UNIVERSITATEA DE STAT DIN MOLDOVA

Cu titlu de manuscris C.Z.U.: [53:004.004+005.53](043.2)

CIOBU VICTOR

MODELAREA ADAPTIV-PARAMETRICĂ A UNOR SISTEME FIZICE COMPLEXE

131.04 - FIZICĂ COMPUTAȚIONALĂ ȘI MODELAREA PROCESELOR

Teză de doctor în științe fizice

Conducător științific în perioada 2014-prezent:

PALADI Florentin, conferențiar universitar, doctor habilitat în științe fizico-matematice

Consultant științific:

, l'opiotais

CĂPĂŢÂNĂ Gheorghe, profesor universitar, doctor în tehnică

Conducător științific în perioada 1994–1998: ENACHI Viorel (1944-2013), conferențiar universitar, doctor în științe fizico-matematice

Autorul:

CIOBU Victor

Chișinău, 2016

© CIOBU VICTOR, 2016

CUPRINS

ADNOTARE (română, rusă, engleză)	5
LISTA DE ABREVIERI	8
INTRODUCERE	9
1. CONCEPTE EVOLUATE ÎN MODELAREA ADAPTIV-PARAMETRICĂ A UN	OR
SISTEME FIZICE COMPLEXE	17
1.1. Cercetarea proprietăților sistemelor fizice complexe a moleculei de fullerene și cristal	elor
dopate cu ioni de pământuri rare	17
1.2. Analiza situației existente în domeniul aplicațiilor adaptive	29
1.3. Stabilirea familiilor de probleme care necesită soluționarea prin intermediul aplicaț	iilor
adaptive	34
1.4. Metode și tehnici de dezvoltare și implementare a aplicațiilor adaptive	36
1.5. Concluzii la Capitolul 1	42
2. MODELAREA VIBRAȚIILOR MOLECULARE ȘI SPECTRELOR DE OSCILA	ŢIE
ÎN SISTEME SIMETRICE CU MULTE GRADE DE LIBERTATE ȘI DETERMINAR	REA
STĂRILOR PROPRII ALE MOLECULEI ȘI IONULUI DE FULLERENE	44
2.1. Rezolvarea problemei inverse pentru dinamica fullerenului C_{60}	44
2.2. Operatorul de interacțiune electron-vibrațională pentru fullerenul C_{60}	51
2.3. Modelul semiclasic și metoda numerică de evaluare a spectrului energetic	53
2.4. Influența rezonanței electron-vibraționale asupra liniei de absorbție în ionul de fuller	rene
C_{60}^{-1}	56
2.5. Descrierea algoritmului de obținere a deplasărilor simetrizate in sistemele simet	rice
complexe și compararea cu rezultatele experimentale pentru fullerene	67
2.5.1. Modelul teoretic și algoritmul de calcul dezvoltat	67
2.5.2. Rezultatele calculului pentru molecula de fullerene	71
2.6. Aplicația adaptiv-parametrică pentru determinarea stărilor proprii ale moleculelor	de
fullerene	78
2.7. Concluzii la Capitolul 2	88
3. MODELAREA EFECTELOR INTERACȚIUNII ELECTRON-FONONICE	ÎN
CRISTALE DOPATE CU IONI DE PĂMÂNTURI RARE	91
3.1. Fundamente teoretice pentru modelarea proceselor în cristale dopate cu ioni de pămâr	nturi
rare	91
3.2. Transfer de energie în cristale dopate cu ioni de pământuri rare	102

3.3. Modelul hamiltonianului de interacțiune multipolară a ionilor	108
3.3.1. Transferul rezonant de energie între patru centre în cristale dopate cu ioni Pl	R108
3.3.2. Modelarea interacțiunii electron-fononice de rezonanță pentru ionii de păm	ânturi rare
în cristale laser	116
3.4. Concluzii la Capitolul 3	128
CONCLUZII GENERALE ȘI RECOMANDĂRI	130
BIBLIOGRAFIE	132
Anexa 1. Elementele de matrice $K^{(n)}(\gamma)$	144
Anexa 2. Valorile frecvențelor teoretice și experimentele în $C_{60}(I_h)$	154
Anexa 3. Programul de calcul al vectorilor proprii	155
Anexa 4. Rezultatul diagonalizării pentru calculul vectorilor proprii	159
Anexa 5. Structura aplicației adaptiv-parametrice pentru modelarea IEF de rezonanță	pentru ioni
în cristale laser	162
DECLARAȚIA PRIVIND ASUMAREA RĂSPUNDERII	165
CURRICULUM VITAE	166
LISTA LUCRĂRILOR	169

ADNOTARE

la teza de doctor "*Modelarea adaptiv-parametrică a unor sisteme fizice complexe*", specialitatea 131.04 – *Fizică computațională și modelarea proceselor*,

prezentată de Victor CIOBU, Universitatea de Stat din Moldova, Chișinău, 2016, pentru a obține titlul de doctor în științe fizice

Structura tezei: Teza constă din introducere, trei capitole, concluzii și recomandări, bibliografie ce cuprinde 173 titluri. Lucrarea conține 25 figuri, 7 tabele, 5 anexe și este expusă pe 172 pagini (131 pagini text de bază). Rezultatele obținute sunt publicate în 20 de lucrări științifice.

Cuvinte-cheie: fullerene, ioni de pământuri rare, interacțiune electron-vibrațională, interacțiune electron-fononică, modelare, aplicație adaptivă, sistem complex.

Domeniul de studiu îl constituie aspectele teoretice și aplicative de modelare pe calculator și de dezvoltare a aplicațiilor adaptive în cercetarea sistemelor fizice complexe.

Scopul și obiectivele lucrării rezidă în dezvoltarea modelelor teoretice și a tehnicilor de elaborare a aplicațiilor adaptive pentru modelarea pe calculator a vibrațiilor moleculare și a spectrelor de oscilație în sisteme simetrice complexe cu multe grade de libertate, determinarea stărilor proprii ale moleculei și ionului de fullerene, a interacțiunii electron-fononice în cristale dopate cu ioni de pământ rar, compararea rezultatelor teoretice obținute cu datele experimentale, fiind determinat astfel setul de valori corespunzătoare ale parametrilor modelelor fizice aplicate.

Noutatea și originalitatea științifică a rezultatelor obținute. A fost calculat spectrul de oscilații al moleculei de fullerene în baza algoritmului propus. A fost arătat că lărgimea liniei de absorbție pentru ionul de fullerene depinde de probabilitatea tranziției radiative spontane. A fost simulată pe calculator interacțiunea electron-fononică de rezonanță în cadrul aplicației adaptive elaborate.

Problema științifică importantă soluționată constă în modelarea vibrațiilor moleculare și a spectrelor de oscilații în sisteme fizice simetrice cu multe grade de libertate, în determinarea stărilor proprii ale moleculei și ionului de fullerene, precum și în modelarea interacțiunii electron-fononice în cristale dopate cu ioni de pământuri rare pe baza aplicației adaptive.

Semnificația teoretică a tezei își găsește exprimare în elaborarea unui algoritm de descompunere a reprezentării mecanice a sistemului în reprezentări ireductibile, precum și în studiul transferului rezonant de energie între patru centre în formalismul hamiltonianului multipolar de interacțiune a ionilor. De asemenea, a fost propusă și implementată aplicația adaptivă pentru asistența modelării pe calculator a două probleme fizice.

Valoarea aplicativă a lucrării este determinată, în primul rând, de faptul că aplicația adaptivă este utilizată pentru determinarea stărilor vibraționale ale moleculelor de fullerene și pentru modelarea interacțiunii electron-fononice de rezonanță pentru ionii de pământuri rare în diferite cristale laser, precum și de faptul că a fost validată însăși metoda de elaborare a aplicațiilor adaptive pentru asistența soluționării pe calculator a problemelor din fizica sistemelor complexe.

Implementarea rezultatelor: Rezultatele obținute sunt utilizate în cadrul Proiectului instituțional de cercetări științifice fundamentale 15.817.02.29F, direcția strategică "Materiale, tehnologii și produse inovative". Cercetările respective sunt reflectate, de exemplu, și în curriculele cursurilor universitare "Fizica clusterilor" și "Modelarea sistemelor complexe" ținute la Universitatea de Stat din Moldova); ele își găsesc reflectarea și în procesul de proiectare și creare a aplicațiilor pe calculator.

АННОТАЦИЯ

Докторская работа " Адаптивно-параметрическое моделирование некоторых сложных физических систем" по специальности 131.04 – Вычислительная физика и моделирование процессов, представлена Виктором ЧОБУ, Государственный университет

Молдовы, Кишинев, 2016, для получения степени доктора физических наук

Структура диссертации: Диссертация состоит из введения, трех глав, выводов и рекомендаций, литературы, содержащей 173 наименования. Работа содержит 25 рисунков, 7 таблиц, 5 приложений, изложена на 172 страницах (из них 131 страниц основного текста). Результаты, представленные в диссертации, опубликованы в 20 научных работах.

Ключевые слова: фуллерены, ионы редкоземельных элементов, электронколебательное взаимодействие, электрон-фононное взаимодействие, моделирование, адаптивные приложения, сложные системы.

Область исследований: теоретические и практические аспекты моделирования и разработки адаптивных приложений в исследовании сложных физических систем.

Цели и задачи работы: развитие теоретических моделей и методов разработки адаптивных приложений для моделирования на компьютере колебаний молекул и энергетических спектров сложных симметричных систем со многими степенями свободы, определение нормальных колебаний молекулы и иона фуллерена, электрон-фононное взаимодействие в кристаллах, легированных ионами редкоземельных элементов, сравнение полученных теоретических результатов с экспериментальными данными и определение на этой основе соответствующего набора параметров прикладных физических моделей.

Научная новизна и оригинальность полученных результатов. При помощи предложенного алгоритма был вычислен спектр коллебаний молекулы фуллерена. Было показано, что ширина линии поглощения для иона фуллерена зависит от вероятности спонтанного перехода. При помощи разработанного адаптивного приложения был промоделирован на компьютере элетрон-фононный резонанс.

Решённая научная задача состоит в моделировании колебаний молекул и колебательных спектров в симметричных физических системах с большим количеством степеней свободы, в определении нормальных колебаний молекулы и иона фуллерена, а также в моделировании электрон-фононного взаимодействия в кристаллах, легированных ионами редкоземельных элементов на основе адаптивного приложения.

Теоретическая значимость работы состоит, во-первых, в разработке улучшенного алгоритма для разложения механического представления системы на неприводимые представления группы симметрии этой системы; во-вторых –в исследовании резонансного переноса энергии между 4-мя центрами в гамильтоновом формализме мультипольного взаимодействия ионов. Также предложена и разработана адаптивное приложение для моделирования сложных физических задач на компьютере.

Практическое значение работы определено, в первую очередь, реализацией адаптивного приложения для определения нормальных колебаний молекулы фуллерена и моделирования резонансного электрон-фононного взаимодействия для ионов редкоземельных элементов в различных лазерных кристаллах, а также проверкой самого метода разработки адаптивных приложений для решения задач сложных физических систем на компьютере.

Внедрение результатов: Полученные результаты используются в фундаментальных научных исследованиях проекта 15.817.02.29F, стратегическое направление "Материалы, технологии и инновационные продукты". Эти исследования отражены, например, в учебных планах университетских курсов "Физика кластеров" и "Моделирование сложных систем" читаемых в Государственном университете Молдовы, а также используются при разработке и создании компьютерных приложений.

SUMMARY

of the doctoral thesis "Adaptive-parametric modeling of some complex physical systems" Specialty 131.04 – Computational Physics and Process Modeling, presented by Victor CIOBU, State University of Moldova, Chisinau, 2016 to obtain title of doctor in the Physical Sciences

Thesis Structure: The thesis consists of introduction, three chapters, conclusions and recommendations, bibliography of 173 references. It contains 25 figures, 7 tables, 5 annexes and is carried on 172 pages (131 pages – basic text). The presented results are published in 20 research papers.

Keywords: fullerene, rare earth ions, electron-vibrational interaction, electron-phonon interaction, modeling, adaptive application, complex system.

Field of study is theoretical and applied computer modeling, and adaptive applications development for the research of complex physical systems.

Goals and objectives of thesis are the development of theoretical models and techniques for creating adaptive applications for computer modeling of molecular vibration and spectra in symmetrical complex systems with many degrees of freedom, determining the eigenstates of fullerene molecule and ion, electron-phonon interaction for rare earth ions in laser crystals, comparison of the obtained theoretical results with experimental data, thereby setting up the appropriate values of the parameters in the applied physical models.

Scientific novelty and originality of the obtained results. The oscillation spectrum of the fullerene molecule was calculated based on the proposed algorithm. It was shown that the absorption line width of the fullerene ion depends on the probability of spontaneous radiative transition. The resonance electron-phonon interaction was simulated based on the developed adaptive computer application.

Important scientific solved problem consists in modeling of the molecular vibration and spectra in the symmetrical physical systems with many degrees of freedom and determination of the eigenstates of fullerene molecule and ion, as well as in modeling of the electron-phonon interaction for rare earth ions in laser crystals based on the adaptive application.

Theoretical significance of the thesis is to develop an improved algorithm for decomposition of the mechanical representation of the system into irreducible representations, as well as the study of four-center resonance energy transfer in the formalism of multipolar interaction Hamiltonian of ions. It was also proposed and implemented the adaptive application for assistance in computer modeling of complex physical problems.

Applicative value of the work is determined primarily by the development of adaptive application to determine the eigenstates of fullerene molecule and modeling the resonance electron-phonon interaction for rare earth ions in various laser crystals, and the validation of the method itself for drawing the adaptive applications for assistance in computer modeling of problems in the field of physics of complex systems.

Implementation of results: the obtained results are used in the institutional fundamental research project 15.817.02.29F, strategic direction "Materials, Technologies and Innovative products." These investigations are reflected, for example, in the university courses curricula "Physics of Clusters" and "Complex Systems Modeling" held at the Moldova State University, as well as in designing and building of computer applications.

LISTA DE ABREVIERI

AA	Aplicație adaptivă
AAP	Aplicație adaptiv-parametrică
BC	Bază de cunoștințe
BD	Bază de date
DA	Domeniu de aplicare
DC	Domeniu de cercetare
ÎR	Împrăștierea Raman
DRh	Dispersia Rayleigh
DFT	Teoria funcționalei de densitate
DFPT	Teoria de perturbație a funcției de densitate
IEF	Interacțiunea electron-fononică
LiNbO ₃	Niobat de litiu
LDA	Aproximația densității locale
PC	Program calculator
PR	Pământ rar
SA	Sistem adaptiv
SAC	Sistem adaptiv complex
SI	Sistem informațional
SIA	Sistem informațional adaptiv
SSD	Sistem suport de decizie
SSDA	Sistem suport de decizie adaptiv
SGBD	Sistem de gestiune a bazelor de date
TRE	Transfer rezonant de energie
YAG	Granatul de itrium și aluminiu
YLF	Itrium-litium-fluorid

INTRODUCERE

Actualitatea și importanța problemei

În teză autorul și-a propus să contribuie la dezvoltarea unor aspecte teoretice și aplicative de modelare a proceselor fizice pe calculator prin elaborarea aplicațiilor adaptive pentru asistența rezolvării problemelor din două domenii de activitate/cercetare (DA/DC). Pentru aceasta a fost efectuată o analiză a experienței acumulate în domeniul dezvoltării aplicațiilor adaptive (AA), sistemelor suport de decizie (SSD), a unor compartimente adiacente din matematică, în scopul elaborării unor propuneri originale de construire a aplicațiilor adaptiv-parametrice în fizica teoretică [2, 3, 98]. Prima aplicație adaptivă a fost utilizată pentru determinarea stărilor proprii ale moleculei de fullerene, fiind inițial elaborat algoritmul de obținere a deplasărilor simetrizate în sistemele simetrice complexe prin reducerea la problema vectorilor proprii și compararea cu rezultatele experimentale pentru fullerene. Această problemă este una importantă în contextul modelării vibrațiilor moleculare și spectrelor de oscilație în sisteme simetrice cu multe grade de libertate. De menționat, că fullerenul C_{60} reprezintă o moleculă alcătuită din atomi de carbon care sunt plasați în vârfurile unui icosaedru trunchiat și sunt uniți între ei prin legături simple și duble, iar 12 fete pentagonale și 20 hexagonale formează astfel structura simetrică a fullerenului C_{60} . Denumirea moleculei vine de la numele arhitectului american R.Buckminster Fuller, care folosea structuri similare în arhitectură, de unde și denumirea moleculei C_{60} – buckminsterfullerene sau fullerene [4, 9, 26, 40]. Se consideră că prima mențiune în literatura de specialitate a moleculei C_{60} a fost într-un articol în limba japoneză de Eiji Osawa [134].

Cea de-a doua problemă soluționată se referă la modelarea interacțiunii electron-fononice în cristale dopate cu ioni de pământuri rare (PR). Efectele cele mai studiate ale interacțiunii electron-fononice în cazul ionilor de (PR) în cristale sunt relaxarea multifononică, benzile vibronice, lărgirea benzii în funcție de temperatură sau transferul de energie non-rezonant asistat de fononi. Având în vedere că despicările Stark pentru ionii de PR sunt de ordinul fononilor de rețea, ar putea apărea și alte efecte legate, în special, de procesele în aproximația de cvasirezonanță. Dacă distanța dintre două niveluri Stark este aproape de rezonanță în regiunea spectrului fononic, atunci interacțiunea electron-fononică crează stări vibronice mixte, care determină modificări ale liniilor spectrale optice (lărgirea, asimetria, despicarea sau deplasarea) [66, 73, 74]. În unele cazuri, tranzițiile vibronice și efectele de rezonanță sunt atât de puternice, încât atribuirea nivelurilor electronice este ambiguă. Pentru a avea efecte de rezonanță intense este necesară existența cuplajului electron-fononic destul de puternic și vârfuri ascuțite în densitatea fononică din regiunea de rezonanță. Acest lucru explică de ce datele experimentale raportate privind efectele de rezonanță în compușii ionici se referă, în special, la ionii Yb³⁺ (4f¹³) [74, 142], Tm³⁺ (4f¹²) [117], Pr³⁺ (4f²) [66, 73] sau Ce³⁺ (4f¹) [91], adică ionii de PR la începutul și la sfârșitul seriei lantanidelor, care prezintă o interacțiune electron-fononică destul de puternică [80, 81]. Cercetarea din teză reprezintă atât o abordare teoretică a proceselor fizice în aproximația de cvasirezonanță pentru ionii de PR în cazul nivelurilor Stark nedegenerate, cât și dezvoltarea în acest context a modelării interacțiunii electron-fononice de rezonanță pentru ionii de PR în cristale laser, care a fost propusă inițial în lucrarea [118]. Este prezentată analiza spectrelor Yb³⁺ în YAG (Y₃A1₅O₁₂). Cristalul YAG este cunoscut ca având vârfuri ascuțite în densitatea fononică [80, 81, 123]. Aceste investigații sunt importante atât din punct de vedere al fizicii teoretice și computaționale, cât și din perspectiva utilizării practice a acestor materiale în calitate de activator laser. Într-adevăr, interacțiunea electron-fononică cvasirezonantă în spectrele optice ale ionilor de PR în compusi anorganici se manifestă prin despicările sau deplasările liniilor electronice, precum și prin efectele termice (deplasări sau lărgiri). Pentru unii ioni, cuplajul electron-fononic determină interferențe destul de mari ale nivelurilor electronice pure cu cele vibronice, astfel încât elucidarea structurii electronice constituie o importantă problemă de soluționat. Aceste efecte depind în mare măsură de rezonanța între nivelurile Stark și vârfurile densității fononilor în apropierea de rezonanță și cuplarea electron-fononică. Această ultimă condiție determină ca efectele să fie mai pronunțate pentru ionii de PR³⁺ în seria lantanidelor, adică a elementelor chimice din grupa metalelor de tranziție de tip f [38, 74, 101, 142]. Expresiile analitice obținute pentru despicarea unui nivel electronic în rezonanță cu un nivel vibronic descriu bine datele experimentale pentru Yb³⁺ în YAG. S-a arătat că aceeasi cuplare cvasirezonantă ale primelor două niveluri Stark pentru multipletul ${}^{2}F_{5/2}$ cu un fonon cu $\omega \sim 327$ cm⁻¹ este responsabilă pentru despicarea celui de-al doilea nivel Stark. Explicarea unor astfel de efecte electron-fononice pronunțate pentru Yb³⁺ este condiționată de configurația ionilor (deplasări electron-fononice de până la 35 cm⁻¹ au fost estimate [101] pentru nivelurile electronice $\text{Tm}^{2+}(4f^{13})$ în CaF₂ sau SrF₂) și vârfurile de vibrație ascuțite în YAG care ar putea fi asociate cu mișcarea în interiorul sau în exteriorul grupului tetraedric AlO_4^{-5} [126]. Modelele analitice sunt aplicabile limitat din cauza caracterului complex al sistemelor cercetate, de aceea modelele numerice și simularea pe calculator devin tot mai des folosite în aceste DC, care astăzi posedă trăsături interdisciplinare tot mai pronunțate.

Astfel, *scopul principal al tezei* este de a dezvolta modele teoretice și tehnici de creare a aplicației adaptive pentru modelarea pe calculator a vibrațiilor moleculare și a spectrelor de oscilație în sisteme simetrice complexe cu multe grade de libertate. În particular, scopul consistă în determinarea stărilor proprii ale moleculei și ale ionului de fullerene, a interacțiunii electron-

fononice în cristale dopate cu ioni de pământuri rare, precum și în compararea rezultatelor teoretice obținute cu datele experimentale, astfel fiind determinat setul de valori corespunzătoare ale parametrilor modelelor fizice folosite. Un alt aspect important al cercetării reprezintă promovarea utilizării succeselor obținute în dezvoltarea aplicațiilor adaptive în procesul de proiectare și realizare a aplicațiilor adaptiv-parametrice în fizica teoretică.

În acest context, obiectivele majore ale tezei sunt următoarele:

- 1. Elaborarea aplicației adaptiv-parametrice pentru modelarea oscilațiilor în sistemele simetrice complexe cu multe particule și compararea cu datele experimentale pentru fullerene.
- Cercetarea transferului rezonant de energie între patru centre în formalismul hamiltonianului de interacțiune multipolară a ionilor de pământuri rare cu componenta transversală a câmpului electromagnetic.
- Modelarea interacțiunii electron-fononice de rezonanță pentru ionii de pământuri rare în cristale laser şi compararea spectrelor de absorbție, pe baza aplicației adaptiv-parametrice elaborate, cu rezultatele numerice obținute pentru forma liniilor de absorbție corespunzătoare.

Metodologia cercetării ştiințifice se întemeiază pe teoria grupurilor, teoria rezonanței electron-fononice, teoria aproximației adiabatice în reprezentarea cuantică secundară, modelul hamiltonianului de interacțiune multipolară a ionilor, precum și pe metode și tehnici de dezvoltare și implementare a aplicațiilor adaptive.

Noutatea științifică a rezultatelor obținute:

- 1. Au fost modelate pe calculator oscilațiile moleculei de fullerene și a fost obținută forma liniei de absorbție pentru ionul C_{60}^{-1} . Pentru prima dată s-a constatat că lărgimea structurilor obținute depinde de frecvența tranziției radiative spontane.
- 2. A fost calculat spectrul de oscilații al moleculei de fullerene C_{60} utilizând reprezentările ireductibile ale teoriei grupurilor.
- 3. A fost cercetat transferul rezonant de energie între patru centre în formalismul hamiltonianului de interacțiune multipolară a ionilor cu componenta transversală a câmpului electromagnetic local. A fost supusă analizei structura topologică a diagramelor ce descriu fenomenul fizic respectiv, fiind identificate mecanisme distincte de transfer în conformitate cu cuplajul acceptorului la donori și după reductibilitatea diagramelor.
- 4. A fost modelată interacțiunea electron-fononică de rezonanță pentru ionul Yb³⁺ în trei cristale laser diferite: Yb³⁺(5at.%) în YAG, Yb³⁺(0.2at.%) în LiNbO₃ și Yb³⁺(20at.%) în YLF,

rezultatele numerice obținute pentru forma liniilor de absorbție fiind comparate cu spectrele experimentale.

Problema ştiințifică soluționată constă în elaborarea aplicației adaptiv-parametrice pentru analiza, procesarea și generarea datelor la cercetarea sistemelor fizice complexe, ceea ce a rezultat cu modelarea fullerenelor și a cristalelor laser dopate cu ioni de pământuri rare pentru utilizarea în asistența cercetătorilor la soluționarea acestor familii de probleme.

Semnificația teoretică a tezei își găsește exprimare în elaborarea algoritmului de descompunere a reprezentării mecanice a sistemului în reprezentări ireductibile și în modelarea oscilațiilor moleculei de fullerene. A fost cercetat transferul rezonant de energie între patru centre în formalismul hamiltonianului de interacțiune multipolară a ionilor. De asemenea, a fost propusă și implementată o tehnică proprie de elaborare a aplicațiilor adaptive pentru asistența modelării pe calculator a problemelor fizice.

Valoarea aplicativă a lucrării este determinată, în primul rând, de faptul că a fost realizată aplicația adaptivă pentru determinarea stărilor vibraționale ale moleculelor de fullerene și pentru modelarea interacțiunii electron-fononice de rezonanță pentru ionii de pământuri rare în diferite cristale laser. De asemenea, rezultatele obținute în domeniul modelării sistemelor complexe sunt utilizate în cadrul Proiectului instituțional de cercetări științifice fundamentale 15.817.02.29F, direcția strategică "Materiale, tehnologii și produse inovative". Bineînțeles, cercetările respective sunt reflectate și în curriculele cursurilor universitare "Fizica clusterilor" și "Modelarea sistemelor complexe" pentru studii la masterat, precum și "Metodologia cercetării" și "Procesarea datelor și data mining" incluse în programul de studii avansate de doctorat, ținute la Universitatea de Stat din Moldova (USM), precum și la proiectarea și crearea aplicațiilor pe calculator.

Rezultatele științifice principale înaintate spre susținere:

- A fost propus algoritmul de obținere a deplasărilor simetrizate în sisteme simetrice complexe cu multe grade de libertate și pe baza algoritmului dat sunt determinate stările vibraționale ale moleculelor de fullerene.
- 2. Forma liniei de absorbție pentru ionul C_{60}^{-1} este determinată de rezonanța electron-vibrațională și lărgimea ei depinde de frecvența tranziției radiative spontane.
- 3. Hamiltonianul de interacțiune multipolară a ionilor de pământuri rare a fost generalizat pentru cazul a patru centre și a fost cercetat transferul rezonant de energie.
- 4. Pe baza aplicației adaptiv-parametrice elaborate a fost simulată forma liniilor de absorbție în cristale laser dopate cu ioni de Yb³⁺, fiind în concordanță cu rezultatele experimentale.

Aprobarea și implementarea rezultatelor științifice: Materialele tezei au fost prezentate la conferințe științifice naționale și internaționale: 8th International Conference on Materials Science and Condensed Matter Physics (MSCMP-2016), "Mathematics&IT: Research and Education" (MITRE-2015), 7th International Conference on Physics of Advanced Materials (Iași, UAIC), conferințele științifice naționale anuale cu participare internațională "Integrare prin cercetare și inovare. Atelierul "Fizică și Inginerie", organizate de Universitatea de Stat din Moldova, Conferința Națională de Fizică etc. Rezultatele obținute sunt utilizate în cadrul Proiectului instituțional de cercetări științifice fundamentale 15.817.02.29F, direcția strategică "Materiale, tehnologii și produse inovative". Cercetările respective sunt reflectate și în curriculele cursurilor universitare "Fizica clusterilor", "Modelarea sistemelor complexe", "Metodologia cercetării" și "Procesarea datelor și data mining" ținute la Universitatea de Stat din Moldova.

Publicații la tema tezei. Conținutul de bază al tezei este reflectat în 20 de lucrări științifice la tema tezei, inclusiv 2 articole cotate ISI, 4 articole în reviste științifice cu recenzenți din Registrul național al revistelor științifice (categoria B) și 11 teze la conferințe internaționale și naționale de specialitate, inclusiv 5 publicații fără coautori și 5 comunicări la foruri științifice naționale și internaționale de specialitate.

Volumul și structura tezei. Teza constă din introducere, trei capitole, concluzii generale și recomandări, bibliografia ce cuprinde 173 titluri. Lucrarea conține 25 figuri, 7 tabele, 5 anexe și este expusă pe 172 pagini.

Sumarul capitolelor tezei:

În **Introducere** sunt argumentate actualitatea și importanța problemei abordate, fiind punctate scopul și obiectivele tezei, specificate noutatea științifică a rezultatelor obținute, metodologia cercetării și problema științifică soluționată, semnificația teoretică și valoarea aplicativă a lucrării, precum și aprobarea rezultatelor.

În **Capitolul 1**, intitulat "*Concepte evoluate ale modelării proceselor fizice prin utilizarea aplicațiilor adaptive*", este efectuată o analiză generală a situației în domeniul investigat și a calităților de adaptare a aplicațiilor informaționale sub diferite aspecte. Capitolul respectiv conține referințe bibliografice ce vizează publicații importante în domeniu, o atenție deosebită fiind acordată realizărilor din ultimii ani. În rezultatul studierii literaturii de specialitate, este realizată o analiză comparativă a situației existente în domeniul aplicațiilor adaptive și sunt formulate problemele proprii de cercetare, precum și direcțiile de soluționare a lor. Se introduc noțiunile de decizie, sistem informațional, informatic, aplicație adaptivă, sistem complex. Sunt stabilite familiile de probleme care necesită soluționarea prin intermediul aplicațiilor adaptive,

fiind analizate metodele și tehnicile de dezvoltare și implementare a aplicațiilor adaptive. Se redă clasificarea mulțimilor de probleme: *bine-structurate*, *non-structurate* și *slab-structurate* și unele tehnici generice de rezolvare a lor. Se face introducerea în sistemele suport de decizie și tipurile de probleme decizionale soluționate cu ajutorul acestor sisteme. Se face introducerea în metodele și tehnicile de dezvoltare și implementare a aplicațiilor adaptive. Se definește domeniul de aplicație (DA): DA = (O, R, P) [2], unde O este mulțimea obiectelor din DA, $O = \{o_i \mid i \ge 1\}$, R este mulțimea relațiilor dintre aceste obiecte $R \subseteq \{O \times O\}$, P este *mulțimea procedurilor*, $P = \{p_k \mid k \ge 1\}$, fiecare procedură p_k realizează transformarea: $p_k : O \rightarrow O$. În particular, este menționată importanța practică a cercetării proprietăților fullerenelor și a cristalelor dopate cu ioni de pământuri rare. În final, sunt formulate scopul și obiectivele tezei, precum și problemele de cercetare și direcțiile de soluționare a lor.

În Capitolul 2, intitulat "Modelarea vibrațiilor moleculare și spectrelor de oscilație în sisteme simetrice cu multe grade de libertate și determinarea stărilor proprii ale moleculei și ionului de fullerene", este rezolvată problema inversă pentru dinamica fullerenului C_{60} , sunt formulate modelul semiclasic și metoda numerică de evaluare a spectrului energetic, fiind prezentat operatorul de interacțiune electron-vibrațională pentru fullerenul C_{60} și cercetată influența rezonanței electron-vibraționale asupra liniei de absorbție în ionul C_{60}^{-1} . În acest context, este dezvoltat modelul teoretic și formulat algoritmul de calcul pentru obținerea deplasărilor simetrizate in sistemele simetrice complexe prin reducerea la problema vectorilor proprii. Rezultatele calculului pentru molecula de fullerene sunt comparate cu datele experimentale, fiind prezentată structura sistemul informatic adaptiv pentru determinarea stărilor proprii ale moleculei de fullerene, precum și implementarea practică a aplicației. Importanța practică a algoritmului respectiv se bazează pe posibilitatea automatizării procesului de descompunere a reprezentării mecanice a sistemului în reprezentări ireductibile, care este necesară la cercetarea sistemului simetric complex prin utilizarea teoriei grupurilor. Metoda propusă utilizează conceptele informatice: problemă, problemă bine-structurată, problemă slab-structurată, sistem suport pentru decizii, familie de fullerene, familia problemelor de determinare a stărilor proprii a moleculelor de fullerene, teorie formală (axiomatizată) a domeniului de cercetare. Familia problemelor de determinare a stărilor proprii a moleculelor de fullerene este o familie numărabilă de probleme, iar elementele acestei familii sunt probleme slab-structurate.

În Capitolul 3, intitulat "*Modelarea interacțiunii electron-fononice în cristale dopate cu ioni de pământuri rare*", sunt, mai întâi, prezentate fundamentele teoretice ale modelării proceselor fizice în cristalele dopate cu ioni de pământuri rare, care includ modelul de acoperire al câmpului cristalin, definirea stărilor electronice, a elementelor de matrice ale operatorului evoluției și a interacțiunii electron-fononice în cristale ce conțin impurități de ioni de pământuri rare, precum și elucidarea tehnicilor de calcul pentru secțiunea medie de împrăștiere și corelator. În continuare este aplicat transferul rezonant de energie între patru centre în modelul hamiltonianului de interacțiune multipolară a ionilor. A fost obținută formula pentru probabilitatea de transfer a energiei în cristale dopate cu ioni pământuri rare utilizând metoda dată a hamiltonianului de interacțiune multipolară. S-au analizat tranzițiile fononice și rezonante, care pot fi utilizate în selectarea cristalelor dopate cu pământuri rare pentru obținerea elementelor logice pentru calculatoarele cuantice. Modelarea interacțiunii electron-fononice de rezonanță pentru Yb³⁺ în trei cristale laser este implementată pe baza aplicației adaptiv-parametrice elaborate, fiind efectuată și comparația dintre spectrele de absorbție experimentale cu rezultatele numerice obținute pentru forma liniilor de absorbție, care demonstrează o bună concordanță cu datele experimentale la tranziția ${}^{2}F_{7/2}(1) \rightarrow {}^{2}F_{5/2}$ pentru Yb³⁺(5at.%) în YAG, a unei părți a spectrului de absorbție al Yb³⁺(0.2at.%) în LiNbO₃ la 10 K și a spectrului de absorbție polarizat pentru Yb³⁺(20at.%) în YLF la 10 K.

În "*Concluzii generale și recomandări*" se face o analiză a contribuției autorului la dezvoltarea aspectelor teoretice și aplicative cercetate în teză, în special cu referire la elaborarea modelelor teoretice, proiectarea și implementarea aplicațiilor adaptiv-parametrice în cercetarea sistemelor fizice pentru asistența modelării pe calculator a problemelor slab-structurate din diverse domenii aplicative.

Un pios **omagiu** pentru regretatul profesor **dl Viorel ENACHI**, sub îndrumarea căruia am început activitatea de cercetare în domeniile fizicii computaționale și computere cuantice. Am avut onoarea să fac cunoștință cu dl **Viorel ENACHI** chiar de pe băncile Universității. Mi-a fost conducător științific la teza de licență, sub conducerea dânsului am început și activitatea de doctorand. Am învățat foarte mult de la el și sub conducerea Dumnealui m-am format ca cercetător. Am avut multiple discuții despre fizica computațională și computere cuantice, care s-au fructificat în circa 12 articole științifice scrise împreună.

Regretatul profesor dl Viorel ENACHI va rămâne veșnic în amintirile și în inimile noastre...

1. CONCEPTE EVOLUATE ÎN MODELAREA ADAPTIV-PARAMETRICĂ A UNOR SISTEME FIZICE COMPLEXE

"Es ist nicht genug zu wissen - man muss auch anwenden". Johann Wolfgang von Goethe

"Nu e destul să știi, trebuie să și aplici".

Johann Wolfgang von Goethe

"Недостаточно только получить знания – надо найти им приложение".

Иоганн Вольфганг фон Гёте

În acest capitol se analizează situația existentă în domeniul de cercetare al tezei. Sunt cercetate proprietățile sistemelor fizice complexe pe exemplele moleculei de fullerene și cristalelor dopate cu ioni de pământuri rare, sunt argumentate avantajele aplicațiilor adaptive, care pot diminua semnificativ impactul complexității DC. Este evidențiată sub-mulțimea de probleme din mulțimea universală a problemelor, care necesită soluționarea prin intermediul aplicațiilor adaptive. Sunt expuse metode și tehnici relevante de dezvoltare și implementare a aplicațiilor adaptive în cercetarea sistemelor fizice complexe.

1.1. Cercetarea proprietăților sistemelor fizice complexe a moleculei de fullerene și cristalelor dopate cu ioni de pământuri rare

Molecula și ionul de fullerene

Dintre toate structurile de carbon, ce au o stabilitate superioară, se caracterizează molecula C_{60} , la care se face referință adesea ca fiind cea de-a treia stare a carbonului după diamant și grafit. Proprietățile electrice, optice și mecanice ale fullerenelor în stare condensată atrag atenția atât prin bogatul evantai de fenomene fizice, care au loc în fullerene, cât și prin perspectivele utilizării lor în electronică, optoelectronică și în alte domenii ale tehnicii, inclusiv computere moleculare [145]. Molecula C_{60} are structura icosaedrului trunchiat. Icosaedrul reprezintă o figură geometrică regulată, suprafața căruia constă din 20 de triunghiuri regulate. Ele au 12

vârfuri comune și 20 laturi comune. Moleculele stabile de carbon au structura unei suprafețe închise, pe care sunt așezați atomii de carbon. Această suprafață închisă e formată din hexagoane și pentagoane, în vârfurile cărora sunt așezați atomii de carbon. În realitate, în structura C_{60} există două tipuri de legături, una din ele este *dublă* (cea care coincide cu latura care mărginește două hexagoane vecine) și cealaltă este *simplă* (coincide cu latura care mărginește un hexagon și un pentagon). Rezultatul diferitor experimente arată că lungimile corespunzătoare legăturilor respective sunt 0.139 ± 0.001 și 0.144 ± 0.001 nm, respectiv. Din această cauză hexagoanele din componența moleculei C_{60} se deosebesc de cele regulate. Menționăm că toți atomii moleculei C_{60} se află într-o stare echivalentă, astfel încât fiecare atom aparține simultan la două hexagoane și un pentagon (a se vedea Figura 1.1).

Fig. 1.1. Structura moleculei de fullerene [1].

Simetria fullerenului C_{60} aparține de grupul punctiform I_h , cea mai superioară simetrie din grupurile punctiforme existente în spațiul euclidian. Cele 12 fețe pentagonale și 20 hexagonale ale fullerenului C_{60} coincid cu cele 12 vârfuri și 20 de fețe ale icosaedronului. Fiecare atom de carbon este localizat în unul dintre cele 60 de vârfuri ale acestui icosaedru trunchiat. Fiecare punct este legat într-un plan simetric de reflexie și de-a lungul unei axe simetrice de rotație. Grupul punctiform I_h icosaedral format din 120 de elemente este cel icosaedral I înmulțit direct cu grupul C_2 . Grupul C_2 constă doar din operatorul unitate și operatorul de inversie, fiecare dintre aceștia comutând cu cele 60 de rotații ale grupului I. Fiecare operator de rotație al icosaedrului rotește icosaedrul sub un unghi ω_r în raport cu o axă de simetrie de gradul 2,3 sau 5.Acest unghi de rotație ω_r separă rotațiile icosaedrale în 5 clase. Aceste clase sunt notate astfel: C_I , C_R , C_{R^2} , C_r și C_i și conțin respectiv 1, 12, 12, 20 și 15 operatori. Clasa C_1 conține doar operatorul unitate cu unghiul de rotație $\omega_r=72^\circ$ și $\omega_r=144^\circ$, respectiv. Clasa C_r conține toate rotațiile în raport cu axele de simetrie de ordinul 3 cu $\omega_r=120^\circ$, iar clasa C_i conține toate rotațiile în raport cu axele de ordinul 2 cu unghiul de rotație $\omega_r=180^\circ$.

Deci $I = \{C_1\} \bigcup \{C_R\} \bigcup \{C_{R^2}\} \bigcup \{C_r\} \bigcup \{C_i\}.$

Elementele grupului icosaedral I_h sunt generate de toate rotațiile din I cu operatorul unitate din C_i . Atunci toate rotațiile grupului I sunt înmulțite direct cu grupul C_2 . Astfel în grupul icosaedral de simetrie avem 120 de operații și 10 clase (a se vedea Tabelul 1.1).

Din tabelul Kelley pentru operațiile din primele 5 clase se observă, că orice operație poate fi generată doar de 2 operații: r_1 (rotirea cu 120°) și i_{11} (rotirea cu 180°). Prin urmare, reprezentările oricărei operații de aici se vor exprima prin reprezentările acestor două operații generatoare. Reprezentările ireductibile generatoare au fost prezentate de David E. Weeks și William G. Harter în lucrarea [169]. Reprezentările ireductibile ale grupului I_h sunt: A_{u} , A_g , T_{1u} , T_{1g} , T_{3u} , T_{3g} și H_u , H_g de dimensiunile 1, 1, 3, 3, 3, 3, 4, 4 și 5, 5, respectiv.

Pentru descrierea spectrelor vibrationale ale nanostructurilor pe baza atomilor de carbon se aplică diferite modele, cum ar fi Valence Force Field [131], aproximația de ordinul întâi a densității locale [146], abordările constantelor de forță pentru al cincilea și al patrulea cei mai apropiați vecini [165] sau sunt folosite potențialele Tersoff, Brenner or Lennard-Jones [115, 159]. Potentialele Tersoff-Brenner optimizate pentru studiul dinamicii retelei si a transportului termic fononic în nanotuburi de carbon si grafen au fost propuse în 2010 de către Lindsay și Broido [114], fiind obținut un set de parametri care oferă ajustări îmbunătățite la unele date experimentale, inclusiv datele privind dispersia fononică în plan pentru grafit. Aceste modele depind de un număr diferit de parametri ajustabili, care, de regulă, se determină din comparația spectrelor de oscilatie care se obtin prin metode teoretice cu datele experimentale. În cazul grafitului și grafenului, numărul parametrilor în medelele teoretice poate varia de la 5 până la 23 [130, 165]. Creșterea numărului de parametri ai modelelor conduce la o descriere mai detaliată a caracteristicilor spectrelor stărilor de vibratie [165]. Astfel, în modelarea dinamicii moleculare o funcție de potențial definită analitic sau empiric este folosită pentru a evalua interacțiunea între atomi sau energia de legătură, astfel încât formularea dinamicii moleculare este efectuată prin determinarea gradientului de la un anumit potențial. Structura și proprietățile termofizice ale soluțiilor apoase de fullerene C_{60} au fost investigate atât în mod experimental, cât și teoretic în abordarea dinamicii moleculare [144] și filme de fullerit [15, 16, 46, 88-90, 121]. Pentru a descrie mai exact proprietățile fizice, alegerea unui potențial de interacțiune cât mai adecvat este extrem de necesară.

Structura clasei icosaedrale			edrale	Structura clasei icosaedrale { <i>I_h</i> }					
<i>{I}</i>									
С	1=1								
C_R	C_{R^2}	C _r		$C_I = I$					
				$C_{ ho}$	$C_{ ho^2}$	C_{η}	C_{σ}		
R_1	R_1^2	r_1	i_1	$I R_1 = \rho_1$	$I R_1^2 = \rho_1^2$	$I r_1 = \eta_1$	$I i_1 = \sigma_1$		
R_2	R_2^2	r_2	<i>i</i> ₂	$I \ R_2 = \rho_2$	$I R_2^2 = \rho_2^2$	$I r_2 = \eta_2$	$I i_2 = \sigma_2$		
<i>R</i> ₃	R_3^2	r_3	<i>i</i> ₃	$I R_3 = \rho_3$	$I R_3^2 = \rho_3^2$	$I r_3 = \eta_3$	$I i_3 = \sigma_3$		
R_4	R_{4}^{2}	r_4	i_4	$I \ R_4 = \rho_4$	$I R_4^2 = \rho_4^2$	$I r_4 = \eta_4$	$I i_4 = \sigma_4$		
R_5	R_5^2	<i>r</i> ₅	<i>i</i> ₅	$I \ R_5 = \rho_5$	$I R_5^2 = \rho_5^2$	$I r_5 = \eta_5$	$I i_5 = \sigma_5$		
R_6	R_{6}^{2}	r_6	<i>i</i> ₆	$I R_6 = \rho_6$	$I R_6^2 = \rho_6^2$	$I r_6 = \eta_6$	$I i_6 = \sigma_6$		
R_1^4	R_1^3	<i>r</i> ₇	<i>i</i> ₇	$I R_1^4 = \rho_1^4$	$I R_1^3 = \rho_1^3$	$I r_7 = \eta_7$	$I i_7 = \sigma_7$		
R_2^4	R_2^3	<i>r</i> ₈	<i>i</i> ₈	$I R_2^4 = \rho_2^4$	$I R_2^3 = \rho_2^3$	$I r_8 = \eta_8$	$I i_8 = \sigma_8$		
R_3^4	R_{3}^{3}	<i>r</i> ₉	<i>i</i> 9	$I R_3^4 = \rho_3^4$	$I R_3^3 = \rho_3^3$	$I r_9 = \eta_9$	$I i_9 = \sigma_9$		
R_4^4	R_4^3	<i>r</i> ₁₀	<i>i</i> ₁₀	$I R_4^4 = \rho_4^4$	$I R_4^3 = \rho_4^3$	$I r_{10} = \eta_{10}$	$I i_{10} = \sigma_{10}$		
R_5^4	R_5^3	r_{1}^{2}	<i>i</i> ₁₁	$I R_{5}^{4} = \rho_{5}^{4}$	$I R_5^3 = \rho_5^3$	$I r_1^2 = \eta_1^2$	$I i_{11} = \sigma_{11}$		
R_6^4	R_6^3	r_{2}^{2}	<i>i</i> ₁₂	$I R_{6}^{4} = \rho_{6}^{4}$	$I R_6^3 = \rho_6^3$	$I r_2^2 = \eta_2^2$	$I i_{12} = \sigma_{12}$		
		r_{3}^{2}	<i>i</i> ₁₃			$I r_3^2 = \eta_3^2$	$I i_{13} = \sigma_{13}$		
		r_{4}^{2}	<i>i</i> ₁₄			$I r_4^2 = \eta_4^2$	$I i_{14} = \sigma_{14}$		
		r_{5}^{2}	<i>i</i> ₁₅			$I r_5^2 = \eta_5^2$	$I i_{15} = \sigma_{15}$		
		r_6^2				$I r_6^2 = \eta_6^2$			
		r_{7}^{2}				$I r_7^2 = \eta_7^2$			
		r_8^2				$I r_8^2 = \eta_8^2$			
		r_{9}^{2}				$I r_9^2 = \eta_9^2$			
		r_{10}^2				$I r_{10}^2 = \eta_{10}^2$			

Tabelul 1.1. Structura claselor grupului icosaedral de simetrie [67, 169, p.4747]

Operatorii grupului și structura claselor grupului I_h sunt arătate în Tabelul 1.2.

	C_1	C_R	$C_R 2$	C_r	C_i	C_I	$C_{ ho}$	$C_{\rho}2$	C_{η}	C_{σ}
A_g	1	1	1	1	1	1	1	1	1	1
T_{1g}	3	$2\cos\frac{\pi}{5}$	$2\cos\frac{3\pi}{5}$	0	1	3	$2\cos\frac{\pi}{5}$	$2\cos\frac{3\pi}{5}$	0	-1
T_{3g}	3	$2\cos\frac{3\pi}{5}$	$2\cos\frac{\pi}{5}$	0	-1	3	$2\cos\frac{3\pi}{5}$	$2\cos\frac{\pi}{5}$	0	-1
G_g	4	-1	-1	1	0	4	-1	-1	1	0
H_g	5	0	0	-1	1	5	0	0	-1	1
A_u	1	1	1	1	1	-1	-1	-1	-1	-1
T_{1u}	3	$2\cos\frac{\pi}{5}$	$2\cos\frac{3\pi}{5}$	0	-1	-3	$-2\cos\frac{\pi}{5}$	$-2\cos\frac{3\pi}{5}$	0	1
T_{3u}	3	$2\cos\frac{3\pi}{5}$	$2\cos\frac{\pi}{5}$	0	-1	3	$-2\cos\frac{3\pi}{5}$	$-2\cos\frac{\pi}{5}$	0	1
G_u	4	-1	-1	1	0	-4	1	1	-1	0
H_u	5	0	0	-1	1	-5	0	0	1	-1

Tabelul 1.2. Operatorii grupului și structura claselor grupului I_h [67]

Pentru legăturile covalente ale atomilor de carbon este necesară utilizarea unui potențial al sistemului multiparticule, care ar include și energia potențială indusă de variația unghiului legăturii. Potențialul interatomic empiric Tersoff-Brenner este cel mai des folosit potențial al trei corpuri pentru legătura chimică covalentă, așa ca siliciu și carbon. Acest potențial a fost propus inițial de către Tersoff [162] pentru simularea siliciului solid. Mai târziu, în lucrarea [62] a fost dezvoltat potențialul Tersoff pentru carbon și hidrocarbon. Potențialul a devenit des utilizat la cercetarea proprietăților fizice pentru formele alotropice ale carbonului, potențialul covalent total al sistemului fizic reprezentând suma energiilor de legătură covalente individuale:

$$U_{cov} = f_c(r_{ij}) \{ V_R(r_{ij}) - b_{ij} V_A(r_{ij}) \},$$
(1.1)

unde $f_c(r_{ij})$ este funcția de tăiere a potențialului Tersoff-Brenner. Funcția dată din (1.1) poate fi definită astfel:

$$f_{c}(r_{ij}) = \begin{cases} 1 & r_{ij} < \bar{R} - \bar{D} \\ \frac{1}{2} - \frac{1}{2} sin \left[\frac{\pi}{2\bar{D}} (r_{ij} - \bar{R}) \right] & \bar{R} - \bar{D} < r_{ij} < \bar{R} + \bar{D} \\ 0 & r_{ij} > \bar{R} + \bar{D} \end{cases},$$
(1.2)

unde r_{ij} este distanța dintre atomii i și j, \overline{D} este jumătate de distanța și \overline{R} este lungimea de tăiere. În general, funcția de tăiere a potențialului este o funcție descrescătoare simplă, care indică ponderarea legăturilor covalente centrate la $r_{ij} = \overline{R}$. Dacă în (1.2) r_{ij} este mai mic decât $\overline{R} - \overline{D}$, atunci energia potențială trebuie luată în considerație cu ponderea 1. Dacă r_{ij} este cuprins între $\overline{R} - \overline{D}$ și $\overline{R} + \overline{D}$, atunci ponderea variază între 0 și 1. Atunci când r_{ij} depășește $\overline{R} + \overline{D}$, energia potențială este ignorată în model. $V_R(r_{ij})$ și $V_A(r_{ij})$ în (1.1) reprezintă interacțiunile de respingere și, respectiv, de atracție. Aceste două componente de interacțiune pot fi descrise de potențialul de tip Morse [92]:

$$V_R(r_{ij}) = \frac{D_e}{S-1} \exp\{-\beta \sqrt{2S} \left(r_{ij} - R_e\right)\},\tag{1.3}$$

$$V_A(r_{ij}) = \frac{D_e S}{S-1} \exp\left\{-\beta \sqrt{2/S} \left(r_{ij} - R_e\right)\right\},$$
(1.4)

unde în (1.3) și (1.4) D_e și R_e sunt, respectiv, energia de disociere și lungimea legăturii de echilibru pentru materiale, *S* și β sunt coeficienți specifici ai materialelor. Mai mult decât atât, b_{ij} în relația (1.1) reprezintă modificarea energiei legăturii covalente în funcție de unghiul ϑ_{ijk} și se exprimă astfel:

$$b_{ij} = \left(1 + a^n \left\{\sum_{k(\neq i,j)} g(\vartheta_{ijk})\right\}^n\right)^{-\delta},\tag{1.5}$$

unde

$$g(\vartheta_{ijk}) = 1 + c^2/d^2 - c^2/(d^2 + (\tilde{d} - \cos\vartheta_{ijk})^2),$$
(1.6)

iar parametrii $a, n, \delta, c, d, \tilde{d}$ din (1.5) și (1.6) sunt determinați în funcție de material. Pentru un sistem format din atomi de carbon, a fost cercetată dependența energiei potențiale de distanță în funcție de diferite unghiuri ϑ_{ijk} ale legăturii între atomi [125]. Trebuie de remarcat faptul că forțele van der Waals (vdW) nu sunt luate în considerație în potențialul Tersoff-Brenner. Apariția acestor forțe între moleculele neutre se datorează tendinței acestora de a constitui dipoli electrici, aliniindu-se între ele și transmițând polarizarea la moleculele învecinate. Totuși, pentru unele formele alotropice ale carbonului, interacțiunile atomice transversal straturilor sunt modelate cu potențialul van der Waals. Un potențial pereche utilizat pe scară largă, funcția de potențial Lennard-Jones 12-6 [57, 113], este folosit pentru a descrie interacțiunile intermoleculare van der Waals:

$$U_{vdW}(r_{ij}) = 4\varepsilon_0 \left[\left(\frac{r_0}{r_{ij}}\right)^{12} - \left(\frac{r_0}{r_{ij}}\right)^6 \right],\tag{1.7}$$

unde ε_0 este energia pentru U_{vdW} minimal și r_0 este distanța între doi atomi la care U_{vdW} devine egal ciu zero. Pentru atomii de carbon $\varepsilon_0 = 3.8791 \times 10^{-10}$ fJ și $r_0 = 0.34$ nm. Prima derivată după r_{ij} a potențialului U_{vdW} descris de (1.7) reprezintă forța atomară van der Waals:

$$F_{vdW}(r_{ij}) = -\frac{dU_{vdW}(r_{ij})}{dr_{ij}} = 24\frac{\varepsilon_0}{r_0} \left[2\left(\frac{r_0}{r_{ij}}\right)^{13} - \left(\frac{r_0}{r_{ij}}\right)^7 \right].$$

De regulă, potențialul Tersoff-Benner este folosit pentru a descrie legătura covalentă din fullerene, precum și legăturile covalente în straturile nanotuburilor de carbon, grafit și diamant, pe când interacțiunile transversal straturilor sunt modelate cu potențialul Lennard-Jones. Totodată, potențialul Lennard-Jones este adesea folosit ca un model aproximativ pentru partea izotropă a forței totale cu rază scurtă van der Waals (repulsie plus atracție) în funcție de distanță [69].

În cadrul simulărilor dinamicii moleculare în nanostructuri s-a calculat valoarea numerică pentru energia potențială obținută din interacțiunea fiecărui atom dintr-o moleculă cu fiecare atom din a doua moleculă [112]. Cu toate că simularea implică doar rază mică de interacțiune atom-atom și ignoră aceste interacțiuni la distanțe mai mari, simularea respectivă necesită un timp de calcul semnificativ. Astfel, în această lucrare au fost stabilite formulele analitice pentru patru tipuri de interacțiuni Lennard-Jones: (i) o nanoparticulă solidă sferică cu un atom, (ii) două fullerene sferice cu raze distincte, (iii) o nanoparticulă solidă sferică cu o moleculă de fullerene sferică și (iv) două nanoparticule solide sferice cu raze distincte. Energiile de interacțiune, folosind potentialul Lennard-Jones 6-12 pentru aceste patru tipuri de interactiuni, sunt determinate în aproximația continuă, care presupune că o structură atomică discretă poate fi înlocuită fie cu o densitatea atomică de suprafață medie, fie cu o densitate atomică de volum medie. Timpul de calcul ar putea fi redus semnificativ cu ajutorul acestor formule pentru interactiunile moleculare care implică nanoparticule sferice sau fullerene. Este arătat că astfel de formule pot fi utilizate în scheme de calcul hibride analitic-numerice, precum și în metalofullerene și în anumite modele sferice pentru molecule cum ar fi metanul și amoniacul. Au fost determinate atât raza cea mai stabilă, cât și raza maximală pentru nanoparticula solidă sferică aflată în interiorul unei fullerene, care sunt utile în sistemele de calcul.

În ultumul deceniu cercetările proprietăților fullerenelor s-au desfășurat pe diverse direcții. Astfel, rezultatele unei investigații experimentale și teoretice a efectelor excitațiilor colective în spectrul energetic al fullerenului sunt prezentate în lucrarea [60]. Molecula de fullerene este cercetată ca un înveliș sferic cu o lățime finită și se arată că la unghiuri mici secțiunea de împrăștiere transversală inelastică este determinată în principal de excitația modului simetric al plasmonului de suprafață, în timp ce la unghiuri mai mari excitația plasmonilor antisimetrici de suprafață și de volum devine semnificativă. În lucrarea [119] sunt investigate configurațiile stărilor fundamentale pentru potențialele atomice cu doi și trei termeni de interacțiune din prima sferă de vecinătate, pentru a dovedi că potențialul propus poate descrie cristalizarea in nanostructuri de carbon, cum ar fi grafenul, nanotuburile și fullerenul, și a oferi o

anumită descriere a geometriei stărilor fundamentale, demonstrându-se ca moleculele de fullerene C_{20} și C_{60} sunt stabile.

