the case of the clamped outside surfaces the bulk-like 

phonon branches are absent in the phonon spectra, and all phonon energy levels are size 

quantized. As one can see from the comparison of the plots in Figure 3.2 (b) and 3.2 (d), the 

change of the outside boundary conditions from the free surface to the clamped surface leads to 

enhancement of the size quantization in the low-energy part of the phonon spectrum but only 

weakly influence the high-energy branches. The latter can be explained by the fact that the 

position of the high-energy levels is mostly determined by the inverse of the lattice parameter 

1/a, whereas the size quantization in the low-energy part of the spectrum depends on 1/d. 

 

Fig. 3.2. Phonon dispersions for the dilatational modes for free-surface (a–c) and clamped-

surface (d) boundary conditions at the external barrier boundaries. The results are shown for (a) 

GaN nanowire of the 4 nm×3 nm cross section without the barriers; (b, d) GaN nanowire with 

acoustically fast AlN barriers of the 4 nm×6 nm and 2 nm×3 nm GaN nanowire cross sections; 

(c) GaN nanowire with acoustically slow barriers of the 4 nm×6 nm and 2 nm×3 nm GaN 

nanowire cross sections. The figure is reprinted from Ref. [9]. 

The influence of the elastic properties of the barrier shells are seen very well in the 

dilatational phonon spectra of the embedded nanowires. The acoustically soft and slow plastic 

barrier layers lead to the increased density of the phonon branches per energy interval while the 

acoustically fast AlN barrier layers lead to the density decrease. In the nanowire of 4 nm x 6 nm 

cross-section the energy interval of 6 meV (see Figure 3.2 (a)) includes the first 9 branches for 
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0q  . In the nanowires with the acoustically soft plastic barriers the same number of low-energy 

levels fits into a considerably less energy interval of only 1.8 meV. In the case of GaN nanowire 

with the acoustically fast AlN barrier layers the first 9 levels are positioned entirely within the 

7.5 meV energy interval in Figure 3.2(b) for FES condition and in the 11 meV energy interval in 

Figure 3.2(d) for CES. In comparison with generic slabs, i.e. thin films, the phonon spectrum of 

nanowires with and without barrier layers is characterized by lower density of phonon branches 

per unit energy interval. 

The average phonon group velocity as a function of phonon frequency is given by  

( )
( )

( )
( ) ,

( ) /s
s

S

dq d




 
 




               (3.4) 

where S(ω) is the number of phonon branches s with frequency ω and summation in the 

denominator is performing over these branches. The dependence of ( )  on the frequency for 

different type of modes in the coated and uncoated rectangular and cylindrical nanowires is 

presented in Figure 3.3. The phonon group velocities for the coated nanowires are shown within 

the range of energies where the predictions of the continuum approximation are unambiguous. 

The average group velocity curves ( )   are strongly oscillating functions due to the presence of 

many quantized phonon branches s and the fast variation of the derivatives 

( ) ( )1/ ( )) ( ) /s sdq d      with changing ω. 

 

Fig. 3.3. Average phonon group velocity as a function of the phonon frequency (a) for 

dilatational modes in rectangular GaN, GaN/AlN and GaN/Plastic nanowires and (b) for 

breathing modes in cylindrical uncoated GaN nanowire and GaN nanowire with acoustically soft 

barrier. The figure is adopted from Ref. [9]. 

One can see in Figure 3.3, that the presence of the acoustically soft and slow plastic barriers 

has led to a strong reduction of the phonon group velocity by factor of 3 in both cylindrical and 

rectangular nanowires in comparison with bare GaN nanowires. The presence of AlN barriers 
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leads to an opposite effect of increasing by factor of 1.3 the phonon group velocity in the 

nanowire. 

3.1.2. Dynamic models of lattice vibrations for nanowires with diamond-like crystal lattice 

In nanowires, the displacements of the atoms (or nodes in FCC model) belonging to one 

period are independent, therefore the displacement amplitude w


 depends on the atomic 

coordinates. The rest of the atomic displacements are equivalent to those in the selected period 

due to the translational symmetry along the Z-axis. In the case of a generic NW, the translation 

period consists of two atomic layers of the “dark” atoms and two atomic layers of the “white” 

atoms (all layers are perpendicular to the Z axis). For segmented nanowires (SNWs) and cross-

section modulated segmented nanowires (MSNWs), the number of atomic layers in the period is 

determined by L. The schematic view of such nanowires is shown in Figure 3.4: generic NW 

with the lateral cross-section dx × dy (panel a), Si/Ge SNW with segments dimensions 1
x y zd d l   

and 
2

x y zd d l    (panel b), cross-section modulated Si SNW with segments dimensions 1 1 1
x y zd d l   

and 
2 2 2
x y zd d l   (panel c) and cross-section modulated Si/Ge SNW with silicon segments 

1 1 1
x y zd d l   and 

2 2 2
x y zd d l   covered by the Ge shell with thickness dGe (panel d). The 

displacements of equivalent atoms have the form: 

( )( , , ; ) ( , , ; ) ,, zi q nL t

z zu x y z n L q w x z q et y   
 

             (3.5) 

where ( , , ; ) ( ; )z zw x y z q w r q
  

 is the displacement amplitude of the atom with coordinates x, y 

and z; the period is labeled by an integer n, and qz is the phonon wavenumber. The equations of 

motion for the displacement are 

2

, , ;

( ; ) ( , ) ( ; ),
k

i k z ij k k j k z
j x y z r

w r q D r r w r q


  


   
 k=1,…,Na, i = x,y,z,          (3.6) 

where Na is the number of atoms in the NW or SNW/MSNW translational period. 

The energy spectra of dilatational phonons in a homogeneous Si nanowire with the lateral 

cross-section 37 ML  37 ML (1 ML = a/4) and Si/Ge segmented nanowire with the same  

cross-section and 8 atomic layers in the superlattice period (6 silicon atomic layers and 2 

germanium atomic layers), calculated in the framework of FCC model, are shown in Figure 3.5. 

