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ANNOTATION
of the thesis "Distances on Free Monoids and Their Applications in Theory of Information",
submitted by Budanaev Ivan for Ph.D. degree in Mathematics, specialty 111.03 - Mathematical
Logic, Algebra and Number Theory.

The thesis was elaborated in Moldova State University "Dimitrie Cantemir", Chişinău, 2019.
Thesis structure: the thesis is written in English and consists of: introduction, four chapters,

general conclusions and recommendations, 200 bibliography titles, 116 pages of main text. The
obtained results were published in 20 scientific papers.

Keywords: Alexandroff space, quasivariety of topological monoids, free monoids, invariant
distance, quasi-metric, Levenshtein distance, Hamming distance, Graev distance, parallel decompo-
sition, proper similarity, weighted mean, bisector of two strings, convexity, algorithm.

Domain of research: Distances on abstract algebraic structures.
Goals and objectives: The goal of the research is to study the problem of distances on free

monoids. To achieve this goal, the following objectives were defined: elaboration of an effective
method for extending the quasi-metric on free monoids; development of efficient representations of
information for data analysis; implementation of innovative algorithms for solving text sequences
problems; describe digital topologies on the discrete line.

The scientific novelty and originality consist in obtaining new theoretical results with ap-
plications in computer science. An effective method of distance extension on free monoids was
developed, which helped to introduce the concept of parallel representation of information. This has
allowed the development of the concepts of efficiency and similarity of the information sequences,
as well as the construction of the sets of weighted mean and bisector of strings.

The important scientific problem solved in the research is the development of methods
for constructing and studying distances on free monoids, which contribute to obtaining effective
methods of representing information, applicable to solving different distance problems.

The theoretical significance is determined by the obtaining of the new results regarding the
establishment of the conditions of existence of the extension of the distance on free monoids. The
elaborated methods have allowed to approach the problems related to information sequences from
a new point of view. New algorithms of constructing strings weighted mean and bisector were
proposed. It has been established that the informational segment is not convex.

The applicative value of the paper consists in the use of the obtained theoretical results in
the study of symmetric topologies on the digital line, imaging processing and construction of the
centroid of a set of strings.

The implementation of the scientific results. The obtained results can be used in scientific
research related to data analysis, the study of the efficiency of information representation, digital
image processing. They can also be used in development of an optional course for university students
related to the study of distances on abstract algebraic structures.
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ADNOTARE
la teza "Distanţe pe Monoizi Liberi şi Aplicaţiile lor în Teoria Informaţiei",

înaintată de către Budanaev Ivan pentru obţinerea titlului de doctor în ştiinţe matematice la special-
itatea 111.03 - Logică Matematică, Algebră şi Teoria Numerelor.

Teza a fost elaborată la Universitatea de Stat "Dimitrie Cantemir", Chişinău, anul 2019.
Structura tezei: teza este scrisă în limba engleză şi conţine introducere, patru capitole,

concluzii generale şi recomandări, 200 titluri bibliografice, 116 pagini de text de bază. Rezultatele
obţinute sunt publicate în 20 lucrări ştiinţifice.

Cuvinte cheie: Spaţiul Alexandrov, cvasivarietate de monoizi topologici, monoizi liberi,
distanţă invariantă, cvasimetrică, distanţa Levenshtein, distanţa Hamming, distanţa Graev, descom-
punere paralelă, similaritate proprie, medie ponderată, bisectoare a două stringuri, convexitate,
algoritm.

Domeniul de studiu al tezei: Distanţe pe structuri algebrice abstracte.
Scopul şi obiectivele lucrării. Scopul cercetării este de a studia problema distanţelor pe

monoizi liberi. Pentru atingerea acestui scop au fost definite următoarele obiective: elaborarea
unei metode eficiente de extindere a cvasimetricei pe monoizi liberi; dezvoltarea reprezentărilor
eficiente a informaţiei pentru analiza datelor; implementarea algoritmilor inovativi pentru rezolvarea
problemelor secvenţelor de text; descrierea topologiei digitale pe linia discretă.

Noutatea şi originalitatea ştiinţifică constau în obţinerea rezultatelor noi de ordin teoretic
cu aplicaţii în informatică. A fost elaborată o metodă efectivă de extindere a distanţelor pe monoizi
liberi, graţie căreia a fost introdus conceptul de descompunere paralelă a informaţiei. Această a
permis dezvoltarea conceptelor de eficienţă şi similaritate ale secvenţelor informaţionale, la fel şi
construcţia mulţimelor de medii ponderate şi bisectoare a stringurilor.

Problema ştiinţifică importantă soluţioantă constă în elaborarea metodelor de construire s, i
studiere a distanţelor pemonoizi liberi, care contribuie la obţinereametodelor efective de reprezentare
a informaţiei, aplicabile la soluţionarea diferitor probleme referitor la distanţe.

Semnificaţia teoretică este determinată de obţinerea rezultatelor noi ce ţin de stabilirea
condiţiilor de existenţă a extinderii distanţei pe monoizi liberi. Metodele elaborate au permis
abordarea problemelor legate de secvenţe de informaţie dintr-un nou punct de vedere. Au fost
propuşi algoritmi de construcţie a mediilor ponderate şi bisectoarei a perechilor de stringuri. S-a
stabilit că segmentul informaţional nu este convex.

Valoarea aplicativă a tezei constă in utilizarea rezultatelor teoretice obţinute la studiul
topologiilor simetrice pe dreapta digitală, procesarea imaginelor şi construcţia centrului de greutate
a mulţimei de stringuri.

Implementarea rezultatelor ştiinţifice. Rezultatele obţinute pot fi utilizate in cercetări
ştiinţifice ce ţin de analiza datelor, studierea eficienţei reprezentării a informaţiei, procesarea digitală
a imaginelor. De asemenea, ele pot servi drept suport pentru cursuri universitare opţionale.
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АННОТАЦИЯ
диссертации “Расстояния на свободных моноидах и их приложения в теории информации”,
представленной Иваном Буданаевым на соискание учёной степени доктора математических наук по
специальности 111.03 – Математическая Логика, Алгебра и Теория Чисел. Диссертация выполнена
в Государственном Университете “Димитрие Кантемир”, Кишинёв, 2019 год.

Структура работы: Диссертация написана на английском языке и содержит введение, четыре
главы, заключение с рекомендациями, 200 библиографических названия, 116 страниц оцновного
текста. Полученные результаты были опубликованы в 20 научных работах.

Ключевые слова: Пространство Александрова, свободные моноиды, инвариантное расстоя-
ние, квазиметрика, расстояния Левенштейна, Хэмминга и Граева, параллельное разложение, над-
лежащее сходство, взвешенное среднее, биссектриса двух строк, выпуклость, алгоритм.

Область исследования: Расстояния на абстрактных алгебраических структурах.
Цель исследования является изучение проблемы расстояний на свободных моноидах, для

достижение которого определены следующие задачи: разработка эффективного метода продолже-
ния квазиметрики на свободные моноиды; разработка эффективных представлений информации
для анализа данных; внедрение инновационных алгоритмов для решения задач текстовых последо-
вательностей; описание цифровых топологии на дискретной прямой.

Научная новизна и оригинальность заключаются в получении новых теоретических резуль-
татов с приложениями в информатике. Разработан эффективный метод продолжения расстояний на
свободных моноидах, который позволил ввести концепцию параллельного представления информа-
ции, эффективности и сопоставимости информационных последовательностей, а также построить
множества взвешенного среднего и биссектрисы строк.

Важной научной задачей, решаемой в исследовании, является разработка методов построе-
ния и исследования расстояний на свободных моноидах, которые способствуют получению эффек-
тивных методов представления информации, применимых для решения задач с расстояниями.

Теоретическая значимость определяется получением новых результатов, касающихся уста-
новления условий существования продолжения расстояний на свободных моноидах. Разработанные
методы позволили подойти к проблемам, связанным с информационными последовательностями,
с новой точки зрения. Предложены новые алгоритмы построения взвешенного среднего и биссек-
трисы строк. Установлено, что информационный сегмент не является выпуклым.

Прикладная ценность работы заключается в использовании полученных теоретических ре-
зультатов при исследовании симметричных топологий на цифровой прямой, обработке изображений
и построении центроида множества строк.

Реализация научных результатов. Полученные результаты могут быть использованы в на-
учных исследованиях, связанных с анализом данных, изучением эффективности представления
информации, цифровой обработкой изображений. Они также могут быть использованы при разра-
ботке факультативного курса для студентов университетов, связанного с изучением расстояний на
абстрактных алгебраических структурах.
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INTRODUCTION

This thesis presents theoretical results of the study of distances on abstract algebraic structures.
The applicative part of the research can be used in information theory, where it is necessary to
define the measure similarity between data and the efficiency of data representation. These notions,
in their turn, can be obtained by applying distance between the information sequences.

Hamming, Graev and Levenshtein research work bring us to the need to develop methods of
extension of distances on the alphabet A over the free monoid L(A). It is important for the extension
to be invariant. These facts determine the actuality and importance of the research topic.

Different types of distances were examined by M. Frechet, V. Niemytzcki, P.S. Alexandroff,
R.W. Heath, A.V. Arhangelskii, M.M. Choban, P.S. Kenderov, S. Nedev,W.A.Wilson (see [93, 152,
153, 6, 8, 9, 109, 14, 52, 15, 16, 69, 147, 199]). In the class of distances, quasi-metrics are highlighted
by the fact that they are not symmetric but satisfy the condition of the axiomof the triangle inequality.
It is important that any T0-topology can be described using some quasi-metric. Discrete quasi-
metrics bring us to the concept of digital space and more general to Alexandroff space. Description
of abstract information systems use ordered sets. The general theory of these systemswas conceived
by D. Scott and Yu. Ershov (see [88, 90, 89, 91, 170, 171, 172, 174, 175, 173]).

The study of information systems is related to language theory and monoids theory. Any
information represented in a given alphabet A is a sequence of elements in A. We also admit the
neutral element that determines the empty symbol. This allows the representation of same sequence
of information in multiple ways, with different lengths of the representation, which represent a
special interest in analysis of similarity and distance between them. The results of this analysis
lead to the definition of new concepts like parallel decompositions, semiparallel decompositions,
proper similarity and efficiency of representation.

The research goals and objectives. The goal of the scientific research is to study the problem
of distances on free monoids. To achieve this goal, the following objectives were defined:

• elaboration of an effective method for extending the quasi-metric on free monoids;

• development of efficient representations of information for data analysis;

• implementation of innovative algorithms for solving text sequences problems;

• describe image processing from the topological point of view;

• describe digital topologies on the discrete line.

The study of the research is conducted within the area of the algebraic and topological
theories, and the methodology applied is based on the application of methods of monoids theory,
distance spaces, language theory, algorithms theory and the informational systems theory.

9



The thesis scientific novelty and originality consist in its new theoretical results which are
published in peer-reviewed scientific journals. Research results comprise of effective methods of
distance extension on free monoids, which lead to the possibility of introducing the concept of
parallel decomposition of strings. This has allowed the development of the concepts of efficiency
and similarity of the information sequences, as well as the construction of the sets of weighted
mean and bisector of strings. The degree of the novelty and originality is represented by:

• method of quasi-metric extension on free monoid Fa(X,V);

• study of the digital and Alexandroff spaces;

• presented solutions for Maltsev problems;

• established relations between Hamming, Graev and Levenshtein distances;

• introduction of the concept of efficiency of representation;

• introduction of the concept of the optimal parallel decompositions;

• implementation of the algorithms for weighted mean and bisector construction for pairs of
strings;

• proof of the non-convexity of the informational segment;

• introduction of the notion of the symmetric topology on the digital line;

• proof of the uniqueness of Khalimsky topology as minimal digital topology;

• elaboration of the digital image processing algorithm from the topological perspective, ap-
plicable in the digital space.

The important scientific problem solved in the research is the development of methods for
constructing and studying distances extension over free monoids, which contribute to obtaining
effective methods of information representation, applicable to solving different distance problems
such as sequence alignment, proper similarity of a pair of strings, construction of weighted means
and bisectors of strings.

The theoretical significance is determined by obtaining new results regarding the establish-
ment of the conditions of existence of the extension of distances on free monoids, that permit the
construction of distinct invariant topologies on free monoids. The elaborated methods have allowed
to approach the problems related to information sequences from a new point of view. Additionally,
the theoretical results permit the study of the digital line, and the minimality property of Khalimsky
topology.
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The applicative value of the paper consists in the use of the obtained theoretical results in
the study of symmetric topologies on the digital line, imaging processing and construction of the
centroid of a set of strings. Presented methods build a larger set of elements, using the method of
optimal parallel decompositons.

Approval of scientific results. The scientific results obtained by the author in this thesis, were
presented at national and international scientific conferences, and were published in peer-reviewed
journals:

a) Articles presented at international scientific conferences:

• Scattered and Digital Topologies in Information Sciences. Plenary talk at the Confer-
ence of the Romanian Society of Applied and Industrial Mathematics ROMAI, CAIM
2018, Chisinau, Moldova, 20-23 September 2018 [65];

• Scattered and Digital Topologies in Image Processing. Conference on Mathematical
Foundations of Informatics, MFOI 2018, Chisinau, Moldova, 2-6 July 2018 [61];

• About Non-Convexity of the Weighted Mean of a Pair of Strings. International Confer-
ence
“Contemporary Trends in Science Development: Visions of Young Researchers”,
Academy of Sciences of Moldova, Chisinau, Moldova, 15 June 2018 [40];

• On theMidset of Pairs of Strings. International Conference onMathematics, Informatics
and Information Technologies, MITI 2018, Balti, Moldova, 19-21 April 2018 [41];

• Measures of Similarity on Monoids of Strings. Conference on Mathematical Founda-
tions of Informatics, MFOI 2017, Chisinau, Moldova, 9-11 Nov 2017 [59];

• Parallel Decompositions of Pairs of Strings and Their Applications. Conference on
Applied and Industrial Mathematics, Iasi, Romania, 14-17 Sept 2017 [58];

• On the Bisector of a Pair of Strings. The 4th Conference of Mathematical Society
of the Republic of Moldova, dedicated to the centenary of Vladimir Andrunachievici
(1917-1997) CMSM4, Chisinau, Moldova, 28 June - 2 July 2017 [42];

• Parallel Decompositions and the Weighted Mean of a Pair of Strings. International
Conference “Contemporary Trends in Science Development: Visions of Young Re-
searchers”, Academy of Sciences of Moldova, Chisinau, Moldova, 15 June 2017 [43];

• On Hamming Type Distance Functions. Conference on Applied and Industrial Mathe-
matics, CAIM 2016, Craiova, Romania, 15-18 Sept 2016 [36];

• Distances on Monoids of Strings and Their Applications. Conference on Mathematical
Foundations of Informatics, MFOI 2016, Chisinau, Moldova, 25-31 July 2016 [55];
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• On the Theory of Free Topological Monoids and its Applications. International Confer-
ence “Mathematics & IT: Research and Education”, MITRE 2016, Chisinau, Moldova,
23-26 June 2016 [57];

• About Distance Functions of Hamming-type. International Conference “Contemporary
Trends in Science Development: Visions of Young Researchers”, Academy of Sciences
of Moldova, Chisinau, Moldova, 25 May 2016 [38];

• Invariant Distances on Free Semigroups and Their Applications. The 20th Annual
Conference of the Mathematical Sciences Society of Romania, 19-22 May 2016 [44];

b) Articles published in scientific journals, including conference proceedings:

• Choban M., Budanaev I., About the Construction of the Weighted Means of a Pair of
Strings, Romai Journal, vol.14 n.1, 2018, p. 73 – 87 [64];

• Budanaev I., About the Construction of the Bisector of Two Strings, Romai Journal,
vol.13 n.2, 2017, p. 1 – 11 [39];

• Choban M., Budanaev I., Efficiency and Penalty Factors on Monoids of Strings, Com-
puter Science Journal of Moldova, vol.26 n.2 (77), 2018, p. 99 – 114 [63];

• Choban M., Budanaev I., Distances on Free Semigroups and Their Applications, Bulet-
inul Academiei de Ştiinţe a Republicii Moldova. Matematica, n.1 (86), 2018, p. 92 –
119 [62];