Un număr considerabil de publicații recente sunt în domeniul biofizicii și în medicină. Astfel în [143, 157, 173] este prezentată acțiunea antiamiloidă a fullerenei C_{60} și corectarea proceselor cognitive perturbate, fiind discutate perspectivele de dezvoltare a medicamentelor bazate pe fullerene care acționează asupra mecanismelor moleculare-cheie în stadiul incipient al bolii Alzheimer. În lucrarea [86] este cercetat un compus antiviral pe bază de fullerene, care poate fi utilizat pentru a trata virusul imunodeficienței umane (HIV). A fost formulat un model matematic care poate descrie energia de interacțiune dintre compușii antivirali ce conțin C_{60} și HIV. În special, în aceast articol sunt modelate energia și forța care rezultă din interacțiunea dintre regiunea activă HIV și molecula antivirală care este atașată la suprafața exterioară a unei molecule de fullerene C_{60} . Aceste interacțiuni sunt calculate în baza structurii moleculelor antivirale, iar rezultatele arată că legătura moleculei de fullerene cu moleculele antivirale crește eficiența compusului de a suprima activitatea HIV. A fost realizată și analiza efectelor toxice ale fullerenelor și derivaților acestora față de organismele vii [99]. Relația dintre activitatea biologică a fullerenelor și a proprietăților lor fizico-chimice este caracterizată, iar pentru a permite o mai bună evaluare a efectelor toxice ale nanomaterialelor, atât pentru experimente, cât și pentru evaluarea rezultatelor, au fost recomandate proceduri standardizate in vivo. În lucrarea respectivă sunt prezentate și date privind adsorbția, distribuția și metabolismul de fullerene pentru diferite căi de expunere.

Se consideră că evoluțiile actuale ale studiului materialelor nanostructurate și nanotehnologie va avea, în general, un impact profund în multe domenii, cum ar fi tehnologiile cu utilizare în energetică și aplicațiile biomedicale [122]. Acestea includ celulele solare și de stocare a energiei, monitorizarea stării mediului, ingineria țesuturilor, bioprobe, diagnosticul și terapia cancerului, precum și metode avansate de livrare a medicamentului. Realizările recente acoperă o gamă largă de cercetare a nanomaterialelor pentru o varietate de aplicații, inclusiv pentru producerea nanocompozitelor organice/anorganice, care pot fi utilizate în construcția diodelor emițătoare de lumină, celulelor fotovoltaice, precum și în biomedicină. Fullerenele au atras o atenție considerabilă în diverse domenii ale științei și tehnologiei. Datorită proprietăților lor chimice, fizice și biologice excepționale, ele au multe aplicații și în tehnologia produselor cosmetice și medicale. Cu ajutorul funcției de potențial Lennard-Jones 6-12 și în aproximarea continuă, care presupune că interacțiunile intermoleculare pot fi aproximate prin densitatea atomică medie de suprafață, au fost calculate energiile de legătură între moleculele de fullerene C_{60} și ADN [45].

Cercetările în acest domeniu sunt interesante și din perspectiva găsiri unor modalități de identificare a geometriei fullerenelor C_n din materialul fullerenic, precum și descrierea rețelelor cristaline care au scop simularea canalelor care apar în zeoliți [19]. Astfel, pentru calculele bazate pe teoria funcționalei de densitate (DFT) pentru fullerene a fost folosit programul Turbomole cu scopul de a identifica geometria cuști C_n , precum și proprietățilie vibronice ale fullerenelor mici C_n (n<70). A fost arătat, că cu ajutorul calculelor de DFT se poate face distincție nu numai între stările electronice ale cuștilor C_n (neutre, cationi și anioni), dar și specificarea structuri izomerului specific. DFT a prezis, astfel, structurile și proprietățile acestora, care pot fi în continuare verificate cu rezultate experimentale obținute recent (spectre Raman și IR). În această lucrare se arată că materialele solide C_n pot fi fabricate prin selectarea perfectă de masă, dar controlul cu privire la componența izomerică ramăne încă o provocare.

O altă metodă de cercetare a fullerenelor se bazează pe teoria grafurilor, care a fost aplicată în studiul structurilor moleculare, care în prezent se constituie ca ramură interdisciplinară, numită *topologie moleculară* [20, 106, 110]. Topologia moleculară urmărește identificarea, din studii comparate asupra unui set de molecule, a factorilor structurali implicați în relația structură – proprietate / activitate biologică. Partiționarea unor proprietăți moleculare și exprimarea lor prin modele aditive, cu ajutorul descriptorilor moleculari (indici topologici) și a analizei de regresie reprezintă unul din obiectivele topologiei moleculare. Caracterizarea topologică a nanostructurilor de carbon a permis ordonarea acestora după criterii de similaritate, ca și modelarea de noi structuri, cu proprietăți dorite. Prin urmare, studiul relaților cantitative structură-proprietate (QSPR) și structură-activitate (QSAR) aduce un suport simplu și convenabil pentru predicția de proprietăți fizico-chimice și biologice.

Funcțiile Green și spectrul energetic al moleculei C_{60} au fost calculate în aproximația fluctuațiilor statice în cadrul modelului Hubbard [158]. Pe baza acestui spectru, a fost propusă o interpretare a benzilor de absorbție observate experimental în fullerene. Parametrii moleculei C_{60} , care o caracterizează în cadrul modelului Hubbard, se calculează din spectrul optic de absorbție.

Fullerenele, dar mai ales molecula C_{60} fiind cel mai cunoscut și stabil reprezentant al fullerenelor, oferă și proprietăți electronice interesante [156]. Tranzistorii cu efect de câmp în bază de fullerene sunt prezentate aici ca un anumit tip de comutatoare electronice, în care fullerenele servesc în calitate de materiale semiconductoare active.

În lucrarea [76] sunt examinate formele alotropice de carbon, precum și se efectuează analiza structurii, proprietăților electronice și chimice ale grafenului, moleculei de fullerene și nanotuburilor de carbon cu un singur perete (SWCNT), prezentându-se diferite metode de calcul

care au fost folosite pentru interpretarea proprietăților nanostructurilor de carbon, precum și utilizarea curentă a nanostructurilor carbon și a aplicațiilor potențiale ale lor. Importanța aplicării metodelor de calcul în explorarea diferitelor dimensiuni ale fullerenelor și izomerilor acestora este analizată. Conceptul regulei pentagonului izolat (IPR) în chimia fullerenelor a fost descris. Studiile computaționale și experimentale, care implica defecte structurale în fullerene sunt la fel discutate, iar relația dintre curbura locală și reactivitatea nanotuburilor de carbon SWCNT și fullerenelor, cu și fără defecte de structură, este prezentată în lucrarea sus-menționată. Algoritmi de clasificare și taxonomie, pe baza unor criterii, cum ar fi entropia informațională și modificarea ei, sunt analizați în [163]. A fost studiată fezabilitatea înlocuirii unei anumite molecule (de exemplu, anestezic) cu altele similare din compoziția unui medicament complex. Metoda se aplică și la clasificarea în acest context a fullerenelor și SWCN. Evident, studiul respectiv nu se încadrează în domeniul de aplicare al metodei noastre de simulare, dar astfel de modelare ar fi utilă pentru a sugera prioritățile cercetării experimentale detaliate.

În articolul [102] sunt prezentate cercetările teoretice îndreptate spre obținerea materialelor extradure bazate pe fullerene și nanotuburi de carbon. Autorii au luat în considerare datele disponibile privind proprietățile elastice care se formează datorită interacțiunii fullerenelor sau (și) nanotuburi atât datorită legăturilor slabe (de tipul van der Waals), cât și a celor covalente puternice. Modele de noi materiale nanostructurate ipotetice pe bază de carbon, de exemplu cristale cubice tubulare, au fost analizate, iar proprietățile elastice ale acestora sunt considerate ca fiind dependente de structura lor atomică, caracteristicile structurii lor electronice și legăturile chimice corespunzătoare. De asemenea, au fost examinate și problemele de sinteză a acestor structuri extradure.

În prezent, în ciuda interesului tot mai mare a comunității științifice în nanotuburi de carbon si grafen, molecula de fullerene C_{60} joacă un rol semnificativ în familia de nanocarboni mai ales din punct de vedere tehnologic. Un sfert de secol de cercetare a fullerenelor a fost dedicat înțelegerii modului de a produce derivați de fullerene stabili, bine caracterizați și foarte solubili, care păstrează proprietățile originale ale moleculei C_{60} . Aplicațiile într-un număr mare de domenii, în special cu privire la designul de noi materiale, în care sunt folosite fullerenele, au îmbogățit literatura științifică cu exemple fascinante [116].

Cristale dopate cu ioni de pământuri rare

Când electronii se excită prin absorbția luminii, energia asociată este, în multe cazuri, transmisă departe de locul absorbției. Acest fenomen este binecunoscut în multe domenii ale

fizicii stării solide și dependența lui exactă de distanță se adeverește a fi din ce în ce mai importantă, spre exemplu în analiza detaliată a structurii proteinelor. Dacă transferul de la donor la acceptor are loc între două tipuri distincte de atomi, departe de regiunea superpoziției funcțiilor lor de undă, în mod obișnuit se consideră două mecanisme diferite: la *distanțe scurte, transfer neradiativ*, cu o dependență invers proporțională puterii a șasea a separării dintre donor-acceptor și la *distanțe mari, transfer radiativ*, cu dependența invers proporțională a puterii a doua. La distanțe intermediare probabilitatea de transfer depinde mult mai complicat de distanță. Cercetările bazate pe formalismul electrodinamicii cuantice și al hamiltonianului de interacțiune multipolară cu câmpul local transversal au calificat aceste "mecanisme" drept două extreme ale unei interacțiuni mai generale [71].

În afara aplicațiilor pentru materialele organice [48], este acceptată importanța majoră a *transferului rezonant de energie* (TRE) în fotofizica *cristalelor dopate cu ioni de pământuri rare* (PR^{3+}) . Poziția relativă a nivelurilor lantanidelor favorizează posibilitatea creării materialelor ce invocă nu numai TRE convențională, dar și ordine superioare de interacțiune. Ionii (PR^{3+}) posedă proprietăți unice care sporesc interesul implementării lor în calculul cuantic. Tranzițiile optice considerate aici implică electroni din stratul *f*, care, după cum se știe, este puternic ecranat de perturbațiile din exterior, consecința acestui fapt fiind o lărgire foarte mică a liniei de absorbție. În același timp, frecvența exactă a acestor tranziții depinde puternic de câmpul cristalin, lărgind astfel neomogen linia de absorbție. Din combinarea acestor două efecte rezultă posibilitatea separării unui larg număr de canale într-un mare interval de frecvențe [111]. Pentru YAIO₃ dopat cu ioni de Eu lărgimea omogenă este aproximativ 1 kHz, iar cea neomogenă este mai mare de 10 GHz, de unde rezultă 10⁷ canale. Fiecărui canal de frecvențe i se asociază un qubit, iar interacțiunea între ei are loc prin TRE. Se poate realiza o dinamică condiționată care duce direct la implementarea canalelor cuantice de *n* biți.

Pentru implementarea calcului cuantic în sisteme concrete este necesară examinarea ratelor de evoluție pentru toate canalele: radiative, neradiative, multifononice etc. Pentru prima dată un proces colectiv de TRE a fost cercetat de Andrews pentru trei centre [53, 54]. Sunt câteva motive care justifică interesul pentru cercetarea unei astfel de interacțiuni. Prima constă în faptul că așa model poate reprezenta un proces de pompare a energiei de la un "rezervor" de mai mulți donori la un singur acceptor. Aceasta oferă un mijloc convenabil de excitare a acceptorului într-o stare de energie mai mare decât energia fiecărui donor aparte. Transferul de energie în trepte prezintă unele dezavantaje față de acest mechanism, pentru că el cere o amplasare potrivită a nivelurilor de energie ale acceptorului. Dacă donorii identici sunt excitați cu un puls laser

monocromatic, atunci ar apărea concurența între procesul de interacțiune între centre și cel al excitării directe a acceptorului prin absorbție multifononică. În general, probabilitatea pentru primul mecanism este mai mare, cu toate că dependența lui de intensitatea laserului este aceeași. Altă diferență în raport cu absorbția multifononică este posibilitatea exploatării orientării spațiale a centrelor, de care în mod necesar depinde fenomenul.

Împrăștierea fotonului de către subsistemul electronic reprezintă absorbția fotonului inițial \vec{K}_0 cu emiterea simultană a altui foton \vec{K} . Atomul poate rămâne la nivelul inițial sau la alt nivel energetic discret. În primul caz frecvența fotonului nu variază, adică avem de a face cu dispersia Rayleigh. În cazul al doilea frecvența variază cu mărimea $\omega - \omega_0 = \omega_{if}$, unde $\hbar \omega_i$, $\hbar \omega_f$ sunt energiile inițială și finală ale atomului, respectiv. Aici are loc împrăștierea Raman (ÎR). Dacă starea inițială a atomului este cea de bază, în cazul împrăștierea Raman $\omega_{fi} > 0$, deci $\omega < \omega_0$, adică dispersia decurge cu micșorarea frecvenței (cazul Stokes). La dispersia pe un atom excitat sunt posibile atât cazul Stokes, cât și cazul and anti-Stokes ($\omega > \omega_0$). Ca împrăștiere rezonantă înțelegem dispersia la care frecvența luminii incidente pe sistemul atomic sau molecular este apropiată unei frecvențe proprii a absorbției electronice a sistemului. Procesul capătă multe trăsături specifice. În particular, crește brusc intensitatea dispersiei, iar dependența procesului de diferite niveluri electronice intermediare devine selectivă și evidentă.

Aceste împrejurări sunt utilizate în spectroscopia oscilatorie a împrăștierii spontane Raman. Pentru studierea structurii moleculelor complexe și proprietăților stărilor lor electronice, precum și a naturii și detaliilor mecanismului a însuși fenomenului. ÎR rezonantă are o importanță deosebită, în primul rând, deoarece are un volum mare de informație despre diverse proprietăți ale sistemului dispersant. Pentru a extrage această informație este necesară o metodă complexă de studiere a ÎR rezonante impuse și a tuturor proceselor însoțitoare de interacțiune a radiației incidente puternice cu materia. ÎR pe niveluri electronice în perioada din anul 1935 și până la apariția laserului a fost observată doar pentru cazul moleculei NO. În timpul celui de-al doilea Război Mondial C.J.Gorter a întreprins experiențe cu ioni de pământuri rare (PR) și doar în anul 1964 O.Singh a reușit să excite ÎR pe tranzițiile electronice în Pr³⁺ în PrCl₃. Nemijlocit înainte de aceasta Elliot a prezis posibilitatea observării ÎR pe niveluri electronice în ioni de lantanide. În toate aceste experiențe sursa de lumină era lampa de mercur [154]. Cu apariția laserului situația s-a schimbat și în anul 1966 Koningstein a început programul de excitare a PR pe nivelurile electronice ale ionilor de PR în unele cristale cu ajutorul radiației laserului heliuneonic. Utilizând un sistem de înregistrare mai sensibil, în această experiență s-a reușit excitarea PR pentru 3 ioni de PR. Cu apariția laserelor pe ioni de argon și cripton au fost obținute date experimentate mai amănunțite, a fost observată ÎR pe nivelurile electronice ale tuturor lantanidelor, dar în aceste studii nu erau luate în considerație efectele legate de interacțiunea electron-fononică (IEF) în ionii de PR cu impurități, care a fost cercetată, începând cu anul 1979, în absorbția și radiația luminii de ioni PR [83, 109].

Prin urmare, scopul principal al tezei este de a dezvolta modele teoretice și tehnici de elaborare a aplicațiilor adaptive pentru modelarea pe calculator a sistemelor fizice complexe, care ar include aplicația generică adaptiv-parametrică și bazele de date corespunzătoare familiei de probleme. În cazul moleculei de fullerene este necesar de a formula algoritmul de obținere a deplasărilor simetrizate în sistemele simetrice complexe cu multe particule prin reducerea la problema vectorilor proprii și de a calcula spectrul de oscilație al moleculei de fullerene. Cercetarea dinamicii fullerenului C_{60} ar consta în rezolvarea problemei de determinare a vectorilor proprii prin metodele numerice cunoscute. În cazul modelării interacțiunii electronfononice de rezonanță pentru ionii de pământuri rare în cristale laser este necesar de a cerceta transferul rezonant de energie între patru centre în formalismul hamiltonianului de interacțiune multipolară a ionilor de pământuri rare și a compara spectrele de absorbție cu rezultatele numerice obținute pentru forma liniilor de absorbție. Formula pentru funcția formei liniilor spectrului de absorbție și rezultatul se înscrie în această baza împreună cu denumirea cristalului indicat de cercetător.

1.2. Analiza situației existente în domeniul aplicațiilor adaptive

În cadrul fizicii computaționale, utilizarea calculatoarelor contribuie la extinderea și aprofundarea înțelegerii fenomenelor fizice prin creșterea considerabilă a numărului de calcule matematice pe care le putem efectua. Mai mult ca atât, 131.04. *Fizică computațională și modelarea proceselor* este specialitatea științifică de unde se așteaptă metode noi de calcul, de operare [17]. De exemplu, metodele spectroscopiei computaționale se extind de la studiile unei singure molecule până la simularea de clustere și stări cristaline ale substanței, de la molecule organice la sisteme anorganice complexe și de la cercetarea fundamentală la aplicații comerciale în domeniul mediului [70].

Modelarea matematică a proceselor din sistemele complexe poate include o varietate de modele, cum sunt modele matematice clasice, derivate din analiza matematică și teoria ecuațiilor diferențiale; modele de inteligență artificială; modele discrete, pentru sisteme cu evenimente discrete (aplicate, în special, în informatică și știința calculatoarelor) etc. În cadrul cunoașterii

cantitative, obiectivul cercetării științifice este de a stabili modele matematice ale relațiilor cauză-efect, puse în evidență de cunoașterea calitativă și fenomenologică. Predicția efectelor, atunci când "*mărimile cauză*" sunt cunoscute, se realizează în baza simulării sistemelor. Mărimi esențiale în model sunt variabilele care prezintă interes sub aspectul funcționalității si performanței procesului implicat. Se selectează, între mărimile de intrare sau variabile externe, acele variabile care au rol de comandă a procesului. Restul mărimilor de intrare pot fi considerate ca perturbații. În metodologia de modelare a proceselor este esențială modelarea perturbației. Există două abordări uzuale: ea se consideră ca fiind o variabilă deterministă. Acest caz implică, în mod evident, o simplificare a realității, impusă de necesitatea unei abordări sub aspectul complexității. Modelarea proceselor permite și stabilirea relațiilor de proiectare a sistemelor complexe și a diverselor tehnologii, iar scopul urmărit de cercetarea aplicativă din științele naturale și inginerești, care este inter- sau pluridisciplinară, este dezvoltarea de noi aplicații software în activitatea umană, pe baza cunoașterii științifice din cercetarea fundamentală [18, 87, 98, 164]. De exemplu, pentru a realiza un produs soft nou, cunoștințele fundamentale sunt cele aferente metodelor de calcul și de operare dezvoltate în fizica computațională și modelarea proceselor, iar ca sa-l aplice, atribuindu-i și o utilitate socială, inginerul fizician trebuie să mai cunoască normele de natură juridică și economică care reglementează aceste raporturi sociale, la care se mai adaugă cunoștințe din domeniul echipamentelor și tehnologiilor informaționale și de comunicare, a sistemelor de gestiune / procesare a unor cantități mari de date, inclusiv la scară națională, etc. Astfel de studii interdisciplinare și pluridisciplinare conțin întotdeauna legături între domeniile menționate și sunt direcții prioritare de cercetare și implementare pe plan mondial, cum ar fi, de exemplu, bio- sau nanotehnologiile, e-guvernarea etc.

Problema de analiză, care presupune modelarea și simularea sistemului complex, se transformă astfel într-o problemă de sinteză și de proiectare, iar în orice problemă de sinteză trebuie rezolvată o problemă preliminară: realizabilitatea problemei formulate. Aplicațiile adaptive trebuie să țină cont de specificul infrastructurii din ingineria sistemelor complexe, iar infrastructura de cercetare propriu-zisă poate fi o arie de cercetare aplicativă (elaborarea de noi tipuri de sisteme de dezvoltare). Sistemele complexe, de regulă, posedă câteva caracteristici de bază. În primul rând, ele sunt formate dintr-un număr mare de elemente care interacționează reciproc în diverse moduri. În al doilea rând, rolul central la cercetarea acestor sisteme îl reprezintă elucidarea proprietăților lor colective, care pot rezulta în structuri complexe noi. În al treilea rând, efectele aleatorii sau stocastice sunt importante pentru descrierea adecvată a evoluției sistemelor. În al patrulea rând, în cazul sistemelor complexe biologice și social-

economice pot fi observate proprietăți accentuate de adaptare, astfel încât studiul sistemelor complexe cuprinde astăzi și multe cercetări interdisciplinare. Astfel, apariția structurilor noi complexe are loc în sisteme puternic dezechilibrate, iar fenomenele respective pot fi studiate și cu ajutorul modelelor dezvoltate în cadrul fizicii. Aplicabilitatea modelelor analitice este deseori limitată de caracterul complex al sistemelor cercetate, de aceea modelele numerice și simularea pe calculator devin tot mai des folosite în acest domeniu de cercetare, care astăzi posedă trăsături interdisciplinare tot mai pronunțate [18, 47, 56, 103]. Deseori procesele sunt declarate de tip Markov, iar dinamica este descrisă de ecuațiile Chapman-Kolmogorov. Soluțiile obținute caracterizează distribuția de echilibru sau staționară a modelului. Fluctuațiile în sistem sunt cercetate ca soluție a ecuației Fokker-Planck, adică distribuții de probabilitate pentru fluctuații aproape de echilibru. Trebuie, însă, de menționat, că ecuațiile descriu evoluția distribuției de probabilitate a stărilor, nu a stării propriu-zise. Astfel dacă stările pot manifesta o comportare anormală pentru valorile critice, atunci distribuția de probabilitate - nu. Prin urmare, pentru a construi un model stocastic pentru un grup de agenți, în primul rând se va alege un set de variabile în calitate de vector de stare a modelului. Astfel se va putea, în principiu, calcula distribuțiile vectorilor stărilor viitoare în baza celor curente, cel puțin pentru un număr finit de pași în timp. Acest aspect al modelului este descris de ecuația master, care este o ecuație diferențială și indică cum probabilitatea modelului de a se afla în careva moment de timp într-o anumită stare variază din cauza fluxurilor de probabilitate. Ecuația de bază este determinată odată cu specificarea setului relevant al ratelor de tranziție pentru stările examinate, fapt ce substituie descrierea la micronivel a modelelor. Un exemplu elocvent în acest context poate fi considerat modelul Szilard [85, 107, 138, 139]. Pe de altă parte, dacă modelul Szilard necesită o implicare esențială a calculului numeric, evoluția structurilor cluster în modele herding este cercetată analitic. Rodgers et al [72, 149, 151, 152] a dezvoltat și soluționat analitic un model cinetic care descrie distributia clusterilor după dimensiune în prezenta a doar două fenomene din următoarele posibile: creștere (growth), fragmentare (fragmentation), coagulare (coagulation), adunare (addition) și anexare (attachment). Celor 10 combinații posibile le vor corespunde diferite variante ale modelului. Vom defini în continuare aceste fenomene pe baza noțiunii de cluster. Astfel, prin creștere se va denumi procesul în care un nou cluster de dimensiunea 1 (monomer) sau agent liber este introdus în sistem, fapt ce contribuie la creșterea dimensiunii acestuia. Fragmentarea poate fi definită ca un proces în care un cluster se divizează în agenți liberi. Coagularea este procesul de conexiune a doi clusteri, formând un singur cluster din cei doi prezenți inițial. Adunarea poate fi descrisă ca un caz special al coagulării, când un agent liber din sistem este anexat aleator la un oarecare cluster. Prin urmare, acest proces este posibil doar în cazul existenței agenților liberi în sistem. Anexarea este procesul în care un agent nou din exteriorul sistemului se anexează unui oarecare cluster contribuind la creșterea dimensiunii atât a clusterului corespunzător, cât și a sistemului în întregime. În continuare vom efectua o analiză succintă a modelelor corespunzătoare. Sunt analizate ambele cazuri când ratele de tranziție sunt independente sau dependente de dimensiunea clusterilor. În cel din urmă caz, clusterii cu dimensiunea mai mare se dezvoltă mai rapid decât cei mici, deoarece este mai probabil cazul că doi agenți aparținând la diferiți clusteri cu dimensiuni mari vor contacta între ei. Distribuția de echilibru a clusterilor după dimensiune, obținută de către autori în formă analitică, posedă o dependență de putere truncată exponențial (power law with an exponential cut-off).

Modelele ABM (*agent based models*) reprezintă o metodologie relativ nouă dezvoltată cu scopul de a studia procese din sisteme complexe la interacțiunea dintre structurile macro- și microscopice. De regulă, multe asemenea sisteme sunt caracterizate prin faptul că proprietățile lor generale, rezultat al superpoziției mai multor stări individuale ale subsistemelor componente sau un agregat al acestora, nu pot fi deduse printr-o simplă extrapolare a evoluției părților componentelor de la un nivel structural inferior la unul mai superior, ci reprezintă proprietăți calitativ noi. Acesta este cazul sistemelor complexe care manifestă deseori proprietatea de autoorganizare. Metodologia ABM s-a consolidat pe parcursul ultimilor decenii și este astăzi aplicată cu succes la studierea fenomenelor sociale și economice ca cele mai reprezentative exemple de "fenomene complexe", deși ponderea acestor studii în totalul cercetărilor științifice respective rămâne încă nesemnificativă [95, 96, 135-137].

În DEX, un *sistem* este definit ca un ansamblu de elemente (principii, reguli, forțe etc.) dependente între ele și formând un întreg organizat, care pune ordine într-un domeniu de gândire teoretică, reglementează clasificarea materialului într-un domeniu de științe ale naturii sau face ca o activitate practică să funcționeze potrivit scopului urmărit. Un *sistem informatic* este ansamblul de elemente implicate în procesul de prelucrare și transmitere a datelor pe cale electronică. Sistemul informatic este alcătuit din calculatoare, sisteme de transmisie a datelor, datele prelucrate, personalul implicat, teoriile la baza algoritmilor de prelucrare și aplicațiile informatic (soft). Cele trei componente majore care formează sistemul informatic sunt: *intrările, prelucrările, ieșirile. Intrările* reprezintă ansamblul datelor încărcate, stocate și prelucrate în cadrul sistemului în vederea obținerii unor informații solicitate de către beneficiarul sistemului. *Prelucrările,* reprezintă un ansamblu omogen de proceduri automate realizând: crearea inițială și actualizarea bazei de date; exploatarea bazei de date; reorganizarea bazei de date; reorganizarea bazei de date; reorganizarea bazei de rezultatele prelucrărilor desfășurate.

Sistemul informațional este ansamblul de elemente implicate în procesul de colectare, de transmisie, prelucrare de informație, informației revenindu-i rolul principal din sistem. În sensul larg, sistemul informațional se referă la diverse interacțiuni dintre oameni, procese, date și tehnologii, termenul nu se referă numai la aspectele TIC. Sistemul informațional reprezintă un ansamblu de fluxuri și circuite informaționale organizate într-o concepție unitară. *Sistem informațional adaptiv* este numit sistemul informațional care își schimbă algoritmul de funcționare, și (uneori), structura lui, în scopul de a menține sau pentru a atinge o stare optimă atunci când se schimbă condițiile externe [79, 127].

Calitatea de adaptare a sistemului informatic poate fi realizată sub următoarele aspect [21, 127]:

- Adaptarea se efectuează apriori, prin proiectarea orientată spre un anumit tip de utilizatori.
- Sistemul permite o adaptare dinamică, care este efectuată de către utilizator în procesul de comunicare cu sistemul.
- Adaptarea este realizată de către sistem în procesul de comunicare cu utilizatorul.

Elaborarea sistemelor informatice adaptive se poate face prin mai multe metode. Expunem unele din aceste metode:

- Adaptarea sistemului informatic la domeniul de aplicație se face la etapa proiectării acestuia.
- Mediul de dezvoltare al sistemelor informatice comandat este dotat cu funcții de macroprocesare. Sistemul solicitat este realizat în formă de sistem generic parametrizat. Parametrii de adaptare a sistemului generic sunt macrovariabile ale sistemului generic. Atribuind valori simbolice oportune parametrilor de adaptare a sistemului generic este generată versiunea SI solicitată de către beneficiar.
- Sistemul informatic comandat de către beneficiar este realizat în formă de sistem generic parametrizat realizat în formă de interpretor, care permite beneficiarului sistemului specificarea parametrilor de adaptare. În rezultatul acestei atribuiri, sistemul informatic este adaptat la condițiile curente ale domeniului de aplicație.
- Sistemul informatic poate îmbina tehnici mixte de realizare a adaptivității. O parte din
 parametrii de adaptare ale SI solicitat de către beneficiar, care își modifică valorile rar,
 pot fi realizați în sistemul generic în formă de macrovariabile. Altă parte, care î-și
 modifică frecvent valorile, sunt realizați în calitate de variabile interpretabile.

Un *sistem complex* se referă la orice sistem informatic ce conține un număr mare de entități (agenți, procese, etc.) interdependente ce interacționează. Printre esențialele caracteristici ale

sistemelor complexe includ *emergența*, *autoorganizarea* și *adaptabilitatea* [129, p. 2]. Ordinea spontană care apare atunci când sistemul, pentru a răspunde la influențele exercitate de mediul înconjurător, trece la un nou mod de organizare se numește *autoorganizare* și reprezintă una dintre cele mai uimitoare proprietăți a sistemelor complexe, fie că este vorba despre sisteme umane, ecosisteme sau organizații. Proprietățile emergente, calitățile noi, paternele structurale apar în sistemul adaptiv complex (SAC) din interacțiunea elementelor individuale, acestea reprezentând mai mult decât suma părților componente și sunt dificil de prevăzut studiind doar elementele considerate individual. *Emergența* este procesul care determină apariția unei noi ordini împreună cu auto-organizarea.

Sumarizat, sistemele adaptive complexe prezintă următoarele proprietăți:

- interacțiunile locale, neliniare ale părților au ca rezultat auto-organizarea globală a sistemului;
- condiția mixtă între ordine și haos a acestor sisteme depinde de stabilitatea și flexibilitatea simultană a acestora;
- în loc să asigure stări optimale dar instabile, aceste sisteme sunt organizate într-un mod ce le asigură o bună funcționare dar și flexibilitate.

1.3. Stabilirea familiilor de probleme care necesită soluționarea prin intermediul aplicațiilor adaptive

Conform DEX, **problema** se definește ca o "chestiune în care, fiind date anumite ipoteze, se cere rezolvarea, prin calcule sau prin raționamente, a unor date".

În literatura de specialitate mulțimea universală a problemelor este divizată în trei clase [4, p.10-11]:

- *bine-structurate* (*well-structured*), sau probleme exprimate cantitativ, în care dependențele esențiale sunt clarificate foarte bine;
- non-structurate (unstructured), sau probleme exprimate calitativ, care conțin doar descrierea resurselor, a trăsăturilor și caracteristicilor mai importante iar dependențele cantitative dintre acestea sunt complet necunoscute;
- *slab-structurate* (*ill-structured*), sau probleme combinate, care conțin și elemente cantitative, dar elementele calitative demonstrează tendința de a domina.

Problemele bine-structurate pot fi reprezentate algoritmic și rezolvate efectiv în cadrul tehnologiilor informaționale convenționale bazate pe conceptele: algoritm, limbaj imperativ de programare și mașina cu arhitectură von Neumann [4, p.11]. Problema este bine structurată pe măsura satisfacerii următoarelor criterii [4]:

- poate fi descrisă în termenii variabilelor (scalare sau vectoriale), care au valori numerice;
- obiectivele pot fi definite cu ajutorul unor funcții obiectiv clare și bine determinate (de exemplu, maximizarea venitului sau minimizarea cheltuielilor);
- există algoritmi de obținere a soluției numerice.

Problemele bine-structurate sunt cele mai ușor de rezolvat.

Problemele slab-structurate nu pot fi realizate algoritmic și, de aceea, rezolvarea lor pe calculator este asistată de un *sistem suport pentru decizii* (SSD) corespunzător. Algoritmul de soluționare a unei problemele slab-structurate este construit în procesul dialogului dintre utilizatorul final - beneficiarul problemei, expertul domeniului de activitate/cercetare, frecvent, non-informaticianul și SSD [4, p.11]. Această clasă de SSD este destinată pentru asistarea rezolvării cu ajutorul computerului a problemelor de luare a deciziilor în managementul unităților economice, de cercetare, de educație, ocrotire a sănătății, administrative, militare etc. Problemele slab structurate se caracterizează prin următoarele trăsături [4]:

- deciziile preponderent sunt orientate spre viitor;
- există un mare diapazon de alternative;
- soluțiile (deci și deciziile) depind în mare măsură de imperfecțiunea curentă a tehnologiilor;
- deciziile necesită alocări considerabile și conțin elemente de risc;
- sunt incomplete cerințele referitoare la costul și timpul soluționării problemei;
- problema are o structură complexă fiindcă pentru soluționarea ei e necesară îmbinarea resurselor de diferită natură.

Poate cea mai importantă trăsătură a problemei slab structurate constă în aceea, că modelul ei poate fi construit numai în baza informațiilor suplimentare de la persoana, care participă la soluționarea problemei. Deci, nu putem vorbi de construirea unui model obiectiv, nepărtinitor. Neîntelegerea acestui lucru a fost cauza multor esecuri în implementarea modelelor matematice.

Luarea deciziilor este o activitate practicată non-stop de către oameni în diverse domenii de activitate. F. Gh. Filip definește conceptul *"decizie"* în modul următor: *"Decizia* reprezentă rezultatul unor activități conștiente de alegere a unei direcții de acțiune și a angajării în aceasta, fapt care implică, de obicei, alocarea unor resurse. Decizia rezultă ca urmare a prelucrării unor informații și cunoștințe și aparține unei persoane sau unui grup de persoane, care dispun de autoritatea necesară și care răspund pentru folosirea eficace a resurselor în anumite situații date" [14, p.12].

Conceptul *sistemului suport pentru decizii* este extrem de larg iar definiția sa diferă în funcție de punctul de vedere al autorului (Druzdzel și Flyn, 1999).

Există mai multe definiții a SSD în contextul soluționării familiei de probleme pentru aplicații adaptive. Prima definiție SSD a fost dată de Little, la începutul anilor '70. El definea SSD-ul ca fiind: "*un model bazat pe un set de proceduri pentru procesarea datelor și pentru asistarea unui manager în procesul decizional. Un SSD trebuie să fie simplu, robust, ușor de întreținut, adaptiv, ușor de comunicat cu el etc.*". Aceste atribute, formulate de Little sunt valabile și astăzi. Tipurile de probleme decizionale și modul de găsire al soluțiilor la aceste tipuri de probleme sunt redate în Figura 1.2.

Fig.1.2. Găsirea soluțiilor la problemele decizionale.

Moore și Chang (1980) definesc SSD-ul ca "un sistem extensibil, capabil să suporte analize ad-hoc și modelarea deciziei, orientat pentru planificări viitoare și folosit la intervale neplanificate și neregulate". Power (2002) citat de Filip (2004) definește SSD ca "un sistem informatic interactiv menit să-l ajute pe decident să utilizeze date, documente și modele pentru a identifica și rezolva probleme și a lua decizii".

1.4. Metode și tehnici de dezvoltare și implementare a aplicațiilor adaptive

DEX definește noțiunea de metodă ca "procedeu sau ansamblu de procedee folosite în realizarea unui scop; metodologie".

DEX definește noțiunea de *tehnici* ca "*Ansamblu de procedee și deprinderi folosite într-un anumit domeniu de activitate*(DA)".

Aplicația informatică sau un program de computer, în general, este o secvență de instrucțiuni concepute pentru dispozitivul de control de execuție a computerului [27].

Aplicație informatică adaptivă este numită aplicația informatică care își ajustează automat algoritmul de funcționare la modificările funcționale și structurale ale *domeniului de aplicație* în care funcționează [8, 21].

Aplicație adaptiv-parametrică este numită aplicația informatică care își ajustează automat algoritmul de funcționare la modificarea parametrilor de intrare [8, 79].
Domeniul de aplicație (abreviat DA) este un 3-tuplu [2]:

DA = (O, R, P),

unde:

- (i) O este mulțimea obiectelor din DA, $O = \{o_i | i \ge 1\},\$
- (ii) *R* este mulțimea relațiilor dintre aceste obiecte, $R \subseteq \{O \times O\}$,
- (iii) *P* este mulțimea procedurilor, $P = \{p_k | k \ge 1\},\$
- (iv) Fiecare procedură p_k realizează transformarea: $p_k: O \rightarrow O$.

Programarea de sistem definește noțiunea program de computer ca date informatice și cod de computer în memorie executate de procesor pentru a atinge un anumit scop. Această definiție subliniază două dimensiuni de procesare pe computer: codul programului – acesta reprezintă algoritmul programului creat de către programator și datele informatice pe care algoritmul programului este capabil să le prelucreze [8, 27].

Datele informatice cu care operează programul sunt datele de intrare (pentru intrare) și de ieșire (pentru a afișa rezultatele). Starea de ieșire de obicei depinde de datele de intrare. Pe parcursul timpului, pe de o parte, volumul datelor de intrare crește, iar pe de altă parte, cerințele față de stările de ieșire pot suferi modificări. Dacă programul nu este capabil să se acomodeze la aceste modificări, apare necesitatea de modificare a algoritmului de către programator. Deseori, este mai avantajos de elaborat o aplicație nouă decât de modificat cea existentă, care la fiecare modificare a domeniului de aplicare, solicită un efort considerabil din partea informaticianului pentru a o menține viabilă și utilă. Este evident, că aceste modificări ale aplicației, dacă sunt acceptate, solicită timp pentru realizare și remunerarea informaticianului. În plus, modificarea aplicației poate afecta fiabilitatea ei. Din acest motiv, este foarte important ca aplicațiile să fie cât mai adaptive [8, 21].

Aplicațiile adaptive funcționează după două principii de bază: *auto-ajustarea* și *auto-organizarea*. În primul caz, în conformitate cu schimbările din mediul extern se schimbă modul de funcționare a sistemului, iar al doilea, se schimbă structura, organizarea sistemului [8]. Metodele și tehnicile informatice dezvoltate servesc la:

- facilitarea comunicării între actorii care participă la elaborarea deciziei și structurarea problemelor decizionale folosind *diagramele de influență* și *arborii decizionali*;
- analiza datelor şi extragerea informațiilor şi cunoştinţelor relevante folosind tehnici de depozitare a datelor, de prelucrare analitică on-line şi de descoperire a cunoştinţelor nontriviale din baze mari de date;

- evaluarea efectelor aplicării unor posibile variante decizionale prin analize de tip "What if ... ?" folosind tehnici de simulare;
- construirea şi recomandarea variantei decizionale optime prin tehnici de *optimizare multicriterială* în condițiile existenței unui număr nelimitat de variante posibile care trebuiesc apreciate după mai multe criterii de evaluare;
- recomandarea unei alternative dintr-un număr finit de alternative-candidat prin tehnici de analiză a valorilor luate de un număr de caracteristici ale variantelor prin metode de *analiză multiatribut a deciziilor*;
- sugerarea unei variante decizionale folosind tehnici de *inteligență artificială: sistemele expert, rețelele neurale artificiale, raționamentul bazat pe cazuri.algoritmii genetici* etc.

În marea majoritatea cazurilor acestea facilitează numai una (sau un număr limitat) dintre activitățile decizionale cuprinse în fazele procesului decizional. Astfel:

- tehnicile de analiză on-line a datelor pot fi foarte utile în activitățile decizionale de culegere a datelor și de identificare a situației decizionale;
- simularea servește cu precădere la facilitarea activităților decizionale care privesc alegerea unei variante acceptabile în analiza de sensibilitate a modelului și a soluției;
- optimizarea multicriterială și analiza deciziilor multiatribut sunt folositoare la modelarea variantelor și la alegerea soluției;
- diagramele de influență ajută la definirea problemei şi la construirea arborilor decizionali, care, la rândul lor, modelează variantele şi facilitează alegerea;
- tehnicile bazate pe inteligență artificială sunt folosite, în primul rând, la alegerea soluției, dar se pot dovedi utile şi în activitățile de identificare (diagnoză) a problemei (sistemele expert), construire a modelului (rețelele neurale artificiale) şi proiectare a variantelor (raționamentul bazat pe cazuri).

Familiile de probleme a DA cercetate în lucrare sunt slab-structurate, astfel trebuie sa utilizăm în calitate de suport pentru cercetările și activitățile noastre SSD adaptive. Aceasta implică studierea și aplicarea următoarelor tipuri de instrumente software:

1) sisteme suport de decizie

- 2) aplicații adaptive
- 3) sisteme de inteligență artificiale

În rezultatul integrării acestor trei tehnici de adaptare putem obține un nou tip de sistem software - *SSD adaptiv inteligent*, care integrează avantajele celor trei paradigme de dezvoltare a sistemelor informatice menționate.

Sistemele informaționale pot demonstra următoarele adaptivități:

- (1) adăugarea/excluderea unui nod al rețelei de calculatoare (RC) adaptarea RC (A_{RC});
- (2) ameliorarea vitezei de calcul a soluționării problemelor de cercetare într-un oarecare nod al $RC(A_V)$;
- (3) adăugarea/excluderea unui laborator de cercetare ştiințifică (LCŞ) în cadrul sistemului informațional (A_{LCS});
- (4) adăugarea/excluderea unui *Post* în cadrul sistemului informațional (A_{Post});
- (5) extinderea în nodul x_i a software aplicativ pentru rezolvare a unei noi probleme de cercetare p∈Π (A_Π);
- (6) construirea bazei de cunoștințe pentru un nou nod al $RC(A_{BC})$;
- (7) extinderea norului sistemului informațional la un nou nod al $RC(A_{Nor})$;
- (8) modificarea sistemului de operare, a software de sistem şi aplicativ în unul sau mai multe noduri al RC (A_{soft});

Pentru adaptarea unei aplicații la noile condiții ale domeniului de aplicație sunt necesare următoarele resurse: *financiare*, *personal* și *timp*. Reperul dimensiunilor resurselor necesare pentru adaptarea aplicației este prezentat în Figura 1.3.

Fig.1.3 Resursele necesare pentru adaptarea aplicațiilor.

În contextul celor expuse dimensiunile adaptivității aplicației sunt următoarele:

Tabelul 1.3.	Dimensiur	ile adapti	vitătii siste	emelor info	rmationale
1400141 1.5.	Dimension	me uuupn	vitaçii bibte		mayromare

	A_{RC}	A_{V}	A_{LCS}	A _{Post}	A_{Π}	A_{BC}	A_{Nor}	A_{Soft}
F	$A_{F,RC}$	$A_{F,V}$	$A_{F,LCS}$	$A_{F,Post}$	$A_{F,\Pi}$	$A_{F,BC}$	$A_{F,Nor}$	$A_{F,Soft}$
P	$A_{P,RC}$	$A_{P,V}$	$A_{P,LCS}$	$A_{P,Post}$	$A_{P,\Pi}$	$A_{P,BC}$	$A_{P,Nor}$	$A_{P,Soft}$
Т	$A_{T,RC}$	$A_{T,V}$	$A_{T,LCS}$	$A_{T,Post}$	$A_{T,\Pi}$	$A_{T,BC}$	$A_{T,Nor}$	$A_{T,Soft}$

Cele trei definiții ce urmează, prezintă conceptul nostru original referitor la definiția aplicațiilor adaptive, măsurarea gradului de adaptivitate al aplicațiilor și compararea gradului de adaptivitate a diferitor aplicații utilizând una, mai multe sau toate dimensiunile adaptivității aplicațiilor prezentate în Tabelul 1.3.

O definiție alternativă a **aplicației adaptive** (AA) este: sistemul (mijloacele hardware, software, metodice, de proiectare și organizatorice), care realizează aspectele generale de automatizare a unor clase definite de probleme, caracterizate de o tehnologie unică de prelucrare a datelor, regimuri de prelucrare a informațiilor și condiții de exploatare unice a mijloacelor hardware și software [8].

Aplicația cercetătorului (AC) reprezintă mijloacele hardware și software ale AA, destinate soluționării problemelor concrete ale cercetătorului.

Gradul de adaptivitate a AA la familia de probleme de cercetare (FOP) este caracterizat de trei indicatori:

- raportul dintre costul mediu a realizării unei noi probleme din FOP într-o AC utilizând AA și costul mediu a realizării aceleiași probleme fără utilizarea AA;
- raportul dintre necesarul mediu de personal (om × zile) a realizării unei noi probleme din FOP într-o AC utilizând AA şi necesarul mediu de personal (om × zile) a realizării aceleiaşi probleme fără utilizarea AA;
- raportul dintre necesarul mediu de timp a realizării unei noi probleme din FOP într-o AC utilizând AA și necesarul mediu de timp a realizării aceleiași probleme fără utilizarea AA.

Măsurarea gradului de adaptivitate al aplicațiilor și/sau compararea gradului de adaptivitate a diferitor aplicații utilizează una, mai multe sau toate dimensiunile adaptivității aplicațiilor prezentate în Tabelul 1.3.

Această definiție a fost inspirată de ideea *gradului de orientare pe problemă* a *complexelor orientate pe problemă* din materialele metodice corespunzătoare elaborate de Consiliului Constructorilor Principali, Comisia Interguvernamentală a Statelor Socialiste în Domeniul Tehnicii de Calcul (1981).

Aplicațiile adaptive oferă următoarele avantaje [8]:

- diminuarea timpului, necesarul mediu de personal și costul mediu a realizării problemelor din *FOP* într-o *AC*;
- un grad înalt de standardizare a *AC*;
- o calitate mai bună a AC și AA ș. a.

Redenumim și numerotăm sistemul de indicatori de adaptabilitate a SI din Tabelul 1.3, în rezultat obținem un tabel din 24 de indicatori indexați ai adaptivității aplicațiilor (a se vedea Tabelul 1.4). Acest sistem de măsurare a adaptivității aplicațiilor este universal. Fiecare indicator reprezintă o dimensiune de măsurare a adaptivității aplicațiilor.

		A_{RC}	A_{V}	A_{LCS}	A_{Post}	A_{Π}	A_{BC}	A_{Nor}	A_{Soft}
		1	2	3	4	5	6	7	8
1	F	$A_{F,RC}/$	$A_{F,V}/$	$A_{F,LCS}/$	$A_{F,Post}/$	$A_{F,\Pi}/$	$A_{F,BC}$ /	$A_{F,Nor}/$	$A_{F,Soft}$
		$a_{1,1}$	$a_{2,1}$	$a_{3,1}$	$a_{4,1}$	$a_{5,1}$	$a_{6,1}$	$a_{7,1}$	$a_{8,1}$
2	Р	$A_{P,RC}/$	$A_{P,V}/$	$A_{P,LCS}/$	$A_{P,Post}/$	$A_{P,\Pi}/$	$A_{P,BC}/$	$A_{P,Nor}/$	$A_{P,Soft}/$
		$a_{1,2}$	<i>a</i> _{2,2}	<i>a</i> _{3,2}	$a_{4,2}$	$a_{5,2}$	$a_{6,2}$	$a_{7,2}$	$a_{8,2}$
3	Т	$A_{T,RC}/$	$A_{T,V}/$	$A_{T,LCS}/$	$A_{T,Post}/$	$A_{T,\Pi}/$	$A_{T,BC}$ /	$A_{T,Nor}/$	$A_{T,Soft}/$
		$a_{1,3}$	<i>a</i> _{2,3}	$a_{3,3}$	$a_{4,3}$	$a_{5,3}$	$a_{6,3}$	<i>a</i> _{7,3}	$a_{8,3}$

Tabelul 1.4. Dimensiunile adaptivității aplicațiilor

Fie *SI* - o mulțime de sisteme informaționale $SI = \{SI_i | i \in I\}$, unde *I* este mulțimea de indici; iar mulțimea *Criterii* = $\{c_{j,k} | c_{j,k} \ge 0; j = \overline{1,3}; k = \overline{1,8}\}$ reprezintă sistemul de criterii al beneficiarului de evaluare a adaptabilității sistemelor informaționale. Notăm cu $a_{j,k}^{SI_i}$ mulțimea performanțelor de adaptivitate a sistemului SI_i , $SI_i \in SI$

Criterii^{SI_i} = {
$$c_{j,k}^{SI_i} | c_{j,k}^{SI_i} \ge 0$$
; $j = \overline{1,3}$; $k = \overline{1,8}$ $SI_i \in SI$ }.

Astfel, oricare beneficiar poate construi propriul sistem de evaluare a adaptivității sistemelor informaționale (*Adapt*^{SI}) în funcție de sistemul său de criterii de evaluare a adaptabilității sistemelor informaționale $Adapt^{SI} = \{\sum_{i=1}^{3} \sum_{i=1}^{8} c_{i,j} \times a_{i,j}^{SI_i}, SI_i \in SI\}.$

Faptul că o aplicație adaptivă realizează calități software suplimentare necesităților beneficiarului, impune o tehnică de construire a aplicațiilor adaptive care include [2]:

- (1) definirea cerințelor AA;
- (2) descrierea DA;
- (3) construirea teoriei formale (axiomatizate) în sensul Mendelson [127] a DA elaborat la pasul (2);
- (4) construirea limbajului DA teoriei formale elaborată la pasul (3);
- (5) specificarea familiilor de probleme din DA solicitate de beneficiar pentru realizarea pe calculator;

- (6) elaborarea constructorului componentelor cognitive a platformei informatice pentru DA;
- (7) construirea platformei informatice a DA;
- (8) elaborarea componentelor de adaptare ale platformei informatice elaborate la pasul (7)
 (Adaptorul, Ajustorul și alte module auxiliare);
- (9) generarea de către utilizatorii finali a versiunilor originale personalizate a aplicațiilor adaptive utilizând componentele elaborate la paşii (6), (7), (8) conform specificărilor utilizatori finali;
- (10) exploatarea, menținerea și dezvoltarea aplicațiilor personalizate construite la pasul (9) de către utilizatorii finali.

1.5. Concluzii la Capitolul 1

- În primul capitol a fost efectuată o analiză comparativă a situației existente în domeniul tezei. Compartimentul respectiv conține numeroase referințe publicate peste hotare şi în țară, o atenție deosebită acordându-se realizărilor din ultimii ani. În rezultatul studierii literaturii de specialitate, au fost formulate problemele proprii de cercetare şi direcțiile de soluționare a lor.
- 2. În baza studiului efectuat a fost concluzionat faptul că cercetarea proceselor fizice poate fi asistată cu aplicații adaptive cu aceeași arhitectură, construite în baza unei singure tehnologii informaționale, și a fost propus un sistem original din 28 de indicatori pentru măsurarea adaptivității sistemelor informaționale. În baza acestui sistem de indicatori se pot construi sisteme personalizate de evaluare a adaptivității în funcție de problemele cercetate.

Ținând cont de cele menționate mai sus, au fost formulate următoarele două probleme principale de cercetare în teză care se referă la dezvoltarea modelului teoretic și a aplicației adaptiv-parametrice pentru:

- Modelarea vibrațiilor moleculare și a spectrelor de oscilație în sisteme simetrice cu multe grade de libertate și determinarea stărilor proprii ale moleculei și ionului de fullerene.
- Modelarea interacțiunii electron-fononice în cristale dopate cu ioni de pământuri rare.

Direcțiile de soluționare a acestor probleme presupun elaborarea unui algoritm care permite automatizarea procesului de descompunere a reprezentării mecanice în reprezentări ireductibile, fapt ce este determinant în procesul de cercetare a sistemul simetric complex prin utilizarea teoriei grupurilor, precum și modelarea pe calculator a oscilațiilor moleculei de fullerene. Totodată, pentru cercetarea transferului rezonant de energie între patru centre în formalismul hamiltonianului de interacțiune multipolară a ionilor cu componenta transversală a câmpului electromagnetic local este necesar de analizat structura topologică a diagramelor, identificânduse mecanisme distincte de transfer în conformitate cu cuplajul acceptorului la donori și după reductibilitatea diagramelor, precum și modelarea pe calculator a interacțiunii electron-fononică de rezonanță pentru ioni de pământuri rare în cristale laser diferite.

2. MODELAREA VIBRAȚIILOR MOLECULARE ȘI SPECTRELOR DE OSCILAȚIE ÎN SISTEME SIMETRICE CU MULTE GRADE DE LIBERTATE ȘI DETERMINAREA STĂRILOR PROPRII ALE MOLECULEI ȘI IONULUI DE FULLERENE

2.1. Rezolvarea problemei inverse pentru dinamica fullerenului C₆₀

Problema dată se consideră "inversă" problemei directe, care asociază parametrii modelului cu datele observabile experimental [55]. Transformarea *datele experimentale* \rightarrow *parametrii modelului* (sau vice versa) este un rezultat al efectelor de interacțiune ale sistemului fizic. Cu alte cuvinte, transformarea se referă la parametrii modelului și datele experimentale. În teză rezolvarea problemei inverse pentru dinamica fullerenului C_{60} constă în determinarea parametrilor Hooke ai modelului folosind datele experimentale corespunzătoare în baza mecanismului presupus.

În aproximația armonică energia potențială este pătratică după deplasările atomilor și hamiltonianul oscilațiilor are forma următoare [9, 40]:

$$H = \sum_{l=1}^{60} \sum_{\alpha=1}^{3} \frac{P_{\alpha}^{2}(l)}{2M_{l}} + \frac{1}{2} \sum_{l,l'=1}^{60} \sum_{\alpha,\alpha'=1}^{3} K_{\alpha\alpha'}(l,l') \Delta R_{\alpha}(l) \Delta R_{\alpha'}(l'), \qquad (2.1)$$

unde α determină proecția *x*, *y*, *z*, $\Delta R_{\alpha}(l)$ sunt deplasările de la poziția de echilibru a atomului *l*, $P_{\alpha}(l)$ -impulsul atomului *l*, iar $K_{\alpha\alpha'}(l,l')$ se numește matricea dinamică a sistemului.

Pentru a scrie ecuația mișcării pentru deplasările atomului $\Delta R_{\alpha}(l)$ în aproximația armonică vom reieși din ecuațiile Hamilton clasice:

$$\Delta \dot{R}_{\alpha}(l) = \frac{\partial H}{\partial P_{\alpha}(l)} = \frac{P_{\alpha}(l)}{M_{l}}, \qquad (2.2)$$

$$\dot{P}_{\alpha}(l) = -\frac{\partial H}{\partial \Delta R_{\alpha}(l)} = -\sum_{l'=1}^{60} \sum_{\alpha=1}^{3} K_{\alpha\alpha'}(l,l') \Delta R_{\alpha'}(l').$$
(2.3)

Derivând (2.2) încă o dată după timp și punând în relația obținută expresia (2.3), obținem ecuațiile mișcării:

$$M_{l}\Delta\ddot{R}_{\alpha}(l) = -\sum_{l'=1}^{60}\sum_{\alpha'=1}^{3}K_{\alpha\alpha'}(l,l')\Delta R_{\alpha'}(l').$$
(2.4)

Dacă vom căuta soluția ecuației (2.4) în forma

$$\Delta R_{\alpha}(l) = \frac{B_{\alpha}(l)}{\sqrt{M_{l}}} e^{-i\omega t}, \qquad (2.5)$$

atunci amplitudinea, care nu depinde de timp $B_{\alpha}(l)$, va satisface următoarea ecuație:

$$\omega_{\rho}^{2} B_{\alpha}(l) = \sum_{l'=1}^{60} \sum_{\alpha'=1}^{3} \frac{K_{\alpha\alpha'}(l,l')}{\sqrt{M_{l}M_{l'}}} B_{\alpha'}(l'), \qquad (2.6)$$

care este echivalentă cu ecuația:

$$\sum_{l'=1}^{60} \sum_{\alpha'=1}^{3} \left(\frac{K_{\alpha\alpha'}(l,l')}{\sqrt{M_l M_{l'}}} - \omega_{\rho}^2 \delta_{\alpha\alpha'} \delta_{ll'} \right) B_{\alpha'}(l') = 0$$
(2.7)

În cazul unui sistem format din *N* atomi, matricea dinamică $K_{\alpha\alpha'}(l,l')/\sqrt{M_l M_{l'}}$ este o matrice reală, simetrică cu dimensiunea *3N*. Astfel ecuația (2.7) pentru valorile proprii are *3N* soluții, notate cu indicele $\rho = 1, ..., 3N$:

$$\omega_{\rho}^{2}B_{\alpha}^{\rho}(l) = \sum_{l'=1}^{60}\sum_{\alpha'=1}^{3}\frac{K_{\alpha\alpha'}(l,l')}{\sqrt{M_{l}M_{l'}}}B_{\alpha'}^{\rho}(l')$$
(2.8)

Deoarece matricea dinamică este reală și simetrică, atunci valorile ei proprii ω_p sunt reale, iar vectorii proprii $B_{\alpha}^{\ \rho}(l)$ pot fi aleși astfel reali și ortogonali încât să satisfacă condițiilor de ortonormare și completitate:

$$\sum_{l=1}^{60} \sum_{\alpha=1}^{3} B_{\alpha}^{\rho}(l) B_{\alpha}^{\rho'}(l) = \delta_{\rho\rho'}$$

$$\sum_{\rho=1}^{3N} B_{\alpha}^{\rho}(l) B_{\alpha'}^{\rho}(l') = \delta_{\alpha\alpha'} \delta_{ll'}$$
(2.9)
(2.10)

Vectorul propriu $B^{\rho}_{\alpha}(l)$ se numește *coordonata normală* ρ a sistemului dinamic.