The total number of phonon branches of dilatational polarization is equal to 280 for a Si NW and 

1120 for a Si/Ge SNW. In Figure 3.5 the phonon branches ( )s zq  with quantum numbers s = 0, 

1, …, 4, 10, 20, 30,…, 100, 200, 300, …, 1100 are shown. 
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Fig. 3.4. Schematic view of considered generic Si nanowire (a), Si/Ge segmented nanowire (b) 

and cross-section-modulated Si (c) and Si/Ge (d) nanowires. 

 

 

Fig. 3.5. Dilatational phonon energies as a function of the phonon wave vector q in (а) a 

homogeneous rectangular Si nanowire with the lateral cross-section 37 ML  37 ML nm. The 

phonon branches with s = 0 to 4, 10, 30, 50…280 are shown; (b) a Si/Ge SNW with the same 

lateral cross section and 8 atomic layers per superlattice period (2 atomic layers of Ge and 6 

atomic layers of Si). The phonon branches with s=0 to 4, 10, 30, 50…190, 200, 300,…1100, 

1120 are depicted. The figure is reprinted from Ref. [40] with permission  

from the American Physical Society. 

The dashed line in Figure 3.5 (b) shows the maximal phonon energy in a homogeneous Ge 

nanowire. The maximal phonon frequency of silicon is higher than the maximal frequency of  

germanium, therefore high-frequency Si-like phonon modes in the Si/Ge SMW are “trapped” in 
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the Si segments and do not spread out in the Ge segments of the superlattice. These modes will 

not participate in the processes of heat transfer, i.e. Si/Ge SMWs act as a phonon filter removing 

many phonon modes from thermal transport [40]. Figure 3.5 implies that the velocities of 

phonon modes with  >7 meV in the Si nanowire are not equal to zero, whereas in a Si/Ge 

SNW #1, these modes are dispersionless. The similar phonon trapping effect was also reported 

for cross-section modulated Si and Si/Ge MSNWs [134-135]. 

The effect of the phonon deceleration in SNWs and MSNWs is illustrated in Figure 3.6, 

where the average phonon group velocity is shown as a function of the phonon energy for Si and 

Ge NWs as well as for Si/Ge SNW and Si MSNW. The average phonon group velocity in SNWs 

and MSNWs is smaller than that in the Si NWs for all phonon energies. As a result, the phonon 

modes in SNWs and MSNWs carry less heat than those in the NW. The drop in the phonon 

group velocities in SNWs/MSNWs in comparison with NWs is explained by the trapping effect: 

the trapped phonon modes represent standing waves existing only in the segments of 

SNWs/MSNWs. 

 

Fig. 3.6. (a) Average phonon group velocity as a function of the phonon energy in Si and Ge 

homogemeous nanowires with the lateral cross-section 37 ML × 37 ML and in Si/Ge SNW with 

the same lateral cross-section and 8 atomic layers per superlattice period (2 atomic layers of Ge 

and 6 atomic layers of Si). (b) Average phonon group velocity as a function of the phonon 

energy in Si NW with the lateral cross-section 14 ML  14 ML and Si MSNW with dimensions 

14 ML × 14 ML × 6 ML/ 22 ML × 22 ML × 6 ML. The figure is adopted from Refs. [40, 134] 

with permission from the American Physical Society. 

3.2. Phonon engineered thermal conductivity in Si-based nanowires. 

Thermal conductivity of nanowires can be derived from Equation (2.22) taking into account 

one-dimensional density of phonon states. Making a transition from the summation in  
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Equation (2.22) to integration one can obtain the following expression for thermal conductivity 

in cross-section modulated segmented nanowires [134, 135] 

1 2 1 1 1 2 2 2 1
MSNWκ ( ) [( 2 ) ( 2 ) ( 2 ) ( 2 ) ]z z x shell y shell z x shell y shell zl l d d d d l d d d d l                    (3.7) 

In case of a homogeneous MSNW 0shelld   and Equation (3.7) can be rewritten as  

1 2
homogemeous
MSNW 1 1 1 2 2 2

κ z z

x y z x y z

l l

d d l d d l


 


.              (3.8) 

Finally, in case of a homogeneous NW or SNW: 0shelld  , 1 2
x x xd d d   and 1 2

y y yd d d  , thus 

Equation (3.7) reduces to: 

SNW NWκ ; κ .
x y x yd d d d

 
                 (3.9) 

In Equations (3.7-3.9)   is the one-dimensional phonon thermal flux per unit temperature 

gradient (referred as thermal flux hereafter) [134, 135] 
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     (3.10) 

As follows from Equations (3.7-3.10) the thermal flux/thermal conductivity depends strongly on 

the phonon energy spectra: changing the phonon energies one can change the phonon heat 

conduction. 

In Si and Ge nanowires there are two basic mechanisms of phonon scattering: three-phonon 

Umklapp scattering and boundary scattering [25, 150-155]. According to the Matthiessen’s rule, 

the total phonon relaxation time is given by: , , ,1/ ( ) 1/ ( ) 1/ ( )tot s z B s z U s zq q q    . Here, ,B s  is the 

phonon relaxation time for the boundary scattering and ,U s  is the phonon relaxation time for the 

Umklapp scattering. The explicit formulas for the phonon relaxation time in nanowires as well as 

details of the thermal conductivity calculations are provided in author’s original  

works [40, 134-135, 156]. 

In Figure 3.7, the lattice thermal conductivity of Si NWs and Si MSNWs are plotted as a 

function of temperature for Si NW #2, as well as for Si MSNWs #2, #3, #4 and #5. The results 

are presented for a reasonable specularity parameter p = 0.85, which was found in Ref. [37] from 

a comparison between theoretical and experimental data for a Si film of 20 nm thickness. A 

significant redistribution of the phonon energy spectra and a reduction of the average phonon 

group velocities in MSNWs strongly suppress their lattice thermal conductivity in comparison 
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with the NW. At room temperature, the ratio between the thermal conductivities in NW and 

MSNWs ranges from a factor of 5 to 13 depending on the cross-section S2 =
2 2
x yd d . However, in 

order to compare more correctly the abilities of MSNWs and NWs to conduct heat one should 

compare thermal fluxes  rather than thermal conductivities κ ph  since the latter depends 

explicitly on the dimensions of the nanowires. 