• Choban M., Budanaev I., Scattered and Digital Topologies in Image Processing, Pro-
ceedings of the Conference on Mathematical Foundations of Informatics, MFOI 2018,
July 2-6, 2018, Chisinau, Republic of Moldova, Chisinau, p. 21–40, 2018, ISBN:
978–9975–4237–7–9 [61];

• Budanaev I., About Non-Convexity of the Weighted Mean of a Pair of Strings, Interna-
tional Conference “Contemporary Trends in Science Development: Visions of Young
Researchers”, 7th Edition, Chisinau, 15 June 2018, Proceedings vol. 1, p. 6–10 [40];

• Budanaev I., On the Midset of Pairs of Strings, International Conference on Mathe-
matics, Informatics and Information Technologies Dedicated to the Illustrious Scientist
Valentin Belousov, MITI 2018, Communications, p. 134–135 [41];

• Choban M., Budanaev I.,Measures of Similarity on Monoids of Strings, Conference on
Mathematical Foundations of Informatics: Proceedings MFOI 2017, November 9-11,
2017, Chisinau, Republic ofMoldova, Chisinau, Institute ofMathematics andComputer
Science, p. 51–58, 2017, ISBN: 978–9975–4237–6–82 [59];
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• Choban M., Budanaev I. About applications of topological structures in computer
sciences and communications, Acta Et Commentationes, Ştiinţe Exacte şi ale Naturii,
Revistă Ştiinţifică, nr.2 (4), 2017, p. 45–59. [60]

• Choban M.M., Budanaev I.A., Parallel Decompositions of Pairs of Strings and Their
Applications, Presented in plenary at CAIM 2017: The 25th Conference on Applied
and Industrial Mathematics, Iaşi, Romania, September 14-17, 2017, Book of Abstracts,
p. 64–65 [58];

• Budanaev I., On the Bisector of a Pair of Strings, Conference of Mathematical Society
of Moldova: Proceedings CMSM4 2017, June 25 – July 2, 2017, Chisinau, Republic of
Moldova, p. 475–478, 2017, ISBN: 978-9975-71-915-5 [42];

• Budanaev I., Parallel Decompositions and The Weighted Mean of a Pair of Strings,
International Conference “Contemporary Trends in Science Development: Visions of
Young Researchers”, 6th Edition, Chisinau, 15 June 2017, Proceedings, p. 7–11 [43];

• Budanaev I.,OnHamming Type Distance Functions, CAIM 2016: The 24th Conference
on Applied and Industrial Mathematics, Craiova, Romania, September 15-18, 2016,
Book of Abstracts, Editura SITECH, Craiova, p. 15–16 [36];

• Budanaev I., On Hamming Type Distance Functions, Romai Journal v.12, no.2 (2016),
p. 25 – 32 [37];

• Choban M., Budanaev I., About Applications of Distances on Monoids of Strings,
Computer Science Journal of Moldova, vol.24 n.3 (72), 2016, p. 335 – 356 [56];

• Budanaev I., Choban M., Invariant Distances on Free Semigroups and Their Appli-
cations, 20th Annual Conference of the Mathematical Sciences Society of Romania,
Rezumatele Comunicărilor, A XX-a Conferinţă Anuală a Societăţii de Ştiinţe Matem-
atice din România, Baia Mare, 19-22 mai 2016, p. 17–18, [44];

• Choban M., Budanaev I., On the Theory of Free Topological Monoids and its Applica-
tions, International Conference "Mathematics & Information Technologies: Research
and Education". MITRE 2016 Abstracts. Chisinau, June 23-26, 2016, p. 21–22 [57];

• Choban M., Budanaev I., Distances on Monoids of Strings and Their Applications,
Proceedings of the Conference on Mathematical Foundations of Informatics, MFOI
2016, July 25-29, 2016, Chisinau, Republic of Moldova, p. 144–159, 2016, ISBN:
978–9975–4237–4–8 [55];

• Budanaev I., About Distance Functions of Hamming Type, International Conference
“Contemporary Trends in Science Development: Visions of Young Researchers”, Con-
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ferinta Stiintifica a Doctoranzilor, IMI ASM, 2016, p. 296 – 301 [38];

c) Awards and scholarships for the results of the scientific research:

• Best Presentation Award for the Communication "On the Midset of Pairs of Strings",
International Conference on Mathematics, Informatics and Information Technologies,
MITI 2018, Balti, Moldova.

• World Federation of Scientists Scholarship to conduct research on the topic “Distances
on Abstract Algebraic Systems and their Applications“, related to the WFS Planetary
Emergency “Science and Technology“, 2018.

• Academic Excellence Scholarship offered by the Government of Republic of Moldova,
2017.

• 1st Place Award on International Conference “Contemporary Trends in Science Devel-
opment“ for article “About Distance Functions of Hamming Type“, June 2017.

• The Young Researcher Prize for the Best Paper for the article “Distances on Monoids
of Strings and Their Applications“ on Conference on Mathematical Foundations of
Informatics MFOI 2016.

A total of 20 scientific works were published, comprising 7 articles in peer-reviewed scientific
journals (2 articles with no co-authors) and 13 conference theses.

Summary of the thesis chapters. Thesis structure is represented by four chapters containing
theoretical results on methods of distance extension over free monoids, algorithms for constructing
the weighted mean and bisector sets of pairs of strings, study of the problem of informational
segment convexity and digital image analysis with a topological approach. Additionally, thesis
contains annotations in English and Romanian, introduction, general conclusions and recommen-
dations, bibliography list with 200 titles.

In the introduction, the actuality and importance of the research topic are formulated. In
addition, the research goals, objectives, the scientific novelty and originality are stated. The
scientific problem under study is presented with the emphasis on the importance of the theoretical
and applicative value of the work. A brief analysis of the problems and publications on the thesis
topic is given. This sections concludes with a summary of the content of the paper.

The first chapter of the thesis has an introductory character and aims at presenting the
current situation in the field of distance spaces. It defines and classifies distances, distance spaces,
informational systems of Scott-Ershov type, universal topological algebras, spaces of strings.
Additionally, in this chapter, Maltsev problems are formulated for free monoids. At the end of the
chapter are formulated the scientific research problem, various particular cases that are the object
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of study in subsequent chapters. The research problem is formulated, the purpose and objectives
of the research are established.

In second chapter, quasivarieties of topological monoids are studied. The definition of the
non-Burnside quasivariety is given. It is established that for any non-Burnside quasivariety V and
any quasi-metric ρ on a set X with basepoint pX on free monoid Fa(X,V) there exists a unique
stable quasi-metric ρ̂ with the properties:

(a) ρ(x, y) = ρ̂(x, y) for all x, y ∈ X .

(b) If d is an invariant quasi-metric on Fa(X,V) and d(x, y) ≤ ρ(x, y) for all x, y ∈ X , then
d(x, y) ≤ ρ̂(x, y) for all x, y ∈ Fa(X,V).

(c) If ρ is a metric, then ρ̂ is a metric as well.

(d) If Y ⊆ X , d = ρ|Y and d̂ is the maximal invariant extension of d on Fa(Y,V), then
Fa(Y,V) ⊆ Fa(X,V) and d̂ = ρ̂|Fa(Y,V).

(e) For any quasi-metric ρ on X and any points a, b ∈ Fa(X,V) there exists n ∈ N and
representations a = a1a2...an, b = b1b2...bn such that a1, b1, a2, b2, ..., an, bn ∈ X and
ρ̂(a, b) =

∑
{ρ(ai, bi) : i ≤ n}.

This theorem is applied to solving Maltsev problems for free monoids. It is important to
mention that the Maltsev’s embedding problem is solved for T0-topologies. Additionally, it is
proved that the space X is Alexandroff or digital if and only if Fa(X,V) is an Alexandroff or digital
space.

In chapter 3 it is proved that there are invariant distances on the monoid L(A) of all strings
closely related to Levenshtein distance. A distinct definition of the distance on L(A) is introduced,
based on the Markov-Graev method, proposed by him for free groups. In result, it is shown
that for any quasi-metric d on alphabet A in union with the empty string there exists a maximal
invariant extension d∗ on the free monoid L(A). This new approach allows to introduce parallel
and semiparallel decompositions of two strings. In virtue of Theorem 3.3.1, they offer various
applications of distances on monoids of strings in solving problems from distinct scientific fields.
As an example, the study of the measure of proper similarity is approached from a new perspective.
The notions of efficiency and penalty of strings alignment are introduced.

Chapter 4 describes geometrical and topological aspects of information analysis based on
the results of the previous chapter. The problem of the weighted means between two strings is
formulated and the algorithm of construction is presented. As an intuitive consequence, the question
of the convexity of the set of the weightedmeans is studied for Hamming andGraev distances. As an
additional application of the optimal parallel string decompositions, the algorithm for constructing
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the bisector of a pair of strings is presented. The chapter concludes with a digital image processing
algorithm developed from a topological point of view using the notion of scattered topologies.

TheGeneral conclusions and recommendations section outlines the general conclusions of
the author on the results obtained within the thesis. Conclusions are presented in form of obtained
results, and are followed by author’s recommendations on how these results can be applied to
various scientific domains, as well as prospective research.
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1. CURRENT SITUATION IN THE FIELD OF QUASI-METRIC SPACE
THEORY AND THEIR APPLICATIONS IN ALGEBRA AND

INFORMATION THEORY

In the XXI century, the value of information and the need of sending and storing it in an
intact and secret form increased. In solving these issues mathematics and computer science prove
to be useful. New software applications are developed on a regular basis on top of data analysis
algorithms and libraries. These ensure full user anonymity and information security on both
servers and mobile phones available for each citizen. Financial transactions, ATM operations,
digital currencies - all are based on such systems. Also, the applications of such algorithms can
be found in our daily lives not related to finance. Under the hood of even a basic text editor one
can find implemented different information analysis algorithms. Various messengers, electronic
mail services, short message services, data transfer protocol - would not provide guarantee of
information integrity and delivery without most popular distance function taught in high school.
Every instance we search something on the internet, the services providers use complex algorithms
that analyze and categorize information.

One of the needs that rise in contemporary world is the development of algebraic methods,
such as numerical analysis and information encoding.

Furthermore, the dynamic transition of our technological civilization to digital processing
and data transmission systems created many problems in the design of modern systems in computer
science and telecommunications. Providing robustness and noise immunity is one of the most
important and difficult tasks in the data transmission, recording, playback and storage. The distance
between information plays nowadays a paramount role in mathematics, computer science and other
interdisciplinary areas. The first among many scientists in the field, who presented the theoretical
solutions to error detecting and error correction problems, were C. Shannon, R. Hamming and
V. Levenshtein (see [177, 106, 130]). The modern problems of informatics are transfer, storage,
protection and processing of information.

One of the modern domain of the information processing use extensively text algorithmics.
Algorithms for text (strings) have long been studied in computer science, and analysis of the data
from molecular sequences underlies bioinformatics. Existing and emerging string manipulation
algorithms provide a significant crossing of informatics and molecular biology. This field covers
a wide range of string algorithms from classical computer science to modern molecular biology
and, if possible, integrates these two fields. Biology problems that arise in real-life world are
transformed into strings and solved with help of different methods. The transaction from biology
to computer science and its applications that arise, however, is for some people intuitive, while for
others a miracle. Our daily life depends on information technology, on information coding, and
packets transmission. Biology and genetics are not an exception:
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"The digital information that underlies biochemistry, cell biology, and development
can be represented by a simple string of G’s, A’s, T’s and C’s. This string is the root
data structure of an organism’s biology" .[154]

"In a very real sense, molecular biology is all about sequences. First, it tries to
reduce complex biochemical phenomena to interactions between defined sequences
. . . ". [110]

Interdisciplinary science, where computer science and mathematics find their applications in
other domains, are contemporary fields where much effort is required from scientists to achieve
success. The tasks that arise are to study relevant theory, protocols and existing algorithmicmethods
already used, as well as to look for the ideas that aren’t already used, but which can be successfully
applied in solving current problems. One good example of such interdisciplinary field that applies
mathematics and computer science models in solving domain problems is phylogeny, where many
algorithms of string matching and pattern analysis find use. A good collection of such algorithms
one can find in Dan Gusfields’ work [102, 103, 104].

Another interdisciplinary application are images processing systems, which prove to be useful
when applied in computer-aided diagnosis schemes based on artificial intelligence techniques and
methods applied in the diagnosis process by S. Cojocaru, C. Gaindric, I. Titchiev, L Burtseva, and
others [46, 75, 95].
In connection with current exponential growth of information volume these problems remain on
the radar. Theoretical computer science is based on different areas of mathematics. In particular,
algebraic structures play an important role in solving problems related to information.

The history of storing, checking and correcting data is first mentioned with accurate rewriting
the Hebrew bible, Masoretic Texts, with oldest manuscripts dating from around the 9th century.
To describe a more contemporary period of the field, we must mention one of the most important
scientist Claude Shannon, who is also known as "the father of information theory"[119]. Shannon
is known for having founded information theory with a milestone in his article "A Mathematical
Theory of Communication" [177], which he published in 1948. He is perhaps equally well known
for creating the theory of designing digital circuits in 1937. He wrote his thesis demonstrating
that electrical applications of Boolean algebras can construct any logical and numerical relations.
Shannon contributed to the field of cryptanalysis for national defense during the Second World
War, including his fundamental work on coding and securing telecommunications. In addition to
distance functions, algebraic abstract structures are also extensively used in cryptanalysis by V. A.
Shcherbacov, P. Syrbu, and V. S. Vostokov (see [167, 168, 129, 169, 178, 179, 192, 193]).

Another important contribution in development of information theorywas brought by Richard
Hamming - U.S. mathematician, whose work in the field of information theory had a significant
impact on computer science and telecommunications. The main contribution is the Hamming
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code, and theHamming distance. In 1950, Richard Hamming publishes Error Detecting and Error
Correcting Codes [106].

One of the Russian scientists who achieved important results in the domain was academician
Vladimir Kotelnikov, who is the founder of the theory of potential noise immunity. The sampling
theorem (Kotelnikov’s theorem) has become known worldwide and widely used. He developed the
basics and created telemetry equipment for aircraft and missiles, as well as for radio-location of
the planets of the solar system. He played a major role in the development of Russian science as
director of the Institute of Radio Electronics of the Russian Academy of Sciences and vice-president
of the Russian Academy of Sciences. In 1956, Vladimir Kotelnikov publishes Theory of Potential
Noise Immunity [125], which has a great merit in the formulation and development of fundamental
research in such areas as noise immunity of radio systems and statistical radiophysics.

Another scientist with important results in theory of coding is Vladimir Levenshtein. His
area of scientific interest included:

• Optimizational and combinational problems of coding and testing.

• Universal limits for codes and designs and the theory of orthogonal polynomials.

• Synchronization properties of sequences, codes and automata.

• Perfect codes that correct single errors of different types.

Vladimir Levenshtein has provided the best-known universal bounds to optimal sizes of
codes and designs in metric spaces, including the Hamming space and the Euclidean sphere. In
1965, Vladimir Levenshtein publishes Binary codes capable of correcting deletions, insertions,
and reversals [130], where he introduced Levenshtein distance. The Levenshtein distance (also
called edit or editing distance) between two lines in information theory and computer linguistics
is the minimum number of insertion operations of one character, the removal of one character and
the replacement of one character with another, necessary for converting one line to another. It lays
at the root of today’s spell-checking software applications. Vladimir Levenshtein also contributed
to the basic technology used in the third generation of wired cellular telephony.

The notions of space, distance and functions are important concepts that have evolved over
time during the development of mathematics and information theory from antiquity to the present.
Topological spaces and distances on spaces have emerged from the need to study convergence.
Notions of open and closed sets, neighborhoods of points appeared in a natural manner. Functions
or applications also determine the linkage between spaces and mobility across spaces. Algebraic
operations on spaces are special functions and create special relationships between "elements
cohorts" and elements on the same space.

In this chapter:
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– are presented important notions andmain results, which are discussed in depth in the following
chapters;

– is included a synthesis of the scientific research presented in the literature on the evolution
of the development of analysis methods of spaces with distance and study of information
sequences.