Utilizînd aparatul matematic pentru cuantificarea oscilațiilor în rețeaua cristalină [22, pp.173-177] și considerând soluția ecuației (2.8) cunoscută, putem construi operatorul Hamiltonian reieșind din (2.1), înlocuind operatorii $\Delta \hat{R}_{\alpha}(l)$ și $\Delta \hat{P}_{\alpha}(l)$ cu noii operatori de generare și anihilare, care se determină de relațiile:

$$\Delta \hat{R}_{\alpha}(l) = \sqrt{\frac{\hbar}{2M_{l}}} \sum_{\rho=1}^{180} \frac{B_{\alpha}^{\rho}(l)}{\sqrt{\omega_{\rho}}} (\hat{b}_{\rho} + \hat{b}_{\rho}^{+}) , \qquad (2.11)$$

$$\widehat{P}_{\alpha}(l) = \frac{1}{i} \sqrt{\frac{\hbar M_{l}}{2}} \sum_{\rho=1}^{180} \sqrt{\omega_{\rho}} B_{\alpha}^{\rho}(l) (\hat{b}_{\rho} - \hat{b}_{\rho}^{+}) \quad .$$
(2.12)

Transformarea inversă se află ușor cu ajutorul relațiilor (2.9) și (2.10):

$$\hat{b}_{\rho} = \sqrt{\frac{1}{2\hbar}} \sum_{l=1}^{60} \sum_{\alpha=1}^{3} B_{\alpha}^{\rho}(l) \left\{ \sqrt{M_{l}\omega_{\rho}} \Delta R_{\alpha}(l) + \frac{i\widehat{P}_{\alpha}(l)}{\sqrt{M_{l}\omega_{\rho}}} \right\},$$
(2.13)

iar pentru operatorul de generare:

$$\hat{b}_{\rho}^{+} = \sqrt{\frac{1}{2\hbar}} \sum_{l=1}^{60} \sum_{\alpha=1}^{3} B_{\alpha}^{\rho}(l) \left\{ \sqrt{M_{l}\omega_{\rho}} \Delta R_{\alpha}(l) - \frac{i\widehat{P}_{\alpha}(l)}{\sqrt{M_{l}\omega_{\rho}}} \right\}.$$
(2.14)

Utilizînd relațiile (2.11) și (2.12) în (2.1) și neglijînd translația și rotația moleculei de fullerene obținem următoarea formă a hamiltonianului:

$$\widehat{H} = \sum_{\rho=1}^{180} \hbar \omega_{\rho} \left(\widehat{b}_{\rho}^{+} \widehat{b}_{\rho}^{-} + \frac{1}{2} \right),$$
(2.15)

care reprezintă hamiltonianul unui sistem care constă din 180 oscilatori armonici independenți.

Ecuațiile mișcării pentru atomii de carbon le vom scrie în formă matricială:

$$\frac{d^2|u\rangle}{dt^2} = -M^{-1}K|u\rangle, \qquad (2.16)$$

unde $|u\rangle$ este vectorul deplasărilor (180-dimensional) a atomilor din poziția de echilibru, *M* este operatorul masei, *K* este operatorul constantelor de forță. Pentru obținerea formei explicite a operatorului $M^{-1}K$ din (2.16) vom folosi simetria moleculei C_{60} și vom atribui fiecărui atom triada locală a deplasărilor. Fiecare din cele 60 triade locale ale deplasărilor pot fi obținute numai dintr-o singură triadă, dacă: a) utilizăm simetria fullerenului ce aparține grupului punctiform I_h , icosaedral și b) împărțim triada inițială în *componenta radială* pe care o vom numi *componenta* (*orbita*) *A*, și *tangențială* – orbita *B*.

În sistemul de axe de coordonate fixate în centrul moleculei C_{60} , rotațiile proprii sunt descrise de reprezentarea T_1 a grupului *I*. Orbita inițială *A*, după efectuarea operației *g* a grupului, va trece în *gA*:

$$T_1(g) = gA,$$
 (2.17)

unde $T_1(g)$ este matricea 3x3 a reprezentării T_1 [169]. Deci, fiecare vector gA va fi etichetat prin operația g care 1-a generat. Utilizând 60 de rotații proprii g, putem obține 60 de componente radiale ale triadei plasate pe fiecare atom, iar utilizarea rotațiilor improprii ale grupului I_h va schimba cu locul vectorii gA și, prin urmare, nu va crea vectori noi. Cei 60 de vectori gA obținuți din vectorul A se vor numi orbita A. A doua orbită B, care conține 120 de vectori locali tangențiali, este generată utilizând numai grupul punctiform I_h . Vom nota prin $|gO\rangle$ deplasarea de la poziția de echilibru în direcția gO a masei punctiforme a atomului de carbon localizată pe atomul etichetat prin operația g, unde O este orbita inițială de start A sau B. În reprezentarea orbitelor, ecuația (2.16) va avea următoarea formă [169]:

$$\frac{d^2}{dt^2} \langle gO | u \rangle = -\sum_{g',o'} \langle gO | M^{-1}K | g'O' \rangle \langle g'O' | u \rangle.$$
(2.18)

Operatorul *M* în baza $|gO\rangle$ este diagonal și fiecare element a său este egal cu masa atomului de carbon m_c . Matricea constantelor de forță $\langle gO|K|g'O'\rangle$ determină forța, care acționează asupra atomului *g* în direcția *gO*, când atomul *g'* este deplasat în direcția *g'O'*. Structura matricei *K* depinde de geometria fullerenului și de constantele de forță.

În modelul adoptat în [10] și prezentat în Figura 2.1, forțele de interacțiune între atomi sunt de tip Hooke: fiecărui legături chimice (monovalente pe pentagoane și bivalente pe hexagoane) se pun în evidență constante de elasticitate Hooke: p pentru pentagoane și h pentru hexagoane. Se introduc și constantele elastice π pentru interacțiunea între două legături monovalente și η pentru interacțiunea între legăturile de diferite tipuri. Astfel, potențialul de interacțiune are forma:

$$U\left(r_{i}^{(p)}, r_{i}^{(h)}, \theta_{i}^{(\pi)}, \theta_{i}^{(\eta)}; p, h, \pi, \eta\right) = \sum_{i=1}^{60} \frac{p\left(r_{i}^{(p)} - r_{0}^{(p)}\right)^{2}}{2} + \sum_{i=1}^{30} \frac{h\left(r_{i}^{(h)} - r_{0}^{(h)}\right)^{2}}{2} + \sum_{i=1}^{60} \frac{\pi\left(\theta_{i}^{(\pi)} - \theta_{0}^{(\pi)}\right)^{2}}{2} + \sum_{i=1}^{120} \frac{\eta\left(\theta_{i}^{(\eta)} - \theta_{0}^{(\eta)}\right)^{2}}{2},$$

$$(2.19)$$

unde $r_i^{(p)}$, $r_i^{(h)}$ este distanța dintre atomi în legatura *i* monovalentă sau bivalentă, corespunzător; $r_0^{(p)}$, $r_0^{(h)}$ este distanța dintre atomi în legatura neperturbată monovalentă sau bivalentă, corespunzător; $\theta_i^{(\pi)}$, $\theta_i^{(\eta)}$ este unghiul *i* dintre legaturi echivalente sau diferite, corespunzător; $\theta_0^{(\pi)}$, $\theta_0^{(\eta)}$ este unghiul neperturbat dintre legaturi echivalente sau diferite, corespunzător.

Simetria tipurilor de oscilații se determină din dezvoltarea reprezentării reductibile mecanice după reprezentările ireductibile ale grupului I_h [39, pp. 38-40]:

$$\Gamma_{mec} = 2A_g + 3T_{1g} + 4T_{3g} + 6G_g + 8H_g + A_u + 4T_{1u} + 5T_{3u} + 6G_u + 7H_u .$$
(2.20)

Indicii g și u din (2.20) denotă reprezentarea ireductibilă pară si, respectiv, impară. Deoarece operatorul K comută cu toate operațiile g ale grupului I_h ($g^{-1}Kg = K$), atunci acesta poate fi adus la forma cvasidiagonală utilizând proiectorul simetric[10, 39, pp. 82-84, 78, p. 4736]:

$$P_{ij}^{\gamma} = \frac{l^{\gamma}}{G} \sum_{g \in G} D_{ij}^{\gamma^*}(g) g , \qquad (2.21)$$

unde G este ordinul grupei, iar l^{γ} este dimensiunea reprezentării γ . Utilizând operatorul de proiecție (2.21), pot fi construite deplasările simetrice:

$$\left|O_{ij}^{\gamma}\right\rangle = \left(\frac{l^{\gamma}}{G}\right)^{\frac{1}{2}} \sum_{g \in G} D_{ij}^{\gamma^{*}}(g) \left|gO\right\rangle.$$
(2.22)

Fig. 2.1. Modelul interacțiunii elastice pentru un fragment al moleculei de fullerene C_{60} (• reprezintă atomii de *C*). Parametrii *p* pentru pentagoane și *h* pentru hexagoane reprezintă constante de elasticitate Hooke, iar constantele de elasticitate π caracterizează interacțiunea între două legături monovalente și η – interacțiunea între legăturile de diferite tipuri [10].

În baza deplasărilor simetrice (2.22), operatorul *K* are formă cvasidiagonală, care reiese din (2.20) [9]:

$$K = K^{(2)}(A_g) + 3K^{(4)}(T_{1g}) + 3K^{(4)}(T_{3g}) + 4K^{(6)}(G_g) + 5K^{(8)}(H_g) + K^{(1)}(A_u) + 3K^{(5)}(T_{1u}) + 3K^{(5)}(T_{3u}) + 4K^{(6)}(G_u) + 5K^{(7)}(H_u), \qquad (2.23)$$

unde $NK^{(n)}(\gamma)$ denotă blocul matricial de dimensiunea ($n \ge n$) și care posedă n valori proprii de tip γ , iar N denotă degenerarea oricărei valori proprii. Elementele de matrice din (2.23) se calculează după formula:

$$\left\langle X_{ij}^{\gamma} \left| K \right| Y_{kl}^{\beta} \right\rangle = \sum_{g \in G} D_{jl}^{\gamma^{*}}(g) \left\langle X \left| K \right| gY \right\rangle \delta^{\gamma\beta} \delta_{ik} , \qquad (2.24)$$

unde *X*, *Y* denotă orice orbită *A*, *B*, $\langle X | K | gY \rangle$ fiind tabulate în [169], iar D_{jl}^{γ} este matricea reprezentării ireductibile γ a grupului I_h .

Pentru obținerea elementelor de matrice din (2.24) în formă analitică în raport cu parametrii Hooke p, h, π , η a fost utilizat pachetul de programe *Mathematica*. Folosind tabelele Kelly și operațiile generatoare pentru grupul icosaedral I_h , au fost calculate matricele D_{jl}^{γ} , iar apoi din (2.24) sunt obținute matricele $K^{(n)}(\gamma)$ (a se vedea Anexa 1). Pentru obținerea frecvențelor de vibrație (2.8) a fost folosită procedura standardă de diagonalizare EIGEN scrisă în FORTRAN. De menționat că în lucrarea [9] a fost efectuată diagonalizarea matricelor $K^{(n)}$ folosind valorile parametrilor p, h, π , η ale moleculei de benzen, iar valorile obținute ale frecvențelor ω_{ρ} diferă, după cum s-a constatat ulterior, de cele experimentale. Metoda de a afla valorile realistice ale parametrilor este compararea valorilor experimentale pentru frecvențele proprii cu cele din modelul teoretic. Acest fapt conduce la rezolvarea problemei inverse.

Rezolvarea problemei inverse pentru fullerene conduce la minimizarea funcționalei:

$$F(p,h,\pi,\eta) = \sum_{i=1}^{10} \left\| \omega_{\exp}^{(i)} - \omega_{teor}^{(i)} \right\|^2, \qquad (2.25)$$

unde $\omega_{exp}^{(i)}$ – vectorul frecvențelor experimentale, corespunzător blocului de tip *i*, $\omega_{teor}^{(i)}$ este vectorul frecvențelor calculate cu parametrii *p*, *h*, π , η (a se vedea Anexa 2), având 46 de frecvențe vibraționale în total. Suma lui *i* este de la 1 la 10 după numărul reprezentărilor ireductibile care intră în descompunerea reprezentării reductibile mecanice ale grupului de simetrie icosaedral I_h (2.20). În rezultatul comparației frecvențelor obținute cu cele experimentale, abaterea strandard relativă este de 18.4%.

Diagonalizarea blocului *i* pentru calculul vectorului $\omega_{teor}^{(i)}$ se face după metoda Jacobi, iar minimizarea funcționalei $F(p, h, \pi, \eta)$ se realizează prin metoda Powell [10] (a se vedea Anexele 3 și 4). În calitate de valori inițiale în procesul de minimizare, parametrii p, h, π , η sunt cei din inelul hexagonal al benzenului:

$$h = p = 760 \text{ N/m}, \ \pi = \eta = 70 \frac{\text{N}}{\text{m} \cdot \text{rad}^2},$$

iar valoarea funcționalei F pentru parametrii de start are ordinul 10⁹. În rezultatul comparației au fost obținute următoarele valori:

$$h = 388 \text{ N/m}, p = 355 \text{ N/m}, \frac{\pi}{a^2} = 85 \frac{\text{N}}{\text{m} \cdot \text{rad}^2}, \frac{\eta}{a^2} = 53 \frac{\text{N}}{\text{m} \cdot \text{rad}^2}.$$

De remarcat că unitatea de măsură folosită pentru a măsura unghiurile este radianul, iar distanța dintre atomii vecini a=0.14 nm. În rezultat $p\neq h$, ceea ce și era de așteptat, întrucât pentru legătura bivalentă constanta Hooke este diferită față de cea simplă, iar valorile parametrilor sunt mai mici de două ori decât pentru benzen. Remarcabil este și faptul că algoritmul folosit pentru a obține valorile parametrilor pentru fullerenul C_{60} poate fi aplicat la rezolvarea problemei dinamice pentru moleculele de fullerene cu un alt număr de atomi, de exemplu pentru C_{70} , C_{76} , C_{82} etc. Așadar, considerăm algoritmul obținut ca fiind unul parametric adaptiv. Evident că problema inversă poate fi rezolvată și pentru acești fullereni. Algoritmul programului de rezolvare a problemei inverse este prezentat schematic în Figura 2.2.

Fig.2.2. Schema bloc pentru algoritmul de rezolvare a problemei inverse.

Vom concluziona că în modelul aplicat forțele de interacțiune între atomi sunt de tip Hooke: fiecărei legături chimice (monovalente pe pentagoane și bivalente pe hexagoane) i se pun în corespundere constantele de elasticitate Hooke: p pentru pentagoane și h pentru hexagoane. Se introduc și constantele de elasticitate π pentru interacțiunea între doua legături monovalente și η pentru interacțiunea între legături de diferite tipuri. Elementele de matrice calculate ale forțelor cuasidiagonale $K^{(n)}(\gamma)$ se exprimă liniar prin constantele de elasticitate p, h, π , η . Blocurile acestei matrice sunt prezentate in Anexa 1. Dimensiunile blocurilor coincid cu multiplicitatea reprezentării ireductibile respective.

2.2. Operatorul de interacțiune electron-vibrațională pentru fullerenul C₆₀

În cazul fullerenului C_{60} avem un sistem format din 60 de π -electroni. Hamiltonianul definit pentru o singură particulă este:

$$\hat{H}_e = -\frac{\hbar^2}{2m}\Delta + V(\vec{r}), \qquad (2.26)$$

unde $V(\vec{r})$ descrie interacțiunea dintre acest electron cu ceilalți electroni, precum și cu toate nucleele. Utilizînd aproximația electronilor strîns legați, vom construi matricea hamiltonianului (2.26) luând ca bază π -electronul de pe atomul $\varphi_i(\vec{r} - \vec{R}_i)$ [22, pp. 231-246]. Vom examina soluția ecuației Schrödinger ca o combinație liniară din aceste orbitale:

$$\Psi = \sum_{i=1}^{60} C_i \varphi_i (\vec{r} - \vec{R}_i) \,. \tag{2.27}$$

Dacă calculăm elementele de matrice ale hamiltonianului (2.26) după funcțiile de undă (2.27), atunci se obține:

$$t_{ij}(\vec{R}_{i} - \vec{R}_{j}) = \int_{v} \varphi_{i}^{*}(\vec{r} - \vec{R}_{i}) \left(-\frac{\hbar^{2}}{2m} \Delta + V(\vec{r}) \right) \varphi_{j}(\vec{r} - \vec{R}_{j}) d^{3}r$$
(2.28)

$$\langle \Psi | \hat{H}_e | \Psi \rangle = -\sum_{i,j} C_i^* C_j t_{ij} (\vec{R}_i - \vec{R}_j) .$$
(2.29)

Elementele de matrice (2.28) t_{ij} se numesc elemente de matrice de transfer și posedă sensul energiei necesare pentru ca electronul să treacă din atomul *i* pe atomul *j*.

Pentru a trece în (2.29) la operatori de generare și anihilare ne folosim de metoda din teoria cuantică a câmpului, când funcția ψ se declară operator și se numește operator de câmp. Prin urmare, se declară operatori și coeficienții C_i din combinația liniară (2.27) [29]:

$$\hat{\psi} = \sum_{i=1}^{60} \hat{C}_i \varphi_i \, (\vec{r} - \vec{R}_i) \,, \tag{2.30}$$

unde C_i este operatorul de anihilare a electronului pe atomul i și

$$\hat{\psi}^{+} = \sum_{i=1}^{60} \hat{C}_{i}^{+} \varphi_{i}^{*} (\vec{r} - \vec{R}_{i}), \qquad (2.31)$$

unde C_i^+ este operatorul de generare a electronului pe atomul *j*. Deoarece electronul posedă spin, se adaugă indicele σ . Obținem:

$$\hat{H}_{e} = -\sum_{i,j,\sigma} t_{ij} (\vec{R}_{i} - \vec{R}_{j}) \widehat{C}_{i\sigma}^{+} \widehat{C}_{j\sigma} - \sum_{i,j,\sigma} t_{ij} (\vec{R}_{i} - \vec{R}_{j}) \widehat{C}_{j\sigma}^{+} \widehat{C}_{i\sigma}$$

$$(2.32)$$

Deoarece probabilitatea că electronul va trece pe atomii mai îndepărtați este mică, se calculează suma după cei mai apropiați atomi:

$$\hat{H}_{e} = -\sum_{\langle i,j \rangle \sigma} t_{ij} (\vec{R}_{i} - \vec{R}_{j}) \widehat{C}_{i\sigma}^{+} \widehat{C}_{j\sigma} - \sum_{\langle i,j \rangle \sigma} t_{ij} (\vec{R}_{i} - \vec{R}_{j}) \widehat{C}_{j\sigma}^{+} \widehat{C}_{i\sigma}.$$
(2.33)

Deoarece atomii oscilează în vecinătatea poziției de echilibru, introducem în (2.31) și oscilațiile date:

$$\vec{R}_{i} = \vec{R}_{i}^{0} + \Delta \vec{R}_{i}, \quad \vec{R}_{j} = \vec{R}_{j}^{0} + \Delta \vec{R}_{j}.$$
 (2.34)

Vom descompune parametrul $t_{ij}(\vec{R}_i - \vec{R}_j)$ în seria Taylor în vecinătatea poziției de echilibru \vec{R}_i^0, \vec{R}_j^0 și vom menține doar termenii liniari:

$$t_{ij}\left(\vec{R}_{i}-\vec{R}_{j}\right)\approx t_{ij}^{0}\left(R_{i}^{0}-R_{j}^{0}\right)+\frac{\partial}{\partial\vec{R}_{i}}t_{ij}\left(\vec{R}_{i}-\vec{R}_{j}\right)_{\vec{R}_{j}=\vec{R}_{j}^{0}}\Delta\vec{R}_{i}-\frac{\partial}{\partial\vec{R}_{j}}t_{ij}\left(\vec{R}_{i}-\vec{R}_{j}\right)_{\vec{R}_{j}=\vec{R}_{j}^{0}}\Delta\vec{R}_{j}.$$

$$(2.35)$$

Simplificând expresia (2.35), putem scrie:

$$t_{ij} \left(\vec{R}_{i} - \vec{R}_{j} \right) \approx t_{ij}^{0} \left(\vec{R}_{i}^{0} - \vec{R}_{j}^{0} \right) + \frac{\partial t_{ij} \left(\vec{R}_{i} - \vec{R}_{j} \right)}{\partial \left(\left| \vec{R}_{i} - \vec{R}_{j} \right| \right)} \frac{\left(\vec{R}_{i}^{0} - \vec{R}_{j}^{0} \right)}{\left| \vec{R}_{i}^{0} - \vec{R}_{j}^{0} \right|} \left(\Delta \vec{R}_{i} - \Delta \vec{R}_{j} \right)$$
(2.36)

sau, introducând constantele interacțiunii electron-vibraționale, obținem:

$$\alpha_{ij} = \frac{\partial t_{ij} \left(\vec{R}_i - \vec{R}_j \right)}{\partial \left(\left| \vec{R}_i - \vec{R}_j \right| \right)}, \ t_{ij} = t_{ij}^0 + \alpha_{ij} \frac{\left(\vec{R}_i^0 - \vec{R}_j^0 \right)}{\left| \vec{R}_i^0 - \vec{R}_j^0 \right|} (\Delta \vec{R}_i - \Delta \vec{R}_j) .$$
(2.37)

Introducând (2.37) în relația (2.33), obținem hamiltonianul:

$$\hat{H}_{e} = -\sum_{\langle i,j \rangle \sigma} t_{ij}^{0} \left(\vec{R}_{i}^{0} - \vec{R}_{j}^{0} \right) \left(\hat{C}_{i\sigma}^{+} \hat{C}_{j\sigma} + \hat{C}_{j\sigma}^{+} \hat{C}_{i\sigma} \right) - \sum_{\langle i,j \rangle \sigma} \alpha_{ij} \frac{\left(\vec{R}_{i}^{0} - \vec{R}_{j}^{0} \right)}{\left| \vec{R}_{i}^{0} - \vec{R}_{j}^{0} \right|} \left(\Delta \vec{R}_{i} - \Delta \vec{R}_{j} \right) \left(\hat{C}_{i\sigma}^{+} \hat{C}_{j\sigma} + \hat{C}_{j\sigma}^{+} \hat{C}_{i\sigma} \right). \quad (2.38)$$

Termenul al doilea în (2.38) este operatorul de interacțiune electron-vibrațională, îl vom nota prin

$$\widehat{H}_{\text{int}} = -\sum_{\langle i,j \rangle \varsigma} \alpha_{ij} \frac{\left(\vec{R}_i^0 - \vec{R}_j^0\right)}{\left|\vec{R}_i^0 - \vec{R}_j^0\right|} \left(\Delta \vec{R}_i - \Delta \vec{R}_j\right) \left(\widehat{C}_{i\sigma}^+ \widehat{C}_{j\sigma} + \widehat{C}_{j\sigma}^+ \widehat{C}_{i\sigma}\right).$$
(2.39)

Atunci hamiltonianul (2.38) se va scrie:

$$\widehat{H} = \widehat{H}_e^0 + \widehat{H}_{\text{int}} , \qquad (2.40)$$

unde partea electronică este:

$$\widehat{H}_{e}^{0} = -\sum_{\langle i,j \rangle \sigma} t_{ij}^{0} \Big(\vec{R}_{i}^{0} - \vec{R}_{j}^{0} \Big) \Big(\widehat{C}_{i\sigma}^{+} \widehat{C}_{j\sigma} + \widehat{C}_{j\sigma}^{+} \widehat{C}_{i\sigma} \Big).$$
(2.41)

Dacă presupunem că lungimea legăturilor între atomul *i* și atomul *j* este una și aceeași, atunci $\alpha_{ij} \approx \alpha$, $t_0 \approx t_{ij}^0 (\vec{R}_i^0 - \vec{R}_j^0)$ și, alegând vectorii $(\Delta \vec{R}_i - \Delta \vec{R}_j)$ și $(\vec{R}_i^0 - \vec{R}_j^0)$ ca fiind paraleli (*breathing mode*) în aproximația vecinilor apropiați, obținem forma nouă a hamiltonianului cu componentele (2.39) și (2.41):

$$\hat{H}_{\text{int}} = -\alpha \sum_{\langle i,j \rangle \sigma} \frac{\left(\vec{R}_{i}^{0} - \vec{R}_{j}^{0}\right)}{\left|\vec{R}_{i}^{0} - \vec{R}_{j}^{0}\right|} \left(\Delta \vec{R}_{i} - \Delta \vec{R}_{j}\right) \left(\hat{C}_{i\sigma}^{+} \hat{C}_{j\sigma} + \hat{C}_{j\sigma}^{+} \hat{C}_{i\sigma}\right) = -\alpha \sum_{\langle i,j \rangle \sigma} \left|\Delta \vec{R}_{i} - \Delta \vec{R}_{j}\right| \left(\hat{C}_{i\sigma}^{+} \hat{C}_{j\sigma} + \hat{C}_{j\sigma}^{+} \hat{C}_{i\sigma}\right), \quad (2.42)$$

$$\widehat{H}_{e}^{0} = -t_{0} \sum_{\langle i,j \rangle \sigma} \left(\widehat{C}_{i\sigma}^{+} \widehat{C}_{j\sigma} + \widehat{C}_{j\sigma}^{+} \widehat{C}_{i\sigma} \right).$$
(2.43)

Vom introduce parametrul care descrie fluctuațiile lungimii legăturilor definit ca $y_{ij} \equiv \left|\Delta \vec{R}_i - \Delta \vec{R}_j\right|$ și hamiltonianul (2.38), ținând cont de (2.42) și (2.43), devine:

$$\widehat{H}_{e} = -t_{0} \sum_{\langle i,j \rangle \sigma} \left(\widehat{C}_{i\sigma}^{+} \widehat{C}_{j\sigma} + \widehat{C}_{j\sigma}^{+} \widehat{C}_{i\sigma} \right) - \alpha \sum_{\langle i,j \rangle \sigma} y_{ij} \left(\widehat{C}_{i\sigma}^{+} \widehat{C}_{j\sigma} + \widehat{C}_{j\sigma}^{+} \widehat{C}_{i\sigma} \right).$$
(2.44)

Adăugând energia de elasticitate la expresia (2.44), vom obține hamiltonianul total în aproximația:

$$\hat{H} = \hat{H}_{e} + \frac{K}{2} \sum_{\langle i,j \rangle} y_{ij}^{2} .$$
(2.45)

unde K este constanta de elasticitate mediată după legături.

Putem scrie *H*_{int} folosind nu aproximația de mai sus, dar următoarea relație:

$$\Delta R_{\beta}(i) = \frac{1}{\sqrt{m_c}} \sum_{s=1}^{174} B_{\beta}^s(i) q_s$$

unde β indică proiecțiile, iar q_s sunt coordonatele normale ale fullerenului C_{60} . În formă vectorială expresia se va scrie:

$$\Delta \vec{R}_{\beta}(i) = \frac{1}{\sqrt{m_c}} \sum_{s=1}^{174} \vec{B}_{\beta}^{s}(i) q_{s} ,$$

unde $B^{s}(i)$ sunt vectorii proprii ale matricei dinamice $K_{\alpha\alpha'}(l,l')$.

2.3. Modelul semiclasic și metoda numerică de evaluare a spectrului energetic

Revenim la hamiltonianul sistemului (fullerenul C_{60}) din formula (2.45)

$$\widehat{H} = \widehat{H}_{e}^{0} + \widehat{H}_{int} + \frac{K}{2} \sum_{\langle i,j \rangle} \left(\Delta \vec{R}_{i} - \Delta \vec{R}_{j} \right)^{2}.$$
(2.46)

Substituind (2.44) în relația (2.46), se obține:

$$\widehat{H}_{e} = \sum_{\langle i,j \rangle \sigma} \left[-t_{0} - \alpha \left| \Delta \vec{R}_{i} - \Delta \vec{R}_{j} \right| \right] \left(\widehat{C}_{i\sigma}^{+} \widehat{C}_{j\sigma} + \widehat{C}_{j\sigma}^{+} \widehat{C}_{i\sigma} \right) + \frac{K}{2} \sum_{\langle i,j \rangle} \left(\Delta \vec{R}_{i} - \Delta \vec{R}_{j} \right)^{2},$$

$$(2.47)$$

unde t_0 este "energia cinetică" necesară ca electronul de pe *i* să treacă pe atomul *j*, iar α este constanta de interacțiune electron-vibrațională, $\hat{C}_{i\sigma}^+$ și $\hat{C}_{j\sigma}$ sunt operatorii de generare și, respectiv, de anihilare a unui π -electron de pe atomul *i* și de pe atomul *j*, respectiv, $\langle i, j \rangle$ indică că suma se calculează după cei mai apropiați indici; $\Delta \vec{R}_i, \Delta \vec{R}_j$ sunt deplasările atomilor *i* și, respectiv, *j* în direcția atomului *j* și, respectiv, *i*. Mărimea $\Delta \vec{R}_i - \Delta \vec{R}_j$ este schimbarea lungimii legăturii între atomii *i* și *j*. Al doilea termen din (2.46) este energia cinetică a sistemului, mărimea *K* fiind constanta de forță.

Modelul (2.47) este soluționat în aproximația adiabatică. Ecuația Schrödinger pentru π electroni este

$$\varepsilon_k a_{k\sigma}(i) = \sum_{\langle i,j \rangle} \left(-t_0 - \alpha y_{ij} \right) a_{k\sigma}(j), \qquad (2.48)$$

unde

$$y_{ij} = \left| \Delta \vec{R}_i - \Delta \vec{R}_j \right|, \tag{2.49}$$

iar ε_k este valoarea proprie a stării k, y_{ij} este variația legăturii.

Starea fundamentală Ψ_s a fullerenului se reprezintă astfel:

$$\Psi_s = \prod_{\lambda\sigma} \Psi_{\lambda\sigma} , \qquad (2.50)$$

unde

(2.42):

$$\Psi_{\lambda\sigma} = \sum_{i=1}^{60} a_{i\sigma} |i\sigma\rangle.$$
(2.51)

Scriem potențialul adiabatic în forma:

$$\left\langle \Psi_{s} \left| \widehat{H}_{int} \right| \Psi_{s} \right\rangle + \frac{K}{2} \sum_{\langle i,j \rangle} y_{ij}^{2} \equiv H(y_{ij}) \,. \tag{2.52}$$

Calculăm derivata de la (2.52), $\frac{\partial H(y_{ij})}{\partial y_{ij}} = 0$, și aflăm punctul extrem. Obținem, ținând cont de

$$\left\langle \Psi_{s} \left| \widehat{H}_{int} \right| \Psi_{s} \right\rangle = \sum_{k\sigma} 2 \left(a_{k\sigma}(i) a_{k\sigma}(j) \right) \left(-\alpha y_{ij} \right).$$
(2.53)

Ținând cont de (2.52), transformăm (2.53) și egalăm derivatele parțiale după variațiile deplasărilor. Obținem:

$$y_{ij}K - 2\alpha \sum_{k\sigma} a_{k\sigma}(i)a_{k\sigma}(j) = 0, \qquad (2.54)$$

$$y_{ij} = \frac{2\alpha}{K} \sum_{k\sigma} a_{k\sigma}(i) a_{k\sigma}(j).$$
(2.55)

Calculând suma de la (2.55), vom obține:

$$\sum_{\langle i,j \rangle} y_{ij} = 0.$$
 (2.56)

Atunci ecuația selfconsistentă se reprezintă în următoarea formă:

$$y_{ij} = \frac{2\alpha}{K} \sum_{k\sigma} a_{k\sigma}(i) a_{k\sigma}(j) = \frac{2\alpha}{KN} \sum_{\langle m,n \rangle} \sum_{k\sigma} a_{k\sigma}(m) a_{k\sigma}(n), \qquad (2.57)$$

unde *N* este numărul de legături. Pentru fullerenul C_{60} avem 90 de legături, adică *N*=90. Suma în (2.57) se calculează după toate stările ocupate.

Algoritmul numeric de obținere a soluției ecuației (2.57) este următorul [9]:

- 1. Se generează numere aleatorii în intervalul $[-y_0, y_0]$ ($y_0=1$ nm) pentru valorile inițiale ale variației lungimii legăturilor $\{y_{ij}^0\}$. Iterațiile programului încep din aceată stare.
- 2. La pasul *k* al iterațiilor, partea electronică a hamiltonianului este diagonalizată rezolvând ecuația (2.48) pentru setul $\{y_{ij}^k\}$.
- 3. Folosind funcțiile de undă electronică $\{a_{k\sigma}(i)\}$ obținute deja, calculăm următorul set $\{y_{ii}^{k+1}\}$.
- 4. Iterația se repetă până când suma $\sum_{\langle i,j \rangle} [y_{ij}^{k+1} y_{ij}^{k}]^2$ devine neglijabil de mică.

Utilizînd algoritmul descris mai sus, s-a rezolvat ecuația (2.48) cu parametrii $\alpha = 3.15 \ eV$ și constanta de forță $K = 24 \ eV/A^2$ luată din fitarea problemei vibraționale inverse (α și K fiind de două ori mai mici decât în [97]). Au fost calculate deplasările y_{ij} pentru molecula C_{60}^n , unde n este numărul de electroni plasați pe starea LUMO, iar n=0, 1, ..., 6. Au fost observate despicările nivelurilor energetice degenerate. Pentru molecula neutră (n=0) a fost studiat și spectrul excitonic (un electron fiind deplasat de pe starea HOMO pe LUMO). Energia de legătură U_n pentru n electroni plasați pe LUMO a fost calculată conform formulei:

$$U_n = E_{n+1} + E_{n-1} - 2 \cdot E_n, \tag{2.58}$$

unde E_n este energia stării de bază pentru n electroni.

Dacă $U_n < 0$, atunci are loc atracția electronilor din cauza interacțiunii electron-vibraționale; dacă $U_n > 0$ are loc respingerea lor. Valorile calculate ale energiilor E_n și U_n sunt următoarele:

 $E_1 = -177.9509 \ eV, \quad E_2 = -176.1241 \ eV, \quad E_3 = -173.9413 \ eV,$

$$\begin{split} & \mathbf{E}_4 = -172.3471 \; eV, \quad \mathbf{E}_5 = -170.278 \; eV, \qquad \mathbf{E}_6 = -168.5964 \; eV, \\ & U_2 = E_3 + E_1 - 2 \cdot E_2 = 0.356 \; eV, \quad U_3 = E_4 + E_2 - 2 \cdot E_3 = -0.5886 \; eV, \\ & U_4 = E_5 + E_3 - 2 \cdot E_4 = 0.4748 \; eV, \\ & U_5 = E_6 + E_4 - 2 \cdot E_5 = -0.3873 \; eV. \end{split}$$

Astfel, pentru n = 3, 5 are loc împerecherea electronilor datorită interacțiunii electronvibraționale de atracție și, deci, va apare efectul de supraconductibilitate. Într-adevăr, este cunoscut efectul de supraconductibilitate în sistemul K_3C_{60} , Rb_3C_{60} . Faptul că efectul de supraconductibilitate în acest sistem este prioritar electron-vibrațional ne demonstrează experiențele în care atomii de carbon sunt înlocuiți cu izitopii carbonului. Înlocuirea carbonului cu izotopi schimbă temperatura critică T_c ($T_c=18K$) [26].

În continuare, este dezvoltată teoria aproximației adiabatice în reprezentarea cuantică secundară pentru oscilațiile moleculei. S-a obținut forma liniei de absorbție pentru ionul C_{60}^{-1} , care posedă o structură specifică datorită rezonanței electron-vibraționale, și s-a constatat că lărgimea structurilor obținute în mare parte depinde de probabilitatea tranziției radiative spontană intr-o secundă de pe nivelul final.

2.4. Influența rezonanței electron-vibraționale asupra liniei de absorbție în ionul de fullerene C_{60}^{-1}

Începând cu cunoscuta lucrare a lui Pekar [34], interacțiunea electron-vibrațională este realizată în aproximație adiabatică, în care electronii localizați și slab legați joacă rolul subsistemului rapid, iar oscilațiile moleculei îndeplinesc rolul subsistemului lent. Hamiltonianul ionului de fullerene C_{60}^{-1} este [11]

$$H = H_f + H_e + H_{\text{int}}, \qquad (2.59)$$

unde

$$H_{f} = \sum_{\rho=1}^{174} \hbar \omega_{\rho} \left(a_{\rho}^{+} a_{\rho} + 1/2 \right), \tag{2.60}$$

$$H_{\rm int} = \sum_{\rho=1}^{174} v_{\rho} \left(a_{\rho} + a_{\rho}^{+} \right), \tag{2.61}$$

$$v_{\rho} = \alpha \sqrt{\frac{\hbar}{2\mu_c \overline{\omega}_{\rho}}} \sum_{\langle i,j \rangle \sigma} \left(\vec{B}_i^{\rho} - \vec{B}_j^{\rho} \right) \frac{\vec{l}_1(i,j)}{l_1(i,j)} \left(c_{i\sigma}^+ c_{j\sigma} - c_{j\sigma}^+ c_{i\sigma} \right).$$
(2.62)

În formulele (2.59–2.62) H_e este hamiltonianul electronic, μ_c este masa atomului de carbon, ω_{ρ} sunt frecventele proprii, α este constanta interacțiunii electron-vibraționale, \hat{c}^+ este operatorul de creare a electronului, iar \hat{c} este operatorul de anihilare a electronului, σ și σ'

denotă numărul cuantic de spin, $\vec{B}_{i(j)}^{\rho}$ sunt vectorii proprii ai matricei dinamice, $\vec{l}(i, j) = (\vec{R}_{j,\sigma} - \vec{R}_{i,\sigma})$, unde $\vec{R}_{i(j),\sigma}$ sunt razele vectoare ale atomului i și j din moleculă.

Funcția de undă are următoarea formă:

$$\left|\vec{r},\sigma,a^{+},a\right\rangle = \sum_{n} \Phi_{n}\left(a^{+},a\right)\left|n,\vec{r},\sigma,a^{+},a\right\rangle,$$
(2.63)

unde a^+ , a este setul de operatori de generare și anihilare, reprezentând soluția ecuației electronice a lui Schrödinger cu configurație fixată a subsistemei oscilatorie, în care operatorii a^+ și a sunt parametri, iar \vec{r} indică coordonatele electronilor:

$$\left[H_{e,\sigma}(\vec{r}) + \sum_{\rho} \left(v_{\rho} a_{\rho}^{+} + v_{\rho}^{*} a_{\rho}\right)\right] |n, \vec{r}, \sigma, a^{+}, a\rangle = E_{n}\left(a^{+}, a\right) |n, \vec{r}, \sigma, a^{+}, a\rangle.$$

$$(2.64)$$

Funcțiile de undă (2.63) sunt ortogonale:

$$\langle n, \vec{r}, \sigma', a^+, a | m, \vec{r}, \sigma, a^+, a \rangle = \delta_{mn} \delta_{\sigma\sigma'},$$
 (2.65)

unde δ_{mn} este simbolul Kronecker.

Substituim (2.64) în ecuația Schrödinger cu hamiltonianul (2.59), înmulțind la stângă cu $\langle m, \vec{r}, \sigma', a^+, a |$ și luând în considerație (2.63) și (2.65). Obținem ecuația:

$$\left\langle m, \vec{r}, \sigma', a^{+}, a \middle| \sum_{\rho} \hbar \omega_{\rho} \left(a_{\rho}^{+} a_{\rho} + 1/2 \right) \middle| \sum_{n} \middle| n, \vec{r}, \sigma, a^{+}, a \middle\rangle \Phi_{n} \left(a^{+}, a \right) \middle\rangle + E_{m} \left(a^{+}, a \right) - \varepsilon_{t} \Phi_{m} \left(a^{+}, a \right) = 0, \quad (2.66)$$

unde ε_t este energia totală.

Transformăm (2.66) utilizând formulele [30]:

$$a_{\rho}f(a^{+},a) = \frac{\partial f(a^{+},a)}{\partial a_{\rho}} + f(a^{+},a)a_{\rho}, \qquad (2.67)$$

$$a_{\rho}^{+}f\left(a^{+},a\right) = -\frac{\partial f\left(a^{+},a\right)}{\partial a_{\rho}^{+}} + f\left(a^{+},a\right)a_{\rho}^{+},$$
(2.68)

unde $f(a^+, a)$ este orice funcție față de operatorii a^+ și a.

Mai întâi, utilizând (2.67) și (2.68), vom modifica produsele de tipul $a_{\rho}^{+}a_{\rho}f(a^{+},a)$. Obținem:

$$a_{\rho}^{+}a_{\rho}f(a^{+},a) = -\frac{\partial^{2}f(a^{+},a)}{\partial a_{\rho}\partial a_{\rho}^{+}} + \frac{f(a^{+},a)a_{\rho}}{\partial a_{\rho}^{+}}a_{\rho}^{+} - \frac{f(a^{+},a)}{\partial a_{\rho}}a_{\rho} + f(a^{+},a)a_{\rho}^{+}a_{\rho}.$$
(2.69)

Substituim în (2.69) funcțiile de undă $|n, \vec{r}, \sigma, a^+, a\rangle$ în loc de $f(a^+, a)$, și, ca rezultat, obținem:

$$\begin{bmatrix} E_{m,\sigma}(a^{+},a) + \sum_{\rho} \hbar \omega_{\rho}(a_{\rho}^{+}a_{\rho} + 1/2) \end{bmatrix} \Phi_{m}(a^{+},a) + \sum_{n} L_{mn,\sigma} \Phi_{n}(a^{+},a) = \varepsilon_{m} \Phi_{m}(a^{+},a), \qquad (2.70)$$
unde
$$L_{mn,\sigma} = \sum_{\rho} \hbar \omega_{\rho} \begin{bmatrix} -\langle m, \vec{r}, \sigma, a^{+}, a | \frac{\partial^{2}}{\partial a_{\rho} \partial a_{\rho}^{+}} | n, \vec{r}, \sigma, a^{+}, a \rangle + \langle m, \vec{r}, \sigma, a^{+}, a | \frac{\partial}{\partial a_{\rho}^{+}} | n, \vec{r}, \sigma, a^{+}, a \rangle a_{\rho} \end{bmatrix}.$$

Coeficienții $L_{mn,\sigma}$ din (2.70) reprezintă termenii neadiabatici. Luând în considerație $L_{mn,\sigma}$, ecuațiile (2.70) sunt ecuații diferențiale legate prin funcțiile $\Phi_n(a^+,a)$. Rezolvarea acestui sistem întâlnește mari greutăți, dar sistemul (2.70) mai poate fi simplificat. Vom analiza cazul când funcția de undă a stării electronului m=s nu este degenerată. Ecuația electronică (2.64) se rezolvă prin metoda teoriei perturbațiilor. În calitate de perturbație va servi operatorul H_{int} (2.61), care corespunde cazului legăturii slabe. În aproximația zero soluția ecuației date se va obține în modul următor:

$$(H_{e,\sigma}(\vec{r}))|s,\vec{r},\sigma\rangle = E_s|s,\vec{r},\sigma\rangle.$$
 (2.71)

Corecția la energie E_s în prima aproximație după H_{int} este

$$E_{s,\sigma}(a^{+},a) = \langle s,\vec{r},\sigma | H_{e}(\vec{r}) | s,\vec{r},\sigma \rangle + \sum_{\rho} [\langle s,\vec{r},\sigma | V_{\rho} | s,\vec{r},\sigma \rangle a_{\rho}^{+} + \langle s,\vec{r},\sigma | V_{\rho}^{*} | s,\vec{r},\sigma \rangle a_{\rho}^{-}].$$
(2.72)

Funcția de undă în prima aproximație a teoriei perturbațiilor este

$$\left|s,\vec{r},\sigma,a^{+},a\right\rangle = \left|s,\vec{r},\sigma\right\rangle + \sum_{\rho} \sum_{p\neq s} \left[\frac{\left\langle p,\vec{r},\sigma \middle|v_{\rho}\middle|s,\vec{r},\sigma\right\rangle a_{\rho}^{+} + \left\langle s,\vec{r},\sigma \middle|v_{\rho}^{+}\middle|s,\vec{r},\sigma\right\rangle a_{\rho}}{E_{s} - E_{p}}\right] p,\vec{r}\right\rangle,\tag{2.73}$$

unde $|p, \vec{r}\rangle$ sunt soluțiile ecuației (2.71).

Pentru calcularea soluției expresiei (2.70) vom lua (2.73) în calitate de funcție de undă $|n, \vec{r}, \sigma, a^+, a\rangle$, iar în calitate de $|m, \vec{r}, \sigma, a^+, a\rangle$ se va considera funcția de undă a aproximației zero $|m, \vec{r}\rangle$. Atunci obținem:

$$L_{mn,\sigma} = \sum_{\rho} \hbar \omega_{\rho} \left[\frac{\langle m, \vec{r}, \sigma | v_{\rho} | n, \vec{r}, \sigma \rangle a_{\rho}^{+} + \langle m, \vec{r}, \sigma | v_{\rho}^{+} | n, \vec{r}, \sigma \rangle a_{\rho}}{E_{n} - E_{m}} \right].$$
(2.74)

Dacă $\hbar \omega_{\rho} \ll |E_n - E_m|$, atunci termenii neadiabatici sunt mici și pot fi considerați egali cu zero. Astfel neglijând în (2.70) coeficienții $L_{mn,\sigma}$ și luând m=s, obținem:

$$\left[E_{s,\sigma}\left(a^{+},a\right)+\sum_{\rho}\hbar\omega_{\rho}\left(a_{\rho}^{+}a_{\rho}+1/2\right)\right]\Phi_{s}\left(a^{+},a\right)=\varepsilon_{s,\sigma}\Phi_{s}\left(a^{+},a\right).$$
(2.75)

Ecuația (2.71) este ecuația Schrödinger. Pentru oscilatorul în câmpul potențialului adiabatic vom lua în calitate de $E_{s,\sigma}(a^+, a)$ expresia (2.72) și vom omite în continuare variabila \vec{r} în funcțiile de undă. Atunci se obține:

$$E_{s,\sigma} + \sum_{\rho} \left[\langle s, \sigma | v_{\rho} | s, \sigma \rangle a_{\rho}^{+} + \langle s, \sigma | v_{\rho} | s, \sigma \rangle a_{\rho} \right] + \sum_{\rho} \hbar \omega_{\rho} \left(a_{\rho}^{+} a_{\rho} + 1/2 \right) =$$

$$= E_{s,\sigma} - \sum_{\rho} \hbar \omega_{\rho} \Lambda_{\rho,\sigma}(s) \Lambda_{\rho,\sigma}^{*}(s) + \sum_{\rho} \hbar \omega_{\rho} \left(\widetilde{a}_{\rho}^{+} \widetilde{a}_{\rho} + 1/2 \right),$$
(2.76)
unde $\Lambda_{\rho,\sigma}(s) = \frac{\langle s, \sigma | v_{\rho} | s, \sigma \rangle}{\hbar \omega_{\rho}}, \ \widetilde{a}_{\rho}^{+} = a_{\rho}^{+} + \Lambda_{\rho}^{+}, \ \widetilde{a}_{\rho} = a_{\rho} + \Lambda_{\rho}.$

Valorile proprii și funcțiile proprii ale ecuației (2.75), luând in considerație (2.76), se vor scrie astfel:

$$\varepsilon_{s,\sigma} = E_{s,\sigma} - \sum_{\rho} \hbar \omega_{\rho} \Lambda_{\rho,\sigma}(s) \Lambda^*_{\rho,\sigma}(s) + \sum_{\rho} \hbar \omega_{\rho} \left(\tilde{n}_{\rho} + 1/2 \right), \tag{2.77}$$

$$\Phi_{s} = \left| \left\langle \widetilde{n}_{\rho} \right\rangle \right\rangle, \tag{2.78}$$

unde \tilde{n}_{ρ} este numărul de ocupare a stării, iar {...} înseamnă produsul funcțiilor de undă.

Astfel, funcția de undă în aproximația adiabatică are forma:

$$\Psi_{S,\tilde{n},\sigma} = |S,\sigma\rangle|\left\langle \widetilde{n}_{\rho} \right\rangle\rangle.$$
(2.79)

Pentru următoarea aplicare introducem hamiltonianul cu variabile separate, pentru care energia (2.77) și funcția de undă (2.79) vor fi valoarea proprie și funcția proprie. Cu acest scop vom prezenta hamiltonianul într-o formă similară expresiei (2.59):

$$\widetilde{H} = \widetilde{H}_e + \widetilde{H}_L + \widetilde{H}_{\text{int}}, \qquad (2.80)$$

unde

$$\begin{split} \widetilde{H}_{e} &= \sum_{\sigma} \widetilde{H}_{e,\sigma} = \sum_{\sigma} \widehat{H}_{e} - \sum_{\rho} v_{\rho} \Lambda_{\rho}(s) + \sum_{\rho} \hbar \omega_{\rho} \Lambda_{\rho}(s) \Lambda_{\rho}(s), \\ \widetilde{H}_{f} &= \sum_{\rho,\sigma} \hbar \omega_{\rho} \left(\widetilde{a}_{\rho,\sigma}^{+} \widetilde{a}_{\rho,\sigma} + 1/2 \right), \\ \widetilde{H}_{int} &= \sum_{\rho} \left[\left(v_{\rho} - \hbar \omega_{\rho} \Lambda_{\rho}(s) \right) \widetilde{a}_{\rho}^{+} + \left(v_{\rho} - \hbar \omega_{\rho} \Lambda_{\rho}(s) \right) \widetilde{a}_{\rho} \right] = \sum_{\rho} \left(\widetilde{v}_{\rho} \widetilde{a}_{\rho}^{+} + v_{\rho} \widetilde{a}_{\rho} \right). \end{split}$$

Hamiltonianul $\tilde{H}_0 = \tilde{H}_e + \tilde{H}_L$ este hamiltonianul renormat cercetat.

Pentru a determina forma liniei în aproximația de rezonanță pentru C_{60}^{-1} , vom analiza tranziția din starea orbitală nedegenerată a stării adiabatice $|i\rangle = |A_{1u}\rangle$. Să considerăm că starea electronică nedegenerată excitată este $|f\rangle = |A_{2g}\rangle$, fiind separată de subnivelul apropiat $|r\rangle = |E_{1g}\rangle$ (a se vedea Figura 2.3). În continuare vom omite numărul de spin din funcția de undă.

Funcția formei liniei de absorbție a luminii de frecvență Ω pentru tranziția electronică dată are forma [9]:

$$F(\Omega) = \frac{1}{\pi} \operatorname{Re} \int_0^\infty \exp\left(-i\Omega t - \gamma t\right) \left\langle \left\langle \hat{M}^+ \cdot \hat{M}(t) \right\rangle \right\rangle dt, \qquad (2.81)$$

unde parametrul γ ține cont de lărgirea liniilor datorită interacțiunii cu câmpul electromagnetic și reprezintă frecvența tranziției radiative spontane [11].

Fig.2.3. O parte a structurii energetice de model a fullerenului $C_{60}(I_h)$ și $C_{60}^{-1}(D_{5d})$ [11].

 \hat{M} este operatorul electronic (operatorul momentului electric dipolar):

$$\hat{M}(t) = \exp(iHt/\hbar)\hat{M}\exp(-iHt/\hbar).$$
(2.82)

În formula (2.82) hamiltonianul are următoarea formă (2.80):

$$\widetilde{H} = \widetilde{H}_e + \widetilde{H}_f + \widetilde{H}_{int} \equiv \widetilde{H}_0 + \widetilde{H}_{int}, \qquad (2.83)$$

unde \tilde{H}_{int} este operatorul interacțiunii electron-vibraționale, care este determinat din (2.80). În continuare nu vom scrie simbolul "~" deasupra operatorilor \tilde{H}_{int} și \tilde{H}_0 . În (2.81) $\langle \langle \dots \rangle \rangle$ înseamnă medierea termică:

$$\langle \langle \dots \rangle \rangle = Sp(e^{-H/kT} \dots) / Spe^{-H/kT}$$
 (2.84)

Să transformăm operatorii exponențiali din (2.82) cu ajutorul formulei: $\exp(iHt/\hbar) = \exp(iH_0t/\hbar)U^+(t), \qquad (2.85)$ unde

$$U^{+}(t) = \sum_{n=0}^{\infty} \left(\frac{i}{\hbar}\right)^{n} \frac{1}{n!} \int_{0}^{t} \dots \int_{0}^{t} \overline{T} \left[H_{\text{int}}(t_{1}) \dots H_{\text{int}}(t_{n})\right] dt_{1} \dots dt_{n}$$
(2.86)

este operatorul evoluției în reprezentarea interacțiunii, \overline{T} este simbolul de ordonare anticronologică.

Pentru calculul șpurului în (2.81) este comod de a utiliza funcțiile proprii ale hamiltonianului H_0 : $H_o|f\rangle = E_f|f\rangle$. Deci, după soluționarea ecuației pentru valorile proprii, operatorul H_0 se va reprezenta prin proiectori în felul următor:

$$H_0 = \sum_i E_i |i\rangle \langle i|.$$
(2.87)

Utilizând proprietatea caracterului complet al funcțiilor proprii, care satisfac ecuația Schrödinger și relației (2.85), precum și din definiția șpurului, formula (2.81) se va aduce la următoarea formă:

$$F(\Omega) = \frac{1}{\pi Z} \operatorname{Re} \int_0^\infty \exp(-i\Omega t - \gamma t) \langle i | \hat{M}^+ \exp(iH_0 t/\hbar) \times U^+(t) \hat{M} \exp(-iH_0 t/\hbar) U(t) | i \rangle_L dt, \qquad (2.88)$$

unde Z este suma statistică, care se determină din formula:

$$Z = \sum_{i} \langle i | \exp(-H/kT) i \rangle.$$
(2.89)

Dacă, după cum a fost menționat, ne vom limita doar la starea electronică inițială izolată, atunci pentru calculul șpurului este comod de a lua funcțiile de undă electron-vibraționale

$$|i\rangle = |\Gamma_i\rangle |\langle n_{\chi} \rangle\rangle, \qquad (2.90)$$

unde $|\Gamma_i\rangle$ este funcția proprie a hamiltonianului electronic H_e , care se transformă conform reprezentării ireductibile a grupului de simetrie pentru ionul de fullerene D_{5d} , n_x este numărul de ocupare a stării, unde {...} înseamnă produsul funcțiilor de undă.

Să remarcăm că, conform notației (2.80), operatorul H_{int} satisface următoarea relație:

$$\langle \Gamma_i | H_{\rm int} | \Gamma_i \rangle = 0.$$
 (2.91)

În virtutea acestei relații, precum și neglijând amestecul stării inițiale izolate cu alte stări prin interacțiunea electron-vibrațională în (2.88), putem scrie $U(t)|i\rangle = |i\rangle$. În aceiași aproximație în (2.89) vom avea $H = H_0$.

Trecând la reprezentările grupului de simetrie a moleculei, modificăm (2.88) în următoarea formă:

$$F(\Omega) = \frac{1}{\pi} \sum_{\Gamma_{f} \gamma_{f} \gamma_{i}} \left| \left\langle \Gamma_{i} \gamma_{i} \left| \hat{M} \right| \Gamma_{f} \gamma_{f} \right\rangle \right|^{2} \operatorname{Re} \int_{0}^{\infty} e^{i \left(\omega_{f} - \Omega \right) t - \gamma t} \times \left\langle \Gamma_{f} \gamma_{f} \left| U^{+}(t) \right| \Gamma_{f} \gamma_{f} \right\rangle_{L} dt , \qquad (2.92)$$

unde Γ_i și Γ_f sunt reprezentările ireductibile după care se transformă stările electronice ale ionului de fullerene pentru starea inițială și, corespunzător, cea finală, $\gamma_{i(f)}$ desemnează coloana reprezentării, $\omega_{fi} = (E_f - E_i)/\hbar$. Medierea $\langle ... \rangle_f$ în (2.92) să referă numai la subsistemul fononic.

La interacțiunea electron-vibrațională slabe și în lipsa rezonanței electron-vibraționale, factorul $\langle ... \rangle_f$ din formula (2.92) contribuie la deplasarea acestei frecvențe. Efectul respectiv poate fi inclus schimbând frecvența Franck-Condon cu frecvența tranziției fără participarea vibrațiilor. În afară de acest efect, în prezența rezonanței electron-vibraționale, în elementul matricei operatorului (2.86) apar termeni care conțin numitori de tipul $(\Delta_{fr} - \omega_{\chi})$, unde ω_{χ} este frecvența oscilației normale.