 

Fig. 3.7. Temperature dependence of the lattice thermal conductivity in Si NW with the cross-

section 14 ML  14 ML and Si MSNW with different dimensions. The figure is reprinted from 

Ref. [134] with permission from the American Physical Society. 

In Figure 3.8 the temperature dependence of the phonon thermal conductivity is plotted for 

Si/Ge SNWs with cross-section 37 ML x 37 ML and different lengths of the Si and Ge segments 

along the wire axis. The results for Si NW and Ge NW with the same cross-section are also 

presented for comparison. In the temperature range 150 K - 300 K the thermal conductivity in 

the Si/Ge SNW is 5 - 6 times lower than that in the Ge nanowire with the same cross section, and 

9 - 11 times lower than that in the Si nanowire. When the number of atomic layers of Si per 

period increases from 8 to 12, the properties of the Si/Ge SNW reveal a slight trend towards 

those of the Si nanowire. Therefore the phonon thermal conductivity of the Si/Ge SNW, 

containing an equal number of atomic layers of Si and Ge, is lower than that of SNW containing 

different numbers of atomic layers per period. In Ref. [157] it was theoretically shown that the 

thermal conductivity of SNWs, consisting of different isotopes of silicon is by a factor of 2 

smaller than in a Si nanowire. The presented results demonstrate an even greater drop in the 

thermal conductivity in SNW composed of segments from acoustically-mismatched materials 

due to a stronger localization of phonon modes in the superlattice segments and a stronger 

decrease of the phonon group velocities. The findings for the Si/Ge SNWs are in a qualitative 

agreement with the reduction of the thermal conductivity below the alloy limit predicted for 
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circular Si/Ge SNWs with diameters less than 15 nm [158]. The thermal conductivity down to 

the sub-1 Wm-1K-1 range was achieved in multilayered Ge/Si dot arrays [159].  

 

Fig. 3.8. Temperature dependence of lattice thermal conductivity for Si and Ge homogeneous 

nanowires (solid lines) and for Si/Ge SNWs with 12 ML of Si and 4 ML of Ge (dashed line) and 

with 8 ML of Si and 8 ML of Ge (dash-dotted line) per period. The figure is reprinted  

from Ref. [40] with permission from the American Physical Society. 

3.3. Conclusions to Chapter 3 

The phonon and thermal properties of GaN-based and Si-based nanowires are theoretically 

investigated using three models for phonons: elastic continuum model, face-centered cubic cell 

and Born-von Karman models of crystal lattice vibrations. The barriers with the lower sound 

velocity compress the phonon energy spectrum, reduce the phonon group velocities and thermal 

conductivity in the nanowire. The barriers with the higher sound velocity have an opposite 

effect. The physical origin of this effect is related to re-distribution of the elastic deformations in 

the acoustically mismatched nanowires.  

Many phonon modes in cross-section modulated or segmented nanowires are efficiently 

removed from the heat flux due to trapping in nanowire segments. As a result, the room 

temperature heat flux in segmented nanowires can be suppressed by almost three orders-of-

magnitude in comparison with that in bulk Si and by an order-of-magnitude in comparison with 

that in generic Si nanowires.  

The presented results show that geometry modulation and acoustic mismatch are highly 

efficient instruments for engineering of phonons in semiconductor segmented and core/shell 

nanowires for improving their thermal properties. 

 

  



51 
 

4. PHONON ENGINEERING IN GRAPHENE 

This Chapter reviews theoretical results on phonon and thermal properties of graphene and 

few-layer graphene, discusses two theoretical approaches for calculation of the phonon thermal 

conductivity in graphene and describes specifics of 2D phonon transport. The Chapter is mostly 

based on author’s original papers dedicated to various aspects of heat conduction in graphene 

and few-layer graphene [6, 29, 49, 54, 56-58, 95, 125, 160, 161]. 

4.1. Phonons in graphene 

The honeycomb crystal lattice of single-layer graphene (SLG) is presented in Figure 4.1(a). 

The rhombic unit cell, shown as a dashed region, can be defined by two basis vectors 

1 (3, 3) / 2,a a


 and 2 (3, 3) / 2a a 


, where a = 0.142 nm is the distance between two nearest 

carbon atoms. The empty and black circles in Figure 4.1(a) denote the atoms, which belong to 

the first and second Bravais lattice, respectively. The atom 01  of the first Bravais lattice is 

surrounded by three atoms 0(1 , 2,3)  of the second Bravais lattice. The inside dashed circle 

indicate the first interaction sphere, which includes the nearest-neighbor (N) atoms of the atom 

01  with the coordinates given by the radius-vectors 0 0[1 ;1 ] (1,0),R a


 and 

0[2(3);1 ] ( 1, 3) / 2R a  


. The atoms of the second interaction sphere, shown by a dashed 

circle with a larger diameter, are denoted as the far-distance-neighbors (F). They belong to the 

same Bravais lattice as the central atom 01  and defined by the radius-vectors 

0 0[1(4);1 )] (0, 3); [2(5);1 ]R a R  
 

 ( 3, 3) / 2;a    and 0[3,(6);1 ] (3, 3) / 2R a 


. 

The unit cell of single layer graphene consists of two atoms (see Figure 4.1 (a)), therefore 6 

phonon polarization branches are in SLG. They are (i) out-of-plane acoustic (ZA) and out-of-

plane optical (ZO) phonons with the displacement vector along the Z axis; (ii) transverse 

acoustic (TA) and transverse optical (TO) phonons, which corresponds to the transverse 

vibrations within the graphene plane; (iii) longitudinal acoustic (LA) and longitudinal optical 

(LO) phonons, which corresponds to the longitudinal vibrations within the graphene plane. For 

calculation of phonon energy dispersions we applied valence force field and Born-von Karman 

models of lattice dynamics. The detailed description of these models and numerical calculation 

procedure is provided in author’s original works [6, 49, 58, 160, 161]. Phonon branches of SLG, 

calculated using VFF model, are depicted in Figure 4.1 (b). The presented results are in a good 

agreement both with phonon energies calculated using other theoretical approaches and those 

obtained experimentally [4, 5, 162]. 
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Fig. 4.1. (a) Graphene crystal lattice. The rombic unit cell is shown as a shaded region. (b) 

Phonon dispersion in graphene calculated using the valence force field model. The figure is 

adopted from Ref. [6] with permission from American Physical Society. 