1.1. Distance spaces

Let X be a non-empty set and d : X × X → R be a mapping such that for all x, y ∈ X we
have:

(im) d(x, y) ≥ 0;
(iim) d(x, y) + d(y, x) = 0 if and only if x = y.
Then (X, d) is called a distance space and d is called a distance on X .
General problems of the distance spaces were studied in [8, 9, 14, 29, 49, 94, 147, 148, 149,

150, 152, 153]. The function d : X × X → R with the property (im) is called a pseudo-distance on
a set X .

The notion of a distance space is more general than the notion of o-metric spaces in sense of
A. V. Arhangel’skii [14] and S. I. Nedev [147]. A distance d is an o-metric if from d(x, y) = 0 it
follows that x = y. These notions coincide in the class of T1-spaces.

Let d be a pseudo-distance on X and B(x, d, r) = {y ∈ X : d(x, y) < r} be the ball with the
center x and radius r > 0. The set U ⊂ X is called d-open if for any x ∈ U there exists r > 0 such
that B(x, d, r) ⊂ U. The family T(d) of all d-open subsets is the topology on X generated by d.
The space (X, T(d)) is a sequential space, i.e. a set B ⊆ X is closed if and only if together with any
sequence it contains all its limits [87]. If d is a distance on X , then (X, T(d)) is a T0-space and vice
versa.

The set B(x, d, r) = {y ∈ X : d(x, y) < r} is the closed ball with the center x and radius
r > 0.

Let (X, d) be a distance space, {xn : n ∈ N = {1, 2, ...}} be a sequence in X and x ∈ X . We
say that the sequence {xn : n ∈ N}:

1. is convergent to x if and only if limn→∞d(x, xn) = 0. We denote this by xn → x or
x = limn→∞xn (also, we may denote by x ∈ limn→∞xn);

2. is convergent if it converges to some point in X;

3. is Cauchy or fundamental if limn,m→∞d(xn, xm) = 0.

A distance space (X, d) is complete if every Cauchy sequence in X converges to some point in X .
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Lemma 1.1.1. Let (X, d) be a distance space, ϕ : X −→ X be a mapping and for each point x ∈ X

there exist two positive numbers c(x), k(x) > 0 such that d(ϕ(x), ϕ(y)) ≤ k(x) · d(x, y) provided
y ∈ X and d(x, y) ≤ c(x). Then the mapping ϕ is continuous.

Proof. Let {xn ∈ X : n ∈ N} be a convergent to x ∈ X sequence. Then limn→∞d(x, xn) = 0,
limn→∞d(ϕ(x), ϕ(xn)) = 0 and limn→∞ϕ(xn) = ϕ(x). Hence the mapping ϕ is continuous. �

Let X be a non-empty set and d be a distance on X . Then:
- (X, d) is called a symmetric space and d is called a symmetric on X if for all x, y ∈ X we

have (iiim) d(x, y) = d(y, x);
- (X, d) is called a quasi-metric space and d is called a quasi-metric on X if for all x, y, z ∈ X

we have (ivm) d(x, z) ≤ d(x, y) + d(y, z);
- (X, d) is called ametric space and d is called ametric if d is a symmetric and a quasi-metric

simultaneous.
The following theorem is well-known.

Theorem 1.1.1. For each topology T on a set X there exists a family {dµ : µ ∈ M} of pseudo-
quasi-metrics on X which generated the topology T, i.e. T = sup{T(dµ) : µ ∈ M}.

Proof. Let B be an open base of the space X . For any open set U of X we consider the function
dU : X × X → R, where:

- dU(x, y) = 1 for x ∈ U and y ∈ X \U;
- dU(x, y) = 0 for x ∈ X \U;
- dU(x, y) = 0 for x, y ∈ U.
The function dU is a pseudo-quasi-metric and T(dU) = {∅,U, X}. Hence T = sup{T(dU) :

U ∈ B}. The proof is complete. �

Therefore, quasi-metrics and pseudo-quasi-metrics play an important role in the study of
topological spaces.

Considering topology, every distance d on a non-empty set X determines some geometry on
X . These facts allow to apply theory of spaces with distance in different theoretical and application
fields (see [14, 92, 28, 29, 25, 36, 37, 38, 72]).

Let X be a non-empty set and d be a distance on X .

Definition 1.1.2. Let point y ∈ Y lie between points x, z ∈ X and denote by (xz)y if d(x, y) +

d(y, z) = d(x, z). The set [x, z]d = {y ∈ X : (xz)y} is called a segment with endpoints in x and z.

We notice that x is the origin of the segment [x, z]d , and z is the terminal point of this segment.
In general, [x, z]d , [z, x]d , and x, z ∈ [x, z]d .
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Definition 1.1.3. The set H ⊂ X is called d-convex, if [x, y]d ∩ [y, x]d ⊂ H for any two points
x, y ∈ H.

Let a, b ∈ R and a < b. Application f : [a, b] −→ X is called a "path". For any
path f : [a, b] −→ X , its length is given by ld( f ) = sup{d( f (a), f (t1)) + d( f (t1), f (t2)) + . . . +

d( f (ti), f (ti+1))+. . .+d( f (tn), f (b)) : n ∈ N, a ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ b}. For path f : [a, b] −→ X ,
its inverse path is given by f −1 : [a, b] −→ X , for which f −1(t) = f (a + b− t) for any t ∈ [a, b]. In
general, we have that ld( f ) , ld( f −1). If the distance d is symmetric, then ld( f ) = ld( f −1) for any
path f .

The path f : [a, b] −→ X joins the point f (a) with the point f (b). If any two points can be
joined with a path, then the space is called the path space. The path f : [a, b] −→ X is called an
arc, if f (p) , f (q) for any a ≤ p < q < b or a < p < q ≤ b. We say that this arc joins the point
f (a) with the point f (b). If f (a) = f (b), then this arc is called the loop in point f (a).

The path f : [a, b] −→ X is called an isometric arc, if d( f (p), f (q)) = |p − q | for any
p, q ∈ [a, b]. On any isometric arc f ([a, b]) distance d is a metric.

The space (X, d) is called convex if any two different points can be joined with an isometric
arc. In this case d is symmetric. The convex space is the path-convex, and the path-convex space
is topologically convex.

A distance space X is said to be hyperconvex if it is convex and its closed balls have the
binary Helly property. That is:

1. any two points x and y can be connected by the isometric image of a line segment of length
equal to the distance between the points;

2. if F = {B̄(pi, d, ri) : I ∈ M} is any family of closed balls such that each pair of balls in F

meet, then there exists a point x common to all the balls in F.

Equivalently, if a set of points pi and radii ri > 0 satisfies ri + r j ≥ d(pi, p j) for each i and j,
then there is a point q of the distance space that is within distance ri of each pi.

In Euclidean space any isometric arc is a segment and is d-convex. One can observe that a
space with distance (X, d) can be a convex space, but not any isometric arc can be d-convex.

Example 1.1.1. Let X = {(x, y) : x, y ∈ R} be the arithmetic plane with distance d((x, y), (u, v)) =
sup{|x − u|, |y − v |}. Then f : [0, 1] −→ X , where f (t) = (t, t) for any t ∈ [0, 1] is an isometric
arc with origin (0, 0) and terminal point (1, 1). The set H = f ([0, 1]) is not d-convex because
[(0, 0), (1, 1)]d = {x, y) ∈ X : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

Distance d is called discrete, if d(x, y) ∈ {0, 1} for any x, y ∈ X . Data processing in
Informatics involves finite spaces with discrete distances.
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Example 1.1.2. Let X be a set, d(x, x) = 0 for any x ∈ X and d(x, y) = 1 for any two distinct
points x, y ∈ X . Then d is a discrete metric on X . We have that [x, y]d = {x, y} for any x, y ∈ X .
Therefore, any set H in (X, d) is d-convex. The space (X, d) is not convex or hyperconvex in Helly
sense.

Example 1.1.3. Let X be a set with at least two points. Fix on X a relation of total order. For any
x, y ∈ X denote:

– dl(x, y) = 0 for y ≤ x and dl(x, y) = 1 for x < y;

– dr(x, y) = 0 for x ≤ y and dr(x, y) = 1 for y < x;.

Then dl, dr are discrete quasi-metrics on X and d = dl + dr is a discrete metric on X .

On discrete spaces there exist discrete distances. Moreover, on T0 -spaces there exist discrete
quasi-metrics.

A retract of a distance space (X, d) is a function f : X −→ X of X to a subspace of itself,
such that:

1. for all x ∈ X , f ( f (x)) = f (x) ( f (x) = x for any x ∈ f (X));

2. for all x, y ∈ X , d( f (x), f (y)) ≤ d(x, y) ( f is a non-expansive mapping).

A retract of a space X is a subspace of X which is an image of a retraction. A distance space
X is said to be injective if, whenever X is isometric to a subspace Z of a quasi-metric space Y with
Z \ X is discrete, that subspace Z is a retract of Y .

However, it is the Aronszajn and Panitchpakdi theorem [20] (see also [48]) that mentions of
injectivity and hyperconvex space are equivalent in the class of complete metric spaces. Moreover,
every injective metric space is a complete space [20].

There is an open access electronic journal related to current topic called "Analysis and
Geometry in Metric Spaces" that publishes cutting-edge research on analytical and geometrical
problems in metric spaces and applications related topics:

– Geometric inequalities in metric spaces;

– Geometric measure theory and variational problems in metric spaces;

– Analytic and geometric problems inmetricmeasure spaces, probability spaces, andmanifolds
with density;

– Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-
hermitian manifolds;
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– Geometric control theory;

– Curvature in metric and length spaces;

– Geometric group theory;

– Harmonic Analysis. Potential theory;

– Mass transportation problems;

– Quasiconformal and quasiregular mappings. Quasiconformal geometry;

– Differential equations associated to analytic and geometric problems in metric spaces.

Different problems of the metric space geometry are analyzed in [45, 80, 81]. We note that
the theory of metric spaces has a large spectre of applications.

1.2. On discrete spaces

Alexandroff spaces were first introduced in 1937 by P. S. Alexandroff [6] (see also [12])
under the name of discrete spaces, where he provided the characterizations in terms of sets and
neighbourhoods.

A space X is called an Alexandroff space if it is a T0-space and the intersection of any family
of open sets is open [6, 12].

Let � be a linear ordering on a set X . We define two quasi-metrics dl and dr on X , where
dl(x, x) = dr(x, x) for any x ∈ X and for x ≺ y we put dl(x, y) = 1, dl(y, x) = 0, dr(x, y) = 0, dr(y, x)

= 1. In this case ds(x, y) = dr(x, y) + dl(x, y) is a metric. In general, a sum of quasi-metrics is also
a quasi-metric, and may not be a metric.

We observe the importance of distances with natural values. We affirm that this fact is
important from topological point of view as well.

Theorem 1.2.1. On a space X there exists a quasi-metric with the natural values if and only if X

is an Alexandroff space.

Proof. Let X be an Alexandroff space. For any x ∈ X denote by Mx the intersection of all open
sets which contains x. Then Mx is the minimal open set which contains the point x ∈ X . Observe
that if x, y ∈ X , x , y, and y ∈ Mx , then My ⊂ Mx and x < My. Consider the distance ρ(x, y),
where ρ(x, x) = 0 for any x ∈ X , ρ(x, y) = 0 if y ∈ Mx , and ρ(x, y) = 1 if y < Mx . We affirm that
ρ is a quasi-metric with natural values. By construction, ρ(x, y) ∈ {0, 1} and ρ has natural values.
Let x, y, z ∈ X . If ρ(x, y) = ρ(y, z) = 0, then y ∈ Mx and z ∈ My ⊂ Mx . Hence ρ(x, z) = 0. In this
case ρ(x, y) + ρ(y, z) = ρ(x, z). If ρ(x, y) + ρ(y, z) ≥ 1, and given that ρ(x, z) ≤ 1 we conclude
with ρ(x, y) + ρ(y, z) ≥ ρ(x, z). Therefore ρ is a quasi-metric.
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If d is a quasi-metric on X with natural values, then Mx = {y ∈ X : d(x, y) < 1} is the
minimal open set which contains the point x ∈ X . Therefore (X, T(d)) is an Alexandroff space, and
this concludes the proof of the Theorem 1.2.1.

�

General criteria of quasi-metrizability of spaces were proved in [147].

Example 1.2.1. Let X be a linear orderable non-empty set with the linear order �. For any x ∈ X

we put Mx = {y ∈ X : y � x}. We can consider Mx as the minimal open set which contains the
point x. The sets Mx form the open base of the topology T on X . Then (X, T) is an Alexandroff
space. If for the set X there exists a = in f imumX , then (X, T) is a compact Alexandroff space. The
space (X, T) is a compact space if and only if there exists a = in f imum(X). The set (X, �) is well
ordered if and only if any subspace Y of the pace (X, T) is compact.

1.3. Abstract information systems

To describe the abstract information systems, we will use the works [22, 32, 34, 107].
A (non-strict) partial order is a binary relation � over a set P satisfying the following axioms:

1. a � a (reflexivity: every element is related to itself).

2. if a � b and b � a, then a = b (antisymmetry).

3. if a � b and b � c, then a � c (transitivity).

A set with a partial order is called a partially ordered set or briefly a poset. If a � b and
a , b, then we put a ≺ b. A totally ordered set is a poset such that for any two elements x and y

either x ≺ y, or x = y, or x � y.
The dual order �d of a partially ordered set (P, �) is the same set P with the partial order

relation replaced by its inverse: x �d y if and only if y � x.
For a � b, the closed interval [a, b] is the set of elements x satisfying a � x � b. It contains

at least the elements a and b. Using the corresponding strict relation "≺", the open interval (a, b)
is the set of elements x satisfying a ≺ x ≺ b. An open interval may be empty, even if a ≺ b. The
half-open intervals [a, b) and (a, b] are defined similarly. A poset is locally finite if every interval
is finite.

Definition 1.3.1. (Extremal elements): Suppose (P, �) is a poset, a and b are elements of P, and
S is a non-empty subset of P. Then:

– b is a maximal element of S iff b is in S and there is no x ∈ S such that b ≺ x;

– b is a maximum of S iff b is in S and x � b for all x ∈ S;
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– a is a minimal element of S iff a is in S and there is no x ∈ S such that x ≺ a;

– a is a minimum of S iff a is in S and a � x for all x ∈ S;

– the element b is an upper bound of S if x � b, for each element x ∈ S;

– the element a is a lower bound of S if x � a, for each element x ∈ S;

– the meet of a and b, denoted by a ∧ b, is the maximum of all lower bounds for the set {a, b},
i.e., a ∧ b = max{w ∈ P : w ≤ a,w � b}, the greatest lower bound for a and b;

– the join of a and b, denoted by a ∨ b, is the minimum of all upper bounds for the set {a, b},
i.e., a ∨ b = min{w ∈ P : a ≤ w, b � w}, the least upper bound for a and b.

A subset S of a poset P is directed if every finite subset of S has an upper bound in S. The
empty subset of P is not directed.

An upper set (also called an upward closed set or just an upset) of a partially ordered set
(P, �) is a subset L with the property that, if x is in L and x � y, then y is in L.

Let (X, �) be an ordered set. We can define the Alexandroff topology T(�) on X by choosing
the open sets to be the upper sets. For any point x ∈ X we put x+ = {y ∈ X : x � y}. The set U is
open in the Alexandroff topology if and only if U = ∪{x+ : x ∈ U}.

Any T0-topology generates the partial order ≤T : x ≤T y if and only if x ∈ clX {y} [6, 12]. We
have T(≤T ) ⊂ T . If (X,T) is an Alexandroff space, then T(≤T ) = T and vice versa.

Any ordering may be generated by the discrete quasi-metric and vice versa. Let � be an
ordering on a set X . We put d�(x, y) = 0 if x � y and d�(x, y) = 1 if x � y. If d is a quasi-metric
on X , then we put x �d y if and only if d(x, y) = 0. Obviously that �d�=� and d�d = d for any
discrete quasi-metric d.