Să notăm cu \widetilde{U}_{f}^{+} partea rezonantă a elementului de matrice $\langle \Gamma_{f} \gamma_{f} | U^{+}(t) | \Gamma_{f} \gamma_{f} \rangle_{f}$. Luând în considerație operatorul de interacțiune electron-vibrațională (2.39) în forma

$$H_{\rm int} = \sum_{\rho} \left(v_{\rho} a_{\rho}^{+} + v_{\rho} a_{\rho} \right), \tag{2.93}$$

se poate obține ecuația integro-diferențială pentru \tilde{U}_{f}^{+} . De fapt, din definiția (2.86) operatorul de evoluție este

$$U^{+}(t) = 1 + \frac{i}{\hbar} \sum_{\rho} \int_{0}^{t} \left[v_{\rho}(t_{1}) a_{\rho}^{+}(t_{1}) + v_{\rho}(t_{1}) a_{\rho}(t_{1}) \right] dt - \frac{1}{\hbar^{2}} \sum_{\rho,\rho'} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \left[v_{\rho}(t_{2}) a_{\rho}^{+}(t_{2}) + v_{\rho}(t_{2}) a_{\rho}(t_{2}) \right] \times \left[v_{\rho}(t_{1}) a_{\rho}^{+}(t_{1}) + v_{\rho}(t_{1}) a_{\rho}(t_{1}) \right] + \dots$$

$$(2.94)$$

La medierea după stările vibraționale cu utilizarea teoremei statistice a lui Wick–Bloch– Dominicis, toți termenii impari din (2.94) dispar. La calculul restului elementelor de matrice, noi vom păstra numai acelea care conțin în toate ordinele teoriei perturbației puterea maximală a numitorilor rezonanți de tipul $(\Delta_{fr} - \omega_{\chi})$. Aceasta aproximație se numește aproximație rezonantă. Astfel obținem:

$$\widetilde{U}_{f}^{+}(t) = 1 - \frac{1}{\hbar^{2}} \sum_{\rho} \sum_{\Gamma_{r}\gamma_{r}} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \left| \left\langle \Gamma_{r}\gamma_{r} \left| v_{\chi} \right| \Gamma_{f}\gamma_{f} \right\rangle \right|^{2} \exp\left[-i\Delta_{rf}(t_{1}-t_{2}) \right] \varphi_{\rho}(t_{1}-t_{2}) + \\ + \frac{1}{\hbar^{2}} \sum_{\chi} \sum_{\Gamma_{r}\gamma_{r}} \sum_{\Gamma_{r}\gamma_{r}} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \int_{0}^{t_{2}} dt_{3} \int_{0}^{t_{3}} dt_{4} \left| \left\langle \Gamma_{r}\gamma_{r} \left| v_{\chi} \right| \Gamma_{f}\gamma_{f} \right\rangle \right|^{2} \left| \left\langle \Gamma_{r}\gamma_{r} \left| v_{\chi} \right| \Gamma_{f}\gamma_{f} \right\rangle \right|^{2} \\ \exp\left[-i\Delta_{fr}(t_{1}-t_{2}) \right] \exp\left[-i\Delta_{fr'}(t_{3}-t_{4}) \right] \varphi_{\rho}(t_{1}-t_{2}) \varphi_{\lambda}(t_{3}-t_{4}) + \dots$$

$$(2.95)$$

unde

$$\varphi_{\rho}(t) = \left[\left(\overline{n}_{\rho} + 1 \right) \exp\left(i \omega_{\rho} t \right) + \overline{n}_{\rho} \exp\left(- i \omega_{\rho} t \right) \right], \tag{2.96}$$

$$\overline{n}_{\rho} = \left\langle a_{\rho}^{+} a_{\rho} \right\rangle_{f}.$$
(2.97)

Dacă diferențiem după t, atunci obținem ecuația integro-diferențială pentru \widetilde{U}_{f}^{+} :

$$\frac{d\tilde{U}_{f}^{+}(t)}{dt} = -\frac{1}{\hbar^{2}} \sum_{\rho} \sum_{\Gamma_{r}\gamma_{r}} \left| \langle \Gamma_{r}\gamma_{r} | v_{\rho} | \Gamma_{f}\gamma_{f} \rangle \right|^{2} (\bar{n}_{\rho} + 1) \int_{0}^{t} dt_{2} \exp\left[-i \left(\Delta_{fr} - \omega_{\rho} \right) (t_{1} - t_{2}) \right] \tilde{U}_{f}^{+}(t_{2}).$$

$$(2.98)$$

Ecuația (2.98) se referă la cazul $\Delta_{fr} > 0$. La $\Delta_{fr} < 0$ trebuie să schimbăm $(\overline{n}_{\rho} + 1)$ cu \overline{n}_{ρ} și $\Delta_{fr} - \omega_{\rho}$ cu $\Delta_{fr} + \omega_{\rho}$. De aceea, la temperaturile joase rezonanța cu subnivelurile electronice aflate mai sus nu apare.

Luând în vedere condiția inițială $\tilde{U}_{f}^{+}(0)=1$, ecuația (2.98) se rezolvă cu ajutorul transformării Laplace:

$$\widetilde{U}_{f}^{+}(P) = \int_{0}^{\infty} \widetilde{U}_{f}^{+}(t) \exp\left(-Pt\right) dt .$$
(2.99)

Soluția obținuta pentru *T*=0 K are forma:

$$\widetilde{U}_{f}^{+}(P) = \left\{ P + \frac{1}{\hbar^{2}} \sum_{\rho} \sum_{\Gamma_{r} \gamma_{r}} \frac{\left| \left\langle \Gamma_{f} \gamma_{f} \left| v_{\rho} \right| \Gamma_{r} \gamma_{r} \right\rangle \right|^{2}}{P - i \left(\omega_{\rho} - \Delta_{fr} \right)} \right\}^{-1},$$
(2.100)

unde $\Delta_{fr} = \frac{E_f - E_r}{\hbar}$, $P = \gamma + i(\Omega - \Omega_{fr})$.

Revenind la formula (2.92) și ținând cont de (2.99), obținem următoarea formulă:

$$\overline{F}(\Omega) = \frac{1}{\pi} \sum_{\gamma_f} \left| \left\langle \Gamma_i \gamma_i \right| \hat{M} \right| \Gamma_f \gamma_f \right\rangle \right|^2 \operatorname{Re} \widetilde{U}_f^+(P) , \qquad (2.101)$$

unde $\widetilde{U}_{f}^{+}(P)$

$$) = \frac{1}{\gamma + i(\Omega - \Omega_{fi}) + \frac{1}{\hbar^2} \sum_{\rho} \sum_{\Gamma_r \gamma_r} \frac{\left| \langle \Gamma_f \gamma_f | v_{\rho} | \Gamma_r \gamma_r \rangle \right|^2}{\gamma + i(\Omega - \Omega_{fi} - \omega_{\rho} + \Delta_{fr})}}.$$

(2.102)

Funcția formei liniei de absorbție (2.101), care se referă la această linie nefononică, are forma:

$$\widetilde{F}(\Omega) = \frac{1}{2\pi} \sum_{\gamma,f} \left| \left\langle \Gamma_i \gamma_i \right| \hat{M} \right| \Gamma_f \gamma_f \right\rangle \right|^2 \frac{\Delta(\Omega)}{\left(\Omega - \Omega_{fi} - \sum(\Omega)\right)^2 + \Delta^2(\Omega)/4},$$
(2.103)

unde
$$\Delta(\Omega) = \left(\gamma + \frac{1}{\hbar^2} \sum_{\rho} \sum_{\Gamma_r \gamma_r} \frac{\left| \left\langle \Gamma_f \gamma_f \left| \nu_\rho \right| \Gamma_r \gamma_r \right\rangle \right|^2 \gamma}{\gamma^2 + \left(\Omega - \Omega_{fi} - \omega_\rho + \Delta_{fr}\right)^2} \right), \quad (2.104)$$

$$\Sigma(\Omega) = \frac{1}{\hbar^2} \sum_{\rho} \sum_{\Gamma_r \gamma_r} \frac{\left| \left\langle \Gamma_f \gamma_f \left| v_\rho \right| \Gamma_r \gamma_r \right\rangle \right|^2 \left(\Omega - \Omega_{fi} - \omega_\rho + \Delta_{fr} \right)}{\gamma^2 + \left(\Omega - \Omega_{fi} - \omega_\rho + \Delta_{fr} \right)^2}.$$
(2.105)

Următoarea transformare a formulelor (2.104) și (2.105) se obține dacă clasificăm operatorii v_{ρ} ai interacțiunii electron-vibraționale (2.80) după reprezentările ireductibile ρ ale grupei D_{5d} a ionului de fullerene C_{50}^{-1} .

Pentru determinarea frecvențelor oscilațiilor proprii ale ionului de fullerene C_{60}^{-1} cu simetria D_{5d} este necesar de a diagonaliza matricea dinamică. Având în vedere că lungimea legăturilor dintre atomii de carbon în C_{60}^{-1} variază puțin, fiind egală cu circa 0.2 nm, iar distanța dintre atomii vecini în molecula de fullerene C_{60} este egală cu 0.14 nm, atunci putem considera că și frecvențele proprii ale ionului C_{60}^{-1} se vor modifica puțin în comparație cu frecvențele moleculei C_{60} . Folosind regula de reducere a simetriei I_h la D_{5d} , putem determina simetriile oscilațiilor proprii ale ionului C_{60}^{-1} . Regula de reducere este [11, 78, Tabelul 4.15, p.99]

$$\begin{split} A_g &\rightarrow A_{1g} , \\ T_{1g} &\rightarrow A_{2g} + E_{1g} , \\ T_{3g} &\rightarrow A_{2g} + E_{2g} , \\ G_g &\rightarrow A_{2g} + E_{2g} , \\ H_g &\rightarrow A_{1g} + E_{1g} + E_{2g} , \\ A_u &\rightarrow A_{1u} , \\ T_{1u} &\rightarrow A_{2u} + E_{1u} , \\ T_{3u} &\rightarrow A_{2u} + E_{2u} , \\ G_u &\rightarrow E_{1u} + E_{2u} , \\ H_u &\rightarrow A_{1u} + E_{1u} + E_{2u} . \end{split}$$

Deoarece în (2.104) și (2.105) trebuie să calculăm elementul de matrice $\langle A_{2g} | ... | E_{1g} \rangle$, atunci elementele de matrice nenule, la care aduc contribuție oscilațiile, sunt determinate de produsul direct $A_{2g} \times E_{1g} = E_{2g}$. Astfel, trebuie de determinat frecvențele de simetria E_{2g} . Reprezentarea vibrațională reductibilă a fullerenului C_{60} este prezentată în expresia (2.20).

Utilizând regula de reducere, vom obține reprezentarea vibrațională pentru ionul de fullerene C_{60}^{-1} :

$$\begin{split} \Gamma_{vib}^{C_{col}^{-1}} &= 2A_{1g} + 3A_{2g} + 3E_{1g} + 4A_{2g} + 4E_{2g} + 6E_{1g} + 6E_{2g} + 8A_{2g} + 8E_{1g} + \\ &\quad + 8E_{2g} + A_{1u} + 4A_{2u} + 4E_{1u} + 5A_{2u} + 5E_{2u} + 6E_{1u} + 6E_{2u} + 7A_{1u} + 7E_{1u} + 7E_{2u} + 7E_{2u} + 6E_{2u} + 6E_{2u} + 6E_{2u} + 6E_{2u} + 6E_{2u} + 7E_{2u} +$$

sau

 $\Gamma_{vib}^{C_{60}^{-1}} = 2A_{1g} + 15A_{2g} + 17E_{1g} + 18E_{2g} + A_{1u} + 16A_{2u} + 17E_{1u} + 18E_{2u} \,.$

Analizând datele experimentale [26] pentru molecula neutră de fullerene, pot fi scrise 18 frecvențe aproximative ω_g ale oscilațiilor cu simetria E_{2g} pentru ionul de fullerene egale cu 273, 431, 709, 995, 1102, 1252, 1425, 1576, 485, 541, 764, 961, 1189, 1214, 1330, 1345, 1544, 1596 cm⁻¹. Pentru obținerea funcțiilor proprii și valorilor proprii de energie ale ionului C_{60}^{-1} a fost efectuată diagonalizarea hamiltonianului (2.80) și s-au obținut următoarele valori ale energiilor proprii (a se vedea Tabelul 2.1).

Nivelurile energetice, eV					
4.8498	4.8340	4.8335			
4.7370	4.7370	4.7307			
4.7305	3.6955	3.6955			
3.6943	3.6943	3.0348			
3.0133	3.0133	2.9766			
2.9764	2.4396	2.4380			
2.3744	2.2121	2.2118			
2.1797	2.1708	2.1708			
1.6044	1.5273	1.5273			
1.1752	1.1752	1.0417			
-1.4027	-1.5616	-1.5638			
-1.5699	-1.5700	-1.8945			
-1.8946	-1.9390	-1.9399			
-1.9558	-2.2057	-2.2057			
-2.2569	-2.2584	-2.9683			
-2.9689	-2.9919	-3.2493			
-3.2501	-3.2832	-3.2832			
-4.1781	-4.1781	-4.1965			
-4.1966	-4.2011	-4.9759			
-4.9759	-4.9794	-5.4000			

Tabelul 2.1. Nivelurile energetice ale ionului de fullerene C_{60}^{-1}

Nivelurilor de energie A_{1u} , E_{1g} , A_{2g} le corespunde următoarele valori: $-1.4027 \ eV$, 1.5273 eV, 1.6044 eV, respectiv, iar în formulele (2.104) și (2.105) $\Delta_{fr} = 560 \text{ cm}^{-1}$. Luând în considerație că constanta de interacțiune electron-vibrațională $\alpha = 3.15 \ eV$ [9] și folosind funcțiile proprii, a fost estimat pătratul elementelor de matrice din aceste relații. În rezultatul estimării a fost obținută valoarea $\frac{1}{\hbar^2} \sum_{\Gamma, \gamma_r} |\langle \Gamma_f \gamma_f | v_\rho | \Gamma_r \gamma_r \rangle|^2 = \frac{1}{3s} \cdot \frac{8 \cdot 10^6}{\omega_\rho} \ cm^{-1}$, unde *s* reprezintă numărul de atomi în molecula de fullerene. Forma liniei de absorbție sau forma liniei (2.103) în dependență de parametrul γ , care este frecvența tranziției radiative spontane de pe nivelul final [11], este prezentată în Figurile 2.4-2.7.

Fig. 2.4. Forma liniei $\tilde{F}(\Omega)$ pentru $\gamma=1$ cm⁻¹. Fig. 2.5. Forma liniei $\tilde{F}(\Omega)$ pentru $\gamma=4$ cm⁻¹.

Din aceste figuri se observă structura generată a vibrațiilor care intră în rezonanță cu nivelul electronic de energie A_{2g} . În afară de aceasta, se observă lărgirea structurilor în dependență de parametrul γ . Pentru valorile mari ale lui γ , forma liniei devine de tip Lorentzian. Această dependență permite a estima valorile lui γ , dacă se cunoaște forma experimentală a liniei de absorbție.

2.5. Descrierea algoritmului de obținere a deplasărilor simetrizate in sistemele simetrice complexe și compararea cu rezultatele experimentale pentru fullerene

În probleme aplicative o importanță deosebită capătă clasificarea vibrației moleculei conform teoriei grupurilor. Acesta permite de a revizui simetria oscilației sau paritatea oscilației la acționarea cu operatorul de reflexie vis-a-vis de o anumită suprafață. Pentru sistemele cu un grad înalt de libertate această problemă devine anevoioasă. La abordarea clasică a problemei, descrisă în [32, 39], algoritmul se supune greu automatizării pentru realizarea modelării pe calculator, deoarece acest algoritm a fost alcătuit pentru rezolvarea manuală, care lucrează cu un şir de combinații liniare ale vectorilor de deplasare, dar nu cu un vector concret. Dacă matricele operatorilor în spațiul unei anumite reprezentării ireductibile sunt necunoscute, atunci trebuie de soluționat problema determinării bazei reprezentării ireductibile. Această problemă poate fi ocolită prin metoda dezvoltată în acest paragraf al tezei [1]. Algoritmul determinării coordonatelor normale cu ajutorul aparatului teoriei grupurilor a fost aplicat moleculei de fullerene, ca o moleculă cu un număr mare de grade de libertate și cu o simetrie înaltă, atipică pentru fizica corpului solid.

2.5.1. Modelul teoretic și algoritmul de calcul dezvoltat

Să cercetăm molecula formată din *N* atomi. Vom fixa originea sistemului cartezian de coordonate în centrul de masă al moleculei. Poziția atomului *i* se descrie prin raza vectoare:

$$\vec{r}_i(t) = \vec{r}_i^0 + \vec{s}_i(t), \quad i = 1, 2, ..., N,$$
(2.106)

unde \vec{r}_i^0 este poziția atomului *i* în molecula neexcitată, \vec{s}_i este vectorul deplasării atomului *i* din poziția inițială. Atunci energia sistemului poate fi reprezentată:

$$H(\vec{s}_1, \vec{s}_2, \dots, \vec{s}_N, \vec{s}_1, \vec{s}_2, \dots, \vec{s}_N) = T(\vec{s}_1, \vec{s}_2, \dots, \vec{s}_N) + U(\vec{s}_1, \vec{s}_2, \dots, \vec{s}_N).$$
(2.107)

Energia cinetică depinde de pătratul vitezelor, iar funcția energiei potențiale are formă pătratică, deoarece oscilațiile normale ale moleculei sunt armonice. Fiecarui atom *i* se asociază o bază locală ortonormată $\{\vec{e}_1^{(i)}, \vec{e}_2^{(i)}, \vec{e}_3^{(i)}\}$.

Starea sistemului se descrie totalmente prin 3N coordonate $s_{\alpha}^{(i)}$ în spațiul euclidian \mathbb{R}^{3N} , unde $s_{\alpha}^{(i)}$ este proiecția deplasării atomului *i* pe axa α a bazei locale. Vectorul în acest spațiu este definit de următoarea expresie:

$$\vec{x} = \left(s_1^{(1)}, s_2^{(1)}, s_3^{(1)}, s_1^{(2)}, s_2^{(2)}, s_3^{(2)}, \dots, s_1^{(N)}, s_2^{(N)}, s_3^{(N)}\right).$$
(2.108)

Această reprezentare se numește reprezentare mecanică.

În total există 3N - 6 oscilați normale a moleculei (3N - 5 pentru moleculele liniare). Vectorul \vec{x} poate fi descompus pe 3N coordonate normale, din care 3 corespund translației și 3 – rotației. Dacă impulsul total și momentul total al moleculei sunt nule, atunci \vec{x} poate fi reprezentat în forma:

$$\vec{x} = \sum_{j=1}^{3N-6} Q_j \vec{e}_j \sin(\omega_j t + \alpha_j), \qquad (2.109)$$

unde Q_j – coordonată normală j, ω_j este frecvența ciclică a oscilației j, $\{\vec{e}_j\}$ formează o bază nouă ortonormată pentru coordonate normale.

Dacă frecvențele $\omega_i \neq \omega_j$ pentru $i \neq j$, atunci vectorii vor fi ortogonali: $\vec{e}_i \perp \vec{e}_j$. Dacă frecvențele coincid, atunci vectorii de bază care îi corespund sunt determinați cu exactitatea combinației liniare vectorilor corespunzători. De aceea, întotdeauna putem cere îndeplinirea condiției de ortonormare a vectorilor bazei. Această reprezentare se numește reprezentare vibrațională.

În continuare este cercetată problema stabilirii și clasificării după simetrie a oscilațiilor normale, adică a vectorilor \vec{e}_j cu ajutorul teoriei grupurilor. Fie dat grupul punctiform de simetrie a moleculei $G, g \in G, |G| = m$. Prin Γ_{vib} vom nota reprezentarea vibrațională a grupului cu dimensiunea 3N - 6, prin Γ_{mec} – reprezentarea mecanică a grupului, care include în sine translația și rotația moleculei în întregime. Γ_{mec} , Γ_{vib} sunt reductibile și pot fi descompuse în reprezentări ireductibile Γ'_i . Descompunerea reprezentării reductibile în reprezentări ireductibile se efectuează conform procedurii standarde descrise în [39, pp. 38-40] Reprezentarea ireductibilă a cărei bază este translarea după axe, este reprezentarea tridimensională antisimetrică T_u , iar reprezentarea ireductibilă cu bază de rotație este reprezentarea tridimensională simetrică T_g (sau bidimensională simetrică pentru molecule liniare B_g). Notăm prin $\hat{T}(g)$ operatorul elementului g în reprezentarea mecanică, $D_{\alpha\beta}^{(i)}(g)$ este matricea elementului în reprezentare ireductibilă $i, Tr D_{\alpha\beta}^{(i)}(g) \equiv \chi_i(g)$ reprezintă caracterul elementului g în reprezentarea i, l_i notează dimensiunea reprezentării. Proiectorii pe subspațiul invariant al reprezentării ireductibile sunt definiți după următoarea formulă [39, pp. 82-84]:

$$\widehat{P}_{\alpha\beta}^{(i)} = \sqrt{\frac{l_i}{m}} \sum_{g \in G} \overline{D}_{\alpha\beta}^{(i)}(g) \,\widehat{T}(g), \qquad (2.110)$$

unde $\overline{D}_{\alpha\beta}^{(i)}(g)$ este elementul complex conjugat elementului $D_{\alpha\beta}^{(i)}(g)$.

Algoritmul clasic:

Vom cerceta algoritmul clasic de determinare a coordonatelor normale, descris în [39]:

- 1. Se efectuează reprezentarea mecanică ireductibilă.
- 2. Se compun deplasările simetrice și antisimetrice.
- Acționând cu operatorii reprezentării mecanice asupra vectorilor deplasărilor se obține lanțul vectorilor.
- Se alcătuiesc operatorii proiectorilor reprezentărilor ireductibile cu ajutorul elementelor matricei operatorilor în această reprezentare.
- Acționând cu proiectorii asupra unuia dintre vectorii fiecărui lanţ este obținut setul de vectori de bază.
- 6. Se găsește combinația liniară de vectori de bază, obținuți pentru proiectorii de o anumită reprezentare ireductibilă, care va fi vectorul oscilației normale.

Descompunerea reprezentării pe reprezentările ireductibile nu este obligatorie. Cunoașterea faptului de câte ori reprezentarea ireductibilă se conține în cea mecanică permite excluderea din calcule a acelor acțiuni ale operatorilor pe diferite deplasări, care nu aduc informație nouă despre subspațiul invariant. Compunerea deplasărilor simetrice și antisimetrice la fel nu este necesară, dar permite în locul întregului grup de simetrie să fie vizat doar grupul de rotatii fără inversii (imaginea în oglindă). Stabilirea lanțurilor de vectori nu este obligatorie, dar permite de a nu efectua calcule suplimentare. În continuare se stabilesc proiectorii în baza formulei (2.110) și se acționează asupra oricărui vector a fiecărui lanț. Aflarea tuturor proiectorilor nu este necesară, deoarece numărul total de vectori independenți este egal cu produsul dintre dimensiunea reprezentării și numărul de apariții de la reprezentarea mecanică. Acționând cu setul de operatori pentru tipul concret de reprezentare irereductbilă, se obține baza invariantă a spațiului ansamblului tuturor reprezentărilor ireductibile de acest tip. În continuare se găsește o altă bază a acestui subspatiu în asa fel, încât fiecare vector din această bază să corespundă oscilatiei normale a sistemului de atomi. Acest pas este efectuat fie intuitiv pentru cazuri triviale de dimensiuni mici, fie diagonalizând hamiltonianul format din coordonatele unuia din spatii. Metoda, în care sunt excluși unii din pașii indicați, este descrisă în [32]. Metoda dată a fost elaborată pentru micșorarea numărului de calcule anevoioase pentru om. Odată cu dezvoltarea tehnicii de calcul, a devenit posibil de exclus etapa de creare a vectorilor simetrici și antisimetrici de deplasare cu scopul de a

micșora numărul de elemente din grupul utilizat în calcule. Pentru crearea proiectorului se folosesc caractere în loc de matrice în reprezentări ireductibile, ceea ce permite utilizarea metodei în cazul lipsei unei asemenea reprezentări.

Algoritmul *metodei de calcul ameliorate* se prezintă în modul următor [1]:

- Se construiește câte un proiector pentru fiecare tip a reprezentării ireductibile după formula (2.110).
- 2. Se găsesc vectorii proprii cu valori proprii nenule, care vor servi bază a subspațiului invariant al proiectorului.
- Se obține combinația liniară a vectorilor de bază obținuți pentru proiectorul unei reprezentări ireductibile concrete, care va fi vectorul oscilației normale.

Să luăm în considerare un număr de N atomi, n_e fiind numărul de elemente din grup, iar n_p este numărul de proiectori. Complexitatea computațională al calculării unui operator este $O(n_e N^2)$, iar primul pas constituie $O(n_p n_e N^2)$. Cea de-a doua etapă soluționează problema vectorilor proprii pentru fiecare proiector. Complexitatea problemei determinării vectorului propriu are forma $O(N^{\xi})$, unde ξ este o constantă aproximativ egală cu 3 în dependență de metoda de diagonalizare a matricilor. Prin urmare, complexitatea întregului pas 2 al algoritmului este $O(n_p N^3)$. Complexitatea pasului trei este proporțională cu complexitatea funcției potențialului de interacțiune între atomi, cu complexitatea algoritmului determinării vectorilor proprii.

La pasul 1 să construim proiectorul $\hat{P}^{(i)}$ sumând proiectorii $\hat{P}^{(i)}_{\alpha\alpha}$ după toate α [23, p.79]:

$$\hat{P}^{(i)} = \sum_{\alpha} \hat{P}^{(i)}_{\alpha\alpha} = \sum_{\alpha} \sqrt{\frac{l_i}{m}} \sum_{g \in G} \overline{D}^{(i)}_{\alpha\alpha}(g) \hat{T}(g) = \sqrt{\frac{l_i}{m}} \sum_{g \in G} \left(\sum_{\alpha} \overline{D}^{(i)}_{\alpha\alpha}(g) \right) \hat{T}(g) = \sqrt{\frac{l_i}{m}} \sum_{g \in G} \bar{\chi}_i(g) \hat{T}(g).$$

$$(2.111)$$

Alegem baza spațiului *L* astfel, încât o parte din vectori să formeze baza subspațiului proiectorului $\hat{P}^{(i)}$. Atunci orice vector al spațiului poate fi descompus în suma vectorială:

$$\bar{x} = \sum_{j} x_{j} \bar{e_{j}}^{(x)} + \sum_{k} y_{k} \bar{e_{k}}^{(y)}, \qquad (2.112)$$

unde $\bar{e}_k^{(y)}$ este vectorul de bază în subspațiu, iar $\bar{e}_j^{(x)}$ este vectorul de bază complementar ortogonal. Indicele *k* parcurge toate proiecțiile în subsțaiul invariant, iar indicele *j* parcurge toate proiecțiile în afara de subspațiul invariant. Vom acționa asupra vectorului cu proiectorul, luând în considerație că elementul trebuie să se afle într-un subspațiu invariant:

$$\hat{P}^{(i)}\bar{x} = \sum_{j} x_{j} \hat{P}^{(i)}\bar{e}_{j}^{(x)} + \sum_{k} y_{k} \hat{P}^{(i)}\bar{e}_{k}^{(y)} = \sum_{k} y_{k} \hat{P}^{(i)}\bar{e}_{k}^{(y)} = \sum_{k} y_{k}' \bar{e}_{k}^{(y)}.$$
(2.113)

Vom înlocui \bar{x} cu orice vector propriu al proiectorului cu valorile proprii λ și-l vom compara cu (2.113):

$$\hat{P}^{(i)}\bar{x} = \lambda \bar{x} = \sum_{k} y'_{k} \bar{e}_{k}^{(y)}.$$
(2.114)

Dacă vectorul propriu se află în afara subspațiului, atunci este imposibilă prezentarea lui sub formă de combinație liniară a vectorilor de bază în subspațiu, de aceea valoarea sa proprie este egală cu zero. Deoarece vectorii proprii trebuie să formeze o bază a spațiului, numărul de vectori proprii aflați în subspațiu trebuie să coincidă cu dimensiunea subspațiului. Din proprietățile proiectorului $\hat{P}^{(i)}\bar{x} = \bar{x}$, pentru orice \bar{x} din subspațiu, rezultă că valorile proprii ale vectorilor proprii care se află în subspațiu trebuie să fie egale cu 1. De aceea, pentru a obține o bază de reprezentare ireductibilă de tipul dat, este suficient de selectat vectorii proprii cu valoarea proprie egală cu 1. Oscilațiile normale ale sistemului, care aparține unei anumite reprezentări ireductibile, se obțin prin reducerea energiei potențiale la suma pătratelor coordonatelor vectorului subspațiului invariant. Degenerarea frecvenței de oscilații este egală cu dimensiunea reprezentării ireductibile. Deoarece vibrațiile normale sunt ortogonale, ele pot fi folosite pentru a construi o bază ortonormală a reprezentării ireductibile pentru a obține matricele elementelor de grup.

2.5.2. Rezultatele calculului pentru molecula de fullerene

Molecula de fullerene C_{60} posedă simetria icosaedrului (a se vedea Figura 2.8 (a)), iar însuși fullerenul reprezintă un icosaedru cu vârfurile teșite (a se vedea Figura 2.8 (b)). Există 60 de operatori diferiți de rotație, acțiunea cărora transformă icosaedrul în sine. Fiecărui operator de rotație i se poate pune în corespondență operatorul de reflexie care păstrează simetria icosaedrului.

Fig.2.8. Icosaedru (a) și icosaedru trunchiat (b).

Cu ajutorul coordonatelor vârfurilor se poate construi reprezentarea tridimensională a grupului de rotație, baza căruia coincide cu baza sistemului cartezian de coordonate (*x*, *y*, *z*). Acest proces constă din două etape. Prima etapă reprezintă stabilirea a 12 rotații ale icosaedrului, care translează unul din cele 12 vârfuri ale icosaedrului într-un vârf prestabilit (de exemplu, în punctul 2 din Figura 2.8 (a)), pentru care însuși icosaedrul se transformă singur în sine fără modificarea orientării în sistemul de coordonate. Aceste rotații se găsesc într-un mod simplu din considerente geometrice. Al doilea pas este de a aplica operatorul de rotație în jurul unei axe care trece prin vârful selectat la prima etapă (în exemplul nostru, axa trece prin nodurile 1, 2 din Figura 2.8. (a)), pentru fiecare operator utilizat la etapa dată. Astfel, aplicând 5 operatori de rotație în jurul axei cu $\frac{2\pi}{5}i$, unde i = 0, 1, 2, 3, 4, fiecărei din primele 12 vârfuri, vom obține toți cei 60 operatori de rotație se multiplică cu operatorul de reflexie (inversie) față de unul din planurile de reflexie (de exemplu, în Figura 2.8 (a) se poate alege planul (*x*,*z*), ceea ce este echivalent operatorului $y \rightarrow -y$).

Pentru stabilirea reprezentării mecanice a grupului, fiecare atom de fullerene (adică vârful icosaedrului teşit) trebuie asociat cu o bază locală, pe vectorii căreia va fi descompus vectorul de deplasare, așa cum este prezentat în Figura 2.9. Se poate alege orice bază ortonormată, de exemplu, care ar coincide cu axele *x*,*y*,*z*. Pentru comoditate, unuia din atomi i s-a atribuit următoarea bază: primul vector coincide cu raza vectoare a atomului, al doilea vector se alege perpendicular primului, astfel încât să fie coplanar cu muchia formată de două fețe hexagonale, al treilea vector se determină ca produs vectorial al primilor doi vectori, ceea ce automat îi asigură ortogonalitatea în raport cu primii doi vectori. Un astfel de triplet ordonat de vectori formează o bază de dreapta, adică produsul mixt al acestor vectori este mai mare decât zero. Prin rotirea acestui atom cu operatorii de rotație, putem obține baza locală pentru orice alt atom.

Pentru a obține reprezentarea mecanică a operatorilor, operatorul elementului g_i se prezintă ca o matrice $A^{(i)}$ din $60 \times 60 = 3600$ blocuri $B_{lm}^{(i)}$, unde fiecare bloc este o matrice 3x3. Adică, dimensiunea matricei operatorului elementului g_i coincide cu numărul de grade de libertate ale fullerenului și conține 32400 de elemente. Dacă operatorul *i* transferă atomul *m* în *l*, atunci matricea $B_{lm}^{(i)}$ este o matrice unitară care transformă baza atomului *m* în baza atomului *l*. Dacă operatorul nu transformă atomul *m* în atomul *l*, atunci matricea $B_{lm}^{(i)}$ este nulă. Evident că doar un singur bloc este nenul în fiecare coloană și în fiecare rând al matricei $A^{(i)}$, deoarece fiecare atom se transfromă doar într-un alt atom. Reprezentarea mecanică a moleculei de fullerene poate fi descompusă în reprezentări ireductibile (2.20).

Fig.2.9. Formarea bazelor locale ale deplasărilor atomilor moleculei de fullerene.

Reprezentarea oscilatorului conține toate reprezentările ireductibile, cu excepția reprezentărilor tridimensionale care corespund translării (T_{1u}) și rotației (T_{1g}) . Cunoscând reprezentarea mecanică nu este complicat de a crea proiectorii după formula (2.114) și de a găsi vectorii lor proprii, care reprezintă o bază a subspațiului său invariant. Formând funcția energiei potențiale de la coordonate în această bază a subspațiului, nu este greu de stabilit asemenea combinații liniare ale acestor vectori care ar fi coordonate normale. Descompunem energia potentială în seria Taylor pînă la derivata doi în jurul punctului cu starea neperturbată. Putem alege energia potentială astfel ca termenul zero să fie nul, iar suma termenelor cu derivata întîi să fie egală cu zero, deoarece energia potențială este minimală în starea neperturbată. Atunci energia potențială va avea forma $U = \sum_{i,j} a_{ij} x_i x_j$. Diagonalizând matricea $|a_{ij}|$, vom obține vectorii proprii care coincid cu vectorii oscilațiilor normale, ce reiese din sensul procedurii de diagonalizare a matricei, deoarece matricea obținută va avea valori nenule doar pe diagonală care corespund termenului $a'_{ii} x'_i^2$. Substituind vectorii obținuți ai oscilațiilor normale în funcția energiei potențiale, din ecuația Lagrange vom avea:

$$m\ddot{x}_{i}' + a_{ii}'x_{i}' = 0,$$
(2.115)
$$\frac{a_{ii}'}{m} = \omega_{i}^{2}$$
(2.116)

unde ω_i^2 este pătratul frecvenței unghiulare a oscilațiilor normale.

Valorile ω_{theor} sunt obținute pentru fullerene după modelul descris în paragraful 2.1 al tezei și sunt prezentate în Tabelul 2.2. Parametrii au fost calculați minimizînd funcționala din (2.25) pentru potențialul de interacțiune definit de relația (2.19) prin metoda gradientului [160]:

$$p = 384.0 \text{ N/m}, h = 443.8 \text{ N/m}, \frac{\pi}{a^2} = 67.4 \frac{\text{N}}{\text{m} \cdot \text{rad}^2}, \frac{\eta}{a^2} = 54.3 \frac{\text{N}}{\text{m} \cdot \text{rad}^2}$$

După minimizarea funcționalei, abaterea standard relativă s-a micșorat pînă la valoarea de 14.7%. Rezultatul obținut diferă de acel obținut în paragraful 2.1 din următoarele motive:

- au fost folosite date experimentale precizate [100, 128];
- a fost utilizată o precizie mai mare datorită numărului de iterații mai mare.

Prin metoda descrisă în paragraful 2.1. au fost obținute frecvențe cu abaterea standard relativă de la cele experimentale (Anexa 2) egală cu 18.4%. Deci, algoritmul propus a condus la o micșorare a abaterii standard relativă cu 3.7%, pe când în comparatiție cu rezultatele teoretice din [168] micșorarea este cu 8.1%.

În lucrările [42, 43, 93, 148, 166] au fost obținute freevențele teoretice cu ajutorul teoriei funcționalei de densitate (DFT) în aproximația densității locale (LDA). În dependență de alegerea setului de funcții ale bazei, de exemplu în descompunerea a 24000 de unde plane [93], care necesită resurse computaționale substanțiale, au fost obținute următoarele abateri standard relative de la valorile experimentale: 0.019 [93], 0.1 [43], 0.019 [148], 0.022 [166], 0.039 [42]. În lucrarea [168], ca și în cazul studiului nostru, este folosit modelul interacțiunii elastice pentru patru parametri. S-a obținut abaterea standard relativă de 0.228, care este cu 8.1% mai mare decât în calculele noastre. Această diferență poate fi explicată prin faptul că în studiul nostru am optimizat parametrii de interacțiune dintre atomi, ținându-se cont de legăturile cu valențe diferite din molecula de fullerene, pe când în lucrarea [168] parametrii p, h, pe de o parte, și π , η , pe de altă parte, sunt egali. Astfel, din comparația frecvențelor teoretice obținute cu cele prezentate în lucrările [42, 43, 93, 148, 166, 168] putem conclude că rezultatele noastre au îmbunătățit cu 8.1% rezultatele modelului elastic, însă DFT poate conduce la rezultate mai exacte în cadrul unor calcule cu un consum ridicat de resurse computaționale.

În Figura 2.10 se compară datele teoretice calculate în baza algoritmului dezvoltat cu valorile experimentale [128, 100]. Mai multe rezultate experimentale sunt raportate în [44, 61, 63, 77, 94, 124, 155, 167].

	Gradul	$\omega_{ m theor}, cm^{-1}$	$\omega_{ m theor}, cm^{-1}$	$\omega_{ m theor}, cm^{-1}$	$\omega_{ m exp}$, cm^{-1}	$\omega_{ m exp}$, cm^{-1}
	degenerării		[168]	[128]	[100,128]	[140]
A_{a}	1	374	510	494	496	497
3		1369	1830	1607	1470	1469
T_{1q}	3	450	513	565	568	567
-3		885	1045	813	831	875
		1327	1662	1309	1289	1282
T_{3q}	3	542	615	547	553	536
0		638	724	717	756	-
		874	951	757	796	800
		1491	1900	1385	1345	1333
G_g	4	369	433	484	485	487
_		513	593	554	567	569
		599	657	745	736	756
		1012	1327	1123	1079	-
		1443	1813	1332	1310	1307
		1600	2006	1578	1482	1501
H_g	5	229	274	259	272	271
		357	413	427	433	434
		485	526	694	709	711
		627	828	760	772	774
		999	1292	1103	1099	1101
		1187	1575	1328	1252	1248
		1479	1910	1535	1425	1422
		1675	2068	1628	1575	1573
A_u	1	1101	1243	929	984	946
T_{1u}	3	419	478	522	526	-
		457	618	570	575	574
		1098	1462	1227	1182	1182
	2	1416	1868	1560	1429	1427
T_{3u}	3	307	358	330	343	-
		483	526	696	/53	-
		851	1122	954	973	1044
		1125	1343	1239	1203	1200
C	1	200	260	252	252	1550
G_u	4	500 604	500 663	555 708	555 764	-
		760	876	708	704	-
		849	1086	970	961	960
		1440	1845	1369	1309	1313
		1571	2004	1525	1422	-
Н	5	330	405	399	403	
1 u		414	470	533	534	_
		514	569	654	668	667
		731	849	727	743	682
		1167	1464	1243	1223	1219
		1426	1797	1387	1344	1375
		1676	2086	1622	1567	-

 Tabelul 2.2. Comparația dintre frecvențele teoretice și experimentale ale oscilațiilor normale

 pentru molecula de fullerene

Fig.2.10. Compararea rezultatelor teoretice cu datele experimentale: deviația frecvențelor teoretice de cele experimentale (a), dependența erorii relative de frecvența experimentală (b): "o" – rezultatele teoretice obținute în aplicația adaptiv-parametrică dezvoltată, "×" – rezultatele teoretice prezentate în paragraful 2.1, iar "Δ" corespund rezultatelor teoretice din [168].

Dreapta punctată din Figura 2.10 (a) reprezintă bisectoarea cadranului întâi. Din figurele 2.10(a) și 2.10(b) se observă că oscilații cu frecvențele mai mici aduc un aport mai mare în abaterea de la valorile experimentale. Tot odată putem observa că modelul teoretic micșorează

frecvențele mici și mărește frecvențele mai mari. Pentru a descrie oscilațiile fullerenului mai exact, se pot utiliza funcțiile potențiale optimizate Tersoff sau Brenner [68], teoria funcționalei de densitate (DFT) sau teoria de perturbație a funcționalei de densitate (DFPT) [140, 150, 155]. Se poate menționa că spectrul de vibrație al structurii cristaline (grupul de simetrie T_h) formată din molecule de fullerene C_{60} hidratate în soluții apoase a fost calculat folosind și abordarea dinamicii moleculare (MD) [144], precum și ecuația de stare pentru soluții apoase de fullerene C_{60} a fost propusă [41].

În Figura 2.11 sunt prezentate exemple de deformări ale fullerenului la oscilații normale, unde (a) și (b) corespund reprezentărilor unidimensionale simetrică și antisimetrică. Figura 2.11 (c) reprezintă un exemplu tipic de oscilații în reprezentarea simetrică pentadimensională, iar Figura 2.11 (d) este un exemplu de oscilații în reprezentarea antisimetrică cuadridimensională.

 A_{g} (a), A_{u} (b), H_{g} (c), G_{u} (d).

2.6. Aplicația adaptiv-parametrică pentru determinarea stărilor proprii ale moleculelor de fullerene

În termeni matematici, structura unei molecule de fullerene este un poliedru convex cu fețe pentagonale și hexagonale. Familia de fullereni are următoarea reprezentare $C = \{C_{2n}, n=12, 13, 14, ... \}$. În această familie probleme importante de studiu sunt considerate "Determinarea stărilor proprii a moleculelor de fullerene (DSPMF)" (1). Dicționarul explicativ al limbii române definește problema ca o "chestiune în care, fiind date anumite ipoteze, se cere rezolvarea, prin calcule sau prin raționamente, a unor date [7]".

Fiecare din elementele familiei (1) reprezintă o *problemă slab-structurată*. În literatura de specialitate mulțimea universală a problemelor este divizată în trei clase (a vedea, de exemplu, [171]):

- *bine-structurate (well-structured)*, sau probleme exprimate cantitativ, în care dependențele esențiale sunt clarificate foarte bine;
- non-structurate (unstructured), sau probleme exprimate calitativ, care conțin doar descrierea resurselor, a trăsăturilor și caracteristicilor mai importante iar dependențele cantitative dintre acestea sunt complet necunoscute;
- *slab-structurate* (*ill-structured*), sau probleme combinate, care conțin și elemente cantitative, dar elementele calitative demonstrează tendința de a domina.

Problemele bine-structurate pot fi reprezentate algoritmic și rezolvate efectiv în cadrul tehnologiilor informaționale convenționale bazate pe conceptele: algoritm, limbaj imperativ de programare și mașina cu arhitectură von Neumann.

Problemele slab-structurate nu pot fi realizate algoritmic și, de aceea, rezolvarea lor pe calculator este asistată de un *sistem suport pentru decizii* (SSD) corespunzător. Algoritmul de soluționare a unei problemele slab-structurate este construit în procesul dialogului dintre *utilizatorul final* – beneficiarul problemei, expertul domeniului de activitate/cercetare, frecvent, non-informaticianul – și SSD [2].

SSD sunt numite "o clasa de sisteme informatice, cu caracteristici antropocentrice, adaptive si evolutive, care integrează o serie de tehnologii informatice si de comunicații de uz general si specifice și interacționează cu celelalte parți ale sistemului informatic global al organizației"[14].

În cadrul *tehnologiilor informaționale convenționale* rezolvarea oricărei probleme pe calculator solicită, preventiv, proiectarea de către informatician a unei *aplicații informatice*.

Aplicația informatică este o secvență de instrucțiuni concepute pentru dispozitivul de control de execuție a computerului, adică reprezintă algoritmul problemei formulate prezentat într-un *limbaj imperativ de programare* [21].

După ce calculatorul electronic este *dotat* cu algoritmul elaborat, beneficiarul problemei poate rezolva pe calculator problema/problemele corespunzătoare solicitării specificate. În cadrul *tehnologiilor informaționale convenționale "instruirea*" calculatoarelor electronice solicită resurse financiare și timp pentru proiectarea aplicațiilor informatice corespunzătoare.

În cadrul *tehnologiilor informaționale non-convenționale* – tehnologii, care folosesc metodele de inteligență artificială, algoritmul problemei formulate de către beneficiar este construit automat în cadrul tehnologiei inteligente, care preventiv, este instruită cu *cunoștințe* referitoare la domeniul problemei. Aceste cunoștințe sunt stocate în *baze de cunoștințe* [27].

Baza de cunoștințe - servește pentru stocarea tuturor elementelor cunoașterii (fapte, reguli, metode de rezolvare, euristici) specifice domeniului de aplicație, preluate de la experții umani sau din alte surse [27].

În cadrul prezentei lucrări vom folosi conceptul de *SSD inteligent* – o simbioză a conceptelor: (a) *SSD* și (b) *tehnologie informațională inteligentă*. Avantajul SSD este de a asista beneficiarul la rezolvarea pe calculator a problemelor slab-structurate.

Se observă, că în cadrul dialogului, utilizatorul final ghidează SSD inteligent, analogic modului în care conducătorul auto ghidează navigatorul unui automobil la rezolvarea unei probleme de deplasare din *punctul curent* în *punctul dorit*.

Domeniului de cercetare DSPMF este un domeniu adaptiv.

Aplicație informatică adaptivă este numită aplicația informatică care își schimbă automat algoritmul de funcționare, și (uneori), structura ei, în scopul de a menține sau pentru a atinge o stare funcțională sau și optimă atunci când se schimbă condițiile mediului de funcționare.

Pentru a proiecta un SSD inteligent original vom folosi conceptul de *teorie formală* (axiomatizată) a domeniului de cercetare DSPMF.

Teorie - formă superioară a cunoașterii științifice – model al realității obiective. Teoria formală (axiomatizată) \Im a unui oarecare domeniu de cercetare, conform [31], este considerată definită, dacă:

- (1) Este specificat un *alfabet finit*.
- (2) Mulțimea cuvintelor finite peste acest alfabet este numită *mulțimea expresiilor* ale teoriei
 3.
- (3) Există o submulțime a expresiilor, numită *mulțimea formulelor*.
- (4) În mulțimea formulelor este conturată o submulțime, numită *mulțimea axiomelor*.

(5) Există o mulțime finită de relații stabilită între formule, numită *mulțimea regulilor de inferență*.

Alfabetul, mulțimea formulelor și mulțimea regulilor de inferență constituie limbajul teoriei formale 3.

Pentru descrierea teoriei formale (axiomatizate) a domeniului de cercetare *DSPMF* vom folosi forma de descriere Backus-Naur [170]:

<teoria formală (axiomatizată) a DSPMF> ::= <alfabetul DSPMF> | <mulțimea cuvintelor finite peste alfabetul DSPMF> | <mulțimea formulelor DSPMF> | <mulțimea axiomelor DSPMF> | <mulțimea regulilor de inferență ale DSPMF>,

<alfabetul DSPMF> ::= <atom de carbon> | <număr natural> | <frecvențele proprii a moleculelor de fullerene>,

< atom de carbon > ::= C,

 $< num \ ar \ natural > ::= 1 | 2 | 3 | ...,$

<*frecvențele proprii a moleculelor de fullerene* $> ::= \omega^{(1)} | \omega^{(2)} | \omega^{(3)} | ... | \omega^{(2n)}$,

<mulțimea cuvintelor finite peste alfabetul DSPMF> ::= <mulțimea moleculelor din atomi de carbon>,

<mulțimea formulelor DSPMF> ::= <mulțimea cuvintelor finite peste alfabetul DSPMF, care respectă topologia fullereneă>,

<topologie fullereneă> ::= <atomi care respectă simetria icosaedrală a familiei de molecule fullerene >,

<mulțimea axiomelor DSPMF> ::= <familia moleculelor de fullerene, formule DSPMF alcătuite din i atomi de carbon, unde: $i = 2n, n \ge 12 >$.

Moleculele de fullerene sunt *sisteme complexe*. Un sistem complex se referă la orice sistem informatic ce conține un număr mare de entități (agenți, procese, etc.) interdependente ce interacționează. Principalele proprietăți ale sistemelor complexe includ *emergența*, *auto-organizarea* și *adaptabilitatea*. În sistemele complexe se manifestă fenomenul sinergetic, adică de asociere a mai multor subsisteme, care desfășoară activități simultane. Un sistem complex demonstrează unele caracteristici noi, care nu se întâlnesc la elementele sau subsistemele separate ale sistemului.

<mulțimea regulilor de inferență ale DSPMF> ::= < hamiltonianul oscilațiilor > , < ecuațiile Hamilton clasice >, <frecvențele proprii a experimentelor finalizate la moment>.

< hamiltonianul oscilațiilor > ::= $H(\alpha = x, y, z, \Delta R_{\alpha}(l), P_{\alpha}(l), K_{\alpha\alpha}(l, l')),$

unde $H(\alpha = x, y, z, \Delta R_{\alpha}(l), P_{\alpha}(l), K_{\alpha\alpha}(l, l')) = \sum_{l,\alpha} \frac{P_{\alpha}^{2}(l)}{2M_{l}} + \frac{1}{2} \sum_{l,l',\alpha,\alpha'} K_{\alpha\alpha'}(l, l') \Delta R_{\alpha}(l) \Delta R_{\alpha'}(l'),$

 $\alpha = x, y, z, \ \Delta R_{\alpha}(l)$ sunt deplasările din poziția de echilibru a atomului *l*, $P_{\alpha}(l)$ este impulsul atomului *l*, iar $K_{\alpha\alpha}(l,l')$ a fost definită ca matrice dinamică a sistemului.

$$<$$
 ecuațiile Hamilton clasice $> ::= < \Delta \dot{R}_{\alpha}(l) = \frac{\partial H}{\partial P_{\alpha}(l)} = \frac{P_{\alpha}(l)}{M_{l}} > \frac{\partial H}{\partial P_{\alpha}(l)} = \frac{\partial H}{\partial P_{\alpha}($

$$\langle \dot{P}_{\alpha}(l) = -\frac{\partial H}{\partial \Delta R_{\alpha}(l)} = -\sum_{l'\alpha} K_{\alpha\alpha'}(l,l') \Delta R_{\alpha'}(l') >$$
, unde $K_{\alpha\alpha'}(l,l')$ este o matrice reală

Strecvențele proprii a experimentelor finalizate la moment $::= \{\omega_{2n,\exp}^{(i)} | n \ge 13\}.$

Utilizatorul final poate, independent de informatician, să adapteze SSD inteligent la cercetarea oricărei molecule de fullerene (a se vedea Figura 2.12, [4]). Extinderea sistemului se face declarând, de exemplu, un nou model de moleculă de fullerene. Operațiunea solicită numărul de identificare n.

Ajustarea modelului specific al moleculei de fullerene se face utilizînd *<frecvențele proprii ale experimentelor finalizate la moment>*.

Fie *DC* – *domeniul de cercetare* a proprietăților fizice ale fullerenelor. Aplicația adaptivă *AA_Fullerene* este destinată studierii proprietăților fizice a fullerenelor și integrează o rețea de calculatoare, numită *rețeaua de calculatoare* a *AA_Fullerene, norul AA_Fullerene*, unul sau mai multe *posturi automatizate de lucru* (abreviat *Posturi*) și unul sau mai multe *laboratoare de cercetare științifică* (abreviat *LCŞ*) în domeniul cercetării proprietăților fullerenelor. Fiecare laborator, la rândul său, constă din unul sau mai multe *Posturi*.

Posturile și *LCŞ* sunt conectate la *rețeaua de calculatoare (RC)* a *AA_Fullerene*, iar prin intermediul ei, la *norul AA_Fullerene*. *Norul AA_Fullerene* integrează *baza de cunoștințe BC_Fullerene* și *baza de date BD_Fullerene*. *BC_Fullerene* stochează cunoștințele referitoare la structura fullerenelor cercetate. Aceste cunoștințe sunt folosite de aplicația adaptivă la rezolvarea problemelor de cercetare a proprietăților fizice ale fullerenelor. *BD_Fullerene* păstrează datele experimentatele și rezultatele cercetărilor efectuate la fiecare post automatizat de lucru sau în cadrul fiecărui *LCŞ*:

*AA*_*Fullerene* = (*RC*_*Fulerene*, *Norul AA*_*Fullerene*, *LCS*, *Posturi*).

Arhitectura rețelei de calculatoare $AA_Fullerene$ poate fi reprezintă printr-un graf: $RC_Fullerene = (X,U)$,

unde:

Fig.2.12. Structura SSD adaptiv pentru determinarea stărilor proprii ale moleculelor de fullerene.

- X este o mulțime finită și nevidă de elemente numite *noduri*, $X = \{x_i\}$;
- U este o mulțime de perechi ordonate de elemente din X, U = {u_{j,k}}. Fiecare element al mulțimii U reprezintă o muchie u_{j,k} = [x_j, x_k] unește nodurile: x_j și x_k;
- Norul AA_Fullerene = (BD_Fullerene, BC_Fullerene)
- $LCS = \{LCS_i | i \in I\}, I$ mulțime de indici;
- $Posturi = \{Post_1, \dots, Post_n\};$
- $LCS_i = \{Post_{i,1}, ..., Post_{i,n_i}\} | i \in I\}.$

Fie Π este mulțimea universală de probleme de cercetare a proprietăților fizice a fullerenelor, Π_i reprezintă o submulțime de probleme de cercetare a proprietăților fizice a fullerenelor realizate în cadrul nodului x_i . Fiecare nod al rețelei x_i , care este specializat în rezolvarea submulțimii de probleme Π_i , este dotat cu sistem de operare, software aplicativ și are următoarea structură:

 $x_i = \{SO_i, SA_i, (p_{i,1}, t_{i,1}), \dots, (p_{i,n_i}, t_{i,n_i}) | p_{i,j} \in \Pi_i, j \in \overline{1, n_j}\}, i \in I,$ unde:

- SO_i este tipul sistemului de operare în nodul X_i ;
- SA_i este software aplicativ în nodul x_i ;
- $t_{i,j}$ este timpul mediu de rezolvare a problemei $p_{i,j}$ în nodul x_i .

Fiecare muchie a rețelei de calculatoare $u_{j,k}$ unește două noduri ale rețelei x_j și x_k . Conexiunea de rețea dintre nodurile x_j și x_k este caracterizată de viteza traficului de informații $v_{j,k}$ dintre aceste noduri. Muchiile $u_{j,k}$ reprezintă construcții

 $u_{j,k} = (x_j, x_k, v_{j,k}), \ u_{j,k} \in U.$

Vom prezenta în continuare un exemplu de procesare a datelor într-un nod din *RC* a *AA_Fullerene*. Să stabilim mapa de lucru unde vor fi salvate fișierile de date. Aici încărcăm valorile inițiale privind vârfurile, muchiile și fețele icosaedrului trunchiat:

```
path = "D:\\phys\\";
SetDirectory[path];
vertices = PolyhedronData["TruncatedIcosahedron", "VertexCoordinates"];
edges = PolyhedronData["TruncatedIcosahedron", "EdgeIndices"];
faces = PolyhedronData["TruncatedIcosahedron", "FaceIndices"];
```

Definim funcția ce construiește molecula de fullerene, care are în calitate de date de intrare coordonatele atomilor ce oscilează. Se desenează fiecare punct pentru vârfuri, apoi fiecare linie corespunzătoare muchiei icosaedrului trunchiat, iar în cele din urmă – fiecare față:

```
draw[points_] := Module[{getLine, getPolygon}, Graphics3D[
        {
            PointSize[0.02],
            Point[points],
            Line[{points],
            Line[{points[[#[[1]]]], points[[#[[2]]]]}] & /@ edges,
            Opacity[.7],
            Polygon[Table[points[[#[[i]]]], {i, 1, Length[#]}]] & /@ faces
        },
        AxesOrigin + {0, 0, 0},
        Boxed + False,
        BaseStyle + {FontSize + 16},
        ViewVector + {{10, 0, 1}, {0, 0, 0}}
    ]
    ];
```

Definim o funcție care primește la intrare o matrice m și mapa în care fișierele sunt salvate. Matricea m este o matrice dinamică, renormată la masa unui atom de carbon din molecula de fullerene. Variabilele din program *frequencies* și *oscillations* corespund, respectiv, valorilor proprii și vectorilor proprii din matrice. Vectorii proprii determină configurația sistemului (fullerenului) într-un anumit spațiu configurațional R^{3N} :

 $\boldsymbol{\nu} = \{x_1, y_1, z_1, x_2, y_2, z_2, \dots, x_{60}, y_{60}, z_{60}, \},\$

unde fiecare coordonată caracterizează deplasarea unui atom din poziția inițială. Frecvența oscilațiilor ω este definită ca rădăcina pătrată a valorii proprii corespunzătoare. Fiecare vector propriu se adaugă la coordonatele inițiale ale atomilor din fullerene, iar coordonatele obținute sunt transmise funcției *draw*, imaginea rezultată fiind salvată în fișier. După salvarea tuturor figurilor, este creat și un fișier de tipul csv cu lista completă de fișiere și frecvențele corespunzătoare ω :

```
handle[m , folder ] := Module[
   {frequencies, oscillations, fileList, molecules, filename},
{frequencies, oscillations} = Eigensystem[m] // Chop;
fileList = List[];
molecules =
    Table[
     Table
      vertices[[k]] + 1.5 *
         £
         oscillations[[i]][[3*k-2]],
         oscillations[[i]][[3*k-1]],
         oscillations[[i]][[3*k]]
         3
      , {k, 1, 60}]
     , {i, 1, 180}];
   For [i = 1, i \le 180, ++i]
    If[frequencies[[i]] > 10^-10,
      filename = ToString[i] <> ".png";
      Export[FileNameJoin[{folder, filename}], draw[molecules[[i]]]];
      AppendTo[fileList, {filename, Sqrt[frequencies[[i]]]}];
     1;
   1;
Export[FileNameJoin[{folder, "list.csv"}], fileList];
  1:
```

Următoarea funcție *createFolder* primește numele fișierului cu matricea care urmează a fi procesată, creează o mapă nouă de fișiere pentru rezultate și transferă în această mapă fișierul cu matricea, iar apoi definește adresa la mapa nouă:

```
createFolder[file_] := Module[{filenameext, filename, newpath},
    filenameext = FileNameTake[file];
    filename = FileBaseName[filenameext];
    newpath = FileNameJoin[{path, "results", filename}];
    CreateDirectory[newpath];
    CopyFile[file, FileNameJoin[{newpath, filenameext}]];
    DeleteFile[file];
    Return[newpath];
];
```

În final, elaborăm sarcina programată pentru kernel-ul *Mathematica*, care monitorizează noi fișiere cu matrice, transmite numele fișierului funcției *createFolder*, iar apoi matricea și adresa la o nouă mapă a funcției *handle*.

```
RunScheduledTask[
files = FileNames["*.csv"];
For[i = 1, i ≤ Length[files], ++i,
file = files[[i]];
m = Import[file];
newpath = createFolder[file];
handle[m, newpath];
]
, 20
]
```

Screenshotul imaginii interfeței aplicației adaptiv-parametrice pentru determinarea stărilor proprii ale moleculelor de fullerene este prezentat în Figura 2.13.