The unit cell of the n-layer Bernal stacking graphene contains 2n atoms, therefore 6n phonon 

branches appear in n-layer graphene. Phonon dispersions in bilayer graphene, calculated using 

VFF model, is shown in Figure 4.2 (a-b). Weak Van der Waals interaction between monolayers 

leads to the coupling of long wavelength phonons only and quantization of the low-energy part 

of the spectrum with q<0.1qmax for LA, TA, LO, TO and ZO phonons and with q<0.4qmax for ZA 

phonons (see Figure 4.2 (b)). The modification of the phonon energy spectrum in n-layer 

graphene as compared with that in single layer graphene results in a substantial change of the 

three-phonon scattering rates and a reduction of the intrinsic thermal conductivity in n-layer 

graphene [6, 29, 54, 66-67, 95]. 

In recent years the interest of the physics community has been shifting toward investigation of 

the twisted few-layer graphene (T-FLG) systems. When two graphene layers are placed on top of 

each other they can form a Moire pattern [163-165]. In this case, one layer is rotated relative to 

another layer by an arbitrary angle. The samples of Moire patterns in twisted bilayer graphene 

are shown in Figure 4.3. The synthesis of T-FLG was experimentally demonstrated using the 

chemical vapor deposition (CVD), mechanical exfoliation or growth on the carbon terminated 

SiC surface [140, 164-167]. Although twisting only weakly affects the interlayer interaction, it 

breaks symmetry of the Bernal-stacking resulting in an intriguing dependence of the electronic 

and phonon properties on the rotation angle (RA). 

 

(a)                                                                (b) 
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Fig. 4.2. Phonon dispersion in bilayer graphene calculated using the VFF model. Figure is 

reprinted from Ref. [54] with permission from Nature Publishing Group. 

The phonon dispersions along Г-K direction in Brillouin zone in SLG, AA-stacked bilayer 

graphene (AA-BLG), AB-stacked bilayer graphene (AB-BLG) and T-BLG with the rotation 

angles 21.8    and 13.7    are shown in Figure 4.4. The phonon frequencies were 

calculated using BvK model of lattice vibrations for each phonon wave number q from the 

interval 0 to max ( )q  , where max ( )q   is given by: 

 max max( ) 2 ( 0)sin / 2 8 sin( / 2) /(3 3 )q q a       .            (4.1) 

The directions in BZ of T-BLG depend strongly on the rotational angle and do not coincide with 

the directions in BZ of SLG or BLG. Therefore, the phonon curves in Figure 4.4 are shown for 

different directions in BZ of BLG. However, the Г- and K-points in BZ of T-BLG correspond to 

those in BZ of BLG and the change of the phonon modes in these points is a direct effect of the 

twisting. 

 

 

Fig. 4.3. Moire’s patterns in twisted bilayer graphene. 
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Fig. 4.4. Phonon energy dispersions in single layer graphene (a), AA-stacked bilayer graphene 

(b), and in the twisted bilayer graphene with 021.8   (c) and 013.2   (d). All dispersion 

relations are shown for Г – K direction in the Brillouin zone of SLG, BLG and T-BLG, 

correspondingly. Figure is reprinted from Ref. [58] with permission  

from the American Physical Society. 

Six pairs of phonon branches in BLG: LA1/LA2, TA1/TA2, ZA1/ZA2, LO1/LO2, TO1/TO2 and 

ZO1/ZO2 can be understood as the “bilayer” analogs of LA, TA, ZA, LO, TO and ZO 

polarizations of SLG. The energy difference   between the phonon branches in the pairs is 

small due to the weak van der Waals coupling. It attains its maximum value max  at the BZ 

center: -1
max max(LA) (TA) 13.4 cm    , -1

max (ZA) 95 cm  , -1
max max(LO) (TO) 0.1cm     

and -1
max (ZO) 1.5cm  . 

The in-plane interactions in BLG are much stronger than the weak van der Waals out-of-plane 

interactions. For this reason, the deviation of the phonon frequencies in BLG from those in SLG 

is very small (with exception of ZA2 mode). Similar results were reported for SLG and BLG 

using the DFT [168], valence force field model of lattice dynamics [54, 95] and the optimized 

Tersoff and Lennard-Jones (L-J) potentials [66]. It is important to note here that although various 

theoretical approaches can predict different energies for LA, TA and ZA phonons at the Г – point 

[6, 11, 29, 54, 85, 95, 168, 169], the descriptions of the phonon mode behavior and the 

dispersion trends are consistent among the different models. The use of the L-J potential for the 
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description of the inter-layer interaction in FLG usually leads to softening of the low-frequencies 

modes near the BZ center while the frequencies of all other modes are described accurately. 

The twisting influences the phonon spectra of BLG owing to two reasons: (i) modification of 

the weak van der Waals inter-layer interaction and (ii) alteration of a size of a BZ leading to the 

phonon momentum change. Therefore, in the twisted bilayer graphene appear hybrid folded 

phonon branches resulting from mixing of different directions from unrotated BLG BZ. 

4.2. Lattice thermal conductivity in graphene 

We now address in more detail some specifics of the acoustic phonon transport in 2D 

systems. Investigation of the heat conduction in graphene [47, 48] and CNTs [170] raised the 

issue of ambiguity in the definition of the intrinsic thermal conductivity for 2D and 1D crystal 

lattices. It was theoretically shown that the intrinsic thermal conductivity limited by the crystal 

anharmonicity has a finite value in 3D bulk crystals [171]. However, many theoretical models 

predict that the intrinsic thermal conductivity reveals a logarithmic divergence in strictly 2D 

systems, κ~ln(N), and the power-law divergence in 1D systems, κ~Nα, with the number of atoms 

N (0<α<1) [171-173]. The logarithmic divergence can be removed by introduction of the 

extrinsic scattering mechanisms such as scattering from defects or coupling to the substrate [57]. 