Distinct poset structures have been introduced to accommodate the needs of information
theories. In the 1960’s, Dana Scott introduced continuous lattices [170, 171, 172, 174, 175, 173]
into computer science as a means of providing mathematical models for a system of types that
justify recursive definitions of these types. In time, the order theoretic models Scott and others
considered evolved into what we now call domains (see [1, 101, 182]). The level of abstraction
required to understand domain theory remained an obstacle to its widespread use. To remedy this
problem, Scott imported from logic the notion of an information system to provide a set-theoretic
approach to domains [175]. In this setting, every information system gives rise to a domain in a
canonical way. The Hoare powerdomain is an order-theoretic analog of the power set and is used in
programming semantics as a model for angelic nondeterminism (see, for example, Plotkin [162]).
Theory of lattices with theory of fuzzy sets were applied in information theory by G. Ciobanu, C.
Vaideanu and A. Alexandru [10, 73].
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A poset P is said to be directed-complete if the join of every directed subset of P exists in
P. A subset S of poset P is a down-set of P provided S = {p ∈ P : p � a for some a ∈ S}. A
down-set of P is Scott-closed if it contains the join of each of its directed subsets. An element
x of a P is compact if, whenever x is below the supremum of a directed subset set S of P, then
x ∈ {p ∈ P : p � a for some a ∈ S}. We use K(P) to denote the subposet of compact elements of
P. A directed-complete poset P is algebraic if, for all p ∈ P, the set K(p) = {x ∈ P : x � p}∩K(P)

is directed and p = ∨K(p). We use the term "domain" for an algebraic poset in which the meet
of every non-empty subset exists. We will let Γ(P) denote the set of all Scott-closed subsets of
the directed-complete poset P, ordered by set-inclusion. It is easy to see that Γ(P) is closed with
respect to finite set-unions and arbitrary set-intersections. Hence Γ(P) is the family of closed sets
for a topology on P, called the Scott topology on P. The lattice of non-empty Scott-closed subsets
of a domain D is called the Hoare powerdomain of D [107].

A domain representation of a topological space X is a function, usually a quotient map, from
a subset of a domain onto X (see [35]). The theory of domains was improved by Yu. L. Ershov
[88, 90, 89, 91] and now is called the Scott - Ershov theory of domains.

Definition 1.3.2. ([107]). An information system is a triple S = (S,Con, `) consisting of:

1. a set S whose elements are called propositions or tokens;

2. a non-empty subsetCon of the set of all finite subsets Fin(S) of a set S, called the consistency
predicate;

3. a binary relation ` on Con, called the entailment relation.

These entities satisfy the following axioms:
(IS1). Con is a down-set S of Fin(S) – with respect to set-inclusion – such that ∪Con = S.
(IS2). if A ⊂ Con and B ⊂ A, then A ` B.
(IS3). if A, B,C ∈ Con, A ` B, and B ` C, then A ` C.
(IS4). if A, B,C ∈ Con, A ` B, andA ` C, then B ∪ C ∈ Con and A ` (B ∪ C).
Axiom (IS1) implies that every singleton subset of S is a member of Con and that whenever

A ∈ Con and B ⊂ A, then B ∈ Con. Axioms (IS2) and (IS3) imply that (Con, `) is a preordered
set, that is, ` is a reflexive and transitive relation on Con. The above definition of an information
system is different from the definitions of Scott [175], Davey and Priestly [78], Droste and Göbel
[83].

1.4. Universal topological algebras

The notion of universal algebra has been introduced in the book of Alfred North Whitehead
"A Treatise on Universal Algebra", published in 1898 [198], with the goal to expand and unify
algebraic structures such as:
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1. The fields of real and complex numbers.

2. Field of hyperbolic complex numbers introduced by James Cockle in 1848.

3. Lie algebras introduced by Sophus Lie during 1870 - 1874. The term Lie algebra was
introduced by Hermann Weyl in 1930.

4. Non-commutative field of hypercomplex numbers (quaternions) introduced by William
Rowan Hamilton in 1843, and earlier by Leonard Euler and Benjamin Olinde Rodrigues.

5. Non-commutative and non-associative field of octonions discovered by John Graves and
Arthur Cayley in 1843.

6. Boolean algebra and logic algebra introduced in 1847 by George Boole and Augustus De
Morgan respectively, who contributed to reforming mathematical logic.

7. Matrix algebra introduced by James Joseph Sylvester.

8. Algebra of hyperbolic quaternions introduced by Alexander Macfarlane in 1890.

Whitehead wrote in his book: "Such algebras have an intrinsic value for a separate detailed
study; also they are worthy of comparative study, for the sake of the light thereby thrown on the
general theory of symbolic reasoning, and on algebraic symbolism in particular. The comparative
study necessarily presupposes some previous separate study, comparison being impossible without
knowledge." Whitehead’s work was too early and was not appreciated in his time. The study of
universal algebras intensified after 1930, thanks to the works of Garrett Birkhoff and Oystein Ore,
in which the study of diverse classes of abstract algebras, closure relations, Galois connections,
lattice theory and graph theory were initiated.

Between 1935 and 1950, Birkhoff introduced varieties and quasivarities of universal algebras,
free algebras, universal algebra congruence, subalgebra lattice, homomorphism theorems. Due to
the second world war, the results published by Anatol Maltsev in the years 1938 – 1946 were not
noted until the early 50s of the last century. Alfred Tarski’s plenary lecture in 1950 at the Cambridge
International Mathematics Congress inaugurated a new era. After 1950, various aspects of model
theorywere studied, with uncommon applications inmathematical logic, language theory, automata
theory, with contribution of the following mathematicians: A. Robinson, A. Tarski, G. Birkhoff,
C.C. Chang, L. Henkin, S. C. Kleene, B. Jonsson, A. Church, S. Eilenberg, S. MacLane, R. Lyndon,
A. I. Maltsev, V. I. Arnautov, M. A. Arbib, V. M. Gluşkov, N. Chomsky, M. Minsky, S. Ginsburg,
D. Scott, D. A. Huffman, E. Marczewski, J. Mycielski, P. J. Higgins, B. I. Plotkin, Yu. I. Manin, S.
Marcus, A. G. Kurosh, V. I. Glivenko, V. D. Belousov, A. P. Ershov, O. B. Lupanov, A. D. Wallace
and others (see [11, 13, 30, 17, 18, 19, 32, 34, 74, 76, 78, 86, 88, 90, 96, 97, 115, 116, 131, 133,
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134, 144, 145, 165, 194]). The study of topological algebras was initiated with the study of Lie
groups, topological groups and topological linear spaces.

Whitehead’s definition has practically not changed. An universal algebra is a set A together
with a collection of operations on A. An n-ary operation on A is a function that takes n elements of A

and returns a single element of A. Thus, a 0-ary operation (or nullary operation) can be represented
simply as an element of A, or a constant, often denoted by a letter like a. All topological universal
algebras of the same type one can construct in the following way (see [51, 54, 50]):

1. We fix a sequence {En : n ∈ ω = {0, 1, 2, ...}} of topological spaces. The space En is declared
the space of n-ary operation symbols.

2. The discrete sum E of the spaces {En : n ∈ ω} is the signature (type, language). If the space
E is discrete, then we say that E is a discrete signature.

3. A topological algebra of signature E is a family (G, {en : En × Gn −→ G : n ∈ ω}), where
G is a non-empty space and en : En × Gn −→ G is a continuous mapping for each n ∈ ω.
The space G is called the underlying space and for all n ∈ ω and p ∈ En we define the n-ary
operation p : Gn −→ G, where p(z) = en(p, z) for each z ∈ Gn.

4. Now we say that E is the space of fundamental operation symbols.

Definition 1.4.1. Let G be an algebra, subset A ⊆ G is called subalgebra, if A , ∅ and u(n,G)(En ×

An) ⊆ A for all n. In this case, it is considered that u(n,A) = u(n,G) |En × An.

Definition 1.4.2. Let A, B be two universal E-algebras. The mapping ϕ : A → B is called
homomorphism, if

ϕ(u(n,A)( f , x1, x2, ..., xn)) = u(n,B)( f , ϕ(x1), ϕ(x2), ..., ϕ(xn))

for any n, f ∈ En şi x1, x2, ..., xn ∈ A.

If homomorphism is bijective, then it is called isomorphism.
Two isomorphic algebras differ only by the nature of the elements. Because of this, two

isomorphic algebras are identified.
Let A, B be two universal quasi-topological E-algebras. The homomorphism ϕ : A→ B can

be a:

– continuous homomorphism;

– continuous isomorphism;

– isomorphism and homeomorphism, called topological isomorphism.
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We identify topologically isomorphic topological algebras. We consider that any topological
space is a T−1-space. We fix continuous signature E composed of subspaces E0, E1, ... with
−1 ≤ i ≤ 3, 5.

We denote by A(E) totality of universal E-algebras, by K(E, i) the totality of universal
topological E-algebras which are Ti -spaces.

If n ∈ ω, f ∈ En and G ⊆ Q(E, i), then the n-ary operation f is determined by f : Gn → G,
where f (x1, x2, ..., xn) = u(n,G)( f , x1, x2, ..., xn). These are base (initial) operations.

Derived operations (terms) are determined as compositions of initial operations. For this
purpose on the class of E-algebras, we add the following operations:

– E′0 = E0;

– E′1 = E1 ⊕ {p1
1}, where p1

1 < E , and p1
1(x) = x for any G ∈ A(E) and any x ∈ G;

– E′2 = E2 ⊕ {p2
1, p2

2}, where p2
1, p2

2 < E , and p2
1(x, y) x and p2

2(x, y) = y for any G ∈ A(E) and
any x, y ∈ G;

– E′n = En for any n ∈ ω and n ≥ 3;

– E′ = ∪{E′n : n = ω}.

Definition 1.4.3. The set T(E) of algebraic operations defined on algebras from A(E) is the totality
of derived operations with the following properties:

1. E′ ∈ T(E) for any n;

2. if n ≥ 1, f ∈ E′n, g1, g2, ..., gn ∈ T(E), then f (g1, g2, ..., gn) ∈ T(E);

3. the are no other operations in T(E).

For each term its arity is determined: n ≥ 1, f ∈ En, g1...m1 : g2...m2; ...; gn...mn, then
f (g1, g2, ..., gn) will have m1 + m2 + ... + mn arity.

Definition 1.4.4. The totality P(E) of polynomials is the smallest set of algebraic operations with
the following properties:

1. T(E) ⊆ P(E);

2. if n ≥ 1, g ∈ T(E) is a n-ar term, n ≥ m ≥ 1, p : {1, 2, ..., n} → {1, 2, ...,m} is a mapping,
then g(xp(1), xp(2), ...xp(n)) ∈ P(E);

3. P(E) does not contain any other operations.
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Definition 1.4.5. Let p(x1, x2, ..., xn) and q(y1, y2, ..., ym) be two polynomials. The expression

p(x1, x2, ..., xn) = q(y1, y2, ..., ym)

is called an algebraic identity.

Let I be a set of identities, then some algebras G ∈ A(E) satisfy these identities, and other do
not. Algebras satisfying the identities are denoted by A(E, I). Such classes of universal E-algebras
are called variety or primitive class.

Definition 1.4.6. A non-empty class V of topological E-algebras is called a quasivariety of topo-
logical E-algebra, if it satisfies the following conditions:

(Σ) for any subalgebra B of some algebra A ∈ V we have B ∈ V;
(Π) if {Gα : α ∈ A} ⊂ V, then Π{Gα : α ∈ A} ∈ V.

Definition 1.4.7. Universal algebra with a single binary algebraic operation is called a grupoid.

Binary operation (·) on algebra G can be:

- commutative: x · y = y · x for any x, y ∈ G;

- associative: (x · y) · z = x · (y · z) for any x, y, z ∈ G.

Let (G, ·) be a grupoid with e ∈ G. The element e is called the identity element (or neutral) in
G, if e · a = a · e = a, for any a ∈ G. The identity element can can be defined for any operation with
arity ≥ 2. The element e ∈ G is called the identity (or neutral) element in G for n-ary operation
u : Gn −→ G, n ≥ 2, if for any i ≤ n we have p(x1, x2, ..., xn) = xi given that x j = e for any j , i.
The existence of the identity element is important in the theory of universal topological algebras.

Definition 1.4.8. Semigroup is a grupoid (G, ·) that satisfies the identity x · (y · z) = (x · y) · z.

Definition 1.4.9. Monoid is a semigroup with an identity element.

Definition 1.4.10. Group is a universal algebra G with a binary operation {·}, a unary operation
{−1} and a nullary operation that fixes an element e with the following identities:

1. x · (y · z) = (x · y) · z;

2. x · x−1 = x−1 · x = e;

3. e · x = x · e = x.

31



The notion of group appeared in the nineteenth century in researches related to geometry and
permutations. In geometry, they appeared as groups of geometric transformations: the group of
isometries, the group of similarities, the group of affine transformations, the group of projective
transformations, topological transformation group (continuous). This fact unites topology with
geometry. The permutations group is a group of transformations of a finite set. Evariste Galois ap-
plied the subgroups of the permutations group to solve the problem of solving equations in radicals.
These ideas led to the creation of the Galois theory, an important field of contemporary mathe-
matics. Transformation groups have also influenced research in physics: Lorentz transformations,
Einstein’s relativity theory, etc.

The study of semigroups is connected to the study of algebraic structures with more complex
axioms such as groups or rings. The first use of the term belongs to J.-A. de Seguier [176] in 1904.
An impulse of research in the field of semigroups was determined by its applications in information
theory and automata theory [5, 11, 86, 96, 127, 100, 142]. Algebraic and topological structures
are important in the theoretical study of problems related to automata and information theory
[2, 3, 11, 86, 132, 137, 136, 140, 100, 143, 181, 195, 200, 117, 33, 47, 131, 139, 141, 142, 180, 181].

Regarding the general theory of semigroupswemention Clifford and Preston [74], elementary
information regarding universal algebra - Gratzer [97] and Choban [51, 50, 54], and for fundamental
information about automata theory - Hopcroft and Ullman [117].

A topological quasigroup is a non-empty space G with three binary continuous operations
{·, r, l} and identities x · l(x, y) = r(y, x) · x = l(x, x · y) = l(r(x, y), x) = r(y · x, x) = y (see [30]).

A topological bigroupoid is a topological space G with two binary continuous operations
{·, ∗} for which there exists an element e ∈G such that x · e = x for each x ∈ G. A bigroupoid G is
a bigroupoid with a division or, briefly a d-bigroupoid if for each two elements a, b ∈ G there exist
two elements c, p ∈ G such that a · c = b and p · a = b. A bigroupoid G is called an a-bigroupoid
if x · (y ∗ z) = (x ∗ y) · z for all x, y, z ∈ G.

One of the general problems in topological algebra is determined by the study of the rela-
tionships between topological properties of the spaces and underlying algebraic structures on them.
That general problem is examined in the light of the following three problems:

Problem DT. Let G be an E-algebra. Determine the kinds of topologies, which can be
considered on the E-algebra G that makes it a topological E-algebra.

Problem DA. Let G be a topological space. Determine the types of algebraic structures that
can be considered on the space G, which makes it a topological E-algebra.

Problem DC. Research of applications of the Theory of Topological Algebras.
One of the general problems, determined by the direction of the posed problem DA, is the

following:
Problem DAT. Let G be a topological non-empty space, E be a signature and Λ be a set of
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identities. Is it true that G admits a structure of topological E-algebra for which G is a topological
E-algebra with the identities Λ?

One of the first results in this direction is the Pontryagin version of the Frobenius theorem in
the abstract algebra (see [185, 186, 66]).

TFP(Frobenius - Pontryagin). Let D be a connected locally compact division ring. Then:

1. If D is associative and commutative, then either D is the ring of reals R, or the ring C of
complex numbers.

2. If D is associative and non-commutative, then D is the ring of quaternions H.

3. If D is non-associative, then D is the ring of octonions D.

The algebra of quaternions was discovered by Hamilton in 1843 and the algebra of the
octonions - by J. T. Graves in 1843. The Cayley-Diskson construction produces a sequence of
topological algebras over the given topological field (in particular over the reals). In the case of
reals, we obtain the algebras R, C, H, D (see [24]). Indeed, let R be a topological ring with
involution x → x∗. Denote by A(R,∗ ) the set R2 = R × R with the operations:

- (x, y) + (u, v) = (x + u, y + v);
- (x, y) · (u, v) = (xu − v∗y, vx + yu∗);
- (x, y)∗ = (x∗,−y).
Then A(R,∗ ) is a topological ring with the involution and a topological R-module. The

mapping x → (x, 0) is the natural embedding of the ring R into A(R,∗ ). As a rule, the point x ∈ R

is identified by the point (x, 0) ∈ A(R,∗ ) and one may consider that R ⊂ A(R,∗ ).
If on the field R of reals the identical mapping x → x∗ = x is the given involution, then C =

A(R,∗ ) is the algebra of complex numbers,H = A(C,∗ ) is the algebra of quaternions (hypercomplex)
number and D = A(H,∗ ) is the algebra of octonions. The algebras H1 = A(H,∗ ) and Hn+1 = A(Hn,

∗ )

relatively to the multiplication are not with division for all n ≥ 1.
Corollary. Let G be an infinite connected and locally compact space. If dimG < {1, 2, 4, 8},

then G does not admit the structure of the topological division ring.
Obviously, any topological spaceG admits structures of topological E-algebras. It is sufficient

to fix some continuous mapping en : En × Gn −→ G for each n ∈ ω. In particular, the operation
xy = x determines on G the structure of a topological semigroup with a right identity: the element
e ∈ G is a right (respectively, left) identity if xe = x (respectively, ex = x) for any x ∈ G.