Fig.2.13. Interfața AA_Fullerene.

În Figura 2.14. este reprezentat rezultatul AAP: frecvențele și reprezentările grafice ale oscilațiilor normale.

Fig.2.14. Captura de ecran (*screenshot*-ul) a rezultatului AAP: frecvențele (în cm⁻¹) și reprezentările grafice ale oscilațiilor normale.

În final vom concluziona că metoda propusă utilizează conceptele:

- problemă;
- problemă bine-structurată;
- problemă slab-structurată;
- sistem suport pentru decizii;
- aplicație inteligentă;
- familie de de fullerene;
- familia problemelor de determinare a stărilor proprii ale moleculelor de fullerene;
- teorie formală (axiomatizată) a domeniului de cercetare.

Familia problemelor de determinare a stărilor proprii a moleculelor de fullerene este o familie numărabilă de probleme. Hamiltonianul sistemului, ecuațiile Hamilton, frecvențele experimentale menționate etc. sunt componente ale *bazei de cunoștințe* a SSD inteligent. Astfel, modelul SSD inteligent reprezintă un sistem software efectiv pentru adaptarea/extinderea SSD pentru asistența utilizatorului final la cercetarea oricărui element din familia universală (infinită, numărabilă) a fullerenelor.

2.7. Concluzii la Capitolul 2

- 1. S-a obținut forma liniei de absorbție pentru ionul C_{60}^{-1} , care posedă o structură specifică datorită rezonanței electron-vibraționale. Pentru prima dată s-a constatat că lărgimea spectrelor obținute depinde de frecvența tranziției radiative spontane.
- 2. Au fost obținute frecvențele ionului C_{60}^{-1} cu simetria D_{5d} prin metoda reducției grupului icosaedral I_h către grupului D_{5d} , folosind datele experimentale pentru oscilațiile fullerenului neutru. S-a arătat că oscilațiile respective aduc aport în rezonanța electronvibrațională.
- 3. Este propus un algoritm de calcul pentru cercetarea oscilațiilor moleculei de fullerene: se construiește, mai întâi, câte un proiector pentru fiecare tip a reprezentării ireductibile, se găsesc apoi vectorii proprii cu valori proprii nenule, care vor servi bază a subspațiului

invariant al proiectorului și se obține combinația liniară a vectorilor de bază obținuți pentru proiectorul unei reprezentări ireductibile concrete, care va fi vectorul oscilației normale.

- 4. Algoritmul dezvoltat respectiv permite automatizarea procesului de descompunere a reprezentării mecanice a sistemului în reprezentării ireductibile, care este necesară la cercetarea sistemul simetric complex prin utilizarea teoriei grupurilor. Astfel, metoda propusă permite descompunerea reprezentării mecanice a sistemului rezolvând problema vectorilor proprii. Aplicarea acestui algoritm pentru sistemele simetrice cu o funcție armonică de potențial, care nu-i necesar să fie *a priori* cunoscută, permite a studia sisteme complexe cu un număr mare de particule.
- 5. A fost arătat că pentru un număr de N atomi, n_e fiind numărul de elemente din grup, iar n_p – numărul de proiectori, complexitatea computațională a unui operator este $O(n_e N^2)$, iar primul pas constituie $O(n_p n_e N^2)$. Cea de-a doua etapă soluționează problema vectorilor proprii pentru fiecare proiector. Complexitatea problemei determinării vectorului propriu are forma $O(N^{\xi})$, unde ξ este o este o constantă aproximativ egală cu 3 în dependență de metoda de diagonalizare a matricilor. Prin urmare, complexitatea întregului pas 2 al algoritmului este $O(n_p N^3)$. Complexitatea pasului trei este proporțională cu complexitatea funcției potențialui de interacțiune între atomi.
- 6. Avantajul algoritmului propus constă în faptul că se determină deplasările de oscilație simetrizate ale căror frecvențe pot fi apoi comparate corect cu frecvențele experimentale corespunzătoare. Compararea rezultatelor teoretice obținute pentru C_{60} cu datele experimentale indică că oscilațiile cu frecvențe mai mici aduc un aport mai mare în abaterea de la valorile experimentale.
- 7. A fost prezentată structura SSD intelegent adaptiv pentru determinarea stărilor proprii ale moleculelor de fullerene și este dezvoltat conceptul *rețelei de calculatoare (RC)* a *AA_Fullerene*, iar prin intermediul ei, la *norul AA_Fullerene*. *Norul AA_Fullerene* integrează *baza de cunoștințe BC_Fullerene* și *baza de date BD_Fullerene*. *BC_Fullerene* stochează cunoștințele referitoare la structura fullerenelor cercetate. Aceste cunoștințe sunt folosite de aplicația adaptivă la rezolvarea problemelor de cercetare a proprietăților fizice ale fullerenelor. *BD_Fullerene* păstrează datele experimentatele și rezultatele cercetărilor efectuate la fiecare post automatizat de lucru. Utilizatorul final poate ajusta parametrii modelelor teoretice folosite la rezultatele experimentale stocate în baza de cunoștințe.

Rezultatele obținute sunt publicate în următoarele lucrări științifice: [1, 4, 9, 10, 11, 40]

3. MODELAREA EFECTELOR INTERACȚIUNII ELECTRON-FONONICE ÎN CRISTALE DOPATE CU IONI DE PĂMÂNTURI RARE

Metalele pământuri rare (PR) posedă proprietăți unicale care le determină să prezinte un interes sporit, de exemplu, pentru calculul cuantic [12, 111]. Tranzițiile optice cercetate în lucrarea [65] implică electronii situați într-un înveliș electronic intern, orbitali de tip f, care este "ecranat" de perturbatiile induse de mediul înconjurător, ca o consecintă fiind faptul că ionii PR posedă benzile spectrale omogene și foarte înguste. Pe de altă parte, frecvențele exacte ale acestor tranziții depind puternic de câmpurile electrice înconjurătoare. Combinația remarcabilă dintre benzile spectrale omogene înguste și extinderea neomogenă semnificativă oferă posibilități de a folosi canalele înguste de frecvență individuală într-un interval mare frecvențe [49, 51, 133]. Acest fapt creează posibilitatea realizării dinamicii controlate, care permite implementarea porților cuantice de n-biți. Pentru punerea în aplicare a calculului cuantic în sisteme fizice concrete este de mare interes compararea ratelor de degenerare ale stărilor excitate pentru PR de-a lungul canalelor neradiative. Astfel, proprietăți specifice ale elementelor de matrice dipolare de tranziție pentru PR au fost studiate [65]. Totodată, spre deosebire de cazul TRE în modelul cu trei centre [53, 54], pentru TRE între patru centre în cristale dopate cu ioni PR este identificat un nou tip de clasificare a fenomenelor de transfer – după reductibilitate, fiind elaborată și aplicația adaptivă de modelare pe calculator a interacțiunii electron-fononice (IEF) de rezonanță pentru ioni în cristale laser.

3.1. Fundamente teoretice pentru modelarea proceselor în cristale dopate cu ioni de pământuri rare

Modelul de acoperire al câmpului cristalin

Există mai multe modele de câmpuri cristaline, de exemplu modelul sarcinii punctiforme a liganzilor și modelul de acoperire sau overlap. Vom folosi în continuare modelul de acoperire al câmpului cristalin [64, 120]. Pentru a evidenția efectele de rezonanță s-a calculat în formă generală funcția formei liniei de absorbție a luminii de frecvență Ω , care este proporțională cu coeficientul de absorbție [6, 9, 82]:

$$F(\Omega) = \frac{1}{\pi} \operatorname{Re} \int_0^\infty \exp(-i\Omega t - \gamma t) \left\langle \left\langle \hat{M}^+ \cdot \hat{M}(t) \right\rangle \right\rangle dt, \qquad (3.1)$$

unde parametrul γ ține cont de lărgirea liniilor spectrale (a se vedea formula (2.81)) și *M* este operatorul momentului electric dipolar efectiv,

 $M(t) = \exp(iHt/\hbar)M\exp(-iHt/\hbar),$

iar hamiltonianul are forma

$$H = H_e + H_L + V,$$

unde V este operatorul interacțiunii electron-fononice, H_e - hamiltonianul electronilor, H_L - hamiltonianul fononilor, iar <<... >> denotă medierea după stările hamiltonianului $H_0=H_e+H_L$

(3.2)

Exponenta din dreapta expresiei (3.2) poate fi exprimată în felul următor:

$$\exp(-iHt/\hbar) = \exp(-iH_0t/\hbar)U(t), \qquad (3.3)$$

unde U(t) este operatorul de evoluție. La fel obținem și altă exponentă:

$$\exp(iHt/\hbar) = \exp(iH_0t/\hbar)U^+(t).$$
(3.4)

Utilizând principiul stabilității spectroscopice [35], $F(\Omega)$ din (3.1) poate fi scrisă astfel:

$$F(\Omega) = \frac{1}{\pi} \sum_{f} \left| \langle i | M | f \rangle \right|^2 \operatorname{Re} \int_0^\infty \exp i \left[(\omega_{fi} - \Omega)t - \gamma t \right] \langle f | U(t) | f \rangle_L dt , \qquad (3.5)$$

unde $\langle ... \rangle_L$ este medierea fononică, ω_{fi} – frecvența tranziției electronice, *i* – starea inițială, *f* – starea finală. În aproximația de rezonanță [35, 36, 82, 153], termenul $\langle f/U(t)/f \rangle$ satisface ecuația integrală:

$$< f | U(t) | f >_{L} \equiv U_{f}(t) = 1 - 1/\hbar^{2} \sum_{r} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \exp(i\Delta_{fr}(t_{1} - t_{2})) << f | V(t_{1}) | r >< r | V(t_{2}) | f >>_{L} U_{f}(t_{2}),$$
(3.6)

care ușor poate fi adusă la ecuație integro-diferențială cu condiția inițială U(0)=1 și

$$V(t) = \exp(-iH_L t/\hbar)V(r)\exp(iH_L t/\hbar).$$
(3.7)

Partea spațială a interacțiunii V(r) o reprezentăm prin integrala Fourier [64]:

$$V(\vec{r}) = \sum_{i,j} \frac{e^2 e_j^2}{2\pi^2} \int \frac{d^3 \vec{q}}{q^2} f(q) \exp(-i\vec{q}\vec{R}_j) \exp(i\vec{q}\vec{r}_i), \qquad (3.8)$$

unde funcția f(q) descrie acoperirea electronilor ionilor *PR* și distribuția de sarcină a liganzilor și are forma:

$$f(q) = \frac{\lambda^2}{\lambda^2 + q^2} . \tag{3.9}$$

În (3.9) parametrul λ este parametrul de acoperire. Dacă f(q)=1, ceea ce înseamnă trecerea la sarcini punctiforme a liganzilor $(\lambda \rightarrow \infty)$, atunci interacțiunea V este interacțiunea dintre sarcinile punctiforme al electronilor și liganzilor.

Funcția f(q) este determinată de repartiția sarcinilor pe liganzi conform transformării Fourier [64].

$$\rho(\vec{r}' - \vec{R}_j) = \frac{1}{(2\pi)^3} \int d^3 \vec{q} f(q) \exp(i\vec{q}(\vec{r}' - \vec{R}_j)), \qquad (3.10)$$

unde

$$\rho(\vec{r}' - \vec{R}j) = \frac{1}{8\pi} \lambda^3 e_j \cdot \exp(-\lambda(\vec{r}' - R_j)).$$
(3.11)

Trecând în (3.5) la ecuația integro-diferențială, a fost obținut:

$$\frac{dU_{f}^{+}(t)}{dt} = -\frac{1}{\hbar^{2}} \sum_{r} \int_{0}^{t} dt_{2} \exp(i\Delta_{fi}(t-t_{2}) << f |V(t)|r >< r |V(t_{2})|f >> U_{f}^{+}(t_{2}).$$
(3.12)

Rezolvarea acestei ecuații se obține cu ajutorul transformării Laplace. Efectuând calculele necesare în [37], a fost obținută imaginea Laplace pentru T=0:

$$U_{f}^{+}(P) = \left\{ P + \sum_{n=1}^{\infty} A(n) \int_{0}^{\omega_{\text{max}}} d\omega_{1} \dots \int_{0}^{\omega_{\text{max}}} \frac{\rho(\omega_{1}) \dots \rho(\omega_{n}) d\omega_{n}}{\omega_{1} \dots \omega_{n} (P + i(\Delta_{fr} - \omega_{1} \dots - \omega_{n}))} \right\}^{-1},$$
(3.13)

unde $p = \gamma + i(\Omega - \Omega_{fi})$,

$$A(n) = \sum_{j} \frac{e^{r} e_{j}^{2}}{\hbar^{2}} \sum_{l,m} [(2J+1)(2J'+1)]^{-1} | < \alpha SLJ \parallel U^{l} \parallel \alpha' S'J' > |^{2} \cdot < f \parallel Y_{l} \parallel f >^{2} * (2n+2l+1)^{2} \cdot \frac{(2n+1)(n+l)!(2n)!(2l)!}{n(n+3/2)n!l!(2l+2n+1)!} \cdot \sum_{\overline{m} < n} {l \choose m} \frac{n+l}{m} \binom{l}{m} \frac{n}{\overline{m}} \binom{l}{m} \frac{n+l}{\overline{m}} \frac{n}{\overline{m}} \frac{1}{2^{n} m_{j}^{n}} * \Phi_{l,l,n+l,n+l,n}(j),$$

$$(3.14)$$

$$\Phi_{l,l,n+l,n+l,n}(j) = \mathbf{P}_{l,n,n+l}^2(R_j^0), \qquad (3.15)$$

$$P_{l,n,n+l}(R_j^0) = \int_0^\infty dq \cdot q^n f(q) j_{n+l}(q \cdot R_j^0) P_l(q) \cdot \exp\left[-\frac{1}{6}q^2 < \Delta R_j >_L\right],$$
(3.16)

$$P_{l}(q) = \int_{0}^{\infty} dr \cdot r^{2} R_{uf}^{2}(r) j_{l}(qr), \qquad (3.17)$$

unde $j_l(q \cdot r)$ sunt funcții Bessel sferice, $R_{4f}(r)$ este funcția radială a 4f electronilor *PR*, $\rho(\omega)$ este densitatea fononică, $< ... \parallel U^l \parallel ... > -$ elementul ireductibil de matrice al operatorului Racah,

$$< \dots || Y_l || \dots > -$$
 elementul ireductibil de matrice a funcției sferice Y_l^m , $\begin{pmatrix} \ddots & \ddots \\ \ddots & \ddots \end{pmatrix}$ - simboluri 3*j*

[147]. Deci, funcția formei liniei de absorbție $F(\Omega)$ se va scrie:

$$F(\Omega) = \frac{1}{\pi} \sum_{f} |\langle i | M | f \rangle|^2 \operatorname{Re} U_f(\rho)$$
(3.18)

sau în mod explicit obținem:

$$F(\Omega) = \frac{1}{2\pi} \sum_{f} \left| \langle i \right| M | f \rangle \right|^{2} \frac{\Gamma(\Omega)}{\left[\Omega - \Omega_{fi} - \sum(\Omega)\right]^{2} + \frac{\Gamma^{2}(\Omega)}{4}},$$
(3.19)

unde

$$\sum_{n} (\Omega) = \sum_{n} \sum_{r} A(n) \int_{0}^{\omega_{\text{max}}} d\omega_{1} \dots \int_{0}^{\omega_{\text{max}}} \frac{\rho(\omega_{1}) \dots \rho(\omega_{n}) d\omega_{n}}{(\Omega - \Omega_{fi} + \Delta_{fr} - \omega_{1} - \dots - \omega_{n})},$$
(3.20)

$$\Gamma(\Omega) = 2\pi \sum_{n} \sum_{r} A(n) \int_{0}^{\omega_{\text{max}}} d\omega_{1} \dots \int_{0}^{\omega_{\text{max}}} \frac{\rho(\omega_{1}) \dots \rho(\omega_{n}) d\omega_{n}}{\omega_{1} \dots \omega_{n}} \delta(\Omega - \Omega_{fi} + \Delta_{fr} - \omega_{1} - \dots - \omega_{n}) .$$
(3.21)

Stările electron-fononice legate se obțin la rezolvarea ecuației:

$$\Omega - \Omega_{fi} - \sum (\Omega) = 0. \tag{3.22}$$

Rădăcinile acestei ecuații dau posibilitatea de a stabili "gap-ul" electronic Δ_{fr} în cazul absorbției luminii, f fiind în ecuația (3.22) starea finală [36].

Stările electronice și interacțiunea electron-fononică în cristale ce conțin impurități de ioni de pământuri rare

Cristale ionice cu bandă largă activate cu elemente de pământuri rare aparțin mediilor de lucru a laserelor cu cea mai mare eficență. Datorită ecranării electronilor 4f a ionilor de PR de către învelișurile exterioare, influența ambianței cristalice asupra acestui centru poartă caracter de perturbație. Câmpul cristalin statistic creat de ionii înconjurători anulează (total sau parțial) degenerarea nivelurilor ionului liber, generând așa-numita structură Stark a nivelurilor.

Hamiltonianul sistemului de impurități și fononi poate fi scris folosind aproximarea adiabatică astfel:

$$H = H_e(r) + H_L(R) + V(r, R)$$
(3.23)

unde $H_{\rho}(r)$ este hamiltonianul electronilor legați slab ai ionului liber al impurității, $H_{L}(R)$ – este hamiltonianul vibratiilor retelei cristaline, care depinde numai de coordonatele nucleelor, V(r,R) – conține toți termenii de interacțiune între electronii 4f și nuclee, precum și energia subsistemului rapid (electronii legați puternic), iar R și r sunt coordonatele respective a nucleelor și electronilor.

Considerăm că pentru orice nucleu

$$\vec{R} = \vec{R}_0 + \Delta \vec{R} \,,$$

unde \vec{R}_0 este vectorul fixat, care corespunde anumitui nod a grilei, iar $\Delta \vec{R}$ fiind o deplasare mică. Descompunând $H_L(R)$ în serie după deplasarea $\Delta \vec{R}$ și introducând operatorii de creare și anihilare a fononilor, obținem:

$$H_L(R) = H_L(R^0) + \sum_{\kappa} \hbar \omega_{\kappa} \left(a_{\kappa}^+ a_{\kappa} + \frac{1}{2} \right), \tag{3.24}$$

unde $\kappa = (\vec{\kappa}, \rho)$ este totalitatea vectorilor de undă $\vec{\kappa}$ și indicilor ρ , care determină ramurile oscilațiilor. Forma explicită pentru $H_e(r)$ și V(r, R) se obține din hamiltonianul (3.23) cu ajutorul reprezentării-model pentru centrul impuritar.

Impuritățile de ioni de PR reprezintă în acest studiu un exemplu caracteristic de centre locale de rază mică. Ca urmare a unei ecranări puternice a electronilor 4*f* de către învelișurile exterioare (5*s*, 5*p*), acești ioni interacționează slab cu ambianța cristalină în aproximația nulă. În acest caz, utilizăm teoria câmpului cristalin, în care $H_e(r)$ este hamiltonianul ionului de pământuri rare liber și V(r, R) este energia potențială de interacțiune cu ionii înconjurători, pe care o scriem în forma:

$$V(\vec{r}, \vec{R}) = \sum_{ij} \frac{ee_{j}^{*}}{\left|\vec{r}_{i} - \vec{R}_{jn}\right|} \equiv \sum_{ij} V(\vec{r}_{i}, \vec{R}_{jn})$$
(3.25)

unde *e* este sarcina electronului, e_j^* este sarcina ionului *j*, $\vec{r_i}$ este raza vectoare a electronului *i*, iar \vec{R}_{jn} este raza vectoare a ionului *j* al din celula elementară *n*. Descompunem V(r, R) în seria Taylor după puterile deplasărilor mici $\Delta \vec{R}_{jn} = \vec{R}_{jn} - \vec{R}_{jn}^0$ ale ionilor din starea de echilibru:

$$V(\vec{r}, \vec{R}) = V_{cr} + H_{int},$$
 (3.26)

$$V_{cr} = \sum_{ij} V(\vec{r}_i, \vec{R}_j^0),$$
(3.27)

$$H_{\rm int} \approx \sum_{ij} \left(\nabla_{\vec{R}_j} V(\vec{r}_i, \vec{R}_j = \vec{R}_j^0) \Delta \vec{R}_j \right).$$

Dacă presupunem că norii electronici $4f^n$ ai ionului de PR nu se suprapun cu cei ai ionilor învecinați, $|\vec{r}| < R_j^0$, atunci potențialul $V(\vec{r}_i, \vec{R}_j)$ poate fi descompus în serie pe funcțiile sferice:

$$V(\vec{r}_i, \vec{R}_j) = \sum_{l=0}^{\infty} \sum_{|m| \le l} \frac{4\pi e e_j^* r_i^l}{(2l+1)R_j^{l+1}} Y_{lm}^*(\theta_j, \phi_j) Y_{lm}(\theta_i, \phi_i) .$$
(3.28)

Expresia (3.28) poate fi reprezentată într-o formă mai compactă:

$$V(\vec{r},\vec{R}) = \sum_{l=0}^{\infty} \sum_{|m| \le l} r_i^l A_l^m Y_{lm}(\theta_i,\varphi_i), \qquad (3.29)$$

unde

$$A_{l}^{m} = \sum_{j} \frac{4\pi e e_{j}^{*}}{(2l+1)R_{j}^{l+1}} Y_{lm}^{*}(\theta_{j}, \phi_{j}) , \qquad (3.30)$$

iar $Y_{lm}(\theta, \phi)$ sunt funcțiile sferice.

Neglijăm, de asemenea, oscilațiile cvasilocale și, ținând cont de cele spuse mai sus, problema oscilatorie a cristalului cu impurități se reduce la problema oscilatorie a cristalului ideal. În cristalul fără impurități deplasările $\Delta \vec{R}$ pot fi descompuse pe coordonate normale $q_{\vec{\kappa}_{\rho}}$ în felul următor [33]:

$$\Delta \vec{R}_{jn} = \left(Nm_j\right)^{-1/2} \sum_{\vec{\kappa}_{\rho}} \vec{d}(j,\vec{\kappa}_{\rho}) \exp(-i\vec{\kappa}\vec{R}_{jn}^0) q_{\vec{\kappa}_{\rho}} , \qquad (3.31)$$

unde *N* este numărul celulelor elementare în volumul normat, j = 1, 2, ..., s numerotează ionii în elementul *n* al celulelei, *s* fiind numărul ionilor în celula elementară, $\vec{d}(j, \vec{\kappa}_{\rho})$ este vectorul de polarizare, m_j reprezintă masa nucleului *j*. Vectorii de polarizare sunt vectorii proprii ai matricei dinamice a oscilațiilor mici și se determină împreună cu propriile frecvențe $\omega_{\kappa_{\rho}}$ prin soluționarea problemei seculare corespunzătoare. Acești vectori satisfac relațiile [33]:

$$\begin{cases} \sum_{j} \vec{d}^{*}(j,\vec{\kappa}_{\rho}) \vec{d}(j,\vec{\kappa}_{\rho'}) = \delta_{\rho\rho'} \\ \sum_{\rho} d^{*}_{\alpha}(j,\vec{\kappa}_{\rho}) d_{\beta}(j',\vec{\kappa}_{\rho}) = \delta_{\alpha\beta} \delta_{jj'} \end{cases}$$
(3.32)

În afară de aceasta, deoarece numărul vectorilor de undă $\vec{\kappa}$ în prima zonă Brillouin este determinată de cantitatea celulelor elementare examinate *N*, mai are loc următoarea relație:

$$\sum_{\vec{\kappa}_{\rho}} d_{\alpha}^{*}(j,\vec{\kappa}_{\rho}) d_{\beta}(j',\vec{\kappa}_{\rho}) = N \delta_{\alpha\beta} \delta_{j\,j'} , \qquad (3.33)$$

unde

$$\vec{d}^{*}(j,\vec{\kappa}_{\rho}) = \vec{d}(j,-\vec{\kappa}_{\rho}), \quad q^{*}_{\vec{\kappa}_{\rho}} = q_{-\vec{\kappa}_{\rho}}$$
(3.34)

Vom reprezenta coordonatele normale prin operatorii de creare și anihilare a fononilor:

$$q_{\vec{\kappa}_{\rho}} = \left(\frac{\hbar}{2\omega_{\vec{\kappa}_{\rho}}}\right)^{\frac{1}{2}} \left(\hat{a}^{+}_{\vec{\kappa}_{\rho}} + \hat{a}_{-\vec{\kappa}_{\rho}}\right).$$
(3.35)

Tehnici de calcul al secțiunii medii de împrăștiere

Fie că fluxul de fotoni cade pe cristal. Partea cea mai mare de fotoni nu va interacționa cu particulele, dar o parte din ei (mai puțin de 1%) – va interacționa elastic. Frecvența radiației electromagnetice în acest caz nu se va schimba și interacțiunea elastică conduce la împrăștierea sau dispersia Rayleigh (DRh). O cantitate și mai mică de fotoni va interacționa neelastic. Atomul fiind trecut din starea sa inițială într-o altă stare, din legea conservării energiei reiese că fotonii dispersați au energia, deci și frecvența, diferită de frecvența fotonilor incidenți. Desigur, e posibil ca particula să revină în starea inițială. Astfel, spectrul DRh se manifestă în formă de linii de emisie situate în regiunea energiilor mai mari sau mai mici față de linia nedeplasată a DRh. În virtutea faptului că în starea fundamentală, intensitatea liniilor anti-Stokes a DRh este mai mică decât intensitatea liniilor Stokes respective.

În calitate de stări inițială și finală considerăm stările $|i\rangle$ și $|f\rangle$. Intensitatea luminii dI' la împrăștierea într-o unitate de timp în unghiul spațial $d\Omega$ se exprimă prin intensitatea I (densitatea fluxului de energie) a luminii incidente cu ajutorul formulei:

$$dI' = I \frac{\omega_I}{\omega_0} d\beta , \qquad (3.36)$$

unde ω_0 este frecvența luminii incidente, ω_I este notată frecvența luminii împrăștiate, $d\beta$ – *secțiunea efectivă de împrăștiere*, care se exprimă prin tenzorul împrăștierii C_{mn}^{if} :

$$d\beta = |\langle i \mid M \mid f \rangle|^2 \frac{\omega_0 \omega_I^3}{\hbar^2 c^4} d\Omega , \qquad (3.37)$$

unde:

$$\langle i|M|f\rangle = \sum_{m,n} C_{mn}^{if} e_m^{i^*} e_n^f, C_{mn}^{if} = \frac{1}{\hbar} \sum_k \left[\frac{(d_m)_{fk} (d_n)_{ki}}{\omega_{ki} - \omega_0 - \omega_I} + \frac{(d_n)_{fk} (d_m)_{ki}}{\omega_{ki} + \omega_I - \omega_0} \right].$$
(3.38)

Aici $e_{m(n)}$ reprezintă componentele vectorului și obținem:

$$\omega_0 - \omega_I \equiv \omega_{fi}. \tag{3.39}$$

Elementele matriciale ale proiecției momentului electric dipolar $(d_m)_{fk}$ se calculează în aproximația secundă a teoriei perturbațiilor. Suma după k se efectuează după toate stările posibile ale atomului, inclusiv și nivelurile mai înalte.

Trebuie de ținut cont că în (3.36) se află energia împrăștierii (într-o unitate de timp) cu frecvența ω_I , iar frecvența dată poate varia nu numai la tranziția $i \rightarrow f$. De aceea, pentru obținerea energiei medii totale de împrăștiere a cristalului este necesar de a suma în (3.36) după toate stările finale și inițiale, care asigură frecvența dată a tranziției, și de împărțit la variația mică $\Delta \omega$ a frecvenței radiației împrăștiate. Atunci se obține:

$$dI' = I \frac{\omega_I}{\omega_0} d\beta' , \qquad (3.40)$$

unde dI' este această energie medie (în unități obișnuite), $d\beta'$ reprezintă secțiunea medie de împrăștiere

$$d\beta' = \frac{1}{\Delta\omega} \sum_{i,f} \rho_i d\beta$$
,

unde ρ_i este probabilitatea de populare a nivelului inițial. Putem scrie altfel, înlocuind $\frac{1}{\Delta \omega}$ cu funcția delta, care satisface următoarea condiție:

$$d\beta' = \sum_{i,f} \rho_i d\beta \delta(\omega_{fi} + \omega_I - \omega_0), \qquad (3.41)$$

unde $\omega_{fi} = \omega_0 - \omega_I$.

Atunci când nu se calculează valoarea absolută a energiei luminii împrăștiate, dar este necesar de obținut forma benzii de împrăștiere, atunci din (3.40), ținând cont de (3.37) și (3.41), forma benzii se determină astfel:

$$F(\omega) = \sum_{i,f} \rho_i |\langle i|M|f \rangle|^2 \,\delta(\omega_{fi} - \omega_0 + \omega_I) \,. \tag{3.42}$$

Folosind reprezentarea integrală a funcției δ , atunci [38]:

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \ e^{-i(\omega_0 - \omega_l)t} I(t),$$

$$I(t) = \sum_{i,f} \rho_i \langle i | M^+ | f \rangle \langle f | M | i \rangle e^{\frac{it}{\hbar}(E_f - E_i)} = \sum_{i,f} \rho_i \langle i | M^+ | f \rangle \langle f | e^{\frac{iHt}{\hbar}} M e^{-\frac{iHt}{\hbar}} | i \rangle =$$

$$= \sum_i \rho_i \langle i | M^+ M(t) | i \rangle = \left\langle \langle M^+ M(t) \rangle \right\rangle_i.$$
(3.43)

Introducem în formula (3.43) parametrul γ , care ține cont de lărgirea radiațională a liniei spectrului. Astfel, obținem expresia pentru form-funcția benzii de împrăștiere a luminii:

$$F(\omega) = \frac{1}{2\pi} \operatorname{Re} \int_0^\infty e^{-i(\omega_0 - \omega_I)t - \gamma t} \left\langle \left\langle \hat{M}^+ \cdot \hat{M}(t) \right\rangle \right\rangle_i dt, \qquad (3.44)$$

Trecem la reprezentarea de interacțiune:

$$e^{iHt} = e^{iH_0t} + iVt = e^{iH_0t} + iVt} = e^{iH_0t} U(t),$$

$$H = H_e + H_L + V,$$
(3.45)

unde H_e este hamiltonianul ionilor liberi de PR, H_L este hamilitonianul subsistemei fononice, V este operatorul interacțiunii electron-fononice, iar U(t) este operatorul de evoluție. Astfel:

$$\left\langle \left\langle M^{+}M(t)\right\rangle \right\rangle_{i} = \sum_{i} \rho_{i} \left\langle i\right| M^{+} e^{\frac{iH_{0}t}{\hbar}} U(t) M U^{+}(t) e^{-\frac{iH_{0}t}{\hbar}} \left|i\right\rangle.$$

Utilizăm caracterul complet al funcțiilor proprii ale hamiltonianului total H_0 :

$$\left\langle \left\langle M^{+}M(t)\right\rangle \right\rangle_{i} = \sum_{i} \rho_{i} \sum_{f} \sum_{r} \sum_{l} \sum_{m} \sum_{s} \left\langle i | M^{+} | f \right\rangle \left\langle f | e^{\frac{iH_{0}t}{\hbar}} | r \right\rangle \left\langle r | U(t) | l \right\rangle \left\langle l | M | m \right\rangle \times \left\langle m | U^{+}(t) | s \right\rangle \left\langle s | e^{\frac{-iH_{0}t}{\hbar}} | i \right\rangle.$$

Neglijăm amestecul stării inițiale $|i\rangle$ cu cele excitate datorită interacțiunii electron fononice:

$$\left\langle \left\langle M^{+}M(t)\right\rangle \right\rangle_{i} = \sum_{i} \rho_{i} \sum_{f} \left\langle i \left| M^{+} \right| f \right\rangle \left\langle f \left| U(t) \right| f \right\rangle \left\langle f \left| M \right| i \right\rangle \left\langle i \left| U^{+}(t) \right| i \right\rangle e^{i \omega_{fi} t}$$

și în aproximația zero a teoriei perturbațiilor putem considera:

$$U(t)|i\rangle \approx |i\rangle,$$

$$\left\langle \left\langle M^{+}M(t)\right\rangle \right\rangle_{i} \approx \sum_{i} \rho_{i} \sum_{f} \left| \left\langle i | M | f \right\rangle \right|^{2} \left\langle f | U(t) | f \right\rangle e^{i \omega_{f} t} = \left\langle \sum_{f} \left| \left\langle i | M | f \right\rangle \right|^{2} \left\langle f | U(t) | f \right\rangle e^{i \omega_{f} t} \right\rangle_{i}.$$

Atunci

$$F(\omega) = \frac{1}{\pi} \sum_{f} |\langle i|M|f \rangle|^2 \operatorname{Re} \int_0^\infty e^{i(\omega_{fi} - \omega_0 + \omega_I)t - \gamma t} \langle f|U(t)|f \rangle_i dt$$
(3.46)

reprezintă funcția formei benzii de dispersie a luminii.

Elementele de matrice ale operatorului evoluției

Este cunoscută forma generală a soluției pentru operatorul de evoluție [161, pp.81-85]:

$$U(t) = \sum_{n=0}^{\infty} \left(\frac{i}{\hbar}\right)^n \frac{1}{n!} \int_0^t \dots \int_0^t T[v(t_1) \dots v(t_n)] dt_1 \dots dt_n , \qquad (3.47)$$

unde *T* este produsul cronologic.

Să calculăm elementul de matrice de forma $\langle f|U(t)|f\rangle_i$, presupunând că termenii impari din (3.47) posedă un aport neglijabil de mic în comparație cu termenii pari. Astfel, se obține din (3.47):

$$< f | U(t) | f >_{i} \equiv U_{f}(t) = 1 - \frac{1}{2\hbar^{2}} \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} < f | T [v(t_{1}) v(t_{2})] f >_{i} + \frac{1}{24\hbar^{4}} \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} \int_{0}^{t} dt_{3} \int_{0}^{t} dt_{4} < f | T [v(t_{1}) v(t_{2}) v(t_{3}) v(t_{4})] f >_{i} + \dots$$

$$(3.48)$$

Vom examina termenul al doilea:

$$\frac{1}{2\hbar^2} \int_0^t dt_1 \int_0^t dt_2 < f |T[v(t_1)v(t_2)]| f >_j = \frac{1}{\hbar^2} \int_0^t dt_1 \int_0^{t_1} dt_2 < f |v(t_1)v(t_2)| f >_j.$$

Al treilea termen din (3.48) îl determinăm în baza teoremei lui Wick. Conform aproximației de rezonanță, vom lua în considerație doar termenii care descriu rezonanța. Atunci, al doilea termen din (3.48) se va scrie:

$$\begin{split} &\frac{1}{24\hbar^4} \int_0^t \int_0^t \int_0^t dt_1 dt_2 dt_3 dt_4 < f \big| T \big[v(t_1) v(t_2) v(t_3) v(t_4) \big] \big] f >_i = \\ &= \frac{1}{\hbar^4} \int_0^t dt_1 \int_0^{t_1} dt_2 \int_0^{t_2} dt_3 \int_0^{t_3} dt_4 < f \big| v(t_1) v(t_2) \big| f >_i < f \big| v(t_3) v(t_4) \big| f >_i . \end{split}$$

Procedând analogic pentru ceilalți termeni de ordin superior, atunci se obține:

$$\begin{split} \tilde{U}_{f}(t) &= 1 - \frac{1}{\hbar^{2}} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} < f |v(t_{1})v(t_{2})| f >_{i} \times \\ & \times \left[1 - \frac{1}{\hbar^{2}} \int_{0}^{t_{2}} dt_{3} \int_{0}^{t_{3}} dt_{4} < f |v(t_{3})v(t_{4})| f >_{i} \\ & + \frac{1}{\hbar^{4}} \int_{0}^{t_{2}} dt_{3} \int_{0}^{t_{3}} dt_{4} \int_{0}^{t_{4}} dt_{5} \int_{0}^{t_{5}} dt_{6} < f |v(t_{3})v(t_{4})| f >_{i} < f |v(t_{5})v(t_{6})| f >_{i} + \dots \right] \end{split}$$

sau

$$\widetilde{U}_{f}(t) = 1 - \frac{1}{\hbar^{2}} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} < f |v(t_{1})v(t_{2})| f >_{i} \widetilde{U}_{f}(t_{2}).$$

Din proprietatea elementului de matrice al prodsului a doi operatori, obținem:

$$\widetilde{U}_{f}(t) = 1 - \frac{1}{\hbar^{2}} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \sum_{r} \langle f | \nu(t_{1}) | r \rangle \langle r | \nu(t_{2}) | f \rangle_{i} \widetilde{U}_{f}(t_{2}).$$
(3.49)

Descompunem

$$v(t_1) = e^{\frac{iH_0t_1}{\hbar}} ve^{-\frac{iH_0t_1}{\hbar}} = e^{\frac{iH_et_1}{\hbar}} e^{\frac{iH_Lt_1}{\hbar}} ve^{-\frac{iH_Lt_1}{\hbar}} e^{-\frac{iH_et_1}{\hbar}}$$

și înlocuim $e^{\frac{iH_e t}{\hbar}} |f\rangle = e^{\frac{iE_f t}{\hbar}} |f\rangle$, unde E_f este energia stărilor electronice $|f\rangle$.

Notăm
$$\tilde{v}(t) = e^{\frac{iH_L t}{\hbar}} v e^{-\frac{iH_L t}{\hbar}}$$
şi, înlocuind-o în (3.49), obținem:

$$\widetilde{U}_{f}(t) = 1 - \frac{1}{\hbar^{2}} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} e^{i\Delta fr(t_{1}-t_{2})} \left\langle \left\langle f \middle| \widetilde{v}(t_{1}) \middle| r \rangle \langle r \middle| \widetilde{v}(t_{2}) \middle| f \right\rangle \right\rangle_{i} \widetilde{U}_{f}(t_{2}) , \qquad (3.50)$$

unde $\Delta fr = (E_f - E_r)/\hbar$. Derivăm (3.50) după timp:

$$\frac{d\tilde{U}_{f}(t)}{dt} = -\frac{1}{\hbar^{2}} \sum_{r} \int_{0}^{t} dt_{2} e^{i\Delta_{fr}(t-t_{2})} \left\langle \left\langle f \left| \tilde{v}(t) \right| r \right\rangle \left\langle r \left| \tilde{v}(t_{2}) \right| f \right\rangle \right\rangle_{i} \tilde{U}_{f}(t_{2})$$
(3.51)

sau

- - -

$$\frac{d\tilde{U}_{f}(t)}{dt} = -\frac{1}{\hbar^{2}} \sum_{r} \int_{0}^{t} dt_{2} e^{i\Delta_{fr}(t-t_{2})} A(t,t_{2}) \tilde{U}_{f}(t_{2}) , \qquad (3.52)$$

unde $A(t,t_2) = \langle \langle f | \tilde{v}(t) | r \rangle \langle r | \tilde{v}(t_2) | f \rangle \rangle_i$. Ecuația obținută pentru $\tilde{U}_f(t)$ este o ecuație integro-diferențială. Următoarea sarcină este calculul corelatorului $A(t,t_2)$ din (3.52).

Tehnici de calcul al corelatorului

Scriem operatorul interacțiunii electron-fononice din expresia (3.45). Reprezentăm H_{int} în formă de integrală Fourier:

$$\begin{split} V &= \sum_{i,j} \frac{ee_{j}^{*}}{2\pi^{2}} \int \frac{d^{3}q}{q^{2}} e^{i\vec{q}(\vec{R}_{jn}-\vec{r}_{i})}, \\ A(t,t_{2}) &= \left\langle \left\langle f \right| e^{\frac{iH_{L}t}{\hbar}} \sum_{i,j} \frac{ee_{j}^{*}}{2\pi^{2}} \int \frac{d^{3}q}{q^{2}} e^{i\vec{q}(\vec{R}_{jn}^{0}+\Delta\vec{R}_{jn}-\vec{r}_{i})} e^{-\frac{iH_{L}t}{\hbar}} |r \right\rangle \times \\ &\times \left\langle r \right| e^{\frac{iH_{L}t_{2}}{\hbar}} \sum_{i,j'} \frac{ee_{j'}^{*}}{2\pi^{2}} \int \frac{d^{3}q'}{(q')^{2}} e^{i\vec{q}'(\vec{R}_{jn'}^{0}+\Delta\vec{R}_{jn'}-\vec{r}_{i})} e^{-\frac{iH_{L}t_{2}}{\hbar}} |f \rangle \right\rangle_{i}. \end{split}$$

Ținând cont de $|f\rangle = |f\rangle \left| \left\langle n_{\vec{\kappa}_{\rho}}^{(f)} \right\rangle \right\rangle$ și hamiltonianul ermitic, se obține:

$$\begin{split} A(t,t_{2}) &= \sum_{j,j'} \frac{e^{2} e_{j}^{*} e_{j'}^{*}}{4\pi^{4}} \int \frac{d^{3}q}{q^{2}} \int \frac{d^{3}q'}{(q')^{2}} e^{i\vec{q}\vec{R}_{jn}^{0} - i\vec{q'}\vec{R}_{j'n'}^{0}} \langle f | \sum_{i} e^{-i\vec{q}\vec{r}_{i}} | r \rangle \langle f | \sum_{i} e^{-i\vec{q'}\vec{r}_{i}} | r \rangle^{*} \times \\ \times \langle n_{\kappa_{\rho}}^{(f)} | e^{\frac{iH_{L}t}{\hbar}} e^{i\vec{q}\Delta\vec{R}_{jn}} e^{-\frac{iH_{L}t}{\hbar}} | n_{\kappa_{\rho}}^{(r)} \rangle_{i} \langle n_{\kappa_{\rho}}^{(r)} | e^{\frac{iH_{L}t_{2}}{\hbar}} e^{-i\vec{q'}\Delta\vec{R}_{j'n'}} e^{-\frac{iH_{L}t_{2}}{\hbar}} | n_{\kappa_{\rho}}^{(f)} \rangle_{i}. \end{split}$$

Luând în considerație proprietatea caracterului complet al funcțiilor fononice, putem scrie:

$$A(t,t_{2}) = \sum_{j} 4\pi e^{2} \left(e_{j}^{*}\right)^{2} \sum_{l=2}^{6} \frac{1}{(2l+1)!} \sum_{\gamma_{r},\gamma_{f}|m| \leq l} \left(\frac{\langle r^{l} \rangle 4f}{(R_{j}^{0})^{l}}\right) \gamma_{10}^{2} \frac{\left(\langle J' \| \xi_{l} \| \rangle \langle J' \| O_{l} \| J \rangle\right)^{2}}{(2J+1)(2J'+1)(2l+1)} \times \sum_{n=0}^{\infty} \frac{(2n+2l)!}{2^{n}n!} \frac{(2n+2l+1)!}{(R_{j}^{0})^{2n+2}} \sum_{|m| \leq l} \sum_{|p| \leq n} \binom{l n l + n}{-m p 0} \binom{l n l + n}{-m p 0} D_{j}^{n}(t_{2}-t).$$

Folosim proprietatea caracterului complet pentru simbolul 3*j* și, în final, se obține o formulă mai simplă pentru corelator:

$$A(t,t_{2}) = \sum_{j} e^{2} \left(\frac{e_{j}^{*}}{R_{j}^{0}}\right)^{2} \sum_{l=2}^{6} \frac{k_{e}}{(2l+1)!} \left(\frac{\langle r^{l} \rangle 4f}{\left(R_{j}^{0}\right)^{l}}\right)^{2} \sum_{n=0}^{\infty} \frac{(2n+21)!}{2^{n} n! \left(R_{j}^{0}\right)^{2n}} D_{j}^{n}(t_{2}-t),$$
(3.53)

unde este introdusă notația:

$$D_{j}(t_{2}-t) = \frac{\hbar}{6Nsm_{j}} \int_{0}^{\omega_{max}} \frac{\rho(\omega)}{\omega} [(n(\omega)+1)e^{i\omega(t_{2}-t)} + n(\omega)e^{-i\omega(t_{2}-t)}] d\omega,$$

$$\kappa_{e} = 4\pi \gamma_{10}^{2} \frac{\left(\left\langle J' \| \xi_{1} \| J \right\rangle \left\langle J' \| O_{l} \| J \right\rangle\right)^{2}}{(2J+1)(2J'+1)(2l+1)},$$
(3.54)

unde $\rho(\omega)$ este densitatea fononică.

3.2. Transfer de energie în cristale dopate cu ioni de pământuri rare

Argumentarea procesului de transfer ireversibil al energiei între centre impuritare de pământuri rare a fost efectuată în lucrarea [24] pentru două centre în cazul nivelurilor discrete de energie. A fost demonstrate, că ireversibilitatea în procesul de transfer este asigurată de interacțiunea H', care leagă stările spectrului discret cu stările sistemului disipativ. În calitate de sistem disipativ pot servi fononii cristalului, iar interacțiunea H' este interacțiunea electron-fononică. Hamiltonianul sistemului posedă forma:

$$H = H^{0} + V_{DA} + H', (3.55)$$

unde V_{DA} este interacțiunea dintre două centre – donor și acceptor, H^0 este hamiltonianul care include partea electronică și fononică fără interacțiune. Ulterior hamiltonianul (3.55) a fost utilizat în această lucrare, unde V_{DA} este interacțiunea electrostatică dipol-dipol care nu conține retardarea interacțiunii electromagnetice. Pentru ca V_{DA} să conțină retardarea vom considera interacțiunea locală a dipolului centrului de impuritate cu câmpul electromagnetic transversal cuantificat în formalismul hamiltonianului de interacțiune multipolară [50, 71]. În acest caz la hamiltonianul (3.55) se mai adaugă componenta fotonică.

Spre deosebire de [24], vom considera cazul a 4 centre, dintre care cel puțin un centru este acceptor sau donor, iar V_{DA} în (3.55) se va înlocui cu V_N . Prin urmare, formula (3.55) se va scrie în forma [13]:

$$H = H^{o}(N) + V_{N} + H', (3.56)$$

unde $H^{o}(N)$ descrie partea diagonală care include hamiltonianul centrelor impuritare, inclusiv sistemul fononic și fotonic liber, V_{N} descrie interacțiunea locală a centrelor cu câmpul electromagnetic în formalismul hamiltonianului de interacțiune multipolară, iar N este numărul de centre care pot participa în transferul de energie. Probabilitatea de transfer între centre se scrie în forma:

$$W_{N} = \frac{2n}{\hbar} \sum_{f} |\langle f|V_{N}|i\rangle|^{2} \delta(E_{f} - E_{i}) , \qquad (3.57)$$

unde $|f > \text{si}|_i > \text{sunt funcțiile proprii care aparțin valorilor proprii } E_f \text{si} E_i$ ale hamiltonianului $H = H - V_N$. Astfel, interacțiunea H' este inclusă în hamiltonianul H, reprezentând interacțiunea electron-fononică slabă. Hamiltonianul H se va scrie:

$$H = H_{l}(1) + H_{l}(2) + \dots + H_{l}(N) + H_{lL}(1) + \dots + H_{lL}(N) + H_{L} + H_{ph} , \qquad (3.58)$$

unde $H_1(K)$ este hamiltonianul electronic a ionului impuritar K, $H_{IL}(K)$ este hamiltonianul interacțiunii electron-fononice a ionului K, H_L este hamiltonianul fononic, H_{ph} reprezintă hamiltonianul fotonic. În aproximație liniară după coordonatele normale q_H ale cristalului, interacțiunea electron-fononică a centrului K cu cristalul se reprezintă în următoarea formă:

$$H_{lL}(K) = \sum_{\chi} V_{\chi}(K) q_{\chi}, \qquad (3.59)$$

unde V_H este operatorul electronic, $\chi \equiv (\vec{\chi}, \lambda)$. Interacțiunea locală V_N se va scrie [71]:

$$V_N = H_{int}(1) + H_{int}(2) + \dots + H_{int}(N), \qquad (3.60)$$

unde $H_{int}(K) = -\varepsilon_0^{-1} \vec{\mu}(K) \vec{d}^{\perp}(\vec{R}_K)$ este interacțiunea locală a centrului *K* cu câmpul electric transversal \vec{d}^{\perp} , \vec{R}_K este coordonata spațială a centrului *K*, iar $\vec{\mu}(K)$ este dipolul electric al centrului *K*.

Vom considera că interacțiunea $H_{lL}(K)$ este slabă și se respectă criteriul aproximației adiabatice cel puțin pentru starea inițială $|i\rangle$. În formula (3.57) putem înlocui starea inițială exactă $|i\rangle$ cu funcția Franck–Condon adiabatică, presupunând că starea inițială este nedegenerată:

$$|i\rangle = |i_0\rangle |0\rangle \prod_{\chi} 0_{n\chi} (q_{\chi} - q_{\chi i}), \qquad (3.61)$$

unde $q_{\chi i}$ este coordonata de echilibru în starea $|i_0\rangle$ a oscilatorului χ . Starea $|i_0\rangle$ este funcția proprie a hamiltonianului electronic:

$$H_{l}^{0} = H_{l}(1) + \dots + H_{l}(N) + \sum_{\chi} \left[V_{\chi}(1) + \dots + V_{\chi}(N) \right] q_{\chi i} + \frac{1}{2} \sum_{\chi} \hbar \omega_{\chi} q_{\chi i}^{2}$$
(3.62)

cu energia proprie E_i^0 . Coordonata de echilibru $q_{\gamma i}$ se determină din relația

$$q_{\chi i} = \frac{1}{\hbar \omega_{\chi}} \left(\left\langle i_0 \middle| V_{\chi}(1) + ... + V_{\chi}(N) \middle| i_0 \right\rangle \right).$$
(3.63)

Utilizând reprezentarea integrală a funcției δ , formula (3.57) poate fi adusă la forma

$$W_{N} = \frac{1}{\hbar^{2}} \sum_{f} \int_{-\infty}^{\infty} \langle i | V_{N}^{+} | f \rangle \langle f | V_{N}(t) | i \rangle dt , \qquad (3.64)$$

unde

$$V_N(t) = \exp(iHt)V_N \exp(-iHt).$$
(3.65)

Deoarece $\sum_{f} (|f \rangle, \langle f|)$ este unitatea invariantă, unde $|f\rangle$ și $\langle f|$ sunt funcțiile proprii care aparțin valorii E_{f} ale hamiltonianului $H = H - V_{N}$, atunci suma respectivă poate fi înlocuită cu suma după stările proprii ale hamiltonianului $H^{0} = H_{l}^{0} + H_{L} + H_{phot}$. Utilizând relațiile Feynman [84], exponenta din (3.96) se exprimă în felul următor:

$$e^{-iHt/\hbar} = e^{-iH^0\frac{t}{\hbar}}U(t), \qquad (3.66)$$

unde

$$U(t) = e^{iH^o t/\hbar} e^{-iHt/\hbar} = T \exp(-\frac{i}{\hbar} \int_{o}^{t} \overline{H}_{IL}(S) ds)$$
(3.67)

este operatorul de evoluție, iar operatorul renormat \overline{H}_{1L} se va scrie în forma:

$$\overline{H}_{IL} = H - H_o = \sum_{\chi} \left[V_{\chi}(1) + ... + V_{\varphi}(N) + \hbar \omega_{\chi} q_{\chi i} \right]^* (q_{\chi} - q_{\chi i})$$
(3.68)

şi

$$\overline{H}_{lL}(S) = \exp(iH^{\circ}S/\hbar)H_{lL}\exp(-iH^{\circ}S/\hbar) , \qquad (3.69)$$

unde $T = T_l T_L$ din (3.67) este operatorul de aranjare cronologică [38].

Vom înlocui $(q_{\chi} - q_{\chi})$ în (3.99) cu q_{χ} și astfel obținem operatorul $V_{\chi}(K)$ renormat:

$$V_{\chi}(1) + \dots + V_{\chi}(N) = V_{\chi}(1) + \dots + V_{\chi}(N) + \hbar \omega_{\chi} q_{\chi i}.$$
(3.70)

Din (3.63) și (3.70) obținem:

$$\langle i_o | \overline{V_{\chi}}(1) + \dots + \overline{V_{\chi}(N)} | i_o \rangle = 0.$$
(3.71)

În așa fel (3.64), după medierea fononică, se va scrie:

$$W_{N} = \frac{1}{\hbar^{2}} \sum_{f_{0}} \int_{-\infty}^{\infty} e^{i\omega_{f_{i}}t} \langle i_{0} | V_{N}^{+} | f_{0} \rangle \langle f_{0} | U(t) | f_{0} \rangle_{L} \langle f_{0} | V_{N} | i_{0} \rangle dt, \qquad (3.72)$$

unde ω_{fi} este frecvența Franck–Condon a tranziției $i \rightarrow f$ cu ajutorul cumulantei, adică:

$$\langle f_o | U(t) | f_o \rangle \langle T \exp[g(t)] \rangle, \tag{3.73}$$

unde

$$g(t) = \sum_{n=1}^{\infty} \left(\frac{-i}{\hbar}\right)^n \frac{1}{n!} \int_0^t dt_1 \dots \int_0^t dt_n < T(\overline{H}_{1L}(t_1) \dots \overline{H}_{1L}(t_n)) >_c$$
(3.74)

se numește cumulantă, iar $\langle ... \rangle_C$ este media cumulantă. În [126] a fost demonstrat că (3.73) poate fi reprezentată astfel:

$$\left\langle f_{o} \left| U(t) \right| f_{o} \right\rangle_{L} = T \exp\left[\frac{1}{2!} \left(\frac{i}{\hbar}\right)^{2} \int_{o}^{t} dt_{1} \int_{o}^{t} dt_{2} < T \overline{H}_{lL}(t_{1}) \overline{H}_{lL}(t_{2}) \rangle_{L}\right] dt .$$

$$(3.75)$$

Dacă efectuăm medierea fononică obținem:

$$< f_o |U(t)| f_o >_L = < f_o |T_l \exp[C(t)]| f_o >,$$
(3.76)

unde

$$C(t) = \left(\frac{i}{\hbar}\right)^{2} \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} \sum_{\chi} \left(V_{\chi}(1)(t_{1}) + \dots + V_{\chi}(N(t_{1})) \left(V_{\chi}^{*}(1)(t_{2}) + \dots + V_{\chi}^{*}(N)(t_{2})\right) + \Psi_{\chi}(t_{1} - t_{2})$$
(3.77)

$$\Psi_{\chi}(t) = (\overline{n_{\chi}} + 1) \exp[i\omega_{\chi}t] + \overline{n_{\chi}} \exp[-i\omega_{\chi}t], \qquad (3.78)$$

unde $\overline{n_{\chi}}$ este numărul mediu de fononi cu frecvența ω_{χ} în starea de echilibru. Funcția C(t) poate fi scrisă în felul următor:

$$C(t) = \sum_{k=1}^{N} C_k(t) + \sum_{i < j} C_{ij}(t).$$
(3.79)

Componenta $C_{ij}(t)$ în (3.79) depinde de distanța între centrul *i* și centrul *j* și, după cum a fost demonstrat în [25] în cazul densității mici a centrelor, $C_{ij}(t)$ poate fi omisă din ecuație.