Alternatively, one can define the intrinsic thermal conductivity of a 2D crystal for a given size of 

the crystal. 

Graphene is not an ideal 2D crystal, considered in most of the theoretical works, since 

graphene atoms vibrate in three directions. Nevertheless, the intrinsic graphene thermal 

conductivity strongly depends on the graphene sheet size due to weak scattering of the low-

energy phonons by other phonons in the system. Therefore, the phonon boundary scattering is an 

important mechanism for phonon relaxation in graphene. Different studies [57, 174, 175] also 

suggested that an accurate accounting of the higher-order anharmonic processes, i.e. above three-

phonon Umklapp scattering, and inclusion of the normal phonon processes into consideration 

allow one to limit the low-energy phonon MFP. The normal phonon processes do not contribute 

directly to thermal resistance but affect the phonon mode distribution [57, 66]. However, even 

these studies found that the graphene sample has to be very large (>10 µm) to obtain the size-

independent thermal conductivity. 

In BTE approach within relaxation time approximation the thermal conductivity in quasi 2D 

system are given by Equation (1.31). For graphene this equation can be rewritten  

as follows [6, 57]: 
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max
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0

( ) exp[ ( ) / ]1
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q s q q dq

k T h dq q k T

   
 


 





        (4.2) 

Here h  = 0.335 nm is the graphene layer thickness and summation is performed over phonon 

branches s.  

The specific phonon transport graphene can be illustrated with a simple expression for 

Umklapp – limited thermal conductivity derived in Ref. [49]. Using an expression for the three-

phonon Umklapp scattering from Refs. [90, 92] but introducing separate life-times for LA and 

TA phonons, one can rewrite for the Umklapp relaxation time 

2
,max

, 2 2

1 ss
U s

s B

M

k T


 

 ,             (4.3) 

where s=TA, LA, s  is the average phonon velocity for a given branch, T is the absolute 

temperature, kB is the Boltzmann constant, ,maxs  is the maximum cut-off frequency for a given 

branch and M is the mass of an unit cell. To determine γs the q-dependences of Grunaizen 

parameters γ(q) calculated from the accurate phonon dispersions [5, 6] were averaged over q. To 

simplify the model one can use the liner dispersion ( )s q = s q and re-write it as 

2
,max

,min ,max2
,

( , )
4

s s
U s s

s TA LA s

M
F

Th

 
  

 
  ,              (4.4) 
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,max

,max

,min

,min

/
/

,min ,max /2
/

( )
( , ) [ { ( ) 1} ] |

[ ( ) 1] 1 ( )

s B

s B

s B

s B

k T
k T

s s k T
k T

exp x x
F x dx ln exp x x

exp x exp x







      
 









.       (4.5) 

In the above equation, / Bx k T  , and the upper cut-off frequencies ωs,max are defined from 

the actual phonon dispersion. The low-bound cut-off frequencies ωs,min for each s are determined 

from the condition that the phonon MFP cannot exceed the physical size L of the flake, i.e. 

,max
,min

ss s
s

s B

M

k T L

 


 .               (4.6) 

The integrand in Equation (4.5) can be further simplified near RT when ,maxs > kBT, and it 

can be expressed as  

,min ,min
,min ,min

,min

( / )
( ) {| ( / ) 1|}

( / ) 1
s s B

s s B
B s B

exp k T
F ln exp k T

k T exp k T

 
 


   


 




         (4.7) 

The obtained Equations (4.4) and (4.7) constitute a simple analytical model for calculation of 

the thermal conductivity of graphene layers, which retains such important features of graphene 

phonon spectra as different s  and γs for LA and TA branches. The model also reflects strictly 2D 
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nature of heat transport in graphene all the way down to zero phonon frequency. Equation (4.4) 

reduces to Klemens’ formula for graphene [90] in the limit 0x   ( Bk T  ) and additional 

simplifying assumption of the same γs and s  for LA and TA phonons. 

In Figure 4.5, the dependence of thermal conductivity of graphene on the dimension of the 

flake L is illustrated. The data is presented for the averaged values of the Gruneisen parameters 

γLA=1.8 and γTA=0.75 obtained from ab initio calculations [5], as well as for several other close 

sets of γLA,TA to illustrate the sensitivity of the result to the Gruneisen parameters. 

For small graphene flakes, the κ dependence on L is rather strong. It weakens for flakes with 

L10 µm. The calculated values are in good agreement with experimental data for suspended 

exfoliated [47, 48] and CVD graphene [50, 51]. The horizontal dashed line indicates the 

experimental thermal conductivity for bulk graphite, which is exceeded by graphene’s thermal 

conductivity at smaller L. The κ increase with increasing L stems from ωs,min~L-1/2 dependence 

(see Equation (4.6)). This means that in the larger graphene flakes, acoustic phonons with longer 

wavelength are available for heat transfer. 

 

Fig. 4.5. Calculated room temperature thermal conductivity of graphene as a function of the 

lateral size for several values of the Gruneisen parameter. Note a strong dependence on the size 

of the graphene flakes. Experimental data points from Refs. [47, 48] (circle), [50] (square),  

[51] (rhomb) and [111] (triangle) are shown for comparison. 

Thermal conductivity, presented in Figure 4.5, is an intrinsic quantity limited by the three-

phonon Umklapp scattering only. But it is determined for a specific graphene flake size since L 

defines the lower-bound (long-wavelength) cut-off frequency in Umklapp scattering through 

Equation (4.6). In experiments, thermal conductivity is also limited by defect scattering. When 

the size of the flake becomes very large with many polycrystalline grains, the scattering on their 

boundaries will also lead to phonon relaxation. The latter can be included in this model through 
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adjustment of L. The extrinsic phonon scattering mechanisms or high-order phonon-phonon 

scatterings prevent indefinite growth of thermal conductivity of graphene with L [57]. 