Remark. There exists a metrizable connected compact space A such that if xy is a structure of
a topological groupoid with right identity, then xy = x for all x, y ∈ A. In this case any continuous
mapping f : A × A −→ A is one of the projections or a constant mapping. The space A is called
the Cook continuum (see [185, 186]).
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1.5. Spaces of strings. Languages

Fix a non-empty set A. The set A is called an alphabet. Let L∗(A) be the set of all finite strings
a1a2 . . . an with a1, a2, . . . , an ∈ A. Let ε be the empty string. Consider the strings a1a2 . . . an for
which ai = ε for some i ≤ n. If ai , ε, for any i ≤ n or n = 1 and a1 = ε, the string a1a2 . . . an

is called a irreducible string or canonical string. The set Sup(a1a2 . . . an) = {a1, a2, . . . , an} ∩ A

is the support of the string a1a2 . . . an and l(a1a2 . . . an) = |{i ≤ n : ai , ε}| is the length of
the string a1a2 . . . an. For two strings a1 . . . an and b1 . . . bm, their product (concatenation) is
a1 . . . anb1 . . . bm. If n ≥ 2, i < n and ai = ε, then the strings a1 . . . an and a1 . . . ai−1ai+1 . . . an

are considered equivalent. In this case any string is equivalent to one unique canonical string.
We identify the equivalent strings. The set L(A) of all canonical strings is the class of equivalent
strings. In this case L∗(A) is a semigroup and L(A) becomes a monoid with identity ε. The set
L(A) is not a subsemigroup of L∗(A). Only the set L(A) \ {ε} is a subsemigroup of the semigroup
L∗(A).

Let Ā = A ∪ {ε}, Sup(a, b) = Sup(a) ∪ Sup(b) ∪ {ε}, and Sup(a, a) = Sup(a) ∪ {ε}. It is
well known that any subset L ⊂ L(A) is an abstract language over the alphabet A.

Fix an alphabet A and let Ā = A ∪ {ε}. We assume that ε ∈ Ā ⊆ L(A). Let a, b be two
strings.

We put A−1 = {a−1 : a ∈ A} , ε−1 = ε, (a−1)−1 = a for any a ∈ A and consider that A−1 ∩ Ā

= ∅. Denote Ǎ = A ∪ A−1 ∪ {ε}. Let Ľ(A) = L∗(Ǎ) be the set of all strings over the set Ǎ with the
empty string ε. The strings over the set Ǎ are called words. A word a = a1a2 · · · an ∈ Ľ A) is called
an irreducible string if n = 1 and a1 ∈ Ǎ, or n ≥ 2, ai , ε for any i ≤ n and a−1

j , a j+1 for each
j < n.

Let a = a1a2 · · · an ∈ Ľ(A) and n ≥ 2. Then:
- if i ≤ n and ai = ε, then the words a1a2...an and a1 . . . ai−1ai+1 . . . an are considered

equivalent;
- if i < n and a−1

i = ai+1 then the words a1a2...an and a1 . . . ai−1εai+2 . . . an are considered
equivalent.

In this case any word a1a2 · · · an ∈ Ľ(A) is equivalent to one unique irreducible word from
Ľ(A). We identify the equivalent words. The classes of equivalence form the free group F(A) over
A with the identity ε. We have that L(A) is a submonoid of the group F(A).

Let a = a1a2...an ∈ F(A) be an irreducible word. The representation a = x1x2...xm ∈ L∗(A) is
called an almost irreducible representation of a if there exists a sequence 1 ≤ i1 < i2 < ... < in ≤ m

such that a j = xij for any j ≤ n and xi = ε for each i ∈ {1, 2, ...,m} \ {i1, i2, ..., in}. If a =
a1a2...an ∈ L∗(A) is a representation of the string a, then a1a2...an is an almost irreducible word.

If a = a1a2...an, then as = anan−1...a2a1 and a−1 = a−1
n a−1

n−1...a
−1
2 a−1

1 . The word as is the
symmetric word of a and a−1 is the inverse word of a. If a and b are equivalent words, then the
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words a−1 and b−1 are equivalent and the words as and bs are equivalent too. Hence the mappings
·s, ·−1 : F(A) −→ F(A) are the group automorphisms. Obviously that L(A)s = L(A).

There exists a unique semigroup homomorphism πA : Ľ(A) −→ F(A) such that πA(a) = a

for each a ∈ Ǎ. In this case πA(a) = a for each irreducible word a ∈ F(A) ⊂ Ľ(A).
Fix a distance d on Ā. We put:
- dH(a, b) = d(a, b) for any a, b ∈ Ā;
- dH(a−1, b−1) = d(b, a) for any a, b ∈ Ā;
- dH(a, b−1) = d(a, ε) + d(ε, b−1) and dH(a−1, b) = d(a−1, ε) + d(ε, b) for any a, b ∈ Ā;
- dH(a1a2 · · · an, b1b2 · · · bm) =
Σ{dH(ai, bi) : i ≤ min{n,m}} + Σ{dH(ai, ε) : n < i ≤ m} + Σ{dH(ε, b j) : m < j ≤ n}

for any two words a1a2 · · · an, b1b2 · · · bm ∈ Ľ(A).
We say that dH is the Hamming distance between two words generated by d, and dH is the

extension of d on Ľ(A).
Distance d generates on the free group F(A) the Graev - Markov distance dG:

dG(a, b) = min{dH(a′, b′) : a′, b′ ∈ Ľ(A), a = πA(a′), b = πA(b′)}

for any a, b ∈ F(A).
Hamming [106] considered the distance dH on L∗(A) for the discrete metric d on Ā. The

function distance dH has the following properties:

1. d is a distance if and only if dH is a distance;

2. d is a metric if and only if dH is a metric;

3. d is a qvasimetric if and only if dH is a quasi-metric.

Graev [98] considered dG for a metric and proved:

4. d is a metric if and only if dG is a metric;

5. For a metric d we have that dG is an invariant metric and d(a, b) = dG(a, b) for any a, b ∈ Ā.

The condition that d is metric was essential in the Graev constructions. The topology generated
by an invariant metric on group is a group topology, but the topology generated by an invariant
quasi-metric on group is not always a group topology. Moreower, dG may be not a distance for
some distance d.

Example 1.5.1. Let G be the additive group of real numbers, d(x, y) = min{1, y − x} if x ≤ y and
d(x, y) = 1 if y < x. Then:

- d is an invariant qvasimetric on G;

35



- (G,T(d)) is the Sorgenfrey line and is not a metrizable space;
- (G,T(d)) is a topological semigroup and is not a topological group.

Example 1.5.2. Let A = {0, 1, 2}, d(x, x) = 0 for any x ∈ Ā, d(0, 1) = d(1, 2) = d(2, 0) = d(a, ε) =
d(b, ε) = d(ε, c) = 0 and d(1, 0) = d(2, 1) = d(0, 2) = d(ε, a) = d(ε, b) = d(c, ε) = 1. Then d is a
discrete distance on Ā, where a, b, c ∈ A. Fix a = 0 and b = 2 from L(A) ⊂ F(A). Then aε and ε2
are almost irreducible representation of a and b. We have πA(0) = πA(0ε) = a and πA(2) = πA(ε2)
= b. Since dH(2, 0) = dH(0ε, ε2) = 0, we have dG(a, b) = dG(b, a) = 0. Hence dG is not a distance
on L(A) and F(A).

Hence, it is natural to have the following open question: under which conditions dG is a
distance on L(A)?

For the discrete metric d on Ā the metric dG coincides with the Levenstein metric on L(A).
The V. I. Levenshtein’s distance dL(a, b) between two strings a = a1a2 · · · an and b =

b1b2 · · · bm from L(A) is defined as the minimum number of insertions, deletions, and substi-
tutions required to transform one string to the other [130, 55, 56, 57]

1.6. Free algebras. Maltsev’s Problems

Fix a continuous signature E = ⊕{En : n = 0, 1, 2, ...} and a quasivariety V of topological
E-algebras that satisfy the following relations:

1. Topological non-triviality: There exists a topological algebra G ∈ V which contains a non-
proper open subset U (∅ , U , G).

2. Topological completeness: If (G,T0) ∈ V and T is a T0-topology on G such that (G,T) is a
topological E-algebra, then (G,T) ∈ V.

In [51, 133] (see also [52, 53, 54, 50]) was proved: For each non-empty topological space X

there exist two topological E-algebras F(X,V) ∈ V and Fo(X,V) ∈ V and a continuous mapping
vX : X −→ Fo(X,V) with the following properties:

1. The set vX(X) generates the algebra Fo(X,V).

2. If g : X −→ G ∈ V is a continuous mapping, then there exists a unique continuous
homomorphism ḡ : Fo(X,V) −→ G such that g = ḡ ◦ vX .

3. X is a subset of the E-algebra F(X,V) and the set X generates the algebra F(X,V).

4. If g : X −→ G ∈ V is a mapping, then there exists a unique continuous homomorphism
ḡ : Fo(X,V) −→ G such that g = ḡ |X .
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5. There exists a unique continuous homomorphism wX : F(X,V) −→ Fo(X,V) such that
vX = wX |X .

The algebra F(X,V) is called the free E-algebra on the space X in the class V and the pair
(Fo(X,V), vX) is called the topological free E-algebra on the space X in the class V. For any space
X the free objects are unique.

In 1957 A. I. Maltsev [133] posed the following problems:
First Maltsev’s Problem: Under which conditions the mapping vX is an embedding?
SecondMaltsev’s Problem: Under which conditions the homomorphism wX is a continuous

isomorphism?
For complete regular spaces X the Maltsev Problems were solved affirmatively by S. Swier-

czkowski [184] in the case of discrete signature E , and by M. M. Choban and S. S. Dumitrashcu
for any signature [84, 51].

Since any topological group is a completely regular space, this result has a definitive character.
There are various quasivarieties and varieties that containT0-spaces that are not completely regular.
For such cases Maltsev’s problems remain open! For example, the variety of topological monoids
contains T0-monoids and for quasivarieties of topological monoids these problems are not solved.

Maltsev’s problems are related to to the following problem:
Topologization Problem. Let G be an E-algebra. What types of topologies T exists on G

for which (G,T) is a topological algebra?
Particular cases of the Topologization problem are:
Problem PT1. Under what conditions E-algebra G is topologizable with a T0-topology, or

with a Hausdorff topology, or with a metrizable topology, or with a non-discrete quasi-metrizable
topology?

Problem PT2. Under what conditions E-algebra G admits compact topologizations?
Problem PT3. Let X be a quasi-metrizable space. Under what conditions there exists a

quasi-metrizable topologization on F(X,V) for which X is a subspace?
Regarding the PT1 and PT2 problems, profound results were obtained by S. Hartman, J.

Mycielsky, V. I. Arnautov, M. I. Ursul, P. Chircu. For metrics the PT3 problem was solved by M.
I. Graev [98], in the case of the variety of all groups, and by M. M. Choban [52] in the case of
discrete signature. For this purpose M. M. Choban [52] introduced the notion of stable distance on
a universal algebra. The case of semigroups remained open.

L. Pontryagin, in an unpublished letter to A. Weil, proved that every topological group is
completely regular. This result was used by A. Weil [197] in the theory of uniform spaces. Since
normality is the next after complete regularity interesting property of separability of spaces, it is
natural to raise the question of whether every topological group is a normal space. A. Markov
[135] managed to solve this question in a negative sense, proving the following theorem:
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Theorem TM1. Any completely regular space can be topologically embedded into a linear
topological locally convex space as a closed subset of the latter.

The notion of locally convex linear space was introduced by A. Kolmogoroff (see [124, 26]).
Using theorem TM1, we can build a topological group which is not a normal topological space, in
the following way. Let X be some completely regular, but not normal space. Such spaces exist, as
shown by A. N. Tikhonov in [191].

By virtue of TM1 Theorem, there exists a linear topological locally convex space S, topolog-
ically containing X as a closed subset. Space S cannot be a normal space, because otherwise all its
closed subsets would be normal too. Since every linear topological space is an abelian topological
group, S is an example of abnormal topological group. The proof of the theorem is based on certain
ideas of A. Weil [197] and on the result of D.H. Hyers [118], related to the construction of linear
topological spaces by means of "pseudo-norms".

Let X be a subset of a topological group G. We say that X generates G if there exists no
proper subgroup of G containing X .

Using the idea of pseudo-normsA.A.Markov [135] demonstrates the following two theorems.
Theorem TM2. Let X be a completely regular space. Then there exists a topological group

F(X) with the following properties:

1. X is a closed subspace of F(X);

2. X generates F(X);

3. For any continuous mapping ϕ of X into any topological group G, there exists a continuous
homomorphismΦ of the topological group F(X) into the topological group G such thatΦ(x)
= ϕ(x) for every point x of X .

TheoremTM3. Let X be a completely regular space. Then there exists a topological Abelian
group A(X) with the following properties:

1. X is a closed subspace of A(X);

2. X generates A(X);

3. For any continuous mapping ϕ of X into any topological Abelian group G, there exists a
continuous homomorphism Φ of the topological group A(X) into the topological group G

such that Φ(x) = ϕ(x) for every point x of X .

At the end of his paper [135] A. Markov formulates the following problems:
Problem1M.To prove or to refute the assertion: the free topological groups of two completely

regular spaces are topologically isomorphic, if and only if these spaces are homeomorphic.
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Problem 2M. To prove or to refute the analogous assertion on free abelian topological
groups.

Problem 3M. To prove or to refute the assertion: every uncountable group admits a non-
normal topology.

The topological group G is trivial if every it subset is open.
Problem 4M. To prove or to refute the assertion: every infinite group admits a non-trivial

topology.
In 1948M. Graev [98] solves negatively problems 1M and 2M. These negative solutions were

the basis for studying the algebraic equivalence of topological spaces (see [13]). The problem of
studying the common properties of M-equivalent spaces (in which the free groups are topologically
equivalent) and A-equivalent spaces (in which the free Abelian groups are topologically equivalent)
was formulated by L. Pontryagin in 1947.

Also, in 1948, M. Graev [98] significantly simplifies the proofs of theorems TM1, TM2 and
TM3. Graev’s main idea in the study of free groups was to replace the notion of "pseudo-norm"
with the notion of "invariant psedo-metric". A continuous pseudo-metric on space X is a function
d with the following properties:

(P1). d(x, y) ≥ 0 si d(x, x) = 0 for any x, y ∈ X;
(P2). d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X;
(P3). d(x, y) = d(y, x) for any x, y ∈ X;
(P4). B(x, d, r) = {y ∈ X : d(x, y) < r} is an open set for any r > 0 and x ∈ X .
The X space is completely regular if and only if the space topology is generated by a family

of pseudo-metrics. M. I. Graev examines spaces with point base (X, p), where p ∈ X . For the free
group X of the set X , it is considered that p ∈ X ⊆ F(X) and p is the neutral element of the F(X)

group.
M. Graev [98] proves the following two theorems:
Theorem TG1. Let F(X) be the free group of the set X , where X is a completely regular

space. Then for any pseudo-metric d on the space X there exists an invariant pseudo-metric ď on
F(X) with the properties:

1. d(x, y) = ď(x, y) for any x, y ∈ X .

2. If x, y ∈ F(X) are two distinct words, x = x1x2...xn and y = y1y2...ym, where x1, x2, ..., xn,
y1, y2, ..., ym ∈ X ∪ X−1, and d(xi, y j) , 0 for xi , y j , then ď(x, y) , 0.