După cum a mai menționat, starea $|i_0\rangle$ și starea $|f_0\rangle$ sunt starea inițială și, respective, starea finală a sistemului din *N* centre, unele fiind acceptori și altele donori, și aceste stări sunt produsul stărilor date, inclusiv starea fotonilor în vid, care intervin la transferul de energie. Astfel, (3.72) se va scrie:

$$W_{N} = \frac{1}{\hbar^{2}} \sum_{f_{o}} |\langle i_{o} | V_{N} | f_{o} \rangle|^{2} \int_{-\infty}^{\infty} \exp[i\omega_{fi}t] \exp[\sum_{i=1}^{N} g_{i}(t)] dt, \qquad (3.80)$$

unde

$$\exp[g_{k}(t)] = \langle f_{ok} | T_{l} \exp C_{k}(t) | f_{ok} \rangle,$$
(3.81)

iar k indică centrul K ca fiind acceptor sau donor. Efectuând integrarea după t în (3.77), a fost obținut:

$$q_{k}(t) = -\frac{1}{\hbar^{2}} \sum_{\chi} \sum_{f_{ok}'} |\langle f_{ok} | \vec{V}_{\chi}(k) | f_{ok}' \rangle|^{2} \left\{ -\frac{it}{\omega_{\chi} + \Delta f_{ok} f_{ok}'} - \frac{1}{(\omega_{\chi} + \Delta f_{ok}' f_{ok})^{2}} \left(\exp[i(\omega_{\chi} + \Delta f_{ok} f_{ok}')^{2} (1-1) \right] \right\} \\ * \left(\overline{U}_{\chi} + 1 \right) + \left[-\frac{it}{\omega_{\varphi} - \Delta f_{ok} f_{ok}'} - \frac{1}{(\omega_{\chi} - \Delta f_{ok} f_{ok}')^{2}} \left(\exp\left[-i(\omega_{\chi} - \Delta f_{ok} f_{ok}')^{2} - 1\right) \right] \right] \overline{n}_{k}, \qquad (3.82)$$

unde

$$\Delta f_{ok} f'_{ok} = \left(E f_{ok} - E f'_{ok} \right) / \hbar , \qquad (3.83)$$

iar Ef_{ok} și Ef'_{ok} sunt nivelurile energetice Stark în starea finală.

Introducem (3.82) în (3.80) și, în rezultatul integrării după t, se obține probabilitatea actului elementar de transfer al energiei. Aici pot fi două cazuri:

- a) Transfer de energie prin intermediul fononilor;
- b) Transfer de energie electronică rezonantă.

Elementul de matrice $\langle i_o | V_N | f_o \rangle$ din (3.80) poate fi calculat conform teoriei perturbațiilor. Ordinul de calcul al perturbațiilor depinde de numărul centrelor elementare existente în cristal. Într-adevăr, operatorul transversal al câmpului electromagnetic $\vec{d}^{\perp}(\vec{R}_k)$ poate fi exprimat prin operatorii de generare și anihilare [71]. Elementul de matrice diagonal după stările fotonice în vid (3.61) este $\langle i | V_N | f_o \rangle = 0$, adică amplitudinea de tranziție $\langle i_o | M | f_o \rangle \equiv \langle i_o | V_N | f_o \rangle = 0$, de aceea trebuie aplicată teoria perturbațiilor de ordin superior utilizând procese virtuale pentru care amplitudinea de tranziție să fie diferită de zero. În caz general, amplitudinea de tranziție se va scrie:

$$\langle i_0 | M | f_0 \rangle = \langle i_0 | V_N | f_0 \rangle + \sum_{r_1} \frac{\langle i_0 | V_N | r_1 \rangle \langle r_1 | V_N | f_0 \rangle}{E_{f_0} - E_{r_1}} + \sum_{r_1} \sum_{r_2} \frac{\langle i_0 | V_N | r_1 \rangle \langle r_1 | V_N | r_2 \rangle \langle r_2 | V_N | f_0 \rangle}{(E_{f_0} - E_{r_1})(E_{f_0} - E_{r_2})} + \cdots$$
(3.84)

Numărul total minim de stări virtuale $|r_j > \hat{n}| (3.84)$, pentru care $\langle i_o | M | f_o \rangle \neq 0$, este de N(N-1)/2. De exemplu, fie N=2. Prin urmare, avem un donor și un acceptor. În acest caz se utilizează termenul doi din (3.84). Dacă N=3, atunci putem avea doi donori și un acceptor sau un donor și doi acceptori, ceea ce înseamnă că se vor folosi stările virtuale $|r_1 \rangle$, $|r_2 \rangle$, $|r_3 \rangle$, adică termenul patru din (3.84). Pentru N=4 vom obține termenul cinci din (3.84) etc. În caz general, pentru N centre se va utiliza termenul (N(N-1)/2)+1 și termenul respectiv se va introduce în

(3.80), adică $\langle i_o | V_N | f_o \rangle \rightarrow \langle i_o | M | f_o \rangle$. În lucrarea [50] a fost calculat cazul *N*=2, iar în [52] – cazul *N*=3. Vom nota în continuare:

$$|\langle i_{o}|M|f_{o}\rangle|^{2} = |\mu^{om}(A)|^{2}|\mu^{om'}(B)|^{2}A(K,R)/9,$$
(3.85)

unde $|\mu^{om}(A)|^2$ este pătratul momentului dipolar efectiv în tranziția $o \rightarrow m$ a acceptorului A, $|\mu^{om'}(B)|^2$ este pătratul momentului dipolar efectiv pentru donorul B, iar A(k,R) este $A(k,R) = 2(R^3)^{-2}(3 + k^2R^2 + k^4R^4).$ (3.86)

În formula (3.86) *R* este distanța între donorul *A* și acceptorul *B*; *k* se calculează din relația $\hbar ck = E_m - E_0$, unde *c* este viteza luminii și $E_m - E_0$ este diferența nivelurilor respective de energie. Formula dată este valabilă pentru orice *R* în cazul proceselor neradiative.

Din (3.86) putem obține cazurile limită:

- a) kR<<1. Se obține rezultatul interacțiunii dipol-dipol simultane [24, 25] sau așa-numita zonă cea mai apropiată;
- b) kR >>1. Se obține o dependență proporțională cu $\frac{1}{R^2}$, care este identică cu dependența radiativă.

Dacă în exprersia (3.85) notăm m = m', atunci vom avea donor și acceptor identici și, prin urmare, procesul de transfer se va produce fără fononi. În caz contrar, trebuie să fie implicați și fononii conform relației (3.80).

Ideea utilizării neomogenității liniilor spectrale de absorbție se află la baza cercetărilor în direcția creării calculatoarelor cuantice bazate pe impurități PR în cristale [132]. Operațiile logice asupra ionilor PR se efectuează prin linia de absorbție neomogenă. Timpul necesar pentru efectuarea operațiilor logice trebuie să fie mai mic decât timpul mediu τ de aflare a ionilor PR în starea excitată:

$$\tau = \frac{1}{W_{rad} + W_{nonrad} + W_N},\tag{3.87}$$

unde W_{rad} este probabilitatea de iradiere, W_{nonrad} este probabilitatea tranzițiilor multifononice în centrul impuritar PR. Deoarece lărgimea liniei spectrale neomogene este de ordinul 10 cm, transferul de energie între donor și acceptor (*N*=2) va avea un caracter cvasirezonant și pentru funcționarea eficientă a calculatoarelor cuantice este necesar să fie mare, ceea ce înseamnă că probabilitățile *W* ar trebui să fie mici. De exemplu, pentru a micșora W_2 concentrația impurității de PR în cristale trebuie să fie mică. Astfel, trebuie efectuate calculele teoretice ale probabilitățile cu scopul determinării tipului cristalului și impurității de PR, care ulterior pot fi alese ca suport pentru realizarea calculatoarelor cuantice. Probabilitatea W_2 pentru transferul rezonant al energiei se obține prin utilizarea aproximației rezonante la calculul seriei perturbaționale ale operatorului de evoluție U(t) din (3.67). Așadar, pentru un donor D și un acceptor A obținem (T=0):

$$W_{2} = \frac{1}{\hbar^{2}} \sum_{f_{o}} \left| \langle i_{o} | M | f_{o} \rangle \right|^{2} \frac{\Gamma}{\left(E_{f} - E_{i} + \sum_{i} \right)^{2} + \frac{\Gamma^{2}}{4}}, \qquad (3.88)$$

unde

$$\sum = \frac{1}{\hbar^2} \left(\sum_{\chi r_A} \frac{K f_A |V_{\chi}(A)| |r_A|^2}{\Omega_{if} + \Delta_{f_A r_A} - \omega_{\chi}} + \sum_{\chi r_A} \frac{|\langle f_D | V_{\chi}(D)| |r_D|^2}{\Omega_{if} + \Delta_{f_D r_D} - \omega_{\chi}} \right),$$
(3.89)

$$\Gamma = \frac{2\pi}{\hbar^2} \Big(\sum_{\chi^{r_A}} |\langle f_A | V_{\chi}(A) | r_A \rangle \Big|^2 \cdot \delta \Big(\Omega_{if} + \Delta_{f_A r_A} \Big) + \sum_{\chi^{r_D}} |\langle f_D | V_{\chi}(D) | r_D \rangle \Big|^2 \cdot \delta \Big(\Omega_{if} + \Delta_{f_D r_D} - \omega_n \Big) \Big). (3.90)$$

Putem obține expresia pentru W_2 asemănătoare cu (3.88) din (3.80), dacă g(t) se înlocuiește cu formula asimptotică corespunzătoare [38]. Însă în acest caz $\Gamma \sim (\Delta - w_n)$, iar numitorul $\sum \sim$

 $\frac{1}{\Delta - \omega_{ri}}$. Prin urmare, sumarea seriei perturbaționale pentru operatorul U(t)în aproximația rezonanței ne conduce la un rezultat calitativ nou.

3.3. Modelul hamiltonianului de interacțiune multipolară a ionilor

3.3.1. Transferul rezonant de energie între patru centre în cristale dopate cu ioni PR

Vom cerceta, în cazul cel mai general, procesul TRE pentru patru centre în formalismul Hamiltonianului de interacțiune multipolară de interacțiune a ionilor cu componenta transversală a câmpului electromagnetic local [65]. Determinăm rata de transfer Γ folosind regula de aur a lui Fermi:

$$\Gamma = (2\pi/\hbar) \left| M_{fi} \right|^2 \rho , \qquad (3.91)$$

unde ρ este densitatea stărilor finale ale acceptorului. În ceea ce urmează se introduce formalismul electrodinamicii cuantice pentru calculul elementului de matrice ce conectează starea inițială $|i\rangle$ la starea finală $|f\rangle$.

Fie că există în vecinătatea acceptorului trei excitații aparținând moleculelor donoare (D_1, D_2, D_3) chimic identice, care evoluează din starea excitată $|1\rangle$ spre starea fundamentală $|0\rangle$.
Molecula acceptor A evoluează din starea fundamentală $|0\rangle$ spre starea excitată $|1\rangle$ printr-un transfer de energie din partea donorilor. Moleculele D_1 , D_2 , D3 sunt considerate chimic identice, însă distincte în procesul de calcul, astfel luându-se în considerație posibilitatea transferului nu numai de la vecinii cei mai apropiați, dar și de la toate moleculele (în cazul cristalelor dopate cu PR³⁺ simetria este hexagonală). Condiția de rezonanță rezidă în egalitatea $3E_{10}^d = E_{10}^a$, unde E_{10}^d este energia cedată de donor, iar E_{10}^a este cea primită de acceptor. Folosind formalismul electrodinamicii cuantice, transferul este realizat prin intermediul schimbului de fotoni virtuali pe care îi vom nota cu $p = (\vec{p}, \lambda)$, unde \vec{p} este impulsul fotonului, iar λ este polarizarea lui. Moleculele cuplate la câțiva propagatori fotonici trec prin stări intermediare sau virtuale notate cu a, b.

Hamiltonianul complet al sistemului poate fi scris sub forma:

$$H = \sum_{\xi = D_1, D_2, D_3, A} H^{(\xi)} + \sum_{\xi = D_1, D_2, D_3, A} H^{(\xi)}_{\text{int}} + H_{rad} , \qquad (3.92)$$

unde $H^{(\xi)}$ este hamiltonianul moleculei ξ , H_{rad} este hamiltonianul câmpului electromagnetic, iar $H_{int}^{(\xi)}$ este hamiltonianul de interacțiune a moleculei ξ cu componenta transversală a câmpului electromagnetic local. În aproximația dipolară operatorul respectiv are forma:

$$H_{int}^{(\xi)} = -\varepsilon_0^{-1} \vec{\mu}(\xi) \vec{d}^{tr}(\vec{R}_{\xi}), \qquad (3.93)$$

unde $\vec{\mu}(\xi)$ este operatorul momentului electric dipolar al tranziției cercetate, iar \vec{R}_{ξ} este vectorul poziției moleculei ξ . Operatorul vectorului transversal de deplasare a câmpului electromagnetic $\vec{d}^{\prime\prime}(R)$ poate fi dezvoltat în termenii undei plane:

$$\vec{d}^{\,\prime\prime}(\vec{R}\,) = \sum_{p} \left(\frac{\hbar c p \varepsilon_{0}}{2V}\right)^{1/2} i \left[\vec{e}(p\,) a(p\,) e^{i\vec{p}\vec{R}} - \vec{e}^{\,*}(p\,) a^{+}(p\,)^{+} e^{-i\vec{p}\vec{R}}\,\right].$$
(3.94)

Aici $\vec{e}(p)$ reprezintă vectorul de polarizare, $a^+(a)$ sunt operatorii de generare (anihilare), iar V este volumul de cuantificare.

Amplitudinea de probabilitate sau elementul de matrice între starea inițială $|i\rangle$ și finală $|f\rangle$ este calculat în ordinul șase al teoriei perturbațiilor, corespunzând celor trei evenimente de creare și de anihilare a fotonilor virtuali:

$$M_{fi} = \sum_{p,q,r,s,t} \frac{\langle f | H_{int} | p \rangle \langle p | H_{int} | q \rangle \langle q | H_{int} | r \rangle \langle r | H_{int} | s \rangle \langle s | H_{int} | t \rangle \langle t | H_{int} | i \rangle}{(E_i - E_p)(E_i - E_q)(E_i - E_r)(E_i - E_s)(E_i - E_t)},$$
(3.95)

unde E_n este energia stării $|n\rangle = |D_1^n, D_2^n, D_3^n, A^n\rangle |rad_n\rangle$. Suma în formula (3.95) se efectuează după setul complet al stărilor intermediare, care pot fi generate prin permutarea evenimentelor din diagramele prezentate în Figura 3.1.

Fig. 3.1. Exemple de diagrame ce corespund diferitor mecanisme de transfer, care generează setul complet de stări intermediare prin permutarea evenimentelor [65].

Diagramele au fost obținute din considerente topologice care indică două posibilități ale construcției diagramelor conexe cu patru centre: trei propagatori fotonici pot fi cuplați la un capăt cu un propagator molecular, care intervine formal în calitate de "acceptor", și cu celălalt capăt la restul propagatorilor moleculari "donori" și mai poate fi posibilitatea în care un propagator molecular – "donor direct" este cuplat la un altul – "acceptor", iar un "donor indirect" se cuplează la un "acceptor" prin intermediul altui donor. Făcând distincție între molecule, obținem patru diagrame de primul tip și douăsprezece de al doilea tip, care sunt indicate în Figura 3.1. Fiecare tip prin permutare generează o clasă de 6!=720 diagrame. Setul complet al stărilor intermediare cuprinde în total 11520 diagrame.

Să analizăm, de exemplu, contribuția de la o singură diagramă. Vom considera prima diagramă din Figura 3.1. Această diagramă δ poate fi reprezentată prin următoarea succesiune de evenimente:

$$\delta = (d_1, d_2, d_3, a_3, a_2, a_1). \tag{3.96}$$

Starea inițială și finală a sistemului este univoc determinată de următoarele expresii:

$$|i\rangle = |D_1^1, D_2^1, D_3^1, A^0\rangle |0\rangle, \qquad \mathbf{E}_{i} = 3E_1^D + E_0^A, |f\rangle = |D_1^0, D_2^0, D_3^0, A^1\rangle |0\rangle, \qquad \mathbf{E}_{f} = 3E_0^D + E_1^A.$$

Aici starea $|0\rangle$ este inclusă pentru plenitudine și indică vidul câmpului electromagnetic unde nu sunt prezenți fotoni reali. După fiecare eveniment din diagramă sistemul trece într-o nouă stare, așa cum se vede din relația (3.95). Astfel, după emisia primului foton în D_1 , sistemul trece în starea $|p\rangle$ definită de vectorii $|p\rangle = |D_1^0, D_2^1, D_3^1, A_0\rangle |1_1\rangle$, $E_p = E_0^{D_1} + E_1^{D_2} + E_1^{D_3} + E_0^A + \hbar c p_1$. Apoi sistemul trece succesiv prin stările $|q\rangle$ și $|r\rangle$ cu dezexcitarea succesivă a donorilor D_2 și D_3 :

$$|q\rangle = |D_1^0, D_2^0, D_3^1, A_0\rangle |1_1, 1_2\rangle, \ E_q = E_0^{D_1} + E_0^{D_2} + E_1^{D_3} + E_0^A + \hbar c(p_1 + p_2),$$

$$|r\rangle = |D_1^0, D_2^0, D_3^0, A_0\rangle |1_1, 1_2, 1_3\rangle, \ E_r = E_0^{D_1} + E_0^{D_2} + E_0^{D_3} + E_0^A + \hbar c(p_1 + p_2 + p_3).$$

În continuare, după cum se vede din diagramă, fotonii p_3 , p_2 , p_1 sunt anihilați de acceptorul A, care evoluează prin stările intermediare a și b:

$$|s\rangle = |D_1^0, D_2^0, D_3^0, A_a\rangle |1_1, 1_2\rangle, \ E_s = E_0^{D_1} + E_0^{D_2} + E_0^{D_3} + E_a^A + \hbar c(p_1 + p_2),$$
$$|t\rangle = |D_1^0, D_2^0, D_3^0, A_b\rangle |1_1\rangle, \ E_t = E_0^{D_1} + E_0^{D_2} + E_0^{D_3} + E_b^A + \hbar cp_1.$$

Pentru a studia mai ușor construcția amplitudinii de probabilitate pentru fiecare diagramă, vom prezenta mai jos rezultatele unor etape ale procesului de calcul. La crearea unui foton cu impulsul \vec{p} și polarizarea λ în poziția \vec{R} elementul de matrice pentru hamiltonianul H_{int} este

$$\langle \alpha | H_{int} | \beta \rangle = -i \sqrt{\frac{p\hbar c}{2V \varepsilon_0}} \mu_i^{\alpha\beta} e_i^{*(\lambda)}(p) e^{-i\vec{p}\vec{R}}$$
. Dacă fotonul se anihilează, atunci elementul

corespunzător de matrice va fi $\langle \alpha | H_{int} | \beta \rangle = -i \sqrt{\frac{p\hbar c}{2V\varepsilon_0}} \mu_i^{\alpha\beta} e_i^{(\lambda)}(p) e^{-ip\bar{R}}$. Numitorul ecuației (3.95) $(E_i - E_p) (E_i - E_q) (E_i - E_r) (E_i - E_s) (E_i - E_t)$ se obține din expresiile: $E_i - E_p = E_{10}^{D_1} - \hbar c p_1,$ $E_i - E_q = E_{10}^{D_1} + E_{10}^{D_2} - \hbar c (p_1 + p_2),$ $E_i - E_r = E_{10}^{D_1} + E_{10}^{D_2} + E_{10}^{D_3} - \hbar c (p_1 + p_2 + p_3),$ $E_i - E_s = E_{10}^{D_1} + E_{10}^{D_2} + E_{10}^{D_3} - E_{a0}^{A} - \hbar c (p_1 + p_2),$ $E_i - E_r = E_{10}^{D_1} + E_{10}^{D_2} + E_{10}^{D_3} - E_{a0}^{A} - \hbar c (p_1 + p_2),$ După aplicarea formulei (3.95), aportul $M_{fi}^{(\delta)}$ pentru diagrama δ la amplitudinea totală de probabilitate va fi:

$$M_{fi}^{(\delta)} = \sum_{p_1 p_2 p_3} \left(\frac{p_1 p_2 p_3}{(2V \varepsilon_0)^3 (\hbar c)^2} \right) \mu_{i_1}^{01(D_1)} \mu_{i_2}^{01(D_2)} \mu_{i_3}^{01(D_3)} \mu_{j_1}^{a0(A)} \mu_{j_2}^{ba(A)} \mu_{j_3}^{1b(A)} \times \\ \times \frac{e_{i_1}^*(p_1) e_{i_2}^*(p_2) e_{i_3}^*(p_3) e_{j_1}(p_1) e_{j_2}(p_2) e_{j_3}(p_3)}{(k - p_1)(2k - p_1 - p_2)(3k - p_1 - p_2 - p_3)} \times \frac{e^{-ip_1 R_1 - ip_2 R_2 - ip_3 R_3}}{(3k - k_a - p_1 - p_2)(3k - k_b - p_1)},$$

unde $E_{xy}^{\xi} = E_x^{\xi} - E_y^{\xi}$, $3E_{10}^D = E_{10}^A = 3\hbar ck$, $R_i = R_{D_i} - R_A$, $\mu^{xy(\xi)} = \langle x | \mu^{(\xi)} | y \rangle$. Sumând toate 11520 de diagrame și divizându-le în clase, precum și ținând cont de relații $\sum_{\lambda} e_i^{(\lambda)}(p) e_j^{*(\lambda)}(p) = \delta_{ij} - p_i p_j$, $\lim_{V \to \infty} \frac{1}{V} \sum_p \Longrightarrow \int \frac{d^3 p}{(2\pi)^3}$, s-au obținut următoarele expresii pentru

amplitudinea de probabilitate:

$$M_{fi} = M^{(A)} + \sum_{i} M^{(D_i)} + \sum_{i,j} M^{(D_i,D_j)}_A + \sum_{i,j} M^{(A,D_j)}_{D_i} , \qquad (3.97)$$

unde, de exemplu:

$$M^{(A)} = \mu_{i_1}^{01}(D_1)\mu_{i_2}^{01}(D_2)\mu_{i_3}^{01}(D_3)\alpha_{j_1j_2j_3}^{(3)(10)(A)}(-\omega,-\omega,-\omega)V_{i_1j_1}(k,R_1)V_{i_2j_2}(k,R_2)V_{i_3j_3}(k,R_3),$$
(3.98)

$$M^{(D_1)} = \mu_{i_1}^{01}(D_2)\mu_{i_2}^{01}(D_3)\mu_{i_3}^{10}(A)\alpha_{j_1j_2j_3}^{(3\vee 01)\vee D_1}(-\omega,-\omega,3\omega)V_{i_1j_1}(k,R_{12})V_{i_2j_2}(k,R_{13})V_{i_3j_3}(3k,R_1), \quad (3.99)$$

$$M_{A}^{(D_{2},D_{3})} = \mu_{i_{1}}^{01}(D_{2})\mu_{i_{2}}^{01}(D_{3})\alpha_{j_{2}j_{3}}^{(2 \times 01 \times D_{1})}(2\omega,-\omega)\alpha_{j_{3}j_{1}}^{(2 \times 10 \times A)}(-\omega,-2\omega)V_{i_{1}j_{1}}(k,R_{2})V_{i_{2}j_{2}}(k,R_{13})V_{i_{3}j_{3}}(2k,R_{1}), (3.100)$$

$$M_{D_{2}}^{(A,D_{3})} = \mu_{i_{1}}^{01}(A)\mu_{i_{2}}^{01}(D_{3})\alpha_{j_{2}j_{3}}^{(2 \times 01 \times D_{1})}(2\omega,-\omega)\alpha_{j_{3}j_{1}}^{(2 \times 01 \times D_{2})}(-2\omega,3\omega)V_{i_{1}j_{1}}(3k,R_{2})V_{i_{2}j_{2}}(k,R_{13})V_{i_{3}j_{3}}(2k,R_{1}), (3.101)$$

Aici $\mu_i^{\alpha\beta}$ sunt elementele de matrice ale momentelor dipolare de tranziție între stările $|\alpha\rangle$ și $|\beta\rangle$, iar α_{ij} și α_{ijk} sunt tensorii absorbției bifonice și trifotonice, respectiv:

$$\alpha_{ij}^{fi}(\mp\omega_1, \mp\omega_2) = \sum_{\zeta} \left(\frac{\mu_i^{f\zeta} \mu_j^{\zeta i}}{E_{i\zeta} \pm \hbar\omega_1} + \frac{\mu_j^{f\zeta} \mu_i^{\zeta i}}{E_{i\zeta} \pm \hbar\omega_2} \right), \tag{3.102}$$

$$\alpha_{ijk}^{fi}(\mp\omega_1,\mp\omega_2,\mp\omega_3) = \sum_{\zeta} \left(\frac{\mu_i^{f\zeta} \alpha_{jk}^{(2)\zeta}(\mp\omega_3,\mp\omega_2)}{E_{i\zeta} \pm \hbar\omega_2 \pm \hbar\omega_3} + \frac{\mu_j^{f\zeta} \alpha_{ki}^{(2)\zeta}(\mp\omega_1,\mp\omega_3)}{E_{i\zeta} \pm \hbar\omega_1 \pm \hbar\omega_3} + \frac{\mu_k^{f\zeta} \alpha_{ij}^{(2)\zeta}(\mp\omega_2,\mp\omega_1)}{E_{i\zeta} \pm \hbar\omega_2 \pm \hbar\omega_1} \right). (3.103)$$

În relațiile (3.98) – (3.101) $V_{ij}(k,\vec{R})$ este potențialul electric dipolar retardat de interacțiune după Andrews:

$$V_{ij}(k,\vec{R}) = \frac{1}{4\pi\varepsilon_0 R^3} \Big[\Big(\delta_{ij} - 3\hat{R}_i \hat{R}_j \Big) (\cos kR + kR \sin kR) - \Big(\delta_{ij} - \hat{R}_i \hat{R}_j \Big) k^2 R^2 \cos kR \Big].$$
(3.104)

Pentru intervale mici acest cuplaj depinde de distanță ca R^{-3} . În calcule "distanțe mici" pot însemna mai puțin de 100 Å. Devierile de la această dependență, adică termenii ce conțin kR și $(kR)^2$, cresc odată cu distanța *R*. Rata de transfer Γ se obține introducând elementul de matrice (3.97) în regula de aur a lui Fermi (3.91). Dacă condiția de rezonanță este satisfăcută doar aproximativ, atunci TRE are loc numai cu emisia sau absorbția de fononi. Rata de transfer (3.91) poate fi calculată folosind ca aproximație același element de matrice (3.97), însă calculul lui ρ necesită considerarea interacțiunii electron-fononice. O includere eficientă a acestei contribuții o constituie aproximația interacțiunii electron-fononice rezonante [82], care va fi examinată în paragraful următor.

Claselor de diagrame deduse mai sus le corespund patru mecanisme distincte, însă care pot fi grupate două câte două după structura lor. Primele două, reprezentate în Figura 3.2, sunt procese colective ireductibile de ordinul șase, ceea ce se poate observa direct atât din diagramele corespunzătoare, cât și din prezența în $M^{(\xi)}$ a tensorului absorbției trifotonice. În primul caz, acceptorul, fiind cuplat la donori, primește direct energia de excitație, iar în cel de-al doilea caz – cuplajul are loc numai cu un singur donor, pe care energia se transferă înainte de desfășurarea procesului. Le vom numi, respective, mecanism ireductibil direct (IR-D) și indirect (IR-IN). Celelalte două sunt la fel procese de ordinul șase, însă reductibile structural, nu însă și fenomenologic, la două procese de ordinul patru. Diferența între ele este aceeași ca și în cazul precedent. Le vom numi mecanisme reductibil direct (R-D) și indirect (R-IN). Mecanismul D predomină în fenomene de pompare a energiei de la donori la acceptori. Mecanismul IN prevalează în procesele de transfer a două excitații. Dependența fiecărui mecanism de distanțele dintre centre și de geometria transferului pentru probabilități semnificative este ilustrată în Figura 3.3, unde fiecare segment ce unește două centre reprezintă distanța dintre ele.

Fig. 3.2. Mecanisme de transfer: IR și R denotă ireductibil și reductibil, D și IN – mecanismul direct și indirect, respectiv [65].

Fig. 3.3. Reprezentarea schematică a dependenței amplitudinii de probabilitate de distanțele dintre centre [65].

Elementele de matrice ale operatorului dipolar pentru tranzițiile electronilor din învelișul fa ionilor PR³⁺ sunt egale cu zero, dacă calculul lor are loc în cadrul aceluiași model al atomului cu două niveluri. Tranzițiile sunt posibile din cauza perturbației exercitate de nivelurile superioare. Calculul lor este dificil și, de obicei, se recurge la o abordare semi-empirică, utilizându-se parametrii Judd [104]. Întroducînd elementele de matrice (3.97) în (3.91) și ridicându-le la pătrat, se obțin, pentru o orientare mutuală spațială fixă a dipolilor centrelor, expresiile pătratelor momentelor dipolare $|\mu^{fi(\xi)}|^2$. Dacă ținem cont de faptul că stările inițială și finală au următoarea formă în baza reprezentării ireductibile a grupului de simetrie a centrului:

$$|\alpha\rangle = \sum_{M_{\alpha}} a_{M_{\alpha}} |J_{\alpha}, M_{\alpha}\rangle, \qquad (3.105)$$

atunci aceste elementele de matrice pot fi aduse la următoarea formă [75, pp.430-433]:

$$\sum_{j} \sum_{M_{f}, M_{i}} \left| \left\langle J_{f} M_{f} \right| \mu_{j} \right| J_{i} M_{i} \right\rangle \right|^{2} = \sum_{\lambda=2,4,6} \Omega_{\lambda} \left| \left\langle J_{f} \right\| U^{\lambda} \left\| J_{i} \right\rangle \right|^{2}, \qquad (3.106)$$

unde U^{λ} sunt tensorii sferici ireductibili, Ω_{λ} sunt parametrii Judd cu valori tabulate în tabelele respective, J_{α} indică dimensiunea reprezentării, M_{α} este indicele de degenerare a nivelurilor energetice în raport cu simetria de rotație, iar α poate primi valorile *i* sau *f*.

Structura nivelurilor energetice ale centrelor influențează puternic forma detaliată a rezultatelor prin modificarea tensorilor absorbției bifotonice și trifotonice. La calculul tensorilor

 $\alpha_{ijk}^{fi(\xi)}$ şi $\alpha_{ij}^{fi(\xi)}$ vom considera că tranzițiile sunt condiționate numai de nivelurile *i* și *f*, deci vom opera cu un model al atomilor cu două niveluri. Această situație deseori apare atunci când nivelul inferior al tranziției este nivelul fundamental al învelișului electronic *f* sau când celelalte niveluri sunt suficient de îndepărtate ca să îndeplinească rolul de imagine. Cazul unor niveluri intermediare nu este cercetat, deoarece procesul se reduce la o interacțiune în trepte a patru centre. Prezența unei diferențe semnificative între dipolii statici ai stărilor inițiale și finale este o condiție absolut necesară pentru desfășurarea procesului TRE colectiv, exercitând o influență considerabilă asupra valorii probabilității. Pentru a îndeplini condițiile sus-menționate, vom separa tensorii de absorbție în două părți, termenul guvernant asociat cu transferul de sarcină $\alpha^{TS(\xi)}$, și un termen puțin semnificativ și neglijabil, $\alpha^{YF(\xi)}$, asociat cu zgomotul de fundal:

$$\alpha^{fi(\xi)} = \alpha^{TS(\xi)} + \alpha^{ZF(\xi)}, \qquad (3.107)$$

unde, de exemplu, pentru tensorul absorbției bifotonice la acceptor din starea $|0\rangle$ în starea $|1\rangle$ vom avea:

$$\alpha_{ij}^{ZF(A)} = \sum_{\zeta \neq 0.1} \frac{\mu_i^{1\zeta(A)} \mu_j^{\zeta(0)} + \mu_j^{1\zeta(A)} \mu_i^{\zeta(0)}}{\hbar c (k - k\zeta)}$$
(3.108)

și, explicit:

$$\alpha_{ij}^{TS(A)} = -\frac{\mu_i^{10(A)} d_j^{(A)} + \mu_j^{10(A)} d_i^{(A)}}{\hbar c k}, \qquad (3.109)$$

unde am introdus diferența d^A între dipolii statici ale stărilor finale și inițiale:

$$d^{A} = \mu^{11(A)} - \mu^{00(A)}.$$
(3.110)

În conformitate cu cele spuse mai sus, se poate considera $\alpha_{ij}^{10(A)} \approx \alpha^{TS(A)}$. Același lucru poate fi repetat și pentru tensorul absorbției trifotonice:

$$\alpha_{ijk}^{ZF(A)} = \sum_{\zeta \neq 0.1} \frac{(\mu_i^{1\zeta} \alpha_{jk}^{\zeta 0} + \mu_j^{1\zeta} \alpha_{ki}^{\zeta 0} + \mu_k^{1\zeta} \alpha_{ij}^{\zeta 0})}{\hbar c (2k - k\zeta)}$$

și, respectiv:

$$\alpha_{ijk}^{TS(A)} = -\frac{\mu_i^{11(A)} \alpha_{jk}^{10(A)} + \mu_j^{11(A)} \alpha_{ki}^{10(A)} + \mu_k^{11(A)} \alpha_{ij}^{10(A)}}{\hbar c k} \,.$$
(3.111)

În acest caz dependența de dipolii statici ai stărilor inițiale și finale este și mai sensibilă. Este util să evidențiem considerentele de simetrie în prezentarea tensorilor de absorbție în procesul de transfer a patru centre. Pentru a studia integral structura tensorilor este comod să-i descompunem în componentele ireductibile și să determinam regulile de transformare. Comparându-le cu

reprezentările din care fac parte stările finale și inițiale, putem determina care tranziții sunt permise și care sunt interzise. De exemplu, pentru tensorul absorbției bifotonice vom avea:

$$\alpha_{ij}^{10(\xi)}(\mp \omega_1, \mp \omega_2) \equiv \alpha_{ij} = \alpha_{ij}^{(0)} + \alpha_{ij}^{(1)} + \alpha_{ij}^{(2)}, \qquad (3.112)$$

unde componentele $\alpha_{ij}^{(0)}, \alpha_{ij}^{(1)}, \alpha_{ij}^{(2)}$ se transformă sub acțiunea grupului de rotație SO(3) ca componentele uni scalar, pseudovector și tensor simetric cu urma nulă. Ei pot fi scriși explicit în forma:

$$\alpha_{ij}^{(0)} = \frac{1}{3} \delta_{ij} \alpha_{kk} \,, \tag{3.113}$$

$$\alpha_{ij}^{(1)} = \frac{1}{2} (\alpha_{ij} - \alpha_{ij}), \qquad (3.114)$$

$$\alpha_{ij}^{(2)} = \frac{1}{2} (\alpha_{ij} \alpha_{ij}) - \frac{1}{3} \delta_{ij} \alpha_{kk} \,. \tag{3.115}$$

La fel se poate reprezenta și tensorul absorbției trifotonice în componentele sale ireductibile. Regulile de selecție, determinate de simetria stărilor inițiale și finale, deci de simetria cristalului, stabilesc opțiunile pentru mecanismele de reductibilitate diferită, deoarece este clar ca produsul de tensori de absorbție de ordin mai inferior, reprezentați de procesele reductibile, se transformă diferit de tensorii de absorbție de ordin superior, reprezentați de procesele ireductibile.

3.3.2. Modelarea interacțiunii electron-fononice de rezonanță pentru ionii de pământuri rare în cristale laser

Cercetarea reprezintă o abordare atât teoretică [82] asupra problemei interacțiunii electronfononice (IEF) în aproximația de cvasirezonanță pentru ionii de pământuri rare (PR) în cristale laser, precum și este dezvoltat în acest context aspectul de modelare a IEF, care a fost propusă în lucrarea [118]. Sunt prezentate expresiile pentru forma liniei de absorbție sau emisie, iar modelul teoretic este aplicat pentru a explica unele caracteristici spectrale ale tranzițiilor observate experimental [5, 82, 118].

Problema este de a obține funcția formei liniei de absorbție sau emisie a luminii de frecvență Ω între cele două stări ale sistemului electron-fononic în condiții apropiate de rezonanță (cvasirezonanță). Hamiltonianul total $H = H_L + H_e + V$, conține hamiltonianul electronic H_e , hamiltonianul de vibrație H_L și hamiltonianul de interacție electron-fononică V. Hamiltonianul de interacție poate fi scris, în primul rând, ca

$$V = \sum_{k} (v_k a_k + v_k^* a_k^+), \qquad (3.116)$$

Aici $k = (\vec{k}, \mu)$ caracterizează fononii, \vec{k} fiind impulsul fononic și μ ramura vibrației, iar a_k , a_k^+ denotă operatorii de anihilare și de creare și v_k operatori electronici. În cazul în care $|s\rangle$ și $|p\rangle$ sunt funcțiile proprii ale Hamiltonianului total $H = H_L + H_e + V$ și $|s\rangle$ este starea inițială, atunci se poate scrie funcția formei liniei pentru absorbția luminii de frecvență Ω în modul următor:

$$F(\Omega) = \sum_{p} |\langle p|d|s \rangle|^2 \,\delta(\Omega - \Omega_{ps}), \qquad (3.117)$$

unde $\Omega_{ps} = E_P - E_s$ și *d* este operator electronic de tranziție. Folosind formula

$$\delta(\Omega - \Omega_{ps}) = \frac{1}{\pi} Re \int_{0}^{+\infty} exp[i(\Omega_{ps} - \Omega)t - \gamma t]dt , \qquad (3.118)$$

unde γ este lărgimea intrinsecă a liniei, form-funcția liniei devine:

$$F(\Omega) = \frac{1}{\pi} Re \int_{0}^{+\infty} I(t) exp[-i\Omega t - \gamma t] dt$$
(3.119)

cu

$$I(t) = \sum_{p} \langle s|d^{+}|p\rangle e^{i(E_{P} - E_{s})t} \langle p|d|s\rangle, \qquad (3.120)$$

scrisă cu $I(t) = \sum_{p} \langle s | d^{+} | p \rangle \langle p | e^{iHt} d e^{-iHt} | s \rangle$. În notația $d(t) = e^{iHt} d e^{-iHt}$, formula (3.120) devine [38]:

$$I(t) = \langle s | d^+ d(t) | s \rangle. \tag{3.121}$$

Operatorul unitate poate fi scris ca o sumă după funcțiile proprii ale hamiltonianului neperturbat

$$H_{0} = H_{L} + H_{e}:$$

$$I = \sum_{r,n_{k}'} |r; ... n_{k}' ... \rangle \langle r; ... n_{k}' ... |, \qquad (3.122)$$

unde *r* reprezintă stările electronice și n'_k este numărul de ocupare a stării fononice cu vectorul de undă *k*.

Dacă presupunem că nivelul inițial este neperturbat de interacțiunea electron-fononică, atunci starea inițială $|s\rangle$ este funcția proprie pentru $H_0 = H_L + H_e$ și poate fi scrisă ca $|i; ... n_k ... \rangle$, unde *i* este starea electronică inițială și n_k este numărul de ocupare a stării fononice cu vectorul *k*.

În reprezentarea de interacțiune avem:

$$\exp(iHt) = \exp(iH_0 t) U(t), \qquad (3.123)$$

unde U(t) este operatorul de evoluție definit de expresia:

$$U(t) = \sum_{n=0}^{\infty} \left(\frac{i}{\tilde{h}}\right)^n \frac{1}{n!} \int_0^t \dots \int_0^t T[V(t_1) \dots V(t_n)] dt_1 \dots dt_n$$
(3.124)

şi

$$V(t) = \exp(iH_0 t) V \exp(-iH_0 t).$$
(3.125)

Substituind (3.123) în (3.121), rezultă că

$$I(t) = \sum_{f, P(n'_{k})} \langle i; \dots n_{k} \dots | d^{+} | f; \dots n'_{k} \dots \rangle \langle f; \dots n'_{k} \dots | e^{iH_{0}t} U(t) d U^{+}(t) e^{-iH_{0}t} | i; \dots n_{k} \dots \rangle (3.126)$$

Deoarece operatorul electronic acționează numai pe componenta electronică, se poate scrie:

$$I(t) = \sum_{f} \langle i | d^{+} | f \rangle e^{i(E_{f} - E_{i})t} \langle f; \dots n_{k} \dots | U(t) d U^{+}(t) | i; \dots n_{k} \dots \rangle.$$
(3.127)

Deoarece s-a considerat că starea inițială nu interacționează cu celelalte stări și, utilizând relația $U^+ = U^{-1}$, rezultă că

$$U^{+}(t) | i; \dots n_{k} \dots \rangle = | i; \dots n_{k} \dots \rangle.$$

$$(3.128)$$

Prin urmare, utilizând expresia (3.122), obținem:

$$I(t) = \sum_{f,r} \langle i|d^+|f\rangle e^{i(E_f - E_i)t} \langle f; \dots n_k \dots |U(t)|r; \dots n_k \dots \rangle \langle r|d|i\rangle.$$
(3.129)

Printre termenii $\langle f; ..., n_k ... | U(t) | r; ..., n_k ... \rangle$, cei mai mari sunt pe diagonală, astfel încât:

$$\langle f; \dots n_k \dots | U(t) | r; \dots n_k \dots \rangle = \delta_{f,r} \langle f; \dots n_k \dots | U(t) | f; \dots n_k \dots \rangle, \qquad (3.130)$$

fiind introdusă în (3.129) și (3.119) conduce la următoarea funcție pentru forma liniei:

$$F(\Omega) = \frac{1}{\pi} \sum_{f} \left| \langle i | d | f \rangle \right|^{2} \operatorname{Re} \int_{0}^{+\infty} \exp\left[i \left(E_{f} - E_{i} - \Omega \right) t - \gamma t \right] \langle f; \dots n_{k} \dots | U(t) | f; \dots n_{k} \dots \rangle.$$

$$(3.131)$$

Notând $U_f = \langle f; ... n_k ... | U(t) | f; ... n_k ... \rangle$ și utilizând transformarea Laplace

$$\widetilde{U_f}(p) = \int_0^{+\infty} U_f(t) \exp(-pt) dt, \qquad (3.132)$$

se ajunge la relația

$$F(\Omega) = \frac{1}{\pi} \sum_{f} \left| \langle i | d | f \rangle \right|^2 Re \widetilde{U_f}(p), \qquad p = i \left(\Omega + \Omega_{i,f} \right) + \gamma.$$
(3.133)

Deoarece U(t) satisface ecuația [28]

$$U(t) = 1 - \frac{i}{\tilde{h}} \int_{0}^{t} dt_{1} V(t_{1}) + \left(\frac{-i}{\tilde{h}}\right)^{2} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} V(t_{1}) V(t_{2}) U(t_{2}), \qquad (3.134)$$

putem obține că

$$U_{f}(t) = 1 + \sum_{r,P(n_{k}')} \left(\frac{-i}{\tilde{h}}\right)^{2} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \langle f; \dots n_{k} \dots | V(t_{1})V(t_{2}) | r; \dots n_{k}' \dots \rangle \langle r; \dots n_{k} \dots | U(t_{2}) | f; \dots n_{k} \dots \rangle$$
(3.135)

Utilizând aproximația (3.130), obținem:

$$U_{f}(t) = 1 + \left(\frac{-i}{\tilde{h}}\right)^{2} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \langle f; \dots n_{k} \dots | V(t_{1}) V(t_{2}) | f; \dots n_{k} \dots \rangle \langle f; \dots n_{k} \dots | U(t_{2}) | f; \dots n_{k} \dots \rangle.$$
(3.136)

Primul termen de sub integrală poate fi ușor calculat utilizând (3.122) și, folosind iarăși (3.116) și (3.125), expresia primește forma:

$$\langle f; ... n_k ... | V(t_1) V(t_2) | f; ... n_k ... \rangle = \sum_{r,k} |\langle f | v_k | r \rangle |^2 \{ (n_k + 1) exp[i(\Delta_{fr} - \omega_k)(t_1 - t_2)] + n_k exp[i(\Delta_{fr} + \omega_k)(t_1 - t_2)] \}.$$
(3.137)

Diferențiind (3.136) și substituind (3.137), se obține următoarea ecuație:

$$\frac{dU_{f}(t)}{dt} = -\frac{1}{\tilde{h}^{2}} \sum_{r,k} \left| \langle f | v_{k} | r \rangle \right|^{2} \left\{ (n_{k} + 1) \int_{0}^{t} dt_{1} \exp[i(\Delta_{fr} - \omega_{k})(t - t_{1})] U_{f}(t_{1}) + n_{k} \int_{0}^{t} dt_{1} \exp[i(\Delta_{fr} + \omega_{k})(t_{1} - t_{2})] U_{f}(t_{1}) \right\}.$$
(3.138)

Aplicând transformata Laplace, obținem ecuația:

$$p\widetilde{U_f}(p) - 1 = \frac{1}{\tilde{h}^2} \sum_{r,k} \left| \langle f | v_k | r \rangle \right|^2 \left\{ (n_k + 1) \frac{\widetilde{U_f}(p)}{p + i(\Delta_{fr} - \omega_k)} + n_k \frac{\widetilde{U_f}(p)}{p + i(\Delta_{fr} + \omega_k)} \right\},\tag{3.139}$$

care are soluția

$$\widetilde{U}_{f}(p) = \left\{ p + \frac{1}{\widetilde{h}^{2}} \sum_{r,k} \left| \langle f | v_{k} | r \rangle \right|^{2} \left[\frac{n_{k}+1}{p+i(\Delta_{fr}-\omega_{k})} + \frac{n_{k}}{p+i(\Delta_{fr}+\omega_{k})} \right] \right\}^{-1}.$$
(3.140)

Utilizând (3.140), putem scrie forma finală pentru form-funcția liniei (3.133):

$$F(\Omega) = \frac{1}{\pi} \sum_{f} \left| \langle i | d | f \rangle \right|^{2} \frac{\gamma + \Gamma_{f}(\Omega)}{\left[\Omega - \Omega_{fi} - \Sigma_{f}(\Omega) \right]^{2} + \left[\gamma + \Gamma_{f}(\Omega) \right]^{2}}.$$
(3.141)

Neglijând lățimea intrinsecă γ , putem scrie:

$$\Gamma_{f}(\Omega) = \frac{\pi}{\tilde{h}^{2}} \sum_{r,k} \left| \langle f | v_{k} | r \rangle \right|^{2} \left[(n_{k} + 1) \delta \left(\Omega - \Omega_{fi} + \Delta_{fr} - \omega \right) + n_{k} \delta \left(\Omega - \Omega_{fi} + \Delta_{fr} + \omega \right) \right],$$
(3.142)

$$\Sigma_{f}(\Omega) = \frac{1}{\tilde{h}^{2}} P \sum_{r,k} \left| \langle f | v_{k} | r \rangle \right|^{2} \left[\frac{n_{k}+1}{\Omega - \Omega_{fi} + \Delta_{fr} - \omega_{k}} + \frac{n_{k}}{\Omega - \Omega_{fi} + \Delta_{fr} + \omega_{k}} \right].$$
(3.143)

Dacă vom trece de la sume la integrale și vom utiliza densitatea stărilor fononice, obținem:

$$\Gamma(\Omega) = \frac{\pi}{\tilde{h}^2} \sum_r \int_0^\infty A_r(\omega) \rho(\omega) \{ [n(\omega) + 1] \delta (\Omega - \Omega_{fi} + \Delta_{fr} - \omega) + n(\omega) \delta (\Omega - \Omega_{fi} + \Delta_{fr} + \omega) \} d\omega.$$
(3.144)

$$\Sigma(\Omega) = \frac{1}{\tilde{h}^2} \sum_r P \int_0^{\infty} A_r(\omega) \rho(\omega) \left[\frac{n(\omega) + 1}{\Omega - \Omega_{fi} + \Delta_{fr} - \omega} + \frac{n(\omega)}{\Omega - \Omega_{fi} + \Delta_{fr} + \omega} \right] d\omega, \qquad (3.145)$$

unde $\rho(\omega)$ indică densitatea stărilor fononice, iar $A_r(\omega)$ reprezintă elementul de matrice al interacțiunii electron-fononice mediată după fononii cu frecvența ω . Conform expresiei (3.141), $\Gamma(\Omega)$ reprezintă lărgirea formei liniei, iar $\Sigma(\Omega)$ este deplasarea ei. Despicarea este data de ecuația [6]:

$$\Omega - \Omega_{fi} - \Sigma_f(\Omega) = 0. \tag{3.146}$$

În cazul în care rezonanța implică doar un fonon ω_0 (a se vedea Figura 3.4 [82]), densitatea fononilor în jurul acestui maxim poate fi aproximată ca

$$\rho(\omega) = a\delta(\omega - \omega_0) + \rho'(\omega) \tag{3.147}$$

Fig.3.4. Modelul schematic pentru efectele în condiții apropiate de rezonanță, $\Delta_{fr} \sim \omega_0$.

cu o mică deviere $\rho'(\omega)$ de la funcția δ , pentru $\rho'(\omega)$ neglijabilă avem:

$$\Sigma(\Omega) = B \left[\frac{n(\omega_0) + 1}{\Omega - \Omega_{fi} + \Delta_{fr} - \omega_0} + \frac{n(\omega_0)}{\Omega - \Omega_{fi} + \Delta_{fr} + \omega_0} \right],$$
(3.148)

unde

$$B = \frac{a^* A(\omega_0)}{\tilde{h}^2}$$

La temperature joase, $T = 0^{\circ}K$, ecuația se transformă în

$$\Sigma(\Omega) = \frac{B}{\Omega - \Omega_{fi} + \Delta_{fr} - \omega_0}.$$
(3.149)

Substituim (3.149) în (3.146) și obținem ecuația pentru temperaturi joase:

$$\Omega' - \Delta_{fr} - \frac{B}{\Omega' - \omega_0} = 0 , \qquad (3.150)$$

unde $\Omega' = \Omega - \Omega_{ri}$, adică energia se măsoară de la nivelul intermediar *r*. Ecuația (3.150) primește soluția

$$\Omega_{1,2}' = \frac{\Delta_{fr} + \omega_0}{2} \pm \frac{1}{2} \left[\left(\Delta_{fr} - \omega_0 \right)^2 + 4B \right]^{\frac{1}{2}}.$$
(3.151)

Dacă lățimea liniei dintre cele două componente despicate este egală, atunci raportul dintre intensitățile celor 2 vârfuri îndeplinesc condiția:

$$\frac{I_1}{I_2} = \frac{\Omega_2' - \Delta_{fr}}{\Delta_{fr} - \Omega_1'} \,. \tag{3.152}$$

Din datele experimentale pentru Ω'_1 , Ω'_2 și ${}^{I_1}/{I_2}$ pot fi determinate ω_0 , Δ_{fr} și *B*. Problema

cvasirezonantă în cazul cu mai mulți fononi este ușor de extins. Pot fi luate în considerație diferite forme ale spectrului fononic în apropierea frecvenței de rezonanță și, în particular, o formă a liniei de tip Lorentzian.

Acest model teoretic este folosit în continuare pentru obținerea nivelurilor energetice pentru Yb³⁺ în YAG. Spectrele de absorbție pentru Yb³⁺ în YAG la diferite temperaturi au fost măsurate cu un sistem de rezoluție înaltă. Deoarece Yb³⁺ (4f¹³) înlocuiește în YAG Y³⁻ pozițiile dodecahedrale de simetrie locală D_2 , atunci 2 multipleți ${}^2F_{7/2}$ (fundamental) și ${}^2F_{5/2}$ (excitat) se despică în 4 și 3 dublete Stark, respectiv. În Figura 3.6(a) este prezentat spectrul de absorbție la 10 K, care corespunde tranzițiilor ${}^2F_{7/2} \rightarrow {}^2F_{5/2}$ pentru Yb³⁺(5at.%) în YAG. Spectrul ar trebui să conțină doar trei linii zero-fononice pentru Yb³⁺ corespunzătoare tranzițiilor permise ${}^2F_{7/2}(1) \rightarrow$ ${}^2F_{5/2}$ în D_2 din componenta Stark fundamentală [82].

Pentru a explica spectrele a fost propus următorul model [82]: liniile B și C sunt componentele resonante despicate pentru al doilea nivel Stark E_2 pentru multipletul excitat ${}^2F_{5/2}$ al Yb³⁺, în timp ce liniile C' și C" corespund despicării pentru al treilea nivel Stark E_3 . Dacă B și C sunt componente rezonante despicate, potrivit relației (3.152) se obține poziția nivelului electronic nedespicat, adică $\Delta_{fr} \sim 323 \text{ cm}^{-1}$ ($E_2 \sim 10650 \text{ cm}^{-1}$), energia fononilor cvasirezonantă $\omega_1 \sim 327 \text{ cm}^{-1}$ și parametrul de interacțiune $B^{1/2} \sim 26 \text{ cm}^{-1}$. Trebuie de menționat faptul că densitatea fononilor în YAG are un vârf ascuțit și intens la $\omega_1 \sim 327 \text{ cm}^{-1}$, așa cum s-a observat și la alți ioni [123]. Celelalte vârfuri din jurul lui B sau C sunt vibronice, care indică o creștere în intensitate, deși poziția lor în raport cu A (în limita erorilor experimentale ale acestor date publicate) este nedeplasată. Dacă liniile C' și C" sunt considerate despicate resonant, atunci din relația (3.152) se obține $\Delta_{fr} \sim 596 \text{ cm}^{-1} (E_3 \sim 10921 \text{ cm}^{-1})$, $\omega_2 \sim 603 \text{ cm}^{-1}$, fiind într-o concordanță bună cu vârful fononic ascuțit din YAG [80, 81] și $B^{1/2} \sim 13 \text{ cm}^{-1}$. Acest model oferă o schemă nouă pentru nivelul energetic electronic pentru multipletul ${}^2F_{5/2}$ al Yb³⁺ în YAG: 10327, 10650 și 10921 cm⁻¹ [82]. Diagrama nivelului de energie propusă pentru Yb³⁺ in YAG diferă de cele anterioare [58, 59, 105, 108, 141, 172].

Aplicația adaptiv-parametrică elaborată conține programul de calcul, care începe cu definirea mapei în care sunt stocate datele, sunt apoi definite și constantele: constanta de transformare cm⁻¹ în J, precum și contanta Boltzmann în J/K:

```
path = "D:\\phys2\\";
SetDirectory[path];
cm2J = 6.62607 × 10<sup>-34</sup> * 2.99 * 10<sup>8</sup> * 100;
b = 1.38065 * 10<sup>-23</sup>;
```

Funcția *execute* îndeplinește toate calculele necesare. În calitate de valori fizice de intrare sunt temperatura *T*, liniile electronice și fononice experimentale. Fiecare element de matrice cu liniile electronice posedă următoarea structură:

{numărul liniei, energia în cm⁻¹, lățimea în cm⁻¹, $|\langle i|d|f\rangle|^2$ },

iar pentru elementul de matrice al benzilor fononice avem:

{numărul liniei f, numărul liniei r, energia fononului în cm⁻¹, lățimea în cm⁻¹, parametrul de cuplaj $A_r(\omega) \cdot a(\omega) / \tilde{h}^2$ }.

Screenshotul imaginii interfeței sistemul informatic adaptiv pentru modelarea formei liniei de absorbție pentru ionii de PR în cristale laser este prezentat în Figura 3.5.

PamintRar × +			
(i) sql.webtic.info:7777/apex/f?p=101:3:733	3512669082::NO		Ĉ 合 ☆ 自 ♥ ♣ 영
plicație adaptiv	-parametr	ică (Doctorand	Victor CIOBU)
A.A FULLERENE A.A	ONI PAMINT-RAR		
ntroducerea parametrilor			
Selectati tip Cristal YAG Nr Linii 3 Temperatu	ıra 10		Execută
Electroni			
Energia tranzitiei electronului 103	Latimea liniei elect	ronice Elementul de i 5	40
100	46	5	90
109	114	14	70
Fononi			
De la Pînă la Energia fononului	Lațim	iea liniei fononice F	Parametrul de cuplaj
2 • 1 •	289	3	20
2 • 1 •	300	4	60
2 • 1 •	327	18	700
2 • 1 •	344	1	20

Fig. 3.5. Interfața aplicației pentru ionii de PR în cristale laser.

Valorile parametrilor fizici folosiți în modelare sunt prezentate în Tabelul 3.1 [118], iar rezultatele calculelor numerice sunt prezentate în Figurile 3.6-3.8.

Cristalul	Nivelul Yb ³⁺ E _i (cm ⁻¹)	Nivelul Yb ³⁺ lățimea liniei γ (cm ⁻¹)	Energia fononului (cm ⁻¹)	Lățimea liniei fononului (cm ⁻¹)	Cuplarea A(ω)*a	Energia vârfurilor fononice în cristal (cm ⁻¹)
	E_1 —10 327 E_2 —10 646	5 5	289 300	3	20 60	290 305
YAG	E_3 —10 914	14	327 344 599	18 1 10	700 20 140	325 340 600
LiNbO ₃	E_1 — 10201.5 E_2 —10 462	5 50	232 270	5 8	90 150	232 270
YLF	E_1 —10 290 E_2 —10 418 E_3 —10 559	1 2 10	272	5	50	273

Tabelul 3.1. Parametrii utilizați la modelarea formei liniei de absorbție Yb³⁺ în cvasirezonanță

în YAG la 10 K (a) și modelarea teoretică a formei liniei (b).

Fig. 3.7. Spectrul de absorbție al Yb³⁺(0.2at.%) în LiNbO₃ la 10 K (a) și modelarea teoretică a formei liniei (b).

Fig. 3.8. Spectrul de absorbție polarizat pentru Yb³⁺(20at.%.) în YLF la 10 K (a) și modelarea teoretică a formei liniei (b).