The simple model described above is based on the Klemens-like expressions for the 

relaxation time (see Refs. [90, 92]). Therefore it does not take into account all peculiarities of the 

2D three-phonon Umklapp processes in SLG or FLG, which are important for the accurate 

description of thermal transport. There are two types of the three-phonon Umklapp scattering 

processes [176]. The first type is the scattering when a phonon with the wave vector ( )q   

absorbs another phonon from the heat flux with the wave vector ( )q  
, forming the phonon with 

wave vector ( )q  
 in one of the nearest Brillouin zones. For this type of scattering processes 

the momentum and energy conservation laws are written as: 

( ) ( ) ( ), 1,2,3iq q b q i  
  

      
  

  
.             (4.8) 

The processes of the second type are those when the phonons ( )q   of the heat flux decay into 

two phonons with the wave vectors ( )q  
 and ( )q  

, i.e. leaves the state ( )q  , or, 

alternatively, two phonons ( )q  
 and ( )q  

 merge together forming a phonon with the wave 

vector ( )q  , which correspond to the phonon coming to the state ( )q  . The conservation laws 

for this type are given by: 

( ) ( ) ( ), 1,2,3iq b q q i  
  

      
  

  
.             (4.9) 

In Equations (4.8-4.9) , 1, 2,..., 6i ib ГГ i


 


 is one of the vectors of the reciprocal lattice. 

Calculations of the thermal conductivity in graphene taking into account all possible three-

phonon Umklapp processes allowed by the Equations (4.8-4.9) and actual phonon dispersions 

were carried out in Ref. [6]. For each phonon mode ( ,q s


), were found all pairs of the phonon 

modes ( ,q s 
) and ( ,q s 

) such that the conditions of Equations (4.8-4.9) are met. As a result, in 

( q


)-space were constructed the phase diagrams for all allowed three-phonon transitions [6]. 

Using the long-wave approximation for a matrix element of the three-phonon interaction 

[138] one can obtain for the Umklapp scattering rates [6]: 
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        (4.10) 
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In Equation (4.10) the upper signs correspond to the processes of the first type while the 

lower signs correspond to those of the second type. The integrals for ,lq q  are taken along and 

perpendicular to the curve segments, correspondingly, where the conditions of  

Equations (4.8-4.9) are met. The main mechanisms of phonon scattering in graphene are phonon-

phonon Umklapp (U) scattering, rough edge scattering (boundary (B)) and point-defect (PD) 

scattering: 

1/ ( , ) 1/ ( , ) 1/ ( , ) 1/ ( , ),tot U B PDs q s q s q s q                (4.11) 

where 1/ 1/ 1/ ,I II
U U U    1/ ( , ) ( / )((1 ) /(1 ))B ss q L p p     and 2

01/ ( , ) /(4 ).PD s s ss q S q     

Here /s sd dq   is the phonon group velocity, p is the specularity parameter of rough edge 

scattering, S is the surface per atom and  is the measure of the strength of the point defect 

scattering. 

 

Fig. 4.6. Thermal conductivity of graphene over a wide temperature range calculated for the 

graphene flake with the width of 5 m and mode-dependent Grunesien parameter. The results 

are obtained for two values of the specularity parameter p=0.9 and point-defect scattering 

strength . An experimental data point after Refs. [50, 51] is also shown for comparison. Figure 

is reprinted from Ref. [6] with permission from American Physical Society. 

 
Figure 4.6 presents the calculated thermal conductivity of graphene over a wide temperature 

range with taking into account total phonon relaxation time from Equation (4.11). In the low-

temperature limit the thermal conductivity increases rapidly with increasing temperature as the 

number of phonons increase. The decrease in the thermal conductivity with temperature, which 

starts around 80 K is due to the growing strength of the Umklapp scattering processes. It is 

interesting to note that the thermal conductivity in the low-temperature limit is proportional to 

T2. Indeed, for the curve calculated with p=0.9, the ratio κ(T=80 K)/ κ(T=50 K) = 2.50, while the 
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ratio of the temperatures squared is (80/50)2=2.56. This is a manifestation of the 2D nature of 

graphene. In bulk the low-temperature thermal conductivity is proportional to ~T3. The 

difference in the temperature dependence between the 2D graphene and bulk materials is related 

to the different phonon density of states. Small deviation from T2 dependence in our case is 

explained by the fact that the considered temperature is not low enough (~50-80 K) and by the 

presence of other scattering mechanisms, e.g. phonon – boundary scattering. The latter is 

confirmed by the growing deviation as p decreases farther down from unity. 

 

Fig. 4.7. (a) Thermal conductivity as a function of the number of atomic planes in few-layer 

graphene. The dashed straight lines indicate the range of bulk graphite thermal conductivities. 

The circles correspond to the experimental data, while diamonds shows the theoretical values, 

calculated from the accurate theory of thermal conduction in few-layer graphene based on the 

actual phonon dispersion and accounting for all allowed three-phonon Umklapp scattering 

channels (see Equation (4.9-4.11)). The green triangles are Callaway–Klemens model 

calculations, which include extrinsic effects characteristic for thicker films. (b) Diagram of three-

phonon Umklapp scattering in graphene and bi-layer graphene (BLG), which shows that in BLG 

there are more states available for scattering owing to the increased number of phonon branches. 

Figure is adopted from Ref. [54] with permission from the Nature Publishing Group. 