3. If d is a metric, then ď is also a metric.

4. If ρ is an invariant metric on F(X) and ρ(x, y) ≤ d(x, y) for any x, y ∈ X , then ρ(x, y) ≤
ď(x, y) for any x, y ∈ F(X).
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Theorem TG2. Let A(X) be the free Abelian group of the set X , where X is a completely
regular space. Then for any pseudo-metric d on the space X there exists an invariant pseudo-metric
ď on A(X) with the properties:

1. d(x, y) = ď(x, y) for any x, y ∈ X .

2. If x, y ∈ A(X) are two different words, x = x1x2...xn and y = y1y2...ym, where x1, x2, ..., xn,
y1, y2, ..., ym ∈ X ∪ X−1, and d(xi, y j) , 0 for xi , y j , then ď(x, y) , 0.

3. If d is a metric, then ď is also a metric.

4. If ρ is an invariant metric on F(X) and ρ(x, y) ≤ d(x, y) for any x, y ∈ X , then ρ(x, y) ≤
ď(x, y) for any x, y ∈ A(X).

These theorems were extended by M. M. Choban [52] for varieties of topological universal
algebras with discrete signature.

Fix a discrete signature E , a quasivariety V of topological E-algebras and a space X .
Let F(X,V) be the free E-algebra and X is included in F(X,V) as generating subset. Denote

F0(X) = X∪e0(E0×G0). Pseudo-metric d is stable on E-algebra G, if for any n ≥ 1, any u ∈ En and
any x1, y1, x2, y2, ..., xn, yn ∈ G we have d(u(x1, x2, ..., xn), u(y1, y2, ..., yn)) ≤ Σ{d(xi, yi) : i ≤ n}.

M. M. Choban [52] proves the following two theorems:
TheoremTC1. Let F(X,V) be the free E-algebra of the space X . Then for any pseudo-metric

d on the set F0(X), where d(x, y) ≤ 1 for any x, y ∈ F0(X), there exists a stable pseudo-metric ď

on F(X,V) with the properties:

1. d(x, y) = ď(x, y) for any x, y ∈ F0(X).

2. If x, y ∈ F(X,V) are two distinct elements, u is an n-ary term , v is an m-ary term,
x = u(x1, x2, ..., xn) and y = v(y1, y2, ..., ym), where x1, x2, ..., xn, y1, y2, ..., ym ∈ Fo(X) and
d(xi, y j) , 0 for xi , y j , then ď(x, y) , 0.

3. If d is a metric, then ď is also a metric.

4. If ρ is a stable metric on F(X,V), ρ(x, y) ≤ 1 for any x, y ∈ F(X,V) and ρ(x, y) ≤ d(x, y)

for any x, y ∈ F0(X), then ρ(x, y) ≤ ď(x, y) for any x, y ∈ F(X,V).

Theorem TC2. Assume that there exists n ≥ 2 and an n-ary term µ for which any E-algebra
G ∈ V contains a neutral element. Let F(X,V) be the free E-algebra of the space X . Then for
any pseudo-metric d on set F0(X) there exists an invariant pseudo-metric ď on F(X,V) with the
properties:

1. d(x, y) = ď(x, y) for any x, y ∈ F0(X).
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2. If x, y ∈ F(X,V) are two distinct elements, u is an n-ary term, v is an m-ary term, x =

u(x1x2...xn) and y = v(y1y2...ym), where x1, x2, ..., xn, y1, y2, ..., ym ∈ Fo(X) and d(xi, y j) , 0
for xi , y j , then ď(x, y) , 0.

3. If d is a metric, then ď is also a metric.

4. If ρ is an invariant metric on F(X,V), ρ(x, y) ≤ 1 for any x, y ∈ F(X,V) and ρ(x, y) ≤ d(x, y)

for any x, y ∈ F0(X), then ρ(x, y) ≤ ď(x, y) for any x, y ∈ F(X,V).

Theorem TC2 contains Markov’s and Graev’s theorems.
Various aspects of the theory of topological groups are deeply reflected in the book [13].

Various results on topological algebras are contained in the works of [67, 108, 70, 161, 71, 23, 158,
159, 160, 105].

1.7. Conclusions for chapter 1

In the information theory and, particularly, in the theory of languages it is important the
monoid L(A) of all strings on the given alphabet A. The analysis of the Hamming and Livenshtein
distances lead us to the problem of extension of the given distance ρ on A to an invariant distance
ρ∗ on L(A). This problem is important and remains unsolved for any quasivariety of topological
monoids. Since an invariant quasi-metric on L(A) is a measure of similarity of information, it is
important the following problem: the elaboration ofmethods to study the distances on freemonoids,
which contributes to obtaining effective methods of representation of information applicable in
solving various distance problems.

For solving this problem it is important to study the following particular problems:

1. To determine the conditions of extension of given quasi-metric ρ on A and any quasivariety
V to an invariant quasi-metric ρ∗ on the free monoid Fa(A,V).

2. To propose the algorithms of the calculation of the distance ρ∗(a, b) between two information
sequences a, b ∈ L(A).

3. To determine the relations between topologo-geometrical properties of spaces (A, ρ) and
(L(A), ρ∗).

4. To propose methods of construction of weighted means and bisector sets of a given pair of
strings.

5. To determine topologo-geometrical properties which are important in the analysis of infor-
mation and image processing.

Hence, for solving the general problem, it is necessary to achieve the following objectives:
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• to elaborate an effective method for extending the quasi-metrics on free monoids;

• to develop efficient mechanisms of information representation;

• to implement innovative algorithms to solve various problems related to text sequences, as
well as geometrical aspects in the study of the information space;

• to describe the digital topologies on the discrete line.
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2. EXTENSION OF QUASI-METRICS ON FREE TOPOLOGICAL MONOIDS

Chapter 2 presents main results obtained by the author during the research on the extension
of quasi-metrics on free topological monoids.

The study material begins with the examination of the free topological monoids, followed by
the construction method of the abstract free monoid. We discuss the properties of the Burnside
quasivariety, and present the method of extending a quasi-metric on free monoid Fa(X,V) for a
non-Burnside quasivariety V.

The results presented in this chapter successfully complement the works of other mathemati-
cians in the domain of the distance extension on the abstract algebraic structures. More specifically,
these results permit to solve the problems posed by A. I. Maltsev in 1958 for free universal topo-
logical problems. The author’s work in this chapter is published in the articles [44, 57, 62] and
serve as a base for research presented in the next chapters.

2.1. Free topological monoids

A class V of topological monoids is called a quasivariety of monoids if:
(F1) the class V is multiplicative;
(F2) if G ∈ V and A is a submonoid of G, then A ∈ V;
(F3) every space G ∈ V is a T0-space.
A class V of topological monoids is called a complete quasivariety of monoids if it is a

quasivariety with the next property:
(F4) if G ∈ V and T is a T0-topology on G such that (G,T) is a topological monoid, then

(G,T) ∈ V too.
A quasivariety V of topological monoids is non-trivial if |G | ≥ 2 for some G ∈ V.
Let X be a non-empty topological space and V be a quasivariety of topological monoids. In

the space X the base point pX ∈ X is fixed, i.e. any space is pointed.
A free monoid of a space X in a class V is a topological monoid F(X,V) with the properties:
– X ⊆ F(X,V) ∈ V and pX is the unity of F(X,V);
– the set X generates the monoid F(X,V);
– for any continuous mapping f : X −→ G ∈ V, where f (pX) = e, there exists a unique

continuous homomorphism f̄ : F(X,V) −→ G such that f = f̄ |X .
An abstract free monoid of a space X in a class V is a topological monoid Fa(X,V) with the

properties:
– X is a subset of Fa(X,V), Fa(X,V) ∈ V and pX is the unity of Fa(X,V);
– the set X generates the monoid Fa(X,V);
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– for any mapping f : X −→ G ∈ V, where f (pX) = e, there exists a unique continuous
homomorphism f̂ : Fa(X,V) −→ G such that f = f̂ |X .

In the proof of the next assertion we use the Kakutani’s method [121].

Theorem 2.1.1. Let V be a non-trivial quasivariety of topological monoids. Then for each space
X the following assertions are equivalent:

1. There exists G ∈ V such that X is a subspace of G and pX is the neutral element in G.
2. For the space X there exists the unique free topological monoid F(X,V).

Proof. Implication 2 → 1 is obvious. Assume now that there exists A ∈ V such that X is a
subspace of A and pX is the neutral element in A. Let τ be an infinite cardinal number and
|X | ≤ τ. Denote by V(τ) the collection of all G ∈ V of the cardinality ≤ τ. Since we identify
the topologically isomorphic topological monoids, the family V(τ) is a set. Hence the collection
{hµ : X −→ Gµ : µ ∈ M} of all continuous mappings f : X −→ G ∈ V(τ) with f (pX) = e ∈ G

is a set too. Consider the diagonal product h : X −→ G = Π{Gµ : µ ∈ M}, where h(x) =
(hµ(x) : µ ∈ M) ∈ G for every point x ∈ X . By construction, h(pX) = (eµ ∈ Gµ : µ ∈ M) = e ∈ G

and h is a continuous mapping. Denote by H(X) the submonoid of G generated by the setY = h(X)

in G. For each η ∈ M consider the projection πη : H(X) −→ Gµ, where πη(xµ : µ ∈ M) = xη for
each point (xµ : µ ∈ M) ∈ H(X). Then hη = πη ◦ h. Each projection πη is a homomorphism.

Since |Y | ≤ |X | ≤ τ, we have |H(X)| ≤ τ and H(X) ∈ V(τ).
For some λ ∈ M we have that Gλ is a submonoid of A and hλ : X −→ Gλ is an embedding

of X in Gλ and eλ = pX is the unity of the monoid Gλ. We have hλ(x) = x for each x ∈ X . Since
hλ = pλ ◦ h is an embedding, h is an embedding too. Hence, we can assume that X = h(X) = Y is a
subspace of H(X) and h(x) = x for each point x ∈ X .

Fix a continuous mapping f : X −→ G ∈ V, where f (pX) = e ∈ G. There exists η ∈ M such
that Gη is the submonoid of G generated by f (X) and f (x) hη(x) for each x ∈ X . Then pη(x) =
πη(h(x)) = f (x) for each x ∈ X . Since X generated H(X), the homomorphism f̄ is unique. Thus
we can assume that πη = f̄ and H(X) is the free topological monoid of the space X in the class V.
The existence of the free topological monoid of the space X is proved.

Let F(X,V) and F1(X,V) be two free topological monoids of the space X . There existtwo
continuous homomorphisms h : F1(X,V) −→ F(X,V) and g : F(X,V) −→ F1(X,V) such that
h(x) = g(x) = x for each x ∈ X . Consider the homomorphism ϕ = h ◦ g : F(X,V) −→ F(X,V).
That homomorphism is unique and is generated by the embedding of X in F(X,V). Hence ϕ is the
identical mapping and h = g−1. Thus h and g are topological isomorphisms and the uniqueness of
the free topological monoid of the space X is proved. �

Corollary 2.1.1. Let V be a non-trivial quasivariety of topological monoids. Then for each space
X there exists the unique abstract free monoid Fa(X,V).
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Problem 2.1.1. LetV be a non-trivial quasivariety of topological monoids. Under which conditions
for a space X there exists the free topological monoid F(X,V)?

Fix a space X for which there exists the free topological monoid F(X,V). Then there exists a
unique continuous homomorphism πX : Fa(X,V) −→ F(X,V) such that πX(x) = x for each x ∈ X .
The monoid F(X,V) is called abstract free if πX is a continuous isomorphism.

Problem 2.1.2. LetV be a non-trivial quasivariety of topological monoids. Under which conditions
for a space X there exists the free topological monoid F(X,V), which is abstract free?

The Problems 2.1.1 and 2.1.2 are important in the theory of universal algebras with topologies
(see [133, 51, 52, 53, 54, 67]). These problems for varieties of topological algebras were posed by
A. I. Maltsev ([133], see Maltsev’s problems in section 1.6).

We say that a space X is zero-dimensional and denote indX = 0 if X has a base whose
elements are open-and-closed [87].

Theorem 2.1.2. Let V be a non-trivial quasivariety of topological monoids and there exists H ∈ V

and point b ∈ H such that e , b, and E = {e, b} is a discrete subspace of H. Then for each
zero-dimensional space X there exists the unique free topological monoid F(X,V).

Proof. Let {(Uµ,Vµ) : µM} be a family of open-and-closed subsets of the space X with a fixed
point pX such that:

– X = Uµ ∪ Vµ and Uµ ∩ Vµ = ∅ for each µ ∈ M;
– if the set U is open in X , x ∈ U and x , pX , then there exists µ ∈ M such that x ∈ Vµ ⊆ U;
– if the set U is open in X and pX ∈ U, then there exists µ ∈ M such that pX ∈ Uµ ⊆ U.
We put hµ(Uµ) = {e} and hµ(Vµ) = {b}. Then hµ : X −→ H is a continuous mapping and

the diagonal product h : X −→ HM , where h(x) = (hµ(x) : µ ∈ M) for each point x ∈ X , is an
embedding of X into G = HM and h(pX) is the unity of G. Theorem 2.1.1 completes the proof. �

The condition of the existence of a topological monoid H with a discrete space E is essential
in the above theorem.

Example 2.1.1. Let H be the topological monoid ω with the topology {∅,H} ∪ {Un = {i ∈ ω :
i ≤ n} : n ∈ ω}. The set {0} is open and dense in H. Let V(H) be the quasivariety of topological
monoids generated by H. Any element of V(H) is a topological submonoid of the topological
monoid HM for some non-empty set M . In any G ∈ V(H) the unity {e} is a dense subset. We have
the following cases:

Case 1. If X is a space with the fixed point pX and the set {pX } is closed in X (for instance,
X is a T1-space), then for X the free topological monoid F(X,V(H)) does not exist.
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Case 2. Let X be the space H with the fixed point pX = 0. By virtue of Theorem 2.1.1, the
free topological monoid F(X,V(H)) of the space X exists.

Case 3. Let X be the space H with the fixed point pX , 0. If f : X −→ H is a continuous
mapping and f (pX) = 0 then f (x) = 0 for each x ≤ pX . Hence the free topological monoid
F(X,V(H)) of the space X =H with the fixed point pX , 0 does not exist.

2.2. Construction of the abstract free monoid

Fix a non-trivial quasivarietyV of topological monoids. Consider a space X for which we can
assume that X ⊆ Fa(X,V) as a subset and pX = e is the unity (neutral element) in Fa(X,V). In this
case e ∈ X ⊆ Fa(X,V). The set A = X \ {e} is called an alphabet. If n ≥ 1 and x1, x2, ..., xn ∈ X ,
then the symbol x1x2...xn is called a word of the length n in the alphabet A. The word e is the
empty word. Any word x1x2...xn, where x1, x2, ..., xn ∈ X , represents a unique element x1x2...xn =
x1 · x2 · ... · xn ∈ Fa(X,V). A given element b ∈ Fa(X,V) is represented by many words. There
exists a word of the minimal length which represents the given element b. The length n of this
word is called the length of the element b and we put l(b) = n. If the element b is represented by the
words x1x2...xn, y1y2...ym of the minimal length, then n = m and {x1, x2, ..., xn} = {y1, y2, ..., ym}.
In this case we say that the word x1x2...xn is irreducible and that Sup(b) = {x1, x2, ..., xn} is the
support of the element b. If the element b is represented by the words x1x2...xn, y1y2...yn of the
minimal length, then there exists a bijection h : {1, 2, ..., n} −→ {1, 2, ..., n} such that xi = yh(i) for
each i ≤ n. Obviously, Sup(e) = {e} and e < Sup(b) if b , e. If e ∈ Y ⊆ X , b ∈ Fa(X,V) and
Sup(b) ⊆ Y , then b ∈ Fa(Y,V). In particular, Fa(Y,V) is the submonoid of Fa(X,V) generated by
the set Y .

For any two elements a, b ∈ Fa(Y,V)we put Sup(a, b) = Sup(a)∪Sup(b)∪ {e}. In particular,
Sup(a, a) = Sup(a) ∪ {e}.