Structura matricelor se transformă pentru comoditate în **e**, **uniqueElectronLines**, **uniqueResonance**, **ph** (a se vedea Anexa 5). Se determină funcția de distribuție Bose-Einstein $\mathbf{n}[\boldsymbol{\omega}_{-}]$. Funcția **ArRho** reprezintă produsul $A_r(\omega)\rho(\omega)$, calculat conform formulelor (3.145) și densitatea stărilor fononice $\rho(\omega) = \sum_i a_i v_i(\omega)$, unde $v_i(\omega) = \frac{1}{\pi} \frac{a_i}{(\omega - \omega_i)^2 + \alpha_i^2}$, iar a_i este contribuția fononului *i* și α_i este jumătate din lățimea vârfului fononic. $\Gamma\mathbf{r}[\Omega_{-}\mathbf{f}_{-}\mathbf{r}_{-}]$ este funcția pentru care se determină integrala din expresia (3.144) pentru liniile concrete *f* și *r*. $\Gamma[\Omega_{-}\mathbf{f}_{-}]$ reprezintă funcția completă din formula (3.144) pentru o anumită valoare *f*. Analogic se procedează în cazul formulei (3.145) $\Sigma \mathbf{r}[\Omega_{-}\mathbf{f}_{-}\mathbf{r}_{-}] \cong \Sigma[\Omega_{-}\mathbf{f}_{-}]$, însă integrarea se efectuează nu în limitele de la 0 până la ∞ , dar în anumite intervale concrete, determinate de liniile fononice. Dacă mărimea expresiei $\Omega - \Omega_{fi} + \Delta_{fr}$ se găsește în acest interval, atunci această valoare se exclude din integrare, deoarece este un punct singular. Funcția $\mathbf{FF}[\Omega_{-}]$ denotă formula (3.141), iar funcția **drawPlot**[] construiește graficul respectiv. În final, funcția **execute** afișează acest grafic. Funcția **createFolder** și algoritmul programat sunt similare în fișierul **ScheduledTaskFullerene.nb**.

3.4. Concluzii la Capitolul 3

- A fost examinat, în cazul cel mai general, transferul rezonant de energie (TRE) între patru centre în formalismul hamiltonianului de interacțiune multipolară a ionilor cu componenta transversală a câmpului electromagnetic local.
- A fost analizată structura topologică a diagramelor ce descriu fenomenul fizic respectiv, identificându-se, astfel, mecanisme distincte de transfer în conformitate cu cuplajul acceptorului la donori și după reductibilitatea diagramelor.
- 3. Spre deosebire de cazul TRE în modelul cu trei centre, a fost identificat un nou tip de clasificare a fenomenelor de transfer după reductibilitate. Eficiența mecanismelor D în raport cu IN depinde foarte sensibil de raportul între distanțele mutuale dintre acceptor şi donori şi distanțele între donori.
- 4. Mecanismele IR şi R corespund transferului de la donorii apropiați şi, respectiv, îndepărtați la acceptor. Mecanismele R şi IR se deosebesc prin reguli diferite de selecție pe care le impune simetria tensorilor de absorbție multifotonică. Pentru diferite structuri cristaline pot interveni diferite preferințe pentru mecanismele R şi IR. Pentru aplicații numerice a fost cercetat calculul elementelor de matrice ale operatorului momentului dipolar al tranziției în PR³⁺ folosind parametrii Judd.

5. A fost modelată interacțiunea electron-fononică de rezonanță pentru ionii de PR în cristale laser. Comparația rezultatelor numerice obținute pentru forma liniilor de absorbție din aplicația adaptiv-parametrică elaborată, cu spectrele experimentale, demonstrează o bună concordanță a tranziției ${}^{2}F_{7/2}$ (1) $\rightarrow {}^{2}F_{5/2}$ pentru Yb³⁺(5at.%.) în YAG, a unei părți a spectrului de absorbție al Yb³⁺(0.2at.%.) în LiNbO₃ la 10 K și a spectrului de absorbție polarizat pentru Yb³⁺(20at.%.) în YLF la 10K.

Rezultatele obținute sunt publicate în următoarele lucrări științifice: [5, 6, 12, 13, 65, 82].

CONCLUZII GENERALE ȘI RECOMANDĂRI

- Este elaborată aplicația adaptiv-parametrică cu utilizarea softurilor Wolfram Mathematica şi Oracle Application Express pentru determinarea stărilor vibraționale ale moleculei de fullerene şi pentru modelarea interacțiunii electron-fononice de rezonanță pentru ionii de pământuri rare în cristale laser. Această aplicație posedă o interfață web destinată specialiştilor în domeniul fizicii, fără cunoştințe în programare şi tehnologii informaționale. Termenii utilizați în interfața web şi descrierea lor amănunțită sunt din domeniul fizicii. [4, 5]
- 2. Forma liniei de absorbție pentru ionul C_{60}^{-1} este determinată de rezonanța electron-vibrațională. Pentru prima data s-a constatat că lărgimea spectrelor obținute depinde de frecvența tranziției radiative spontane. Frecvențele oscilațiilor proprii ale ionului C_{60}^{-1} cu simetria D_{5d} au fost obținute prin metoda reducției grupului icosaedral I_h către grupul D_{5d} , folosind datele experimentale pentru oscilațiile fullerenului neutru. [11, 40]
- 3. Compararea rezultatelor teoretice pentru C_{60} cu datele experimentale obținute de diferiți cercetători indică o bună concordanță a datelor. Oscilațiile cu frecvențe mai mici aduc un aport mai mare în abaterea de la valorile experimentale. Astfel, modelul teoretic propus reduce vibrațiile de frecvență joasă și mărește cele cu frecvență înaltă. [1, 4, 9, 10]
- 4. Este aplicat, în cazul cel mai general, transferul rezonant de energie între patru centre în formalismul hamiltonianului interacțiune multipolară a ionilor cu componenta transversală a câmpului electromagnetic local. [13, 65]
- 5. Este modelată interacțiunea electron-fononică de rezonanță pentru ionul de Yb³⁺ în trei cristale laser diferite. Comparația rezultatelor numerice obținute pentru forma liniilor de absorbție cu spectrele experimentale indică o bună concordanță a tranziției ²F_{7/2} (1) → ²F_{5/2} pentru Yb³⁺(5at.%) în YAG, a unei părți a spectrului de absorbție al Yb³⁺(0.2at.%) în LiNbO₃ la 10 K şi a spectrului de absorbție polarizat pentru Yb³⁺(20at.%) în YLF la 10 K. Totodată, îmbunătățirea calculelor parametrice pentru câmpul cristalin are o semnificație limitată în astfel de cazuri, deoarece deplasările induse de cuplajul electron-fononic ar putea depăşi precizia calculelor numerice. [5, 6, 82]
- 6. Metalele pământuri rare posedă proprietăți unice şi prezintă interes sporit pentru calculul cuantic, fiind recomandate pentru realizarea dinamicii controlate care permite implementarea porților cuantice de *n*-biți. Frecvențele exacte ale tranzițiilor optice depind puternic de câmpurile electrice înconjurătoare, iar combinația dintre benzile spectrale omogene înguste şi

extinderea neomogenă semnificativă într-un interval mare de frecvențe oferă pentru cercetările ulterioare diferite posibilități de adaptivitate parametrică. [12]

7. Se recomandă a folosi aplicația adaptiv-parametrică pentru asistența utilizatorilor finali în soluționarea a două familii de probleme: determinarea stărilor vibraționale ale moleculei de fullerene și modelarea interacțiunii electron-fononice de rezonanță pentru ionii de pământuri rare în diferite cristale laser, precum și la cursurile universitare care conțin proiectarea și crearea aplicațiilor pe calculator. [4, 5]

BIBLIOGRAFIE

în limba română

- Boguş I., Ciobu V., Paladi F. Algoritmul de obținere a deplasărilor simetrizate în sistemele simetrice complexe prin reducerea la problema vectorilor proprii. Chişinău: Studia Universitatis Moldaviae, seria "Fizică" (Categoria B), nr.7(87), 2015. p.3-8.
- Căpăţână Gh. Experienţa elaborării sistemelor informatice orientate la problemă. Chişinău: Studia Universitatis, Nr.2, CEP USM, 2007. p.23-28.
- Ciobu V. Elaborarea sistemului informațional național adaptiv pentru automatizarea proceselor testării tehnice ale vehiculelor. Chişinău: Revista ştiințifică a Universității de Stat din Moldova "Studia Universitatis Moldaviae" (seria Informatica), nr.2(82), 2015. p.3-9.
- Ciobu V., Paladi F., Căpăţână Gh. Sistem informatic adaptiv "Determinarea stărilor proprii ale moleculelor de fullerene". Chişinău: Revista ştiinţifică a Universităţii de Stat din Moldova "Studia Universitatis Moldaviae" (seria Informatica). nr.2(82), 2015. p.10-15.
- Ciobu V. Modelarea interacțiunii electron-fononice de rezonanță pentru ionii de pământ rar în cristale laser. Chişinău: Revista științifică a Universității de Stat din Moldova "Studia Universitatis Moldaviae" (Seria Fizică), nr.2(92), 2016. p.3–10.
- Ciobu V. Influența rezonanței electron-fononice asupra spectrelor de împrăștiere raman şi asupra spectrelor de absorbție a luminii în cristale dopate cu ioni pământ-rar. Chişinău: Analele ştiințifice ale USM, Seria "Științe fizico-matematice", 2003. p.53-55.
- 7. Dicționarul limbii române <u>www.dexonline.ro</u> (vizitat 21.12.2015).
- Dumitrache I., Petre E., Feştilă C. Automatica vol.II. Bucureşti: Editura Academiei Române, 2013. p.389-505.
- Enachi V., Ciobu V. Modelul semiclasic şi metoda numerică de evaluare a proprietăților electron-fononice în fullerenul C₆₀. Chişinău: Anale ştiințifice ale USM. Seria "Științe fizico-matematice", 1999. p.117-118.
- Enachi V., Ciobu V. Oscilații murmurale în particule onionice fullerenice. Chișinău: Buletinul ASRM, Seria Fizică și Tehnica, Nr.2(23), 1998. p.13-30.
- 11. Enachi V., Isacova C., Ciobu V. Influența rezonanței electron-fononice asupra liniei de absorbție a luminii în ionul de fulleren C_{60}^{-1} . Chișinău: Anale științifice ale USM, Seria "Științe fizico-matematice", 2005. p.62-71.

- Enachi V., Ciobu V. Celule logice CNOT ale computerului cuantic bazate pe molecule fullerenice activate şi dopate. Chişinău: Anale ştiinţifice ale USM, Seria "Ştiinţe fizicomatematice", 2001. p.106-108.
- Enachi V., Ciobu V. Transfer de energie în cristale dopate cu ioni de pământ-rar. Chişinău: Analele ştiințifice ale USM, Seria "Ştiințe fizico-matematice", 2003. p.56-61.
- Filip F. Decizie asistată de calculator: decizii, decidenți metode de bază și instrumente informatice asociate. Ediția a 2-a, revăzută și adăugită. București: Editura Tehnică, 2005. 376 p.
- 15. Geru I. ș.a. Moduri vibraționale intramoleculare IR active, tranziții optice interbande și rotații ale moleculelor C_{60} în filme de fullerit. Chișinău: Anale științifice ale USM, Seria "Științe fizico-matematice", 1997. p.76-92.
- 16. Geru I., Spoiala D., Dihor I. Influența radiației infraroșii laser asupra proprietăților optice ale straturilor subțiri de fullerit C_{60} . Chișinău: Anale științifice ale USM, Seria "Științe fizico-matematice", 1998. p.208-220.
- Holban I., Petrov C. Intensificarea cercetărilor şi a pregătirii cadrelor ştiințifice în domeniul tehnologiei informației şi comunicațiilor – un imperativ al timpului. 5th International Conference "Telecommunications, Electronics and Informatics" (ICTEI 2015), Chisinau: 20-23 May 2015. p.305-310.
- Paladi F. Sisteme complexe: modele analitice şi numerice avansate de tip cluster. Chişinău: CEP USM, 2005. 174 p.
- 19. Pop M. Modelarea cuantică și topologică a unor fullerene non-IPR. Rezumatul tezei de doctorat, Universitatea "Babes-Bolyai", Cluj-Napoca, 2012. 59 p.
- Tasnádi E. Caracterizarea topologică şi funcționalizarea nanostructurilor de carbon. Rezumatul tezei de doctorat, Universitatea "Babes-Bolyai", Cluj-Napoca, 2014. 48 p.

în limba rusă

- Александровский Н., Егоров С., Кузин Р. Адаптивные системы автоматического управления сложными технологическими объектами/под общей ред. Н.М.Александровского. Москва: Энергия, 1973. 272 с.
- 22. Ансельм А. Введение в теорию полупроводников. Москва: 1978. 618 стр.
- Бир Г., Пикус Г. Симметрия и деформационные эффекты в полупроводниках. Москва: Наука, 1972. 584 с.
- 24. Болдырев С., Думбрэвяну Р., Перлин Ю. Многофононный перенос возбуждения между примесными редкоземенными ионами. ФТТ, т.23, в.3, 1981. с.787-795.

- Гамурарь В., Перлин Ю., Цукерблат Б. Многофононные безызлучательные переходы в примесных редкоземельных ионах. Изв.АН СССР, сер.физическая, Т.35, 1971. с.1429-1432.
- Елецкий А., Смирнов Б. Фуллерены и структура углерода. УФН. т.165, №9, 1995. с.977-1009.
- 27. Избачков Ю., Петров В. Информационные системы 2-издание. Питер: 2006. 656 с.
- 28. Киттель Ч. Квантовая теория твёрдых тел. Москва: Наука, 1967. 492 с.
- Ландау Л., Лившиц Е. Квантовая механика. Нерелятивистская теория, Т.3, Москва: Наука, 1974. 702 с.
- Люиселл У. Излучение и шумы в квантовой электронике. Москва: Наука, 1972.
 398 с.
- 31. Мендельсон Э. Введение в математическую логику. Москва: Наука, 1971. 320 с.
- 32. Поклонский Н. Точечные группы симметрии. Минск: БГУ, 2003. 222 с.
- Пулье А., Матье Ж. Колебательные спектры и симметрия кристаллов. Москва: Мир, 1973. 437 с.
- Пекар С. Исследование по электронной теории кристаллов. Москва: Государственное издательство тех-теор. литературы, 1951. 256 с.
- Перлин Ю., Енакий В. Штарк фононные резонансы в оптических спектрах глубоких примесных центров. Физические явления в полупроводниках. Кишинев: Штиинца, 1981. с. 3-11.
- Перлин Ю. и др. Электрон-фононные резонансы в спектре примесного редкоземельного иона. Письма в ЖЭТФ, Вып. 7, 1979. с. 426-429.
- 37. Перлин Ю. и др. Нелинейное электрон-фононное взаимодействие как причина безызлучательных переходов ионов в кристаллах. ФТТ, Вып. 3, 1982. с. 685-692.
- Перлин Ю., Цукерблат Б. Эффекты электронно-колебательного взаимодействия в оптических спектрах примасных парамагнитных ионов. Кишинев: Штиинца, 1974. 368 с.
- Петрашень М., Трифонов Е. Применение теории групп в квантовой механике.
 Издание четвёртое, стереотипное. Москва: 2002. 280 с.
- 40. Чобу В. Электрон-фононный резонанс в ионах фуллерена C_{60}^{-1} Chişinău: Conferința corpului didactico-științific "Bilanțul activității științifice a USM pe anii 1998-99", 2000. p.194-195.

în limba engleză

- 41. Adamenko I. et al. Equation of state for C_{60} fullerene aqueous solutions. Int. J. Thermophys 26, 2005. 795 p.
- Adams G. et al. Polymerized C₆₀ Studied by First Principles Molecular Dynamics. Phys. Rev. B, vol. 50, 1994. p.17471-17479.
- 43. Adams G. et al. First-principles quantum molecular-dynamics study of the vibrations of icosahedral C₆₀. Phys. Rev. B, vol. 44, 1991. p.4052.
- 44. Akselrod L. et al. Raman analysis of C_{60} at low temperatures: a study of molecular and crystal-field effects. Chem. Phys. 192, 1995. 307 p.
- Alshehri M., Cox B., Hill J. C₆₀ fullerene binding to DNA. The European Physical Journal B vol.87, 199, 2014.
- Andrieş A. et al. Electrical and optical properties of C₆₀ thin films. Molecular Materials, vol. 10, N4, 1998. p.111-114.
- 47. Andreoni J., Miller J. Auctions with artificial adaptive agents, Games and Economic Behavior, vol. 10, no. 1, 1995. p.39-64.
- 48. Andrews D. Energy Harvesting Materials. World Scientific, 2005. 388 p.
- 49. Andrews D. A simple statistical treatment of multiphoton absorption. American Journal of Physics, vol.53, no.10, 1985. p.1001-1002.
- Andrews D. A Unified Theory of radiative and Radiation less molecular energy transfer. Chem.Phys.v.135, 1989. p.195-201.
- Andrews D. Optical energy harvesting materials. Introduction to Complex Mediums for Optics and Electromagnetics. SPIE digital library, 2003. http://ebooks.spiedigitallibrary.org/book.aspx?bookid=160 (vizitat 07.08.2015).
- Andrews D., Jenkins R. A quantum electodinamical theory of three-center energy transfer for upconversion and downconversion in rare earth doped materials. Journal of Chem. Physics. V.114, 2001. p.1089-1100.
- 53. Andrews D., Jenkins R. Three Center Systems for Energy Pooling: Quantum Electro dynamical Theory. J.Phys. Chem. A, 102, 1998. p.10834-10842.
- 54. Andrews D., Jenkins R. Twin-donor systems for resonance energy transfer. Chem. Phys. Lett., 301, 1999. p.235-240.
- Aster R., Borchers B., Thurber C. Parameter Estimation and Inverse Problems, 2nd edition, Elsevier, 2012. 376 p.

- Bakhturin Yu.A. Campbell–Hausdorff formula. In: Encyclopedia of Mathematics, Springer, 2011. http://www.encyclopediaofmath.org/index.php?title=Campbell%E2% 80%93Hausdorff_formula&oldid=22236 (vizitat 03.12.2016).
- Battezzatti L., Pisani C., Ricca F. Equilibrium conformation and surface motion of hydrocarbon molecules physisorbed on graphit. J. Chem. Soc., Faraday Trans. 2: Mol.Chem. Phys. vol.71, 1975. pp.1629-1639.
- 58. Bogomolova G. et al. Crystalline field in laser garnets with TR³⁺ ions in exchange charge model. Sov. Solid State Phys., vol. 19, 1977. p. 1439.
- 59. Bogomolova G., Vylegzhanian D., Kaminskii A. Spectral and lasing investigations of garnets with Yb³⁺ ions. Sov. Phys. J. E. T. F, vol. 69, 1975. p. 860-874.
- 60. Bolognesi P. et al. Collective excitations in the electron energy loss spectra of C_{60} . The European Physical Journal D, vol.66, N254, 2012.
- 61. Bowmar P. et al. Raman and infrared determination of vibrational fundamentals of singlecrystal C_{60} and derivatives and of C_{70} . Journal of Physics: Condensed Matter, vol.6, N17, 1994.
- 62. Brenner D. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev.: Condensed Matter B, 42(15), 1990. p.9458–9471.
- 63. Brockner W., Menzel F. Genetic relationship between intrinsic Raman and infrared fundamental vibrations of the C_{60} and C_{70} fullerenes. J.Mol.Struct. 378, 1996.
- 64. Bron W. Dynamical charge overlap, electron-lattice coupling strength, and lattice dynamics of ionic crystals. Phys.Rev.B., vol.11, N10, 1975. p.3951-3959.
- Candu C., Ciobu V., Enaki V. Four-center resonance energy transfer in rare earth doped crystals, Journal of Optoelectronics and Advanced Materials, Vol.7, No.2, Bucureşti: INOE 2000, 2005. p.781-786.
- Caro P. et al. Vibronic optical transitions in inorganic and organic rare earth materials. J. Less. Common. Metals, vol. 112(1), 1985. p.153-173.
- 67. Character table for the I_h point group, http://www.gernot-katzers-spicepages.com/character_tables/Ih.html (vizitat 10.12.2015)
- 68. Che J., Cagin T., Goddard W.A. Studies of fullerenes and carbon nanotubes by an extended bond order potential. Nanotechnology 10, 1999. 263 p.
- 69. Chen Wen-Hwa, Cheng Hsien-Chie, Molecular modeling and simulation of physical properties and behavior of low-dimensional carbon allotropes carbon nanotubes, deformation and fracture. Trends in Nanoscale Mechanics. Mechanics of Carbon

Nanotubes, Graphene, Nanocomposites and Molecular Dynamics (Ed.: Vasyl Harik), Springer, 2014. p.45-109.

- Computational Spectroscopy: Methods, Experiments and Applications. Jorg Grunenberg (Editor), WILEY-VCH, 2010. 432 p.
- Craig D., Thirunamachandran T. Molecular Quantum Electrodynamics. Dover Publications, Mineola, Inc. New York, 1998. p. 324
- 72. D'Hulst R., Rodgers G.J. Transition from coherence to bistability in a model of financial markets. The European Physical Journal B, vol. 20, no. 4, 2001. p. 619–625.
- 73. Dahl M., Schaak G. Davydov splitting of crystal-field excitations and magnetic phonon splitting in PrF₃. Phys. Rev. Lett., vol. 56, 1986. p. 232-236.
- 74. DeLoach L. et al. Vibrational structure in the emission spectra of Yb³⁺ doped apatite crystals. Journal of Luminescence, vol. 62 (3), 1994. p. 85-94.
- Di Bartolo B., Forte O. Advanceds in Spectroscopy for Lasers and Sensing. Springer Netherlands, 2006. 564 p.
- 76. Dinadayalane T., Leszczynski J. Fundamental structural, electronic, and chemical properties of carbon nanostructures: graphene, fullerenes, carbon nanotubes, and their derivatives. Handbook of Computational Chemistry, 2014. p.793-867.
- 77. Dong Z. et al. Observation of higher-order Raman modes in C₆₀ films. Phys. Rev. B 48, 1993. p.2862-2865.
- Dresselhaus M., Dresselhaus G., Eklund P. Science of Fullerens and Carbon Nanotubes. New York: Academic Press, 1995. 965 p.
- 79. Eidelson R. Complex adaptive systems in the behavioral and social sciences. Review of General Psychology, vol. 1(1), 1997. p.42-71.
- Ellens A. et al. Spectral-line-broadening study of the trivalent lanthanide-ion series.I. Line broadening as a probe of the electron-phonon coupling strength. Phys. Rev. B, vol.55, 1997. p.173-178.
- Ellens A. et al. Spectral-line-broadening study of the trivalent lanthanide-ion series.II. The variation of the electron-phonon coupling strength through the series. Phys. Rev. B, vol. 55, 1997. p.180-185.
- Enaki V. e al. Effects of resonant electron-phonon interactions for the RE³⁺ ions in laser crystals. Proceeding of SPIE. Fifth Conference in Optics. ROMOPTO'97, v.3405, 9-12 sept.-1997. p.570-577.
- Eyring L., Gschneidner K., Lander G. Handbook on the Physics and Chemistry of Rare Earths, Vol. 32, 1st Edition, North Holland, 2002. 772 p.

- Feynman R. An operator calculus having applicators in quantum electrodynamics. Phys. Rev. v.84, N1, 1951. p.108-121.
- Gamurari V. et al. Computational study of non-stationary cluster size distribution and rate of nucleation in case of pre-existing clusters. Moldavian Journal of Physical Sciences. vol.5, no.1, 2006. p.113–116.
- 86. Garalleh H. et al. Modeling interactions between C_{60} antiviral compounds and HIV protease. Bulletin of Mathematical Biology, 77, 2015. p.184-201.
- Bardiner C. Handbook of stochastic methods for physics, chemistry, and the natural sciences (Springer series in synergetics, vol.13). Berlin-Heidelberg: Springer-Verlag, 1983. 442 p.
- Geru I., Spoiala D., Dihor I. Optical transparence of quartz and fullerene C₆₀ at high power infrared Laser irradiation. Abstracts of International Conference on Physics of Laser Crystals, 26 august – 09 september 2002, Kharkiv-Stary Saltov, Ukraine. p.IL9.
- Geru I., Spoiala D. Influence of Fermi resonance on infrared and Raman spectra of fullerene C₆₀. Moldavian Journal of the Physical Sciences, No2, 2002. p.147-151.
- Geru I., Spoiala D., Dihor I. Optical transparency of quartz and fullerene C₆₀ at high power infrared laser irradiation. Physics of Laser Crystals, Edited by Jean-Claude and Nicolay A. Kulagin, NATO Science Serie, II. Mathematics, Physics and Chemistry, vol.126, 2003, p.201-217.
- Gerlinger H., Schaach G. Crystal-field states of the Ce³⁺ ion in CeF₃: A demonstration of vibronic interaction in ionic rare-earth compounds. Phys. Rev. B, vol. 33, 1986. p.7438–7450.
- Girifalco L., Weizer V. Application of the Morse potential function to cubic metals. Phys. Rev. 114, 1959, p.687–690.
- Giannozzi P., Baroni S. Vibrational and dielectric properties of C₆₀ from density-functional perturbation theory. J. Chem. Phys. vol.100(11), 1994. p.8537-8539.
- Graja A., Łapiński A., Król S. Silent and higher-order vibrations of C₆₀ and its compounds.
 J.Mol.Structure, 404, 1997. p.147-156.
- 95. Gubceac G., Gutu R., Paladi F. A new formula for partitions in a set of entities into empty and nonempty subsets, and its application to stochastic and agent-based computational models. Applied Mathematics (Special Issue on Advances in Mathematical Physics), Scientific Research Publishing (USA), vol.4, no.10C, 2013. p.14–21.

- Gubceac G., Paladi F. Probabilistic approach to stochastic and agent-based computational models. Proceedings of the 3rd Conference of Mathematical Society of Moldova (IMCS-50), Chisinau, Moldova, August 19-23, 2014. p.358–361.
- Harigaya K. Lattice distortion and energy-level structures in C₆₀ and C₇₀ molecules studied with the extended Su-Schrieffer-Heeger model: Polaron excitations and optical absorbtion. Phys. Rev. B., vol.45, N23, 1992. p.13676-13684.
- 98. Heer B., Maußner A. Dynamic general equilibrium modelling, computational methods and applications. Berlin-Heidelberg: Springer, 2005. 540 p.
- 99. Hendrickson O. et al. Fullerenes: In vivo studies of biodistribution, toxicity, and biological action. Nanotechnologies in Russia, 9, 11, 2014. p.601-617.
- Hou J. et al. C₆₀ Based Materials. Encyclopedia of Nanoscience and Nanotechnology (Edited by H.S.Nalwa) 1, 2004. p. 409-474.
- 101. Ignatiev I., Ovsyankin V. Electron-vibrational shift of f-levels in CaF₂ and SrF₂ crystals with Tm²⁺ ions. Journal of Luminescence, vol. 72-74, 1997. p. 679-680.
- 102. Ivanovskaya V., Ivanovskii A. Simulation of novel superhard carbon materials based on fullerenes and nanotubes. Journal of Superhard Materials, 32, 2, 2010. p. 67-87.
- Johnson N.L., Kemp A.W., Kotz S. Univariate discrete distributions. New York: Wiley, 2005. 672 p.
- 104. Judd B. Optical absorbation intensities of rare-earth. Phys. Rev., 127, 1962. pp.750-761.
- 105. Kaminskii A. Laser Crystals: Their Physics and Properties. Berlin: Springer Verlag, 1990.459 p.
- 106. Kardoš F. et al. Fullerene graphs have exponentially many perfect matchings. Journal of Mathematical Chemistry, 46, 2, 2009. p. 443-447.
- 107. Kashchiev D. Nucleation: Basic Theory with Applications. Butterworth-Heinemann, 2000.529 p.
- 108. Koningstein J. Energy levels and crystal-field calculations of trivalent ytterbium in yttrium aluminum garnet and yttrium gallium garnet. Theoret. Chim. Acta, vol. 3, 1965. p.271-277.
- Koningstein J., Mortensen O. Laser-excited phonon Raman spectrum of garnets. Journal of Molecular Spectroscopy. vol. 27, Issues 1–4, 1968. p.343–350.
- 110. Král D. et al. Long cycles in fullerene graphs. Journal of Mathematical Chemistry. 45, 4, 2009. p. 1021-1031.
- 111. Kroll S. Quantum computer hardware based on rare-earth-ion-doped inorganic crystals. Opt. Comm. 201, 2002. p.71-77.

- Lee R., Hill J. General formula for interacting spherical nanoparticles and fullerenes. Journal of Mathematical Chemistry, 50, 2012. p. 1289-1303.
- 113. Lennard-Jones J. The determination of molecular fields from the variation of the viscosity of a gas with temperature. Proceeding of the Royal Society (London) 106A, 1924. p.441.
- 114. Lindsay L., Broido D. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Physical Review B, vol. 81, 82, 2010.
- 115. Lindsay L., Broido D., Mingo N. Flexural phonons and thermal transport in multilayer graphene and graphite. Physical Review B, vol. 83. 2011.
- López A., Mateo-Alonso A., Prato M. Materials chemistry of fullerene C₆₀ derivatives. Journal of Materials Chemistry, vol.21, 2011. p.1305-1318.
- 117. Lupei A., Lupei V. Resonance between electronic and vibronic levels of in yttrium aluminium garnet. J. Phys.: Condens. Matter, vol. 9, 1997. p.2807–2813.
- 118. Lupei A. et al. Electron-phonon coupling effects on Yb³⁺ spectra in several laser crystals. J. Phys.: Condens. Matter, vol. 11, 1999. p.3769–3778.
- Mainini E., Stefanelli U. Crystallization in Carbon Nanostructures. Communications in Mathematical Physics, 328, 2014. p.545-571.
- Man A., Bron W. Degree of dynamical charge overlap in ionic crystals. Phys.Rev.B, vol.13(12), 1976. p.5591-5596.
- Manila R. et al. Structure and defects in thin C₆₀ films. Fullerene Science and Tehnology, vol. 7, N1, 1999. p.59-75.
- 122. Mandal G., Ganguly T. Applications of nanomaterials in the different fields of photosciences. Indian Journal of Physics, vol.85, N8, 2011. p.1229-1245.
- Markushev V., Tsaryuk V., Zolin V. Vibronic luminescence excitation spectra of europium in Y₂O₃ and Y₃AI₅O₁₂. Opt. i Spectr., vol. 58, 1985. p.583-588.
- 124. Martin M. et al. Observation and assignment of silent and higher-order vibrations in the infrared transmission of C_{60} crystals. Physical Review B, vol.50, N1, 1994. p.173-183.
- 125. Maruyama S. Molecular dynamics method for microscale heat transfer. Advances in Numerical Heat Transfer, vol.2, Chap.6, 2000. p.189–226.
- McCumber D. Theory of vibrational structure in optical spectra of impurities in Solids. I.Singlets. J.Math. Phys. V.5, N2, 1964. p.221-224.
- 127. Mendelson E. Introduction to Mathematical Logic. 2nd. ed. New York: D. Van Nostrand.1979. 328 p.

- 128. Menendez J., Page J. Vibrational spectroscopy of C₆₀. Light Scattering in Solids VIII. Berlin/Heidelberg: Topics in Applied Physics (M.Cardona and G.Guntherodt, Eds.), Springer Verlag, vol.76, 2000. p.27-95.
- 129. Mitleton-Kelly E. Complex Systems & Evolutionary Perspectives of Organisations: The Application of Complexity Theory to Organisations, 2003 Ed.
- Nika D., Balandin A. Two-dimensional phonon transport in graphene. Journal of Physics: Condensed Matter, vol. 24, 2012.
- 131. Nika D. et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Physical Review B, vol.79, 2009.
- 132. Nilsson M. et al. Initial experiments concerning quantum information processing in rareearth-ion doped crystals. Physica Scripta. vol.102, 2002. p.178-202.
- Ohlsson N., Mohan R.K., Kröll S. Quantum computer hardware based on rare-earth-iondoped inorganic crystals. Optics Communications, vol.201, nos.1–3, 2002. p.71–77.
- 134. Osawa E. Superaromaticity. Kagaku (Kyoto): vol. 25, 1970. p.854-863.
- Paladi F. Bridging the gap between stochastic and agent-based computational models. Chişinău: Anale Ştiinţifice ale USM, seria "Stiinţe fizico-matematice". 2005. p.78–81.
- 136. Paladi F. On the probabilistic approach to heterogeneous structure interactions in agentbased computational models. Applied Mathematics and Computation, vol.219, no.24, 2013. p.11430–11437.
- Paladi F., Dotenco D., Gamurari V. Measuring heterogeneity in stochastic models. Chişinău: Studia Universitatis USM, no.1 (01), 2007. p.319–322.
- Paladi F., Eremeev V. A Szilard model-based computational study of the evolution of agents-clusters. Physica A: Statistical Mechanics and its Applications, vol.348, 2005. p.630–640.
- Paladi F., Gamurari V. Computational study of the agent-based self-organization in an open system. Chişinău: Anale Ştiinţifice ale USM, seria "Stiinţe fizico-matematice", 2006. p.136–150.
- 140. Parker S. et al. Complete assignment of the vibrational modes of C_{60} by inelastic neutron scattering spectroscopy and periodic-DFT. Phys. Chem. Chem. Phys., vol.13, 2011. p.7789.
- 141. Pearson J. et al. Energy levels of Yb³⁺ in gallium and aluminum garnets. I.Spectra. Phys. Review, vol. 159, 1967. p. 245-250.
- 142. Perlin Yu. et al. Electron-phonon resonances in the spectrum of a rare-earth impurity ion.Pisma J. E. T. F., vol. 30, 1979. p. 426-429.

- Podolski I., Podlubnaya Z., Godukhin O. Fullerenes C₆₀ antiamyloid action, the brain, and cognitive processes. Biophysics, vol.55, N1, 2010. p.71-76.
- 144. Prylurskyy Yu. et al. Structure and thermophysical properties of fullerene C₆₀ aqueous solutions. International Journal of Thermophys vol.22, N3, Plenum Publishing Corporation, 2001. p.943-956.
- 145. Puente F., Nierengarten J. Fullerenes: Principles and Applications (RSC Nanoscience & Nanotechnology), Royal Society of Chemistry, 1 edition, 2007. 410 p.
- 146. Qian J. et al. Quantized long-wavelength optical phonon modes in graphene nanoribbon in the elastic continuum model. Superlattices and Microstructures, vol. 46, 2009. p.881-888.
- 147. Racah G. Theory of complex spectra. IV. Physical Review, vol.76, 1949. p.1352-1365.
- Quong A., Pederson M., Feldman J. First principles determination of the interatomic forceconstant tensor of the fullerene molecule. Solid State Communications, vol.87, 1993. p.535-539.
- 149. Rawal S., Rodgers G. Growth and coagulation in a herding model, Physica A, vol. 344, no. 1–2, 2004. p.50-55.
- 150. Refson K., Tulip P., Clark S. Variational density-functional perturbation theory for dielectrics and lattice dynamics. Physical Review B, vol.73, 2006.
- 151. Rodgers G., Yap Y. Growth and addition in a herding model, The European Physical Journal B, vol. 28, no. 1, 2002. p.129-132.
- Rodgers G., Zheng D. A herding model with preferential attachment and fragmentation, Physica A, vol. 308, no. 1–4, 2002. p.375-380.
- 153. Rodriges S., Shults T. Effects of resonant phonon interaction on shapes of impurity absorption lines. Physical Review, vol. 178, 1969. p.1252-1263.
- 154. Sastri V. et al. Modern Aspects of Rare Earths and their Complexes. Elsevier, 2003. 1006p.
- 155. Schettino V. et al. The Vibrational Spectrum of Fullerene C₆₀. Journal of Physical Chemistry A, vol. 105, no.50, 2001. p.11192-11196.
- Schmaltz T., Halik M. Fullerene-Based FETs. Encyclopedia of Polymeric Nanomaterials, 2015, p.829-839.
- 157. Sheka E. Fullerene-silica complexes for medical chemistry. Russian Journal of Physical Chemistry A (Physical Chemistry of Nanoclusters and Nanomaterials), vol.81, no.6, 2007. p.959-966.
- Silantiev A. The energy spectrum and the optical absorption spectrum of C₆₀ fullerene within the Hubbard model. Journal of Experimental and Theoretical Physics, vol.121, no.4, 2015. p.653-660.

- 159. Singh D., Murthy J., Fisher T. Mechanism of thermal conductivity reduction in few-layer graphene. Journal of Applied Physics, vol. 110. 2011.
- 160. Snyman J. Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer Publishing. 2005.
- Stefanucci G., van Leeuwen R. Nonequilibrium Many-Body Theory of Quantum Systems. Cambridge University Press, 2013. 620 p.
- 162. Tersoff J. New empirical approach for the structure and energy of covalent systems. Physical Review B, vol.37, no.12, 1988. p. 6991–7000.
- Torrens F., Castellano G. Classification of Complex Molecules. Berlin: Foundations of Computational Intelligence, vol.5, 2009. p.243-315.
- 164. van Kampen N.G. Stochastic processes in physics and chemistry. Dordrecht: Elsevier, 1992. 480 p.
- Wang H. et al. Vibrational properties of graphene and graphene layers. Journal of Raman Spectroscopy, vol. 40, 2009. p. 1791-1796.
- 166. Wang X., Wang C., Ho K. First-principles study of vibrational modes in icosahedral C₆₀.
 Phys. Rev. B, vol. 48, 1993. p.1884.
- 167. Wang K. et al. Observation of higher-order infrared modes in solid C_{60} films. Physical Review B, vol. 48, 1993. p.11375.
- Weeks D., Harter W. Vibrational Frequencies and Normal Modes of Buckminsterfullerene. Chem. Phys. Lett. vol.144(4), 1988. p.366-372.
- Weeks D., Harter W. Rotation–vibration spectra of icosahedral molecules. J.Chem. Phys. vol.90, 1989. p.4744-4771.
- 170. Wikipedia. Backus-Naur <u>https://en.wikipedia.org/wiki/Backus-Naur_Form</u> (vizitat 24.12.2015).
- 171. Wikipedia. Systems analysis https://en.wikipedia.org/wiki/Systems_analysis (vizitat 10.12.2015).
- 172. Wood D. Energy levels of YB³⁺ in garnets. J. Chem. Phys., vol. 39, 1963. p.1671-1672.
- 173. Zhou R. Fullerene and derivatives. Modeling of Nanotoxicity, 2015. p.17-43.

ANEXE

Anexa 1. Elementele de matrice $K^{(n)}(\gamma)$

Elementele de matrice
$$\mathbf{K}^{(2)}(\mathbf{A}_{g})$$
.
 $\mathbf{A}_{g}(1,1)=8,143\cdot10^{-2}\cdot(\mathbf{h}-1,228\cdot10^{-5}\cdot\boldsymbol{\eta}-2,456\cdot10^{-5}\cdot\boldsymbol{\pi}+2\cdot\mathbf{p})$
 $\mathbf{A}_{g}(1,2)=0,2795\cdot(\mathbf{h}+0,9469\cdot\boldsymbol{\pi}-1,127\cdot\mathbf{p})$
 $\mathbf{A}_{g}(2,1)=0,2795\cdot(\mathbf{h}+0,9469\cdot\boldsymbol{\pi}-1,127\cdot\mathbf{p})$
 $\mathbf{A}_{g}(2,2)=1,919\cdot(\mathbf{h}+2,007\cdot10^{-4}\cdot\boldsymbol{\eta}+1,612\cdot10^{-4}\cdot\boldsymbol{\pi}+0,6354\cdot\mathbf{p})$

Elementele de matrice $\mathbf{K}^{(1)}(\mathbf{A}_{\mathbf{u}})$.

 $\mathbf{A}_{u}(1,1)=15,71\cdot(\eta+2,045\cdot10^{-5}\cdot\pi)$

Elementele de matrice $\mathbf{K}^{(6)}(\mathbf{G}_{\mathbf{g}})$.

 $\mathbf{G}_{g}(1,1)=4,071\cdot10^{-2}\cdot(\mathbf{h}+55,42\cdot\mathbf{\eta}-24,80\cdot\pi+0,3820\cdot\mathbf{p})$ $G_{g}(1,2)=0$ $\mathbf{G}_{g}(1,3)=0,1398\cdot(\mathbf{h}+14,62\cdot\mathbf{\eta}-13,39\cdot\pi-0,2153\cdot\mathbf{p})$ $\mathbf{G}_{g}(1,4)=0,7998 \cdot (\mathbf{\eta}-0,2991 \cdot \pi - 0,1697 \cdot \mathbf{p})$ $G_{g}(1,5) = -0.1397 \cdot (h - 4.511 \cdot \eta)$ $G_{g}(1,6) = -0,4998 \cdot \eta$ $G_{g}(2,1)=0$ $\mathbf{G}_{g}(2,2) = 4,2982 \cdot 10^{-3} \cdot (\mathbf{h} + 810,5 \cdot \mathbf{\eta} + 234,9 \cdot \pi + 3,618 \cdot \mathbf{p})$ $G_g(2,3) = -0.4357 \cdot (\eta - 0.5491 \cdot \pi + 0.3114 \cdot p)$ $\mathbf{G}_{g}(2,4)=1,475\cdot10^{-2}\cdot(\mathbf{h}+174,3\cdot\mathbf{\eta}-126,9\cdot\pi-2,039\cdot\mathbf{p})$ $G_{g}(2,5) = -0.3321 \cdot \eta$ $\mathbf{G}_{g}(2,6) = 6,249 \cdot 10^{-2} \cdot (\mathbf{h} - 4,511 \cdot \mathbf{\eta})$ $G_g(3,1)=0,1397 \cdot (h+14,62 \cdot \eta - 13,39 \cdot \pi - 0,2153 \cdot p)$ $G_g(3,2) = -0.4357 \cdot (\eta - 0.5491 \cdot \pi + 0.3114 \cdot p)$ $\mathbf{G}_{\mathfrak{g}}(3,3)=0.9593 \cdot (\mathbf{h}+4.557 \cdot \mathbf{\eta}+7.879 \cdot \pi+0.1214 \cdot \mathbf{p})$ $G_{g}(3,4) = -0.9465 \cdot (\eta + 2.007 \cdot \pi - 0.5547 \cdot p)$ $G_{g}(3,5) = -0.9593 \cdot (h+0.2835 \cdot \eta)$ $G_{\alpha}(3,6) = -0.3349 \cdot \eta$ $\mathbf{G}_{g}(4,1)=0,7998 \cdot (\mathbf{\eta}-0,2991 \cdot \pi - 0,1697 \cdot \mathbf{p})$
$$\begin{split} & \mathbf{G}_{g}(4,2) = 1,475 \cdot 10^{-2} \cdot (\mathbf{h} + 174,3 \cdot \mathbf{\eta} - 126,9 \cdot \pi - 2,039 \cdot \mathbf{p}) \\ & \mathbf{G}_{g}(4,3) = -0,9465 \cdot (\mathbf{\eta} + 2,007 \cdot \pi - 0,5547 \cdot \mathbf{p}) \\ & \mathbf{G}_{u}(4,4) = 0,5707 \cdot (\mathbf{\eta} + 0,8361 \cdot \pi + 4,149 \cdot \mathbf{p}) \\ & \mathbf{G}_{g}(4,5) = -0,6059 \cdot \mathbf{\eta} \\ & \mathbf{G}_{g}(4,6) = 2,146 \cdot \mathbf{\eta} \\ & \mathbf{G}_{g}(5,1) = -0,1397 \cdot (\mathbf{h} - 4,511 \cdot \mathbf{\eta}) \\ & \mathbf{G}_{g}(5,2) = -0,3321 \cdot \mathbf{\eta} \\ & \mathbf{G}_{g}(5,3) = -0,9593 \cdot (\mathbf{h} + 0,2835 \cdot \mathbf{\eta}) \\ & \mathbf{G}_{g}(5,3) = -0,6059 \cdot \mathbf{\eta} \\ & \mathbf{G}_{g}(5,5) = 0,9593 \cdot (\mathbf{h} + 0,2835 \cdot \mathbf{\eta}) \\ & \mathbf{G}_{g}(5,6) = -4,113 \cdot (\mathbf{\eta} + 0,2854 \cdot \pi + 0,2065 \cdot \mathbf{p}) \\ & \mathbf{G}_{g}(6,1) = -0,4998 \cdot \mathbf{\eta} \\ & \mathbf{G}_{g}(6,2) = 6,249 \cdot 10^{-2} \cdot (\mathbf{h} - 4,511 \cdot \mathbf{\eta}) \\ & \mathbf{G}_{g}(6,3) = -0,3349 \cdot \mathbf{\eta} \\ & \mathbf{G}_{g}(6,4) = 2,146 \cdot \mathbf{\eta} \\ & \mathbf{G}_{g}(6,5) = -4,113 \cdot (\mathbf{\eta} + 0,2854 \cdot \pi + 0,2065 \cdot \mathbf{p}) \end{split}$$

 $G_g(6,6)=12,08 \cdot (\eta+0,1035 \cdot \pi+7,486 \cdot p)$

Elementele de matrice $\mathbf{K}^{(6)}(\mathbf{G}_{\mathbf{u}})$.

$$\begin{split} & \mathbf{G}_{u}(1,1) = 4,071 \cdot 10^{-2} \cdot (\mathbf{h} + 55,42 \cdot \eta - 24,80 \cdot \pi + 0,3820 \cdot \mathbf{p}) \\ & \mathbf{G}_{u}(1,2) = 0 \\ & \mathbf{G}_{u}(1,3) = 0,1397 \cdot (\mathbf{h} + 14,62 \cdot \eta - 13,39 \cdot \pi - 0,2153 \cdot \mathbf{p}) \\ & \mathbf{G}_{u}(1,3) = 0,1397 \cdot (\mathbf{h} - 4,62991 \cdot \pi - 0,1697 \cdot \mathbf{p}) \\ & \mathbf{G}_{u}(1,5) = -0,1397 \cdot (\mathbf{h} - 4,511 \cdot \eta) \\ & \mathbf{G}_{u}(1,6) = -0,4998 \cdot \eta \\ & \mathbf{G}_{u}(2,1) = 0 \\ & \mathbf{G}_{u}(2,2) = 4,2982 \cdot 10^{-3} \cdot (\mathbf{h} + 810,5 \cdot \eta + 234,9 \cdot \pi + 3,618 \cdot \mathbf{p}) \\ & \mathbf{G}_{u}(2,3) = -0,4357 \cdot (\eta - 0,5491 \cdot \pi + 0,3114 \cdot \mathbf{p}) \\ & \mathbf{G}_{u}(2,4) = 1,475 \cdot 10^{-2} \cdot (\mathbf{h} + 174,3 \cdot \eta - 126,9 \cdot \pi - 2,039 \cdot \mathbf{p}) \\ & \mathbf{G}_{u}(2,5) = -0,3321 \cdot \eta \\ & \mathbf{G}_{u}(2,6) = 6,249 \cdot 10^{-2} \cdot (\mathbf{h} - 4,511 \cdot \eta) \end{split}$$

 $G_u(3,1) = 0,1397 \cdot (\mathbf{h} + 14,62 \cdot \eta - 13,39 \cdot \pi - 0,2153 \cdot \mathbf{p})$

$$\begin{split} & G_u(3,2){=}{-}0,4357\cdot(\eta{-}0,5491\cdot\pi{+}0,3114\cdot\mathbf{p}) \\ & G_u(3,3){=}3,991\cdot(\eta{+}0,1196\cdot\pi{+}0,5934\cdot\mathbf{p}) \\ & G_u(3,4){=}{1,709}\cdot(\eta{+}{1,112}\cdot\pi{+}0,3072\cdot\mathbf{p}) \\ & G_u(3,5){=}{-}4,799\cdot\eta \\ & G_u(3,6){=}{-}1,426\cdot\eta \\ & G_u(4,1){=}0,7998\cdot(\eta{-}0,2991\cdot\pi{-}0,1697\cdot\mathbf{p}) \\ & G_u(4,2){=}{1,475}\cdot10^{-2}\cdot(\mathbf{h}{+}174,3\cdot\eta{-}126,9\cdot\pi{-}2,039\cdot\mathbf{p}) \\ & G_u(4,2){=}{1,475}\cdot10^{-2}\cdot(\mathbf{h}{+}174,3\cdot\eta{-}126,9\cdot\pi{-}2,039\cdot\mathbf{p}) \\ & G_u(4,3){=}{1,709}\cdot(\eta{+}{1,112}\cdot\pi{+}0,3072\cdot\mathbf{p}) \\ & G_u(4,3){=}{1,709}\cdot(\eta{+}{1,112}\cdot\pi{+}0,3072\cdot\mathbf{p}) \\ & G_u(4,5){=}{-}0,8634\cdot\eta \\ & G_u(4,6){=}{0,4290}\cdot(\mathbf{h}{+}0,2835\cdot\eta) \\ & G_u(5,3){=}{-}4,799\cdot\eta \\ & G_u(5,3){=}{-}4,799\cdot\eta \\ & G_u(5,4){=}{-}0,8634\cdot\eta \\ & G_u(5,5){=}{6,9177}\cdot(\eta{+}0,1807\cdot\pi{+}0,1308\cdot\mathbf{p}) \\ & G_u(5,6){=}{2,880}\cdot(\eta{+}0,4078\cdot\pi{+}0,2950\cdot\mathbf{p}) \\ & G_u(6,1){=}{-}0,4998\cdot\eta \\ & G_u(6,2){=}{6,249}\cdot10^{-2}\cdot(\mathbf{h}{-}4,511\cdot\eta) \\ & G_u(6,3){=}{-}{1,426}\cdot\eta \\ & G_u(6,4){=}{0,4290}\cdot(\mathbf{h}{+}0,2835\cdot\eta) \end{split}$$

 $\mathbf{G}_{u}(6,5) = 2,880 \cdot (\eta + 0,4078 \cdot \pi + 0,2950 \cdot \mathbf{p})$

 $G_u(6,6) {=} 1,817 {\cdot} (\textbf{h} {+} 0,9953 {\cdot} \textbf{\eta} {+} 0,6068 {\cdot} \pi {+} 0,4391 {\cdot} \textbf{p})$

Elementele de matrice $\mathbf{K}^{(8)}(\mathbf{H}_{\mathbf{g}})$.

$$\begin{split} \mathbf{H}_{g}(1,1) &= 3,257 \cdot 10^{-2} \cdot (\mathbf{h} + 18,00 \cdot \boldsymbol{\eta} - 6,141 \cdot 10^{-5} \cdot \boldsymbol{\pi} + 5 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(1,2) &= 2,821 \cdot 10^{-2} \cdot (\mathbf{h} - 22,85 \cdot \boldsymbol{\eta}) \\ \mathbf{H}_{g}(1,3) &= 0 \\ \mathbf{H}_{g}(1,4) &= 0,1118 \cdot (\mathbf{h} - 0,7639 \cdot \boldsymbol{\eta} - 2,818 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(1,5) &= 9,682 \cdot 10^{-2} \cdot (\mathbf{h} + 0,9699 \cdot \boldsymbol{\eta}) \\ \mathbf{H}_{g}(1,6) &= 0,1880 \cdot \boldsymbol{\eta} \\ \mathbf{H}_{g}(1,7) &= -9,682 \cdot 10^{-2} \cdot (\mathbf{h} + 0,6852 \cdot \boldsymbol{\eta}) \end{split}$$

$$\begin{split} & H_g(1,8)=-0.3042 \cdot \eta \\ & H_g(2,1)= 2.821 \cdot 10^{-2} \cdot (h+21,99 \cdot \eta+15,50 \cdot \pi+0,2387 \cdot p) \\ & H_g(2,3)=0 \\ & H_g(2,4)=9,682 \cdot 10^{-2} \cdot (h+4,687 \cdot \eta) \\ & H_g(2,4)=9,682 \cdot 10^{-2} \cdot (h-4,687 \cdot \eta) \\ & H_g(2,5)= 0.2236 \cdot (h+7,553 \cdot \eta-8,736 \cdot \pi-0,1346 \cdot p) \\ & H_g(2,5)= 0.2236 \cdot (h+7,553 \cdot \eta-8,736 \cdot \pi-0,1346 \cdot p) \\ & H_g(2,5)= 0.7806 \cdot (\eta-0,6289 \cdot \pi-0,1738 \cdot p) \\ & H_g(2,7)=5,590 \cdot 10^{-2} \cdot (h+4.511 \cdot \eta) \\ & H_g(2,8)=5,428 \cdot 10^{-2} \cdot \eta \\ & H_g(3,2)=0 \\ & H_g(3,2)=0 \\ & H_g(3,2)=0 \\ & H_g(3,3)=5,892 \cdot 10^{-2} \cdot (h+27,88 \cdot \eta+17,14 \cdot \pi+0,2639 \cdot p) \\ & H_g(3,3)=5,892 \cdot 10^{-2} \cdot (h+27,88 \cdot \eta+17,14 \cdot \pi+0,2639 \cdot p) \\ & H_g(3,3)=-0,7184 \cdot (\eta-0,6289 \cdot \pi-0,1889 \cdot p) \\ & H_g(3,5)=-0,7184 \cdot (\eta-0,6289 \cdot \pi-0,1889 \cdot p) \\ & H_g(3,6)=0,2022 \cdot (h+8,796 \cdot \eta-9,658 \cdot \pi-0,1488 \cdot p) \\ & H_g(3,3)=0,1250 \cdot (h-4,511 \cdot \eta) \\ & H_g(4,3)=0,1118 \cdot (h-0,7639 \cdot \eta-2,818 \cdot p) \\ & H_g(4,2)=9,682 \cdot 10^{-2} \cdot (h-4,687 \cdot \eta) \\ & H_g(4,3)=9,401 \cdot 10^{-2} \cdot \eta \\ & H_g(4,3)=9,401 \cdot 10^{-2} \cdot \eta \\ & H_g(4,5)=0,6646 \cdot (h+0,1993 \cdot \eta) \\ & H_g(4,5)=0,6646 \cdot (h+0,1993 \cdot \eta) \\ & H_g(4,7)=-0,6646 \cdot (h+0,1993 \cdot \eta) \\ & H_g(5,4)=0,2336 \cdot 0,6646 \cdot (h+0,1993 \cdot \eta) \\ & H_g(5,4)=0,236 \cdot 0,6646 \cdot (h+0,1993 \cdot \eta) \\ & H_g(5,5)=1,535 \cdot (h+3,005 \cdot \eta+4,924 \cdot \pi+7,585 \cdot p) \\ & H_g(5,5)=1,535 \cdot (h+3,005 \cdot \eta+4,924 \cdot \pi+7,585 \cdot p) \\ & H_g(5,7)=0,3837 \cdot (h+0,2835 \cdot \eta) \\ \end{aligned}$$

$$\begin{split} \mathbf{H}_{g}(5,8) &= -0.8234 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(6,1) &= 0.1880 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(6,2) &= 0.7806 \cdot (\mathbf{\eta} - 0.6289 \cdot \pi - 0.1738 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(6,2) &= 0.2022 \cdot (\mathbf{h} + 8.796 \cdot \mathbf{\eta} - 9.658 \cdot \pi - 0.1488 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(6,3) &= 0.2022 \cdot (\mathbf{h} + 8.796 \cdot \mathbf{\eta} - 9.658 \cdot \pi - 0.1488 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(6,4) &= -2.739 \cdot 10^{-2} \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(6,5) &= -2.167 \cdot (\mathbf{\eta} + 0.8766 \cdot \pi + 0.2423 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(6,5) &= -2.167 \cdot (\mathbf{\eta} + 0.8766 \cdot \pi + 0.2423 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(6,6) &= 5.701 \cdot (\mathbf{\eta} + 8.371 \cdot 10^{-2} \cdot \pi + 0.4154 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(6,7) &= -1.307 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(6,8) &= 4.293 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(7,2) &= 5.590 \cdot 10^{-2} \cdot (\mathbf{h} + 0.6852 \cdot \mathbf{\eta}) \\ \mathbf{H}_{g}(7,2) &= 5.590 \cdot 10^{-2} \cdot (\mathbf{h} + 0.511 \cdot \mathbf{\eta}) \\ \mathbf{H}_{g}(7,3) &= -0.3385 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(7,4) &= -0.66446 \cdot (\mathbf{h} + 6.294 \cdot 10^{-2} \cdot \mathbf{\eta}) \\ \mathbf{H}_{g}(7,5) &= 0.3837 \cdot (\mathbf{h} + 0.2835 \cdot \mathbf{\eta}) \\ \mathbf{H}_{g}(7,5) &= 0.3837 \cdot (\mathbf{h} + 0.5298 \cdot \pi + 0.3835 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(8,1) &= -0.3042 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(8,2) &= 5.428 \cdot 10^{-2} \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(8,2) &= 5.428 \cdot 10^{-2} \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(8,3) &= 0.1250 \cdot (\mathbf{h} - 4.511 \cdot \mathbf{\eta}) \\ \mathbf{H}_{g}(8,5) &= -0.8234 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(8,5) &= -0.8234 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(8,7) &= -2.215 \cdot (\mathbf{\eta} + 0.5298 \cdot \pi + 0.3835 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(8,7) &= -2.215 \cdot (\mathbf{\eta} + 0.5298 \cdot \pi + 0.3835 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(8,6) &= 4.293 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(8,6) &= 4.335 \cdot (\mathbf{\eta} + 0.2884 \cdot \pi + 0.2087 \cdot \mathbf{p}) \end{aligned}$$

Elementele de matrice $\mathbf{K}^{(7)}(\mathbf{H}_{\mathbf{u}})$.