In conventional semiconductor thin films the in-plane thermal conductivity decreases with 

decreasing thickness because the thermal transport in such structures is mostly limited by the 

phonon scattering from the film boundaries [8, 123, 124, 129]. An opposite dependence can be 

observed in suspended few-layer graphene (FLG) where the transport is limited mostly by the 

lattice anharmonicity [54]. Figure 4.7 shows that the thermal conductivity of the suspended 

uncapped FLG decreases with increasing number of the atomic layers n and approaches the bulk 
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graphite limit. The experimentally observed evolution of the thermal conductivity in FLG 

(indicated by circles in the graph) is explained theoretically by considering the intrinsic quasi 2D 

crystal properties described by the phonon Umklapp scattering. As n in FLG increases – the 

additional phonon branches for the heat transfer appear (see Figure 4.2.), while, at the same time, 

more phase-space states become available for the phonon scattering (see Figure 4.7 (b)). As a 

result the thermal conductivity decreases. The thermal conductivity dependence on the FLG 

thickness can be entirely different for encased FLG, where thermal transport is limited by the 

acoustic phonon scattering from the top and bottom boundaries and disorder. An experimental 

study [120] found K≈160 Wm-1K-1 for encased graphene at T=310 K. It increases  

to ~1000 Wm-1K-1 for graphite films with the thickness of 8 nm. 

4.3. Lattice thermal conductivity in graphene ribbons 

The schematic view of a suspended graphene ribbon is shown in Figure 4.8. In order to study 

the thermal conductivity dependence on the lateral size of the graphene ribbon we consider the 

phonon anharmonic interactions to the second order and the angle dependence of the phonon 

scattering from the ribbon edges. We specifically focus on ribbons with the micrometer width d 

and length L in order to deal with the actual phonon dispersion in graphene and to ensure the 

diffusive transport regime. In the nanometer-thick graphene ribbons the phonon dispersion is 

different owing to the phonon mode quantization and the lateral size dependence is dictated by 

the ballistic conduction [115]. The total phonon scattering rate for the phonon mode (s, q) is 

given as [57]: 

21/ ( , ) 1/ ( , ) 1/ ( , ) 1/ ( , ),tot U Bs q s q s q s q     
   

          (4.12) 

where 2,s  is the mode-dependent three-phonon Umklapp scattering rate calculated to the second 

order [57, 174] and ||( , , ) / ( )B b ss q p q  
 

 is the phonon mode-dependent boundary scattering 

rate. The calculation of ,U s  is performed using Equation (4.10). The phonon mode-dependent 

MFP ( , , )b s q p


limited by the boundary scattering is calculated as a function of the angle   

between q


 and the thermal gradient for each phonon mode. Therefore in the case of rectangular 

ribbon B  depends both on L and d (see Figure 4.8 (b)). 

In order to evaluate 2 ( , )s q 
 we include the following processes: the long-wavelength phonon 

q


 interacts with the short-wavelength phonon 'q


 in the normal process forming a phonon iq


. 

The phonon iq


 then interacts with the phonon ''q


 in the Umklapp process forming a phonon 

'''.q


 The scattering rate of such processes in graphene takes the form 
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Fig. 4.8. (a) Schematics of a typical suspended graphene ribbon used for experimental studies of 

thermal transport in suspended graphene ribbons. (b) Graphene ribbon and notations used in the 

present model for accounting the angle-dependent phonon scattering from the ribbon edges. The 

figure is reprinted from Ref. [57] with permission from American Chemical Society. 

Equation (4.13) was derived following the approach described in Ref. [174] and taking into 

account 2D phonon density of states in graphene [57]. Considering all possible three-phonon 

processes in graphene, it was found that in the normal processes with the long-wavelength 

phonons max| | 0.05q q , intensively participate phonons with | ' |q


~(0.6-0.7)qmax, forming the 

phonons | |iq ~(0.55-0.75)qmax, while in the Umklapp processes, the phonons | |iq  intensively 

interact with the phonons | ''q


|~(0.5-0.7)qmax. Therefore, one can assume that for the most 

intensive second-order processes | ' |q


 is close to (0.6-0.7)qmax, | ''q


| is close to (0.5-0.7)qmax , and 

can rewrite Equation (4.13) as follows 

2

4
max,|| 2

2,

1 2
.

9 ( )
B

s s
s s

k T

M

  
 

 
  

 
            (4.14) 

Figure 4.9 shows the dependence of the RT phonon thermal conductivity of the rectangular 

graphene ribbon on the ribbon length L for different specular parameters p and the ribbon width 

d. The long-wavelength phonons weakly participate in three-phonon Umklapp processes. 

Therefore, their contribution to the thermal conductivity is mostly limited by the boundary 

scattering up to the length scale L ~ 100 μm. For L>100 μm the second order anharmonic 

processes become the main scattering mechanism for the long wavelength phonons. The most 

striking feature in Figure 4.9 is a non-monotonic dependence of the thermal conductivity on the 

ribbon length L. Such an unusual κ(L) characteristic suggests that the measured thermal 
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conductivity of graphene ribbons of certain length, i.e. L/d ratios, will be higher than that of 

graphene samples of other sizes and geometries. 

The possibility of the non-monotonic dependence can be explained via the following 

considerations. A portion of the acoustic phonons in the rectangular ribbon with the angle 

2 2arcsin( / )d d L    does not scatter from the ribbon edges. MFP of these phonons 

/ cos( )b L    is determined only by the ribbon length L (at fixed d) and schematically shown 

in Figure 4.8 (b) by the dashed arrows. The rest of the phonons participate in the edge scattering 

and their b  depends on both L and d (schematically shown in Figure 4.8 (b) by the solid 

arrows): 2 2( )b d n L     if n (1+p)/(1-p) and (1 ) /(1 )b d p p      otherwise, where n 

shows a number of reflections from the ribbon boundary. 

 

Fig. 4.9. (a) Dependence of the thermal conductivity of the rectangular graphene ribbon on the 

ribbon length L shown for different specular parameters p. The width is fixed at d=5 µm. (b) 

Dependence of the thermal conductivity of the rectangular graphene ribbon on the ribbon length 

L shown for different ribbon width d. The specular parameter is fixed at p=0.9. The figure is 

reprinted from Ref. [57] with permission from American Chemical Society. 

The number of reflections n was calculated numerically (at fixed L, d,  ) from the condition 

cos( ) .b L    The interplay between contributions of the above-mentioned two groups of 

phonons as well as the anisotropic anharmonic scattering mechanisms leads to the predicted non-

monotonic behavior of the thermal conductivity κ(L).  