Remark 2.2.1. Let b ∈ Fa(X,V) and b , e. Then x ∈ Sup(b) if and only if x , e and
b < Fa(X \ {x},V).

Remark 2.2.2. Let b= x1x2...xn ∈ Fa(X,V). Thenwe have Sup(b) ⊆ Sup(b, b) ⊆ {e, x1, x2, ..., xn}.

Remark 2.2.3. If V is the variety of all topological monoids, then any b ∈ Fa(X,V) is represented
by some word of the minimal length. If the monoids from V are commutative and pX, a, b are
distinct elements of X , then ab and ba are distinct words, but ab = ba in Fa(Y,V).

2.3. On the non-Burnside quasivarieties

A quasivariety V of topological monoids is called a Burnside quasivariety if there exist two
minimal numbers p = p(V), q = q(V) ∈ ω such that 0 ≤ q < p and xp = xq for all x, y ∈ G ∈ V. In
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this case any G ∈ V is a (p, q)-periodic monoid of the exponent (p, q). If q = 0, then any monoid
G ∈ V is a periodic monoid of the exponent p and xp = e for each x ∈ G ∈ V.

The trivial quasivariety is considered Burnside of the exponent (0, 1).

Example 2.3.1. Fix 0 ≤ q < p and an element b , e. We put b0 = e, b1 = b and bn+1 = bn · b =
b · bn for each n ∈ N. We consider that bp = bq and all elements {bi : i < p} are distinct. Then
G(p,q) = {bn : n ∈ N} = {bi : i < p} is a monoid and |G(p,q) | = p. Denote by W(p,q) the complete
variety of topological monoids generated by the discrete monoid G(p,q), i.e. is the minimal class of
topological monoids with the properties:

– the classW(p,q) is a complete quasivariety of topological monoids;
– G(p,q) ∈ W(p,q)
– if f : A→ B is a continuous homomorphism of a topological monoid A onto a a topological

monoid B, A ∈ W(p,q) and B is a T0-space, then B ∈ W(p,q).
ThenW(p,q) is a variety of topological commutative monoids of the exponent (p, q).

Example 2.3.2. Let Wω is the complete quasivariety generated by the discrete monoid ω =
{0, 1, 2, ...} with the additive operation. The class Wω is a non-Burnside quasivariety of com-
mutative topological monoids.

Theorem 2.3.1. Let V be a non-trivial Burnside quasivariety of the exponent p ≥ 2. Then:
1. Each topological monoid G ∈ V is a topological group.
2. If d is a stable pseudo-quasi-metric on G ∈ V, then d is a pseudo-metric on G and d(x, y)

= d(y, x) = d(xz, yz) = d(zx, zy) = d(y−1, x−1) ≤ (p − 1)d(y, x) for all x, y, z, ∈ G ∈ V.
3. If p = 2 and d is a stable pseudo-quasi-metric on G ∈ V, then d is a pseudo-metric on G.

Proof. Let x ∈ G ∈ V and p(x) = min{q ∈ N : xq = e}. If p(x) ≥ 2, then xp(x) = e. Thus we
can assume that xp(x)−1 = x−1. Thus G is a group. If d is a stable pseudo-quasi-metric on G, then
d(x, y) = d(xz, yz) = d(zx, zy) = d(y−1xx−1, y−1yx−1) = d(y−1, x−1) for all x, y, z, ∈ G. If p = 2,
then x = x−1. Assertion 2 is proved. Assertion 3 follows from Assertion 2.

Let G ∈ V be a paratopological group. A topological group is a paratopological group with a
continuous inverse operation x → x−1. Since the inverse operation x → xp−1 = x−1 is continuous,
Assertion 1 is proved. The proof is complete. �

Theorem 2.3.2. Let V be a non-trivial quasivariety of topological monoids. Then the following
assertions are equivalent:

1. V is a non-Burnside quasivariety.
2. On ω there exists a topology T for which (ω,T) ∈ V.

Proof. Implication 2 → 1 is obvious. Assume that V is a non-Burnside quasivariety. Let
{(pn, qn) : n ∈ N} is the collection of all pairs (p, q) ∈ ω × ω such that q < p. For each
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n ∈ N there exist Gn ∈ V and an ∈ Gn such that all elements a0
n = e, a1

n, a
2
n, ..., a

pn−1
n are distinct

and apn
n = aqn

n . We put G = Π{Gn : n ∈ N} and a = (an : n ∈ N). Then a ∈ G ∈ V. We put
H = {an : n ∈ ω}. Then H ∈ V is a submonoid of the monoid G. The mapping n → an is a
isomorphism of ω onto H. Implication 1→ 2 and the theorem are proved. �

Corollary 2.3.1. Let V be a non-Burnside quasivariety, X be a space, b = x1x2...xn ∈ Fa(X,V),
l(b) = m and Sup(b) = {y1, y2, ..., ys}. Then:

1. If b = e, then s = 1, m = 0 and xi = y1 = e for each i ≤ n.
2. Let b , e. Then n ≥ m ≥ s ≥ 1 and {y1, y2, ..., ys} ⊆ {x1, x2, ..., xn} ⊆ {e}∪{y1, y2, ..., ys},

i.e. for each i ≤ n we have xi ∈ Sup(b, b). Moreover, if A = {i ≤ n : xi , e}, then there exists a
mapping h : A −→ {1, 2, ..., s} such that h(A) = {1, 2, ...,m}, A = {i1, i2, ..., im}, xi = yh(i) for each
i ∈ A and x = [xi1 xi2 ...xim] is an irreducible word.

3. Sup(b) ⊆ {x1, x2, ..., xn} ⊆ Sup(b, b).

Corollary 2.3.2. Let V be a non-Burnside quasivariety, X be a space and b = x1x2...xm =
y1, y2, ..., ym ∈ Fa(X,V) and xi , e for each i ≤ m. Then there exists a one-to-one mapping
h : {1, 2, ...,m} −→ {1, 2, ...,m} such that xi = yh(i) for each i ≤ m.

Remark 2.3.1. Assertions of Corollary 2.3.1 are not true for Burnside quasivarieties. Consider the
quasivarietyW(0,2) of topological monoids (groups) with the identity x2 = e. Let X = {e, a, b, c} be
a discrete space with four distinct points. Then z = a = cabeeaecba = bba = acc ∈ Fa(X,W(0,2))

and Sup(z) = {a}.

The following theorem solves Problem 2.1.1 for complete non-Burnside quasivarieties of
topological monoids.

Theorem 2.3.3. Let V be a complete non-Burnside quasivariety of topological monoids. Then for
each T0-space X there exists the free topological monoid F(X,V).

Proof. By virtue of Theorem 2.3.2 the discrete monoid ω is an element of V. Denote by ωl the
monoid ω with the topology Tl = {∅, ω} ∪ {Vn = {i ∈ ω : i ≤ n} : n ∈ ω} and by ωr the monoid
ω with the topology Tr = {∅, ω} ∪ {Wn = {i ∈ ω : i ≥ n} : n ∈ ω}. Obviously, the topological
monoids ωl and ωr are elements of V.

Consider a space X with the fixed point pX . Let U be an open subset of the space X . We
construct a topological monoidGU ∈ Vwith the unity eU and a continuousmapping hU : X −→ GU

such that hU(pX) = eU and U = h−1
U (hU(U)). For that we consider two cases.

Case 1. pX ∈ U.
In this case we put GU = ωl , hU(U) = {0} and hU(X \U) = {1}.
Case 2. pX < U.
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In this case we put GU = ωr , hU(U) = {1} and hU(X \U) = {0}.
Now consider the diagonal product h : X −→ G = Π{GU : U is open subset of X}, where

h(x) = (hU(x) : U is open subset of X) for each x ∈ X . By construction, G ∈ V, h is an embedding
of X in G and h(pX) = e is the neutral element in G. Theorem 2.1.1 completes the proof. �

The following theorem solves Problem 2.1.1 for complete non-trivial quasivarieties of topo-
logical monoids.

Theorem 2.3.4. Let V be a complete non-trivial quasivariety of topological monoids. Then for
each completely regular space X there exists the free topological monoid F(X,V).

Proof. In [51] it was proved that any topological monoid G ∈ V is a submonoid of some arcwise
connected topological monoid from V. Hence there exists a topological monoid H ∈ V such that
the closed interval [0, 1] is a subspace of H and e = 0 is the neutral element in H.

Let βX be the Stone-Čech compactification of the given completely regular space with the
fixed point pX . Let {(Uµ, Fµ) : µ ∈ M} be the collection of all pairs (U, F), where U is an open
subset of the space βX , F is a closed subset of the space βX and F ⊆ U and pX ∈ F provided
pX ∈ U. We construct a topological monoid Gµ = H ∈ V with the unity eµ and a continuous
mapping hµ : X −→ Gµ such that hµ(pX) = eµ and hµ(Fµ) ∩ hµ(X \Uµ) = ∅. For that we consider
two cases.

Case 1. pX ∈ Uµ.
In this case we fix a continuous mapping h : X −→ [0, 1] ⊆ H = Gµ such that hµ(Fµ) = {0}

and hµ(X \Uµ) = {1}.
Case 2. pX < Uµ.
In this case we fix a continuous mapping h : X −→ [0, 1] ⊆ H = Gµ such that hµ(Fµ) = {1}

and hµ(X \Uµ) = {0}.
Now consider the diagonal product h : X −→ G = Π{Gµ : µ ∈ M}, where h(x) =

(hµ(x) : µ ∈ M) for each x ∈ X . By construction, G ∈ V, h is an embedding of X in G and h(pX)

= e is the neutral element in G. Theorem 2.1.1 completes the proof. �

The following corollary follows from Theorems 2.3.1 and 2.3.3.

Corollary 2.3.3. Let V be a complete non-trivial Burnside quasivariety of the exponent p ≥ 2.
Then for a space X there exists the free monoid F(X,V) if and only if the space X is Tychonoff.

Completeness of quasivariety V is essential in the conditions of the above two theorems.

Example 2.3.3. Let H be a discrete monoid and V(H) the quasivariety of topological monoids
generated by H. Any element of V(H) is a topological submonoid of the topological monoid HM

for some non-empty set M . Hence, for a space X there exists the free monoid F(X,V) if and only
if the space X is Tychonoff and indX = 0.
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Example 2.3.4. Let ωr be the monoid ω with the topology Tr = {∅, ω} ∪ {Wn = {i ≥ n : n ∈ ω}}

and V(ωr) be the quasivariety of topological monoids generated by ωr . Any element of V(ωr)

is a topological submonoid of the topological monoid ωM
r for some non-empty set M . For a

space X there exists the free monoid F(X,V) if and only if the space X is a T0-space and the
set {pX } is closed in X . Denote by Z an infinite space with a fixed point pZ and the topology
{∅, Z} ∪ {U ⊆ Z : pZ ∈ U}. The subset {pZ } is open and dense in Z . Moreover, if f : Z −→ ωr is
a continuous mapping and f (pZ ) = 0, then f (Z) = {0}. Thus the free topological monoid for the
space Z in the quasivariety V(ωr) does not exist.

2.4. Extension of pseudo-quasi-metrics

Lemma 2.4.1. Let d1, d2 be two pseudo-quasi-metrics on a monoid G. Then:
1. d(x, y) = sup{d1(x, y), d2(x, y)} is a pseudo-quasi-metric on G.
2. If the pseudo-quasi-metrics d1, d2 are invariant on G, then the pseudo-quasi-metric d is

invariant on G too.

Proof. Fix x, y, z, v ∈ G. Then d(x, z) = sup{d1(x, z), d2(x, z)} ≤ sup{d1(x, y)+ d1(y, z), d2(x, y)+

d2(y, z)} ≤ sup{d1(x, y), d2(x, y)} + sup{d1(y, z), d2(y, z)} = d(x, y) + d(y, z). Hence d is a pseudo-
quasi-metric on G.

Assume that the pseudo-quasi-metrics d1, d2 are invariant onG. We observe that d(zxv, zyv)=
sup{d1(zxv, zyv), d2(zxv, zyv)} ≤ sup{d1(x, y), d2(x, y)} = d(x, y). Thus the pseudo-quasi-metric
d is invariant too. �

Fix a non-trivial complete quasivariety V of topological monoids. Consider a non-empty
set X with a fixed point e ∈ X . We assume that e ∈ X ⊆ Fa(X,V) and e is the identity of the
monoid Fa(X,V). Let ρ be a pseudo-quasi-metric on the set X . Denote by Q(ρ) the set of all stable
pseudo-quasi-metrics d on Fa(X,V) for which d(x, y) ≤ ρ(x, y) for all x, y ∈ X . The set Q(ρ) is
non-empty, since it contains the trivial pseudo-quasi-metric d(x, y) = 0 for all x, y ∈ Fa(X,V). For
all a, b ∈ Fa(X,V) we put ρ̂(a, b) = sup{d(a, b) : d ∈ Q(ρ)}. We say that ρ̂ is the maximal stable
extension of ρ on Fa(X,V).

Property 2.4.1. ρ̂ ∈ Q(ρ).

Proof. Obviously d(x, y) ≤ ρ(x, y) for x, y ∈ X . Let d ∈ Q(ρ). Fix two points a, b ∈ Fa(X,V).
There exists n ∈ N and x1, y1, x2, y2, ..., xn, yn ∈ X such that a = x1x2...xn and b = y1y2...yn. Then
d(a, b) ≤ Σ{d(xi, yi) : i ≤ n} ≤ Σ{ρ(xi, yi) : i ≤ n}. Hence ρ(a, b) ≤ sup{Σ{d(xi, yi) : i ≤ n} :
d ∈ Q(ρ)} ≤ Σ{ρ(xi, yi) : i ≤ n} < +∞. Therefore, by virtue of Lemma 2.4.1, ρ̂ is a stable
pseudo-quasi-metric from the set Q(ρ). �
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For any r > 0 we put dr(a, a) = 0 and dr(a, b) = r for all distinct points a, b ∈ Fa(X,V).
Then dr is an invariant metric on Fa(X,V).

Property 2.4.2. Let r > 0 and ρ(x, y) ≥ r for all distinct points x, y ∈ X . Then ρ̂ is a quasi-metric
on Fa(X,V), dr ∈ Q(ρ) and ρ̂(a, b) ≥ r for all distinct points a, b ∈ Fa(X,V).

Proof. IF we put d(x, y) = r for x , y and d(x, x) = 0, then d is a metric on Fa(X,V) and d ∈ Q(ρ).
In this case ρ̂ ≥ d. The proof is complete. �

For any a, b ∈ Fa(X,V) we put ρ̄ = in f {Σ{ρ(xi, yi) : i ≤ n} : n ∈ N, x1, y1, x2, y2, ..., xn, yn ∈

X, a = x1x2...xn, b = y1y2...yn} and ρ∗(a, b) = in f { ρ̄(a, z1) +... + ρ̄(zi, zi+1) + ... + ρ̄(zn, b) : n ∈

N, z1, z2, ..., zn ∈ Fa(X,V)}.

Property 2.4.3. ρ̄ is a pseudo-distance on Fa(X,V) and ρ̄(x, y) ≤ ρ(x, y) for all x, y ∈ X .

Proof. Obviously, ρ̄ is a pseudo-distance. If a, b ∈ X , then a = ae = a, b = be = b and ρ̄(a, b)
= in f {Σ{ρ(xi, yi) : i ≤ n} : n ∈ N, x1, y1, x2, y2, ..., xn, yn ∈ X, a = x1x2...xn, b = y1y2...yn}

≤ ρ(a, b). �

Property 2.4.4. Let V be a non-Burnside quasivariety. Then ρ̄(x, y) = ρ(x, y) for all x, y ∈ X .

Proof. Assume that n ∈ N, x1, y1, x2, y2, ..., xn, yn ∈ X , x = x1x2...xn and y = y1y2...yn. There
exist i, j ≤ n for which x = xi and y = y j . We have two possible cases.

Case 1. i = j.
In this case, as was mention in Corollary 2.3.1, xk = yk = e for each k , i. Thus Σ{ρ(xi, yi) :

i ≤ n} = ρ(xi, yi) = ρ(x, y).
Case 2. i , j.
In this case, as was mention in Corollary 2.3.1, we have x j = yi = e. Hence Σ{ρ(xi, yi) : i ≤ n}

≥ ρ(xi, yi) + ρ(x j, y j) = ρ(x, e) + ρ(e, y) ≥ ρ(x, y). The proof is complete. �

Property 2.4.5. The pseudo-distance ρ̄ is stable on Fa(X,V).