 $\begin{aligned} \mathbf{H}_{u}(1,1) &= 3,257 \cdot 10^{-2} \cdot (\mathbf{h} + 18,00 \cdot \boldsymbol{\eta} - 6,141 \cdot 10^{-5} \cdot \boldsymbol{\pi} + 5 \cdot \mathbf{p}) \\ \mathbf{H}_{u}(1,2) &= 2,821 \cdot 10^{-2} \cdot (\mathbf{h} - 22,85 \cdot \boldsymbol{\eta}) \\ \mathbf{H}_{u}(1,3) &= 0,1118 \cdot (\mathbf{h} - 0,7639 \cdot \boldsymbol{\eta} - 2,818 \cdot \mathbf{p}) \\ \mathbf{H}_{u}(1,4) &= 9,682 \cdot 10^{-2} \cdot (\mathbf{h} + 0,9699 \cdot \boldsymbol{\eta}) \\ \mathbf{H}_{u}(1,5) &= 9,401 \cdot 10^{-2} \cdot \boldsymbol{\eta} \end{aligned}$

$$\begin{aligned} & H_u(1,6)=-9,682\cdot10^{-2}\cdot(h\cdot1,476\cdot\eta) \\ & H_u(1,7)=-0,1521\cdot\eta \\ & H_u(2,1)=2,821\cdot10^{-2}\cdot(h\cdot22,85\cdot\eta) \\ & H_u(2,2)=6,514\cdot10^{-2}\cdot(h\cdot4,687\cdot\eta) \\ & H_u(2,3)=9,682\cdot10^{-2}\cdot(h\cdot4,687\cdot\eta) \\ & H_u(2,4)=0,2236\cdot(h+7,553\cdot\eta\cdot8,736\cdot\pi-0,1346\cdotp) \\ & H_u(2,5)=-0,7184\cdot(\eta-0,6834\cdot\pi-0,1889\cdotp) \\ & H_u(2,5)=-0,7184\cdot(\eta-0,6834\cdot\pi-0,1889\cdotp) \\ & H_u(2,7)=-0,1549\cdot\eta \\ & H_u(3,1)=0,1118\cdot(h\cdot0,7639\cdot\eta-2,818\cdotp) \\ & H_u(3,1)=0,1118\cdot(h\cdot0,7639\cdot\eta-2,818\cdotp) \\ & H_u(3,2)=9,682\cdot10^{-2}\cdot(h\cdot4,687\cdot\eta) \\ & H_u(3,3)=7,330\cdot(\eta+4,382\cdot10^{-5}\cdot\pi-1,364\cdot10^{-6}\cdotp) \\ & H_u(3,4)=3,743\cdot\eta \\ & H_u(3,5)=-0,6180\cdot\eta \\ & H_u(3,7)=-0,9999\cdot\eta \\ & H_u(4,3)=3,743\cdot\eta \\ & H_u(4,4)=6,285\cdot(\eta+7,593\cdot10^{-2}\cdot\pi+0,3768\cdotp) \\ & H_u(4,5)=2,297\cdot(\eta+0,8270\cdot\pi+0,2286\cdotp) \\ & H_u(4,5)=-0,7184\cdot(\eta-0,6834\cdot\pi-0,1889\cdotp) \\ & H_u(5,2)=-0,7184\cdot(\eta-0,6834\cdot\pi-0,1889\cdotp) \\ & H_u(5,3)=0,6180\cdot\eta \\ & H_u(5,3)=0,6180\cdot\eta \\ & H_u(5,3)=0,6180\cdot\eta \\ & H_u(5,3)=0,6180\cdot\eta \\ & H_u(5,3)=-0,6180\cdot\eta \\ & H_u(5,5)=1,388\cdot(h+3,275\cdot\eta+5,444\cdot\pi+8,386\cdot10^{-2}\cdotp) \\ & H_u(5,5)=1,388\cdot(h+3,275\cdot\eta+5,444\cdot\pi+8,386\cdot10^{-2}\cdotp) \\ & H_u(5,7)=0,8580\cdot(h+0,2835\cdot\eta) \\ & H_u(6,1)=-9,682\cdot10^{-2}\cdot(h-1,476\cdot\eta) \\ & H_u(6,1)=-9,682\cdot10^{-2}\cdot(h-1,476\cdot\eta) \\ & H_u(6,2)=5,590\cdot10^{-2}\cdot(h-4,511\cdot\eta) \end{aligned}$$

$$\begin{aligned} \mathbf{H}_{u}(6,3) &= -4,419 \cdot \mathbf{\eta} \\ \mathbf{H}_{u}(6,4) &= 1,920 \cdot \mathbf{\eta} \\ \mathbf{H}_{u}(6,5) &= 0,4140 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(6,6) &= 10,38 \cdot (\mathbf{\eta} + \mathbf{0},1204 \cdot \pi + 8,712 \cdot 10^{-2} \cdot \mathbf{p}) \\ \mathbf{H}_{g}(6,7) &= 3,660 \cdot (\mathbf{\eta} + \mathbf{0},3209 \cdot \pi + 0,2321 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(7,1) &= -0,1521 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(7,2) &= -0,1549 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(7,3) &= -0,9999 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(7,3) &= -0,9999 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(7,4) &= 0,6126 \cdot \mathbf{\eta} \\ \mathbf{H}_{g}(7,5) &= 0,8580 \cdot (\mathbf{h} + 0,2835 \cdot \mathbf{\eta}) \\ \mathbf{H}_{g}(7,6) &= 3,660 \cdot (\mathbf{\eta} + \mathbf{0},3209 \cdot \pi + 0,2321 \cdot \mathbf{p}) \\ \mathbf{H}_{g}(7,7) &= 0,5303 \cdot (\mathbf{h} + 3,054 \cdot \mathbf{\eta} + 2,080 \cdot \pi + 1,505 \cdot \mathbf{p}) \end{aligned}$$

Elementele de matrice $\mathbf{K}^{(4)}(\mathbf{T}_{1g})$.

$$\begin{split} \mathbf{T}_{1g}(1,1) &= 5,892 \cdot 10^{-2} \cdot (\mathbf{h} + 4,584 \cdot \boldsymbol{\eta} - 3,394 \cdot 10^{-5} \cdot \pi + 2,764 \cdot \mathbf{p}) \\ \mathbf{T}_{1g}(1,2) &= 0,2022 \cdot (\mathbf{h} - 0,1945 \cdot \boldsymbol{\eta} + 1,309 \cdot \pi - 1,558 \cdot \mathbf{p}) \\ \mathbf{T}_{1g}(1,3) &= -0,3928 \cdot \boldsymbol{\eta} \\ \mathbf{T}_{1g}(1,4) &= 0,1250 \cdot (\mathbf{h} + 0,6852 \cdot \boldsymbol{\eta}) \\ \mathbf{T}_{1g}(2,1) &= 0,2022 \cdot (\mathbf{h} - 0,1945 \cdot \boldsymbol{\eta} + 1,309 \cdot \pi - 1,558 \cdot \mathbf{p}) \\ \mathbf{T}_{1g}(2,2) &= 11,85 \cdot (\boldsymbol{\eta} + 2,711 \cdot 10^{-5} \cdot \pi) \\ \mathbf{T}_{1g}(2,3) &= -1,291 \cdot \boldsymbol{\eta} \\ \mathbf{T}_{1g}(3,1) &= -0,3928 \cdot \boldsymbol{\eta} \\ \mathbf{T}_{1g}(3,2) &= -1,291 \cdot \boldsymbol{\eta} \\ \mathbf{T}_{1g}(3,3) &= 1,541 \cdot (\boldsymbol{\eta} + 0,7155 \cdot \pi + 0,5177 \cdot \mathbf{p}) \\ \mathbf{T}_{1g}(3,4) &= -2,113 \cdot (\boldsymbol{\eta} + 0,5555 \cdot \pi + 0,4021 \cdot \mathbf{p}) \\ \mathbf{T}_{1g}(4,1) &= 0,1250 \cdot (\mathbf{h} + 0,6852 \cdot \boldsymbol{\eta}) \\ \mathbf{T}_{1g}(4,3) &= -2,113 \cdot (\boldsymbol{\eta} + 0,5555 \cdot \pi + 0,4021 \cdot \mathbf{p}) \\ \mathbf{T}_{1g}(4,3) &= -2,113 \cdot (\boldsymbol{\eta} + 0,5555 \cdot \pi + 0,4021 \cdot \mathbf{p}) \\ \mathbf{T}_{1g}(4,3) &= -2,113 \cdot (\boldsymbol{\eta} + 0,5555 \cdot \pi + 0,4021 \cdot \mathbf{p}) \\ \mathbf{T}_{1g}(4,4) &= 4,335 \cdot (\boldsymbol{\eta} + 0,2884 \cdot \pi + 0,2087 \cdot \mathbf{p}) \end{split}$$

Elementele de matrice $\mathbf{K}^{(5)}(\mathbf{T}_{1u})$.

$$\begin{split} \mathbf{T}_{1u}(1,1) &= 5,892 \cdot 10^{-2} \cdot (\mathbf{h} + 4,584 \cdot \mathbf{\eta} - 3,394 \cdot 10^{-5} \cdot \pi + 2,764 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(1,2) &= 0 \\ \mathbf{T}_{1u}(1,3) &= 0,2022 \cdot (\mathbf{h} - 0,1945 \cdot \mathbf{\eta} + 1,309 \cdot \pi - 1,558 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(1,4) &= -0,3928 \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(1,5) &= 0,1250 \cdot (\mathbf{h} + 0,6852 \cdot \mathbf{\eta}) \\ \mathbf{T}_{1u}(2,1) &= 0 \\ \mathbf{T}_{1u}(2,2) &= 1,990 \cdot (\mathbf{\eta} + 7,403 \cdot 10^{-2} \cdot \pi + 5,357 \cdot 10^{-2} \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(2,3) &= -0,1964 \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(2,3) &= -0,1964 \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(2,5) &= 0,7569 \cdot (\mathbf{\eta} - 0,6064 \cdot \pi - 0,2901 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(3,1) &= 0,2022 \cdot (\mathbf{h} - 0,1945 \cdot \mathbf{\eta} + 1,309 \cdot \pi - 1,558 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(3,2) &= -0,1964 \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(3,2) &= -0,1964 \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(3,2) &= -0,1964 \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(3,3) &= 1,388 \cdot (\mathbf{h} + 8,415 \cdot 10^{-3} \cdot \mathbf{\eta} + 2,227 \cdot 10^{-4} \cdot \pi + 0,8781 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(3,3) &= 1,388 \cdot (\mathbf{h} + 8,415 \cdot 10^{-3} \cdot \mathbf{\eta} + 2,227 \cdot 10^{-4} \cdot \pi + 0,8781 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(3,4) &= 5,721 \cdot 10^{-2} \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(4,2) &= 0,9180 \cdot (\mathbf{\eta} - 0,5437 \cdot \pi - 0,2246 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(4,3) &= 5,721 \cdot 10^{-2} \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(4,3) &= 5,721 \cdot 10^{-2} \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(4,3) &= 5,721 \cdot 10^{-2} \cdot \mathbf{\eta} \\ \mathbf{T}_{1u}(4,4) &= 1,143 \cdot (\mathbf{\eta} + 1,094 \cdot \pi + 0,7916 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(5,1) &= 0,1250 \cdot (\mathbf{h} + 0,6852 \cdot \mathbf{\eta}) \\ \mathbf{T}_{1u}(5,2) &= 0,7569 \cdot (\mathbf{\eta} - 0,6064 \cdot \pi - 0,2901 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(5,3) &= 0,8580 \cdot (\mathbf{h} + 6,294 \cdot 10^{-2} \cdot \mathbf{\eta}) \\ \mathbf{T}_{1u}(5,3) &= 0,8580 \cdot (\mathbf{h} + 6,294 \cdot 10^{-2} \cdot \mathbf{\eta}) \\ \mathbf{T}_{1u}(5,4) &= 1,315 \cdot (\mathbf{\eta} + 0,8695 \cdot \pi + 0,6290 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(5,4) &= 1,315 \cdot (\mathbf{\eta} + 0,8695 \cdot \pi + 0,6290 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(5,4) &= 1,315 \cdot (\mathbf{\eta} + 0,8695 \cdot \pi + 0,6290 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(5,4) &= 1,315 \cdot (\mathbf{\eta} + 0,8695 \cdot \pi + 0,6290 \cdot \mathbf{p}) \\ \mathbf{T}_{1u}(5,4) &= 0,5303 \cdot (\mathbf{h} + 3,054 \cdot \mathbf{\eta} + 2,080 \cdot \pi + 1,505 \cdot \mathbf{p}) \end{aligned}$$

Elementele de matrice $K^{(4)}(T_{3g})$.

 $\begin{aligned} \mathbf{T}_{3g}(1,1) &= 2,251 \cdot 10^{-2} \cdot (\mathbf{h} + 31,42 \cdot \boldsymbol{\eta} - 8,887 \cdot 10^{-5} \cdot \pi + 7,236 \cdot \mathbf{p}) \\ \mathbf{T}_{3g}(1,2) &= 7,725 \cdot 10^{-2} \cdot (\mathbf{h} - 1,333 \cdot \boldsymbol{\eta} + 3,426 \cdot \pi - 4,079 \cdot \mathbf{p}) \\ \mathbf{T}_{3g}(1,3) &= -0,2427 \cdot \boldsymbol{\eta} \\ \mathbf{T}_{3g}(1,4) &= 0,1250 \cdot (\mathbf{h} + 0,9699 \cdot \boldsymbol{\eta}) \\ \mathbf{T}_{3g}(2,1) &= 7,725 \cdot 10^{-2} \cdot (\mathbf{h} - 1,333 \cdot \boldsymbol{\eta} + 3,426 \cdot \pi - 4,079 \cdot \mathbf{p}) \end{aligned}$

151

$$T_{3g} (2,2)=5,605 \cdot (\eta+5,732 \cdot 10^{-5} \cdot \pi-1,784 \cdot 10^{-6} \cdot \mathbf{p})$$

$$T_{3g} (2,3)=-0,7978 \cdot \eta$$

$$T_{3g} (2,4)=4,832 \cdot \eta$$

$$T_{3g} (3,1)=-0,2427 \cdot \eta$$

$$T_{3g} (3,2)=-0,7978 \cdot \eta$$

$$T_{3g} (3,2)=-0,7978 \cdot \eta$$

$$T_{3g} (3,3)=3,968 \cdot (\eta+1,904 \cdot \pi+2,934 \cdot 10^{-2} \cdot \mathbf{p})$$

$$T_{3g} (3,4)=-2,104 \cdot (\eta+0,9029 \cdot \pi+0,2496 \cdot \mathbf{p})$$

$$T_{3g} (4,2)=4,832 \cdot \eta$$

$$T_{3g} (4,2)=4,832 \cdot \eta$$

$$T_{3g} (4,3)=-2,104 \cdot (\eta+0,9029 \cdot \pi+0,2496 \cdot \mathbf{p})$$

$$T_{3g} (4,3)=-2,104 \cdot (\eta+0,9029 \cdot \pi+0,2496 \cdot \mathbf{p})$$

$$T_{3g} (4,3)=-2,104 \cdot (\eta+8,371 \cdot 10^{-2} \cdot \pi+0,4154 \cdot \mathbf{p})$$

Elementele de matrice $\mathbf{K}^{(4)}(\mathbf{T}_{3u})$.

 $\mathbf{T}_{3u}(1,1)=2,251\cdot10^{-2}\cdot(\mathbf{h}+31,42\cdot\mathbf{\eta}-8,887\cdot10^{-5}\cdot\pi+7,236\cdot\mathbf{p})$ $T_{3u}(1,2)=0$ $\mathbf{T}_{3u}(1,3) = 7,725 \cdot 10^{-2} \cdot (\mathbf{h} - 1,333 \cdot \mathbf{\eta} + 3,426 \cdot \pi - 4,079 \cdot \mathbf{p})$ \mathbf{T}_{3u} (1,4)= -0,2427· $\boldsymbol{\eta}$ $\mathbf{T}_{3u}(1,5) = 0,1250 \cdot (\mathbf{h} + 0,9699 \cdot \mathbf{\eta})$ $T_{3u}(2,1)=0$ $\mathbf{T}_{3u}(2,2) = 3,629 \cdot (\eta + 0,2782 \cdot \pi + 4,286 \cdot 10^{-3} \cdot \mathbf{p})$ $T_{3u}(2,3)=0,1214\cdot\eta$ $\mathbf{T}_{3u}(2,4) = 2,634 \cdot (\eta - 0,7106 \cdot \pi - 1,142 \cdot 10^{-2} \cdot \mathbf{p})$ $\mathbf{T}_{3u}(2,5) = 0,3464 \cdot (\eta - 0,6907 \cdot \pi - 0,3917 \cdot \mathbf{p})$ $\mathbf{T}_{3u}(3,1) = 7,725 \cdot 10^{-2} \cdot (\mathbf{h} - 1,333 \cdot \mathbf{\eta} + 3,426 \cdot \pi - 4,079 \cdot \mathbf{p})$ \mathbf{T}_{3u} (3,2)= 0,1214· $\boldsymbol{\eta}$ \mathbf{T}_{3u} (3,3)=0,5303·(**h**+5,650·10⁻²·**η**+5,832·10⁻⁴·π+2,299·**p**) \mathbf{T}_{3u} (3,4)=3,536 \cdot 10⁻² \cdot $\mathbf{\eta}$ $\mathbf{T}_{3u}(3,5)=0,8580\cdot(\mathbf{h}+0,1993\cdot\mathbf{\eta})$ \mathbf{T}_{3u} (4,1)= -0,2427· $\boldsymbol{\eta}$ \mathbf{T}_{3u} (4,2)= 2,634·(η -0,7106· π -1,142·10⁻²· \mathbf{p}) \mathbf{T}_{3u} (4,3)= 3,536 \cdot 10⁻² \cdot $\mathbf{\eta}$

 $\mathbf{T}_{3u}(4,4) = 0,1670 \cdot (\boldsymbol{\eta} + 2,857 \cdot \pi + 14,18 \cdot \mathbf{p})$

 $\mathbf{T}_{3u} (4,5) = 0,8701 \cdot (\mathbf{\eta} + 2,184 \cdot \pi + 0,6035 \cdot \mathbf{p})$

 $\mathbf{T}_{3u}(5,1) = 0,1250 \cdot (\mathbf{h} + 0,9699 \cdot \mathbf{\eta})$

 $\mathbf{T}_{3u}(5,2) = 0,3464 \cdot (\eta - 0,6907 \cdot \pi - 0,3917 \cdot \mathbf{p})$

 $\mathbf{T}_{3u}(5,3)=0,8580 \cdot (\mathbf{h}+0,1993 \cdot \mathbf{\eta})$

 $\mathbf{T}_{3u}(5,4) = 0,8701 \cdot (\mathbf{\eta} + 2,184 \cdot \pi + 0,6035 \cdot \mathbf{p})$

 ${\bf T}_{3u}~(5,5){=}1{,}388{\cdot}({\bf h}{+}3{,}278{\cdot}{\bm \eta}{+}5{,}444{\cdot}{\pi}{+}8{,}386{\cdot}{10}^{-2}{\cdot}{\bf p})$

Simetria	$\omega_{ m exp}$	ω_{teor}	Simetria	ω_{exp}	ω_{teor}
(pară)	(cm^{-1})	(cm^{-1})	(impară)	(cm^{-1})	(cm^{-1})
oscilațiilor			oscilațiilor		
$\mathbf{A}_{g}(1)$	495	355	$T_{1u}(1)$	526	454
$A_g(2)$	1470	1291	$T_{1u}(2)$	577	549
$\mathbf{H}_{g}(1)$	273	252	$T_{1u}(3)$	1183	1057
$\mathbf{H}_{g}(2)$	431	515	$T_{1u}(4)$	1429	1362
$\mathbf{H}_{g}(3)$	709	551	$\mathbf{H}_{u}(1)$	342	305
$\mathbf{H}_{g}(4)$	775	625	$\mathbf{T}_{3u}(1)$	353	374
$\mathbf{H}_{g}(5)$	1102	961	$G_u(1)$	402	571
$\mathbf{H}_{g}(6)$	1252	1176	$\mathbf{H}_{u}(2)$	579	400
$\mathbf{H}_{g}(7)$	1425	1444	$\mathbf{H}_{\mathrm{u}}(3)$	664	548
$\mathbf{H}_{g}(8)$	1576	1716	$T_{3u}(2)$	712	681
$G_g(1)$	485	544	G _u (2)	739	668
$T_{3g}(1)$	541	350	$G_u(3)$	753	757
$\mathbf{T}_{1g}(1)$	568	378	$\mathbf{T}_{3u}(3)$	797	832
T _{3g} (2)	764	667	$\mathbf{H}_{u}(4)$	828	819
G _g (2)	961	612	$T_{3u}(4)$	1038	1071
$T_{1g}(2)$	973	980	$G_u(4)$	1080	864
$\mathbf{G}_{g}(3)$	1199	677	$\mathbf{A}_{\mathrm{u}}(1)$	1122	1374
$T_{3g}(3)$	1214	919	$\mathbf{H}_{\mathrm{u}}(5)$	1222	1190
$G_g(4)$	1330	998	$\mathbf{H}_{u}(6)$	1242	1559
$G_g(5)$	1345	1471	$G_u(5)$	1290	1418
$T_{1g}(3)$	1479	1487	$T_{3u}(5)$	1313	1531
T _{3g} (4)	1544	1567	$G_u(6)$	1526	1652
$\mathbf{G}_{g}(6)$	1596	1667	$\mathbf{H}_{u}(7)$	1600	1719

Anexa 2. Valorile frecvențelor teoretice și experimentele în $C_{60}(I_h)$.

Anexa 3. Programul de calcul al vectorilor proprii

	PROGRAM SUBST	T(2,3)=T1
С	USE DFLIB	T(2,7)=T2
	DIMENSION	T(3,4)=T1
A1(1830),T(60,60),R(60,60),A2(60)		T(3,6)=T2
	DIMENSION VE(60)	T(4,5)=T1
	DIMENSION	T(4,10)=T2
M	Y1(60,60),MY2(60,60),MA(60,60)	T(5,9)=T2
	DOUBLE PRECISION A1,T,R,A2,VE	T(6,11)=T1
,M	Y1,MY2,	T(6,14)=T1
	1 MA, EPSILON, TERMEN	T(7,13)=T1
С	COMMON/ZA/VE	T(7,15)=T1
С	INITIALIZAREA PARAMETRILOR	T(8,16)=T1
	CK=49.7	T(8,20)=T1
	CN=90	T(9,17)=T1
	CALFA=6.31	T(9,19)=T1
	NL=90	T(10,12)=T1
	N=60	T(10,18)=T1
	T1=1.692	T(11,15)=T2
	T2=2.016	T(11,23)=T1
		T(12,14)=T2
	Y0=0.1	T(12,25)=T1
	EPSILON=1.0D-008	T(13,20)=T2
	ITERATII=0	T(13,21)=T1
С	CALL SD(1998)	T(14,24)=T1
С	PREGATIREA MATRICII T	T(15,22)=T1
	DO 15 K=1,60	T(16,19)=T2
	DO 15 J=1,60	T(16,29)=T1
1	5 T(K,J)=0.0	T(17,18)=T2
	T(1,2)=T1	T(17,27)=T1
	T(1,5)=T1	T(18,26)=T1
	T(1,8)=T2	T(19,28)=T1

T(20,30)=T1	T(43,50)=T2
T(21,22)=T1	T(43,55)=T1
T(21,40)=T2	T(44,45)=T2
T(22,31)=T2	T(44,54)=T1
T(23,24)=T1	T(45,53)=T1
T(23,32)=T2	T(46,47)=T2
T(24,33)=T2	T(46,53)=T1
T(25,26)=T1	T(47,52)=T1
T(25,34)=T2	T(48,49)=T2
T(26,36)=T2	T(48,52)=T1
T(27,28)=T1	T(49,51)=T1
T(27,35)=T2	T(50,54)=T1
T(28,37)=T2	T(51,60)=T2
T(29,30)=T1	T(52,59)=T2
T(29,38)=T2	T(53,58)=T2
T(30,39)=T2	T(54,57)=T2
T(31,32)=T1	T(55,56)=T2
T(31,41)=T1	T(56,57)=T1
T(32,49)=T1	T(56,60)=T1
T(33,34)=T1	T(57,58)=T1
T(33,48)=T1	T(58,59)=T1
T(34,47)=T1	T(59,60)=T1
T(35,36)=T1	DO 65 K=1,60
T(35,45)=T1	DO 65 J=1,K
T(36,46)=T1	65 T(K,J)=T(J,K)
T(37,38)=T1	C GENERAM SETUL INITIAL
T(37,44)=T1	ALEATOR
T(38,50)=T1	DO 25 I=1,N
T(39,40)=T1	DO 25 J=1,I
T(39,43)=T1	C CALL RANDOM(RNDNUMBER)
T(40,42)=T1	25 MY1(J,I) = $((2*Y0*0.49)-Y0)*(-1)**(I-1)*(I-$
T(41,42)=T2	J)
T(41,51)=T1	C DO 30 I=1,N
T(42,55)=T1	C DO 30 J=1,I
	156

C 30 MY1(I,J)=MY1(J,I)C CALCULAM VECTORII PROPRII 60 I1=1 DO 10 K1=1,N DO 10 J1=1.K1 IF (T(J1,K1).EQ.0.) MY1(J1,K1)=0.0 A1(I1) = T(J1,K1) - CALFA*MY1(J1,K1)I1 = I1 + 1**10 CONTINUE** CALL EIGEN(A1,R,N,0) C SCOATEM VALORILE PROPRII C CALL ORDONARE(A1,N,R) DO 70 I=1.N 70 VE(I)=A1(I*(I+1)/2) C CALL ORDONARE(VE,N,R) C ATRIBUIM VALORI MATRICII MA WRITE(*,*) VE DO 35 I=1,N DO 35 J=1,N 35 MA(I,J)=R(I,J)CALCULAM URMATORUL SET DE С VALORI MY2 **TERMEN=0.0D+000** DO 40 M1=1.N DO 40 N1=1,M1 DO 40 K=30,60 40 IF(T(N1,M1).NE.0.) TERMEN=TERMEN+2*MA(M1,K)*MA(N 1.K) TERMEN=TERMEN*2*CALFA/(CK*CN)

DO 50 I=1,N

DO 50 J=1,I MY2(J,I)=0.0DO 45 K=30,60 45 IF (T(J,I).NE.0.)MY2(J,I)=MY2(J,I)+2*MA(I,K)*MA(J,K)IF(I.NE.J) MY2(J,I)=MY2(J,I)*2*CALFA/CK-DABS(TERMEN) С IF (T(J,I).NE.0.0) MY2(J,I)=MY2(J,I) -TERMEN **50 CONTINUE** CALCULAM VARIATIA SOLUTIEI C LA ITERATIE ITERATII=ITERATII+1 VARIATIA=0.0 DO 55 I=1,N DO 55 J=1,I IF (T(J,I).NE.0.)VARIATIA=VARIATIA+(MY2(J,I) 1-MY1(J,I))*(MY2(J,I)-MY1(J,I))55 MY1(J,I)=MY2(J,I)WRITE(*,*)ITERATII,VARIATIA IF (VARIATIA.GT.EPSILON) GOTO 60 C WRITE(*,*)VE,R С DO 20 L=1,N С WRITE(*,'("E(",I3.3,")=")') L С WRITE(*,*)VE DO 66 I=1,60 DO 66 J=1,I IF 66 (T(J,I).NE.0)WRITE(*,*) J,I,MY1(J,I) TE=0.0

DO 22 I=30,60

```
22 TE=TE+VE(I)*2
```

WRITE(*,*)TE

- C DO 20 I=1,N
- C WRITE(*,'("Vectorul propriu

(",I3.3,"):")') L

- C WRITE(*,*) (R(L,I),I=1,180)
- C 20 CONTINUE

END

SUBROUTINE ORDONARE (A,N,R)

DIMENSION A(60), R(60, 60)

DOUBLE PRECISION A,R,S

C COMMON/ZA/A1

DO 5 L=1,N

```
DO 5 J=1,N-1
```

```
IF(A(J).GE.A(J+1)) GO TO 5
```

S=A(J)

```
A(J)\!\!=\!\!A(J\!\!+\!\!1)
```

```
A(J+1)=S
```

```
DO 4 K=1,N
```

```
S=R(K,J)
```

```
R(K,J)=R(K,J+1)
```

R(K,J+1)=S

```
4 CONTINUE
```

```
5 CONTINUE
```

RETURN

END

Anexa 4. Rezultatul diagonalizării pentru calculul vectorilor proprii

1	2 -3.450521125970324E-002
2	3 -3.439975072497412E-002
3	4 -3.430399184546970E-002
1	5 -3.447573559144139E-002
4	5 -3.435138611459446E-002
3	6 6.967716044846808E-002
2	7 6.982502202426635E-002
1	8 6.988046725343106E-002
5	9 6.976743837011820E-002
4	10 6.964126625446412E-002
6	11 -3.613344717847730E-002
10	12 -3.615469740825304E-002
7	13 -3.621472714329664E-002
6	14 -3.617841248061786E-002
12	14 7.444057283873065E-002
7	15 -3.628394052581987E-002
11	15 7.447444089195521E-002
8	16 -3.628557828172756E-002
9	17 -3.624873379478113E-002
10	18 -3.611230256130256E-002
17	18 7.445432693199913E-002
9	19 -3.617805979529404E-002
16	19 7.449752780494445E-002
8	20 -3.628368858215744E-002
13	20 7.451004645802356E-002
13	21 -3.891746611148769E-002
15	22 -3.875702506572670E-002
21	22 -5.077032331073164E-003
11	23 -3.894415975943417E-002
14	24 -3.881897682409000E-002
23	24 -4.961022531914772E-003

12	25 -3.884697465700479E-002
18	26 -3.893002368971313E-002
25	26 -4.858723667140713E-003
17	27 -3.875935303790669E-002
19	28 -3.893655242784839E-002
27	28 -4.912123447179645E-003
16	29 -3.880359268963375E-002
20	30 -3.883017819249314E-002
29	30 -5.046845886185897E-003
22	31 4.527311304947795E-002
23	32 4.535361620776365E-002
31	32 -5.024896705486254E-003
24	33 4.519273917227981E-002
25	34 4.513750442949588E-002
33	34 -4.879465835875535E-003
27	35 4.510189409039986E-002
26	36 4.521683536851048E-002
35	36 -4.860227490037880E-003
28	37 4.531254663820147E-002
29	38 4.529661091578546E-002
37	38 -4.994202378584486E-003
30	39 4.534741211657728E-002
21	40 4.545164137292113E-002
39	40 -5.095959537425088E-003
31	41 -3.878689915470375E-002
40	42 -3.891983037691790E-002
41	42 7.448190305072105E-002
39	43 -3.882350523339798E-002
37	44 -3.890328037833464E-002
35	45 -3.878971358956146E-002
44	45 7.446052067332512E-002
36	46 -3.891597978052122E-002
34	47 -3.881339471243055E-002
46	47 7.448026081636233E-002

33	48 -3.884415766934814E-002
32	49 -3.889390125121275E-002
48	49 7.449360068484601E-002
38	50 -3.885577235421336E-002
43	50 7.446183696638056E-002
41	51 -3.627097065703914E-002
49	51 -3.620738423995845E-002
47	52 -3.624870094723373E-002
48	52 -3.624487919695910E-002
45	53 -3.623327823164729E-002
46	53 -3.616696394755124E-002
44	54 -3.614485219328711E-002
50	54 -3.618242883377647E-002
42	55 -3.616620322340207E-002
43	55 -3.620954963373875E-002
55	56 6.972830404226710E-002
54	57 6.968954110480427E-002
56	57 -3.435536661158310E-002
53	58 6.974627707096417E-002
57	58 -3.436513376259989E-002
52	59 6.981989540822128E-002
58	59 -3.443342286419168E-002
51	60 6.980875815106594E-002
56	60 -3.441747709317582E-002
59	60 -3.446556911583716E-002
1011	

-176.1241

Anexa 5. Structura aplicației adaptiv-parametrice pentru modelarea IEF de rezonanță pentru ioni în cristale laser

```
execute[T_, elines_, phlines_] := Module {e, uniqueElectronLines, uniqueResonances, ph},
     e = Table[{e[[1]], e[[2;; 4]]}, {e, elines}];
     uniqueElectronLines = Union[elines[[All, 1]]];
     uniqueResonances = Union[phlines[[All, 1;; 2]]];
     ph = Table[
         {u, Select[phlines, #[[1;;2]] = u &][[All, 3;;5]]}
         , {u, uniqueResonances}];
     \mathbf{n}[\boldsymbol{\omega}] := \frac{1}{\mathrm{Exp}\left[\frac{\boldsymbol{\omega} \star \mathrm{cm} \mathrm{2J}}{\mathrm{ke}^{\mathrm{m}}}\right] - 1};
     \operatorname{ArRho}[\omega_{, phs_{]}} := \frac{1}{\pi} \operatorname{Sum}\left[\frac{\operatorname{ph}[[3]] \star \operatorname{ph}[[2]]/2}{(\omega - \operatorname{ph}[[1]])^2 + \left(\frac{\operatorname{ph}[[2]]}{2}\right)^2}, \{\operatorname{ph}, \operatorname{phs}\}\right];
     \Gamma r[\varrho_{, f_{, r_{}}] := Module[\{ef, er, \omega, phs\},
         ef = Select[e, First[#] = f &][[1, 2]];
         er = Select[e, First[#] = r &][[1, 2]];
        phs = Select[ph, First[#] = {f, r} &][[1, 2]];
        \omega = \varrho - ef[[1]] + (ef[[1]] - er[[1]]);
        \pi \star \operatorname{ArRho}[\omega, \, \operatorname{phs}] \star \operatorname{If}[\omega \geq 0, \, \operatorname{n}[\omega] \, + \, 1, \, \operatorname{n}[-\omega]]
       1;
     \Gamma[\mathcal{Q}, f] := Module[\{\omega, res\},
         res = Select[uniqueResonances, First[#] = f &][[All, 2]];
         Sum[\Gamma r[\Omega, f, r], \{r, res\}]
       17
```

```
\Sigma r[\Omega, f, r] := Module \{ef, er, phs, o, dl, l1, l2\},\
             ef = Select[e, First[#] = f &][[1, 2]];
               er = Select[e, First[#] = r &][[1, 2]];
               phs = Select[ph, First[#] = {f, r} &][[1, 2]];
               o = Ω - (ef[[1]]) + (ef[[1]] - er[[1]]);
              l1 = Min \Big[ Table \Big[ ph[[1]] - \frac{ph[[2]]}{2 Sqrt[0.001]}, \{ph, phs\} \Big] \Big];
              12 = Max \left[ Table \left[ ph[[1]] + \frac{ph[[2]]}{2 Sqrt[0.001]}, \{ph, phs\} \right] \right];
               If[11 < 10, 11 = 10];</pre>
               If[l1 = 0, l1 = l1 + 0.00001];
               If[12 = 0, 12 = 12 - 0.00001];
               If [11 < Abs[0] && Abs[0] < 12,</pre>
                   \operatorname{NIntegrate}\left[\operatorname{ArRho}\left[\omega, \text{ phs}\right] \star \frac{(2 \star n[\omega] + 1) \star \circ + \omega}{\circ^2 - \omega^2}, \left\{\omega, \text{ll}, \text{ Abs}[\circ] - 10^{-5}\right\}, \operatorname{MaxRecursion} \rightarrow 20\right] + \frac{1}{2} \left[\left(\omega, \frac{1}{2}\right)^2 + \left(\omega, \frac{1}{2}\right)^2\right] + \frac{1}{
                           \operatorname{NIntegrate}\left[\operatorname{ArRho}\left[\omega, \text{ phs}\right] \star \frac{(2 \star n[\omega] + 1) \star \circ + \omega}{\circ^2 - \omega^2}, \left\{\omega, \operatorname{Abs}\left[\circ\right] + 10^{-5}, 12\right\}, \operatorname{MaxRecursion} \rightarrow 20\right],
                     NIntegrate \left[\operatorname{ArRho}[\omega, \text{ phs}] * \frac{(2 * n[\omega] + 1) * \circ + \omega}{o^2 - \omega^2}, \{\omega, 11, 12\}\right]
               1
      ];
\Sigma[\Omega, f] := Module[{res}],
            res = Select[uniqueResonances, First[#] = f &][[All, 2]];
             Sum[\Sigmar[\Omega, f, r], \{r, res\}]
       1;
```

```
\mathbf{FF}[\mathcal{Q}] := \frac{1}{\pi} \operatorname{Sum} \Big[
       ef = Select[e, First[#] = f &][[1, 2]];
       G = ef[[2]] + \Gamma[\Omega, f];
       S = \Omega - ef[[1]] - \Sigma[\Omega, f];
       ef[[3]] \frac{G}{S^2 + G^2} / / N
       , {f, uniqueElectronLines} ];
   drawPlot[] := Module[{maxE, minE, interval, minx, maxx},
     maxE = Max[e[[All, 2, 1]]];
     minE = Min[e[[All, 2, 1]]];
      interval = maxE - minE;
     minx = minE - 0.2 * interval;
     maxx = maxE + 0.2 * interval;
     Plot[FF[x], \{x, minx, maxx\}, PlotRange \rightarrow All, PlotPoints \rightarrow 50, MaxRecursion \rightarrow 2]
    1;
   drawPlot[]
  12
createFolder[filename ] := Module[{file1, file2, newpath},
   newpath = FileNameJoin[{path, "results", filename}];
   CreateDirectory[newpath];
   file1 = FileNameJoin[{path, filename <> "-1.csv"}];
   file2 = FileNameJoin[{path, filename <> "-2.csv"}];
   CopyFile[file1, FileNameJoin[{newpath, filename <> "-1.csv"}]];
   CopyFile[file2, FileNameJoin[{newpath, filename <> "-2.csv"}]];
   DeleteFile[file1];
   DeleteFile[file2];
   Return[newpath];
  17
RunScheduledTask[
 files1 = FileNames["*-1.csv"];
 files2 = FileNames["*-2.csv"];
 filenames1 = StringTake[#, {1, -3}] & /@FileBaseName /@files1;
 filenames2 = StringTake[#, {1, -3}] & /@FileBaseName /@files2;
 fileinter = Intersection[filenames1, filenames2];
 For[i = 1, i ≤ Length[fileinter], ++i,
  filename = fileinter[[i]];
  T = Import[filename <> "-1.csv"][[1, 1]];
  elines = Import[filename <> "-1.csv"][[2 ;; -1]];
  phlines = Import[filename <> "-2.csv"];
  newpath = createFolder[filename];
  Export[FileNameJoin[{newpath, filename<> ".png"}], execute[T, elines, phlines]];
 1
 , 20
1
```

DECLARAȚIA PRIVIND ASUMAREA RĂSPUNDERII

Subsemnatul, declar pe răspundere personală că materialele prezentate în teza de doctorat sunt rezultatul propriilor cercetări și realizări științifice. Conștientizez că, în caz contrar, urmează să suport consecințele în conformitate cu legislația în vigoare.

CIOBU Victor on

Data: <u>01/09/2016</u>

CURRICULUM VITAE

Home:☎ (+373 22) 343720Mobil:☎ (+373 79) 800700E-mail:vciobu@gmail.com

Nume, prenume: *CIOBU Victor* Data nasterii: 03 septembrie 1968

Experiența profesională:

- Lector universitar
- Conducerea subdiviziunilor T.I.C.
- Experiență de lucru cu Organizații Internaționale;
- Cunoașterea legislației privind achizițiile publice, legislația vamală, sistemului și procesului bugetar de stat, operațiunilor trezoreriale.
- Experiență de lucru în echipă în diferite proiecte;
- Experiență de elaborare a sistemelor informaționale bazate pe arhitectură Client/Server;
- Experiență în programarea Web utilizînd PL/SQL, HTML, DHTML, XML;
- Experiență în testarea echipamentelor hardware, instalarea și menținerea software.
- Cunoașterea și utilizarea următoarelor sisteme de operare:
- Windows Vista/XP/2003/2000/NT/9x, MS DOS, Novell DOS 7.0, Novell NetWare 3.x, 4.x., 5.x, Red Hat Linux 5.0, SUSE Linux 11, UNIX SUN Solaris x86 v. 2.4, Novell UnixWare 2.1/1.1, Oracle Enterprise Linux v.5.x;
- Lucrul cu: SQL*PLUS 11g/10g/9i/8.x, Microsoft Visual Basic 6.0/5.0, Microsoft Office VBA 2007/2003/2000/97/95;
- Baze de date: Oracle 11g/10g/9i/8i/8.x/7.x, Lotus Domino Server v. 4.6, MySQL 5.x;
- Data Access: JDBC, Oracle Net, ODBC;
- Utilite speciale:
- Oracle Developer Suite 10g/9i/6i (Procedure Builder, Forms, Reports), Oracle WebDB 2.x, WebView, Oracle Portal, Oracle APEX, Lotus Notes 4.6
- Utilite de modelare: Oracle Designer 9i/8i, Oracle Database Designer, Computer Associates ERwin 4.0, Visual Paradigm v.6.3.
- Cinci ani de experiență în administrarea LAN, instalarea sistemelor de operare și administrare a lor;
- Mai mult de zece ani de experiență în programare și administrare a bazelor de date Oracle;
- Mai mult de zece ani de experiență în conducerea subdiviziunilor IT;
- Mai mult de zece ani de experiență de lector universitar (tehnologii informationale).

2004-Present:

Universitatea de Stat din Moldova. Lector superior universitar. Predarea următoarelor disciplini:

- Baze de date şi algoritmi;
- Limbajul SQL;
- Designul bazelor de date relaționale, Oracle Designer, Computer Associates Erwin, Visual Paradigm.
- Proiectarea și administrarea bazelor de date, Limbajul PL/SQL.
- Sisteme de gestiune a bazelor de date.
- Proiectarea şi crearea formelor şi rapoartelor unei aplicaţii informaţionale în Oracle Forms/Reports Developer;

<u>2010-2013</u>:

Întreprinderea de Stat Centrul Resurselor Informaționale de Stat "REGISTRU", șef-adjunct Direcție elaborare și dezvoltare sisteme informaționale.

<u>2005 - 2007</u>:

Ministerul Apărării al Republicii Moldova, Consilierul Ministrului apărării pe probleme economice, relații internaționale și implementarea proiectelor noi:

- Manager al Proiectului NATO "distrugerea pesticidelor şi substanţelor chimice periculoase în Moldova",
- Participarea la planificarea și elaborarea bugetului anual a Ministerului Apărării și Armatei Naționale,
- Planificarea şi organizarea achiziţiilor de stat (echipament, software, hardware, etc.),
- Responsabil de activitatea instituțiilor cu autogestiune subordonate Ministerului Apărării.

<u>2001 - 2005</u>:

Ministerul Finanțelor al Republicii Moldova, Șef al Direcției Generale Tehnologii Informaționale:

- Gestionarea proceselor de proiectare, elaborare şi implementare aplicaţiilor informaţionale ale Ministerului Finanţelor;
- Gestionarea instalării, deservirii şi menținerii rețelelor globale şi locale a Ministerului Finanțelor.
- Elaborarea standartelor și cerințelor tehnice pentru tehnica de calcul, sisteme informaționale și de telecomunicații, responsabil de procurarea echipamentelor de de calcul și de rețea pentru Ministerul Finanțelor.

<u>2000-2001</u>:

SGS Société Générale de Surveillance SA, SGS Chisinau Liaison Office.

- Manager IT.
- Gestionarea și dezvoltarea unui sistem informațional intelegent pentru automatizarea proceselor de inspecție preexport.
- Responsabil de achiziționarea tehnicii de calcul, rețelelor și echipamentelor de telecomunicații.
- Design-ul și implementarea rețelei oficiului SGS din Chișinău.

<u> 1996 - 2000:</u>

Implicat în Proiectul TACIS "Cooperarea transfrontalieră", comanager de proiect din partea Departamentului Vamal al Republicii Moldova:

- Crearea, dezvoltarea şi implementarea sistemului informațional vamal la birourile vamale Ungheni şi Leuseni;
- Responsabil de instalarea, şi suportul serverelor Oracle, designul bazei de date, exportul/importul datelor;
- Replicarea datelor dintre Departamentul Controlului Vamal și vămi;

<u>1992 - 2000</u>:

Departamentul Control Vamal al Republicii Moldova, CIS (Centrul Informațional Specializat cu statut de Directie). Șef-adjunct CIS "Vama Moldovei":

- Crearea sistemului automatizat de introducere și control a declarațiilor vamale;
- Crearea rețelei de telecomunicații (sediul central, birouri vamale și posturi vamale);
- Proiectarea, crearea şi implementarea sistemului informațional "Frontiera" la punctul de trecere a frontierei de stat Sculeni bazat pe tehnologii WEB, server Windows NT 4.0, RDBMS Oracle Enterprise Server 8.05 şi Oracle WebDB 2.x;

<u>Studii:</u>

- > 2009-2014, Universitatea de Stat din Moldova; studii doctorale, Programarea calculatoarelor.
- 2003-2007, Universitatea de Stat din Moldova, Facultatea de Drept, Dreptul Administrativ şi Constituțional.
- 2005: Cursuri de perfecționare petrecute de "RDTEX Centrul de formare şi certificare a specialiştilor în tehnologii informaționale", în or.Moscova, Federația Rusă:

Oracle Database 10g: PL/SQL Fundamentals Oracle Database 10g: Develop PL/SQL Program Units Oracle Database 10g: Administration Workshop I Oracle Database 10g: Administration Workshop II OracleAS Portal 10g: Build Corporate Portals OracleAS Portal 10g: Build Portlets with Java OracleAS Portal 10g: Build Portlets with PL/SQL

- 1985-1992: Universitatea de Stat din Moldova, Facultatea de Fizică.
 Diplomă cu distincție media 9,68 (max. 10,0):
 - Specialitatea: Fizica teoretică.
 - Calificarea: inginer, Fizica teoretică.

Limbi posedate:

- Limba română: maternă
- Limba rusă: excelent
- Limba engleză: fluent
- Limba franceză: mediu

LISTA LUCRĂRILOR ȘTIINȚIFICE, ȘTIINȚIFICO-METODICE, DIDACTICE

LUCRĂRI ȘTIINȚIFICE

• Articole de sinteză

 Progrese în Fizica Teoretică: Culegere de lucrări științifice (ISBN 978-9975-71-817-2), F.Paladi, V.Ciobu, Aplicații adaptiv-parametrice în fizica teoretică. Chişinău, CEP USM, 2016. p.230-261.

• Articole în reviste de circulație internațională (cotate ISI și SCOPUS)

- C.Candu, V. Ciobu, V. Enaki, Four-center resonance energy transfer in rare earth doped crystals, Journal of Optoelectronics and Advanced Materials, ISSN 1454-4164, Vol.7, No. 2, INOE 2000, Bucuresti, April 2005, p.781–786, ISI, Impact Factor = 0,563.
- V.Enaki, A.Lupei, V.Lupei, C.Presura, V.Ciobu, Effects of resonant electron-phonon interactions for the RE³⁺ ions in laser crystals, Bellingham, Wash.: SPIE the International Society for Optical Engineering, ISSN: 0277786X, ISBN: 9780819428578 [0819428574], 1998, pp.570-577, ISI, Impact Factor = 0,2.

• Articole în reviste științifice cu recenzenți din Registrul național al revistelor științifice: Categoria B

- **4.** V.Ciobu, Modelarea interacțiunii electron-fononice de rezonanță pentru ionii de pământ rar în cristale laser. Revista științifică a Universității de Stat din Moldova "Studia Universitatis Moldaviae" (Seria Fizică), nr.2(92) 2016, pp.3–10.
- I.Boguş, V.Ciobu, F.Paladi, Algoritmul de obținere a deplasărilor simetrizate în sistemele simetrice complexe prin reducerea la problema vectorilor proprii. Revista ştiințifică a Universității de Stat din Moldova "Studia Universitatis Moldaviae" (seria Fizică), nr.7(87) 2015, pp.3–8.
- **6.** V.Ciobu, Elaborarea sistemului informațional național adaptiv pentru automatizarea proceselor testării tehnice ale vehiculilor, Revista științifică a Universității de Stat din Moldova "Studia Universitatis Moldaviae" (seria Informatica), nr.2(82) 2015, pp.3-9;
- **7.** V.Ciobu, F.Paladi, Gh.Căpăţână, Sistem informatic adaptiv "Determinarea stărilor proprii ale moleculelor de fullerene", Revista ştiinţifică a Universităţii de Stat din Moldova "Studia Universitatis Moldaviae" (seria Informatica), nr.2(82) 2015, pp.10-15;
- **8.** V.Enachi, V.Ciobu, Oscilații murmurale în particule onionice fullerenice, Buletinul ASRM, Seria Fizica și Tehnica, Nr.2(23), 1998, pp.13-30.

• Articole în culegeri naționale

9. V.Enachi, C.Isacova, V.Ciobu, Influența rezonanței electron-fononice asupra liniei de absorbție a luminii în ionul de fulleren C_{60}^{-1} , Anale științifice ale USM, Seria "Științe fizico-matematice", Chișinău, 2005, p.62-71;

- 10. V.Ciobu, Influența rezonanței electron-fononice asupra spectrelor de împrăștiere raman şi asupra spectrelor de absorbție a luminii în cristale dopate cu ioni pământ-rar, Analele ştiințifice ale USM, Seria "Ştiințe fizico-matematice", Chişinău, 2003, p.53-55;
- **11.** V.Enachi, V.Ciobu, Transfer de energie în cristale dopate cu ioni de pământ-rar, Analele științifice ale USM, Seria "Științe fizico-matematice", Chișinău, 2003, p.56-61;
- 12. D.Zatic, V.Ciobu, V.Enachi, Efectele interacțiunii electron-fononice rezonante la împrăștierea neutronilor in cristale ce conțin ioni RE³⁺, Anale științifice ale USM, Seria "Științe fizico-matematice", Chişinău, 2002, p.179-182;
- **13.** V.Enachi, V.Ciobu, Celule logice CNOT ale computerului cuantic bazate pe molecule fullerenice activate și dopate, Anale științifice ale USM, Seria "Științe fizico-matematice", Chișinău, 2001, p.106-108;
- 14. V.Enachi, V.Ciobu, Modelul semiclasic şi metoda numerică de evaluare a proprietăților electron-fononice în fullerenul C₆₀, Anale ştiințifice ale USM, Seria "Științe fizicomatematice", Chişinău,1999 p.117-118;

• Materiale la forurile științifice naționale cu participare internațională

- **15.** V.Ciobu, I.Bogush, F.Paladi, Modeling molecular vibrations and spectra of fullerene C_{60} . 8th International Conference Materials Science and Condensed Matter Physics (MSCMP 2016). Poster Session Condensed Matter Theory (CMT), Chişinău. p.60;
- 16. V.Ciobu, Distributed adaptive information system for the management of technical testing of automobiles. Conferința Internațională: Mathematics & IT: Research and Education (MITRE-2015). Centrul de Educatie si Cercetare in Matematica si Informatica (CECMI). Chişinău. pp.92-94. – ISBN 978-9975-71-678-9;
- V.Ciobu, F.Paladi, Synchronization of distributed databases. Conferința Internațională: Mathematics & IT: Research and Education (MITRE-2015). Centrul de Educatie si Cercetare in Matematica si Informatica (CECMI). pp.94-95. – ISBN 978-9975-71-678-9;
- **18.** V.Ciobu, Aplicații adaptive pentru cercetarea sistemelor fizice și managementul resurselor, Conferința Științifică Națională cu participare internațională "Integrare prin cercetare și inovare", Universitatea de Stat din Moldova, Chișinău, 2014, pp.121-123.

• Materiale la forurile științifice internațională(peste hotare)

- 19. C.Candu, V.Ciobu, V.Enaki, Theory of four-center systems for energy Transfer in Rare-Erth doped Materials, 7-International Conference on Physics of Advanced Materials, June 10-12.2004, Section Optical and Photoelectric Properties, Universitatea Alexandru Ioan Cuza (UAIC), Iaşi, Romania, p.60;
- 20. C.Candu, V.Ciobu, V.Enaki, Theory of Resonantn Electron-Phonon interaction for energy pooling in Rare-Earth Doped Materials, 7-International Conference on Physics of Advanced Materials, June 10-12.2004, Section Optical and Photoelectric Properties, Universitatea Alexandru Ioan Cuza (UAIC), Iaşi, România, p.166;
- **21.** V.Enachi, V.Ciobu, Z.Bazalic, Exhibitions of Electron-phonon interaction in C_{60} Fulleren, Conferința Națională de Fizică, Constanța, România, 1998, p.161;

22. V.Enachi, V.Ciobu, Problema inversă vibrațională în fulereni, Sesiunea a V-a științifică a cadrelor didactice, Iași, România, 1996;

• Materiale la forurile științifice naționale

- **23.** V.Ciobu, Электрон-фононный резонанс в ионах фуллерена C_{60}^{-1} , Conferința corpului didactico-științific "Bilanțul activității științifice a USM pe anii 1998-99", 27 septembrie 2 octombrie 2000, pp.194-195;
- 24. V.Ciobu, V.Gribovan, V.Enachi, Влияние резонансного электрон-фононного взаимодействия на рамановское рассеяние света примесными редкоземельными ионами, Conferința corpului didactico-ştiințific "Bilanţul activităţii ştiinţifice a USM pe anii 1998-99", 27 septembrie -2 octombrie 2000, pp.192-193;
- **25.** V.Enachi, V.Ciobu, Mecanismul Jahn-Teller de imperechere a electronilor în anionii C_{60}^{-n} , Conferința corpului didactic USM, 1995, p.73.

• Brevete de invenții, patente, certificate de înregistrare, materiale la saloanele de invenții

- 26. V.Ciobu, V.Primac, Certificat de înregistrare a obiectelor dreptului de autor şi drepturilor conexe, Sistemul automatizat de evidenţă şi căutare a unităților de transport supuse testării tehnice "AutoTEST", Seria PC Nr.3554 din 05.12.2012 înregistrat în baza de date a Agenției de Stat pentru Proprietatea Intelectuală a Republicii Moldova.
- 27. V. Ciobu, F.Paladi. Certificat de înregistrare AGEPI a obiectelor dreptului de autor şi drepturilor conexe, Seria PC (program pentru calculator) Nr. 5528 din 16.12.2016. Denumirea obiectului: "Sistem Informatic Adaptiv "Determinarea Stărilor Proprii ale Moleculelor de Fullerene" şi "Modelarea Interacțiunii Electron-Fononice de Rezonanță pentru Ionii de Pământuri Rare în Cristale Laser". Titularul drepturilor patrimoniale: Universitatea de Stat din Moldova.
- 28. Gh.Ciocanu, V.Ciobu, N.Eni, F.Paladi. Certificat de înregistrare AGEPI a obiectelor dreptului de autor şi drepturilor conexe, Seria PC (program pentru calculator) Nr. 5527 din 16.12.2016. Denumirea obiectului: "Sistem Informatic Adaptiv "eAdmiterea USM". Titularul drepturilor patrimoniale: Universitatea de Stat din Moldova.

LUCRĂRI DIDACTICE

Culegere de probleme îndrumări metodice

- **29.** V.Ciobu, N.Eni, Limbajul SQL: Culegere de probleme și îndrumări metodice. ISBN 978-9975-71-753-3. Chișinău, CEP USM, 2016, 87 p.
- **30.** F.Paladi, V.Ciobu, N.Eni, V.Primac, Procesarea datelor. Studii de caz. ISBN 978-9975-71-801-1. Chişinău, CEP USM, 2016, 120 p.

• Curicule elaborate pentru cursurile universitare

- **31.** Proiectarea și crearea portalelor Internet Facultatea de Fizică și Inginerie, specialitatea Tehnologii informationale în modelare, ciclul II;
- 32. Baze de date web-orientate Facultatea de Fizică și Inginerie, specialitatea Tehnologii

informationale in modelare, ciclul II;

- **33.** Elaborarea aplicațiilor WEB Facultatea de Fizică și Inginerie, specialitatea Tehnologii informationale in modelare, ciclul II;
- **34.** Depozite de date și Data Mining Facultatea de Fizică și Inginerie, specialitatea Sisteme informaționale, ciclul II;
- **35.** Forma și reports Developer Mining Facultatea de Fizică și Inginerie, specialitatea Sisteme informaționale, ciclul II;
- **36.** Baze de date și algoritmi Facultatea de Fizică și Inginerie, specialitatea Tehnologii Informaționale, ciclul I;
- **37.** Limbajul SQL Facultatea de Fizică și Inginerie, specialitatea Tehnologii Informaționale, ciclul I;
- **38.** Sisteme de dirijare cu bazele de date Facultatea de Fizică și Inginerie, specialitatea Tehnologii Informaționale, ciclul I;
- **39.** Proiectarea și administrarea bazelor de date Facultatea de Fizică și Inginerie, specialitatea Tehnologii Informaționale, ciclul I.