At small L the phonons with the MFP limited by the length only – b (L) – are the main heat 

carriers and thermal conductivity rapidly increases with L. The contribution of these type of 

phonons to the thermal conductivity in graphene ribbon with d = 1 μm is shown in Figure 4.9 (b) 

with the dashed line. Further increase of L decreases   with the corresponding reduction of the 

number of phonons with b (L) and increase of the number of phonons that have MFP dependent 
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on both L, d and p – b (L,d,p). Therefore, the contribution of the phonons with b (L,d,p) 

increases (as shown in Figure 4.9 (b) with dotted line) leading to a maximum in the thermal 

conductivity curve. For L>~100 μm b  is mainly determined by d and the thermal conductivity 

saturates to its finite value. The finite value in Figure 4.9 (b) for d=5 µm is in agreement with the 

experimental data [47, 48]. The values for ribbons with large d and p1 are larger than what 

was reported experimentally because the model intentionally does not include non-idealities such 

as defects or grain boundaries. 

Another important observation from Figure 4.9 (a) is that the abnormal non-monotonic κ(L) 

dependence can only be observed in graphene ribbons with the relatively smooth edges 

characterized by the specularity parameter p>0.5. The specularity parameter p=1 means that all 

phonons scatter from the edges elastically preserving their momentum along the ribbon length. 

The κ(L) non-monotonic dependence is also a function of the specific geometry of the ribbon via 

the angle   dependence on L and d. The non-monotonic character disappears in circular 

geometry such as in membranes used in some of the graphene thermal experiments [50, 52].  

The results obtained for the infinitely-wide ribbons ( d  ) also show the monotonic 

increase of κ with the saturated value for L>100 μm. This finding is in line with the predictions 

made for the CNTs [175]. As in the case for CNTs, the thermal conductivity of graphene ribbons 

limited only by three-phonon Umklapp scattering increases monotonically with L (see dashed-

dotted curve in Figure 4.9 (b)) without saturation to the constant value. The finite value results 

from inclusion of the anharmonic three-phonon processes of the second-order. 

4.4. Conclusions to Chapter 4 

In this chapter the theoretical results pertinent to two-dimensional phonon transport in 

graphene were reviewed. Phonons are the dominant heat carriers in the single-layer and few-

layer graphene near room temperature. The unique nature of 2D phonons translates to unusual 

heat conduction in single layer and few-layer graphene. The thermal conductivity of graphene 

depends strongly on extrinsic parameters: flake size and shape, quality of flake edges and defects 

of crystal lattices. The presented results are important for the proposed practical applications of 

graphene in heat removal and thermal management of advanced electronics and optoelectronics. 
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GENERAL CONCLUSIONS AND RECOMMENDATIONS 

The summary of the results presented in the Scientific Review is given below: 

1. It was theoretically shown that quasi two-dimensional and one-dimensional multilayered 

semiconductor nanostructures and graphene possess many degrees of freedom for phonon 

engineering: a proper tuning the phonon properties in such nanostructures leads to the 

improvement of their thermal properties and enhancement of electron mobility. Thus, a 

fundamentally new approach for phonon-engineered improvement of thermal and 

electrical properties of semiconductor nanostructures and graphene was theoretically 

developed. 

2. In the framework of continuum approach and two dynamic models of lattice vibrations 

(face-centered cubic cell and Born-von Karman models) it was demonstrated that 

cladding layers strongly influence both phonon energy spectra and thermal conductivity 

of nanofilms and nanowires. The claddings with high (low) sound velocities increase 

(decrease) the average phonon group velocity and thermal flux in film/wire with 

claddings in comparison with generic film/wire without claddings. 

3. It was theoretically revealed that electron mobility of silicon nanolayers can be increased 

by covering them with cladding layers possessing higher sound velocity than that in 

silicon. The electron mobility in Diamond/Si/Diamond heterostructure with dimensions 

10 nm/ 2 nm/ 10 nm is by a factor of 2 – 10 higher than that in Si nanolayer without 

claddings. The increase results from phonon spectrum modification and suppression of 

the deformation-potential electron-phonon scattering. 

4. It was shown that two- up to fivefold enhancement of electron mobility in wurtzite 

AlN/GaN/AlN planar heterostructures can be achieved by  a compensation of built-in 

electric field by an external electric field or by a creation of ultra-narrow InxGa1-xN 

nanogroove in the middle of GaN well with small In content x ~ 0.05. The enhancement 

results from change of the position of electron wave functions maximum and suppression 

of electron-polar optical phonon scattering. 

5. It was theoretically demonstrated that in-plane lattice thermal conductivity of single layer 

graphene and few-layer graphene strongly depends on the extrinsic parameters: flake size 

and shape, quality of flake edges and defects of crystal lattices. The room-temperature in-

plane lattice thermal conductivity of 5 µm – thick graphene flake with perfect edges is in 

a range 3500 – 5000 Wm-1K-1. The thermal conductivity decreases rapidly with 

increasing number of graphene monolayers n and approaches the highly-oriented 
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pyrolitic graphite limit for n=4. The in-plane thermal conductivity of micrometer size 

rectangular graphene ribbons demonstrates non-monotonic dependence on flake size due 

to the long mean-free path of long-wavelength acoustic phonons. 

6. It was theoretically established that twisting bilayer graphene leads to the emergence of 

hybrid folded phonons, which depend on the twisting angle and originate from the 

mixing of phonon modes from different high-symmetry directions in the Brillouin zone. 

 

Based on the presented results, the following recommendation can be formulated: 

 Practical implementation of nanoscale phonon engineering concept may improve both 

operational parameters of modern nanostructure-based devices and thermal management 

in modern electronic circuits; 

 The novel phonon-optimized nanostructures like as segmented or cross-section-

modulated nanowires are promising candidates for thermoelectric and thermo insulating 

applications; 

 Graphene and graphene –based materials are good candidates for optimized heat removal 

and efficient thermal management in modern electronic devices and circuits. 

The obtained theoretical results shed light on the peculiarities of phonon heat conduction at 

nanoscale and contribute to deeper understanding of phonon transport and phonon-assisted 

processes in quasi one- and two-dimensional semiconductor nanostructures and graphene. 
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