Proof. Fix a, b, c ∈ Fa(X,V) and ε > 0. Let c = z1z2...zm. There exist n ∈ N and the words a =
x1x2...xn, b = y1y2...yn such that ρ̄(a, b) ≤ Σ{ρ(xi, yi) : i ≤ n} < ρ(a, b) + ε. Then ρ̄(ac, bc) =
ρ̄(x1x2...xnz1z2...zm, y1y2...ynz1z2...zm) ≤ Σ{ρ(xi, yi) : i ≤ n} < ρ̄(a, b) + ε. Hence ρ̄(ac, bc) ≤

ρ̄(a, b). The proof of inequality ρ̄(ca, cb) ≤ ρ̄(a, b) is similar. Proposition 1 proved in [56] about the
equivalence of the properties of invariante and stability of a pseudo-quasi-metric on a semigroup
completes the proof. �

Property 2.4.6. The pseudo-distance ρ∗ is a stable pseudo-quasi-metric onFa(X,V) and ρ∗ ∈ Q(ρ).

Proof. Follows from Properties 2.4.2 and 2.4.4. �
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In the following properties we assume that V is a non-Burnside quasivariety.

Property 2.4.7. If ρ is a quasi-metric on X , then ρ̄ is a distance on Fa(X,V).

Proof. Assume that ρ is a quasi-metric on X and ρ̄ is not a distance on Fa(X,V). There exist
two distinct points b, c ∈ Fa(X,V) such that ρ̄(b, c) = ρ̄(c, b) = 0. Suppose that n ≥ 2 and
l(b)+ l(c) ≤ n. Then ρ̄(b, c) = in f {Σ{ρ(xi, yi) : i ≤ m} : m ∈ N,m ≤ 4n2, x1, x2, ..., xm ∈ Sup(b, b),
y1, y2, ..., ym ∈ Sup(c, c), b = x1x2...xm, c = [y1y2...ym]}.

Since ρ̄(b, c) = 0, there exist m ∈ N, x1, x2, ..., xm ∈ Sup({b}) ∪ {e}, and y1, y2, ..., ym ∈

Sup({c}) ∪ {e} such that b = x1x2...xm, c = y1y2...ym and ρ̄(b, c) = Σ{ρ(xi, yi) : i ≤ m} = 0. Since
ρ̄(c, b) = 0, there exist k ∈ N, c1, c2, ..., ck ∈ Sup({c}) ∪ {e}, b1, b2, ..., bk ∈ Sup({b}) ∪ {e} such
that b = b1b2...bk , c = c1c2...ck and ρ̄(c, b) = Σ{ρ(c j, b j) : j ≤ k} = 0.

Fix i1 ≤ m. Then ρ(xi1, yi1) = 0. There exists j1 such that c j1 = yi1 . Then ρ(c j1, b j1) = 0.
There exists i2 such that xi2 = b j1 . Then ρ(xi2, yi2) = 0 and so on. As a result, we obtain a sequence
xi1 , yi1 = c j1 , b j1 = xi2 , yi2 = c j2 , ..., xip , yip = c jp , b jp = xip+1 , yip+1 = c jp+1 , .... such that ρ(xip, yip )

= ρ(c jp, b jp ) = 0 for any p ∈ N. Since xi1 , xi2 , ... , xip , ... are elements of a finite set Sup(b, b) =
Sup(b) ∪ {e}, there exist two numbers p, q ∈ N such that q < p and xiq = xip . Hence ρ(xiq, yiq ) =
0 and 0 ≤ ρ(yiq, xiq ) = ρ(yiq, xip ) ≤ ρ(yiq, c jq ) + ρ(c jq, b jq ) + ρ(xiq+, yiq+1) + ... + ρ(c jp−1, bpp−1) +
ρ(b jp−1, xip ) = 0, a contradiction. The proof is complete. �

Property 2.4.7 is not true for Burnside quasivarieties.

Example 2.4.1. Let n ∈ N and n ≥ 2. Consider the quasivariety W of topological monoids
(groups) with the identities xn = e. Let ≺ be a linear ordering on a set X , |X | ≥ 2, and e � x for
each x ∈ X . We put ρ(x, x) = 0 for each x ∈ X and for distinct x, y ∈ X with x ≺ y we put ρ(x, y)
= 1 and ρ(y, x) = 0. Then ρ is a quasi-metric on X . Fix a, b ∈ X with a � b. Then ρ̄(b, a) = 0 and
ρ̄(a, b) = ρ̄(bna, ben) ≤ ρ(b, a) + (n − 1)ρ(b, e) + ρ(a, e) = 0.

Fix now a, b ∈ Fa(X,W). There exists m ∈ N and x1, y1, x2, y2, ..., xm, ym ∈ X such
that a = x1x2...xm and b = y1y2...ym. By virtue of Property 2.4.5, we have 0 ≤ ρ̄(a, b) =
ρ̄(x1x2...xm, y1y2...ym) ≤ Σ{ ρ̄(xi, yi) : i ≤ m} = 0. Hence ρ̄(x, y) = 0 for all x, y ∈ Fa(X,W).
Therefore ρ̄(x, y) = 0 for all x, y ∈ Fa(X,W).

Example 2.4.2. Let p, q ∈ N and 1 ≤ q < p = q + k. Consider the non-trivial quasivariety W of
topological monoids with the identity xq = xp. Fix a set X with three distinct elements {e, a, b}.
Let ≺ be a linear ordering on a set X and e ≺ a ≺ b. We put ρ(x, x) = 0 for each x ∈ X and for
distinct x, y ∈ X with x ≺ y we put ρ(x, y) = 1 and ρ(y, x) = 0. Then ρ is a quasi-metric on X . We
have ρ(x, x) = 0 for each x ∈ X , ρ(e, a) = ρ(e, b) = ρ(a, b) = 1 and ρ(b, a) = ρ(a, e) = ρ(b, e) = 0.

We put u = bq ∈ Fa(X,W) and v = aqbq ∈ Fa(X,W). There exist two numbers k,m ∈ N

for which q + k(p − q) = 2q + m. By construction, ρ̂(v, u) = ρ̂(aqbq, eqbq) ≤ q(ρ(a, e) + ρ(b, b))
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= 0 and ρ̂(u, v) = ρ̄(bq, aqbq) = ρ̄(bq+k(p−q), aqbqem) = ρ̄(bqbqbm, aqbqem) = qρ(b, a) + qρ(b, b) +
mρ(b, e) = 0. Hence ρ̂(x, y) + ρ̂(v, u) = 0. Therefore ρ̄(u, v) + ρ̄(v, u) = 0.

Example 2.4.3. Consider the quasivariety V = W(0,2) of topological monoids with the identity x2

= e. Let X = {e, a, b}, ρ(x, x) = 0 for each x ∈ X , ρ(a, b) = ρ(e, a) = ρ(b, e) = 0, ρ(b, a) = ρ(a, e)

= ρ(e, b) = 1. We have Fa(X,V) = {e, a, b, ab} and ab = ba. In this case ρ is not a quasi-metric
and ρ̄(b, a) = ρ̄(be, ea) = 0 < ρ(b, a) = 1, ρ̄(a, b) = ρ(a, b) = 0, ρ̄(a, ab) = ρ̄(ea, bb) = 0, ρ̄(ab, a)

=ρ̄(ab, ae) = 0, ρ̄(ab, b) = ρ̄(ab, be) = 0, ρ̄(b, ab) = ρ̄(eb, ab) = 0, ρ̄(e, b) = ρ̄(bb, be) = 0, ρ̄(ab, e)

= ρ̄(ab, bb) = 0, ρ̄(e, ab) = ρ̄(ebb, aeb) = 0, ρ̄(e, b) = ρ̄(ebb, eeb) = 0. Hence ρ̄ = ρ̂ is the trivial
pseudo-metric on Fa(X,V).

Property 2.4.7 is not true for distances which are not quasi-metrics.

Example 2.4.4. Consider a non-trivial quasivariety V of topological monoids. Let X = {e, a, b},
ρ(x, x) = 0 for each x ∈ X , ρ(a, b) = ρ(e, a) = ρ(b, e) = 0, ρ(b, a) = ρ(a, e) = ρ(e, b) = 1. In this
case ρ̄(b, a) = ρ̄(be, ea) = 0 < ρ(b, a) = 1 and ρ̄(a, b) = ρ(a, b) = 0.

Property 2.4.8. Let a, b ∈ Fa(X,V) be two distinct points in Fa(X,V) and r(a, b) = min{ρ(x, y) :
x ∈ Sup(a, a), y ∈ Sup(b, b), x , y}. Then ρ̂(a, b) = ρ∗(a, b) ≥ r(a, b).

Proof. Assume that r(a, b)− ρ∗(a, b) = 3δ > 0. There exist n ∈ N and z1, z2, ..., zn ∈ Fa(X,V) such
that ρ∗(a, b) ≤ ρ̄(a, z1) +...+ ρ̄(zi, zi+1) + ... + ρ̄(zn, b) < ρ∗(a, b) + δ. Let z0 = a and zn+1 = b. For
each i ∈ {0, 1, 2, ..., n} there exist the representations zi =u(i,1)u(i,2)...u(i,mi) and zi+1 = v(i,1)v(i,2)...v(i,mi)

such that {u(i,1), u(i,2), ..., u(i,mi)} ⊆ Sup(zi, zi), {v(i,1), v(i,2), ..., v(i,mi)} ⊆ Sup(zi+1, zi+1) and ρ̄(zi, zi+1)

≤ Σ{ρ(u(i, j), v(i, j) : j ≤ mi} ≤ ρ̄(zi, zi+1) ≤ δ/(n + 1). Without lost of generality, we can assume
that there exists m ∈ N such that mi = m for each i ∈ {0, 1, 2, ..., n}. For each i ∈ {0, 1, 2, ..., n}
there exists a one-to-one mapping hi : {1, 2, ...,m} −→ {1, 2, ...,m} such that v(i, j) = u(i+1,hi( j)) for
each j ≤ m. Then the chain j0 = j, j1 = h1( j), j2 = h2( j1), ..., jn = hn( jn−1) and the number r j

= ρ(u(0, j0), v(0, j0)) + ρ(u(1, j1), v(1, j1)) + ...+ ρ(u(n, jn), v(n, jn)) ≥ ρ(u(0, j0), v(n, jn)) are determined for any
j ≤ m. We put h( j) = jn. Then h : {1, 2, ...,m} −→ {1, 2, ...,m} is a one-to-one mapping as the
composition of the mappings h1, h2, ..., hn. We obtain that ρ∗(a, b) + 3δ ≤ ρ̄(a, z1), ..., ρ̄(zi, zi+1 +
... + ρ̄(zn, b) ≥ ρ̄(a, b) r(a, b). The proof is complete. �

The following properties follow from Property 2.4.8.

Property 2.4.9. If ρ is a quasi-metric on X , then ρ∗ and ρ̂ are quasi-metrics on Fa(X,V).

Property 2.4.10. If ρ is a strong quasi-metric on X , then ρ∗ and ρ̂ are strong quasi-metrics on
Fa(X,V).

Proved properties lead us to the following general result:
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Theorem 2.4.1. Let ρ be a pseudo-quasi-metric on X , Y be a subspace of X and e ∈ Y . Denote
by M(Y ) = Fa(Y,V) the submonoid of the monoid Fa(X,V) generated by the set Y and by dY the
extension of ρ̂|Y on M(Y ) of the pseudo-quasi-metric ρY on Y , where ρY (y, z) = ρ(y, z) for all
y, z ∈ Y . Then:

1. dY (a, b) = ρ̂(a, b) for all a, b ∈ M(Y ).

2. If V is a non-Burnside quasivariety, then ρ̄(x, y) = ρ(x, y) for all x, y ∈ X .

3. If ρ is a (strong) quasi-metric on Y , then ρ̂ is a (strong) quasi-metric on M(Y ).

4. If ρ is a metric on Y , then ρ̂ is a metric on M(Y ).

5. If a, b ∈ Fa(Y,V) are distinct points and ρ is a quasi-metric on Sup(a, b), then ρ̂(a, b) +
ρ̂(b, a) > 0.

6. If a, b ∈ Fa(Y,V) are distinct points and ρ is a strong quasi-metric on Sup(a, b), then
ρ̂(a, b) > 0 and ρ̂(b, a) > 0.

7. For any a, b ∈ Fa(Y,V) there exist n ∈ N, x1, x2, ..., xn ∈ Sup(a, a) and y1, y2, ..., yn ∈

Sup(b, b) such that a = x1x2...xn, b = y1y2...yn, n ≤ l(a) + l(b) and ρ̄(a, b) = Σ{ρ(xi, yi) :
i ≤ n}.

8. ρ̂ = ρ̄ = ρ∗.

The following assertion is obvious.

Proposition 2.4.1. Let ρ be a pseudo-quasi-metric on X and V be a non-Burnside quasivariety of
topologicalmonoids. For any a=a1a2...an ∈ Fa(X,V)weput a←= an...a2a1. Then a← ∈ Fa(X,V),
ρ∗(a, b)=ρ(a←, b←) and (ab)←=b←a← for all a, b ∈ Fa(X,V).

Remark 2.4.1. Invariant pseudo-metrics on free groups were constructed by M. I. Graev [98].
Stable metrics on free algebras were considered in [52]. Invariant quasi-metrics on free groups
were constructed in [67] and [163].

Remark 2.4.2. Let A be a non-empty set and V be the non-Burnside quasivariety of all topological
monoids. Consider that ε < A and X = A∪{ε}. Let ρ(x, x)= 0 and ρ(x, y)= 1 for all distinct points
x, y ∈ X . Then L(A) = F(X,V) is the family of all strings on the alphabet A. In this case there
exists the maximal invariant extension ρ̂ of ρ on L(A). The metric ρ̂ was studied in [55, 56, 57]. It
was proved that the metric ρ̂ coincides with the V. I. Levenshtein metric on L(A) [130].
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2.5. Strongly invariant quasi-metrics

Fix non-Burnside quasivariety of topological monoids V and a space X with basepoint pX .
Consider on X some linear ordering for which pX � x for any x ∈ X . On X consider the

following distances ρl , ρr , ρs, where ρl(x, x) = ρr(x, x) = 0 for any x ∈ X; if x, y ∈ X and
x ≺ y, then ρl(x, y) = 1, ρl(y, x) = 0, ρr(x, y) = 0, ρr(y, x) = 1, ρs(x, y) = ρl(x, y) + ρr(x, y). By
construction, ρl and ρr are quasi-metrics and ρs is a metric on X . Then ρ∗l (x, y) and ρ

∗
r (x, y) are

invariant discrete quasi-metrics on F(X,V) and ρ∗s is a discrete invariant metric on F(X,V). We
consider this metric below.

A distance d on a semigroup G is strongly invariant if d(xz, yz) =d(zx, zy) = d(x, y) for all
x, y, z ∈ G.

On a group any invariant pseudo-quasi-metric is strongly invariant. For monoids that fact is
not true.

Example 2.5.1. Consider a semigroup H = {e, a, b}, where ex = xe = x for each x ∈ H and xy

= a provided e < {x, y} ⊂ H . The discrete metric d on H such that d(x, y) = 0 for x = y and
d(x, y) = 1 for x , y is invariant on H and is not strongly invariant, since 0 = d(a, a) = d(ab, bb)

= d(ba, bb) < d(a, b) = 1. Let W(H) be the complete variety of topological monoids generated
by the monoid H. For every monoid G ∈ W(H) there exists a unique point aG ∈ G such that
xy = aG provided that e < {x, y}. Let X be a space with the basepoint pX , |X | ≥ 2 and ρ be a
metric on X such that ρ(x, y) = 1 for all distinct points x, y ∈ X . Then ρ∗ is an invariant metric on
F(X,W(H)) and ρ∗(x, y) ≥ 1 for all distinct points x, y ∈ F(X,W(H)). Let c ∈ X ⊆ F(X,W(H))

and c , pX = e. Then c2 ∈ F(X,W(H)) and c2 , c. We have that cn = c3 = c2 for any n ≥ 3.
Hence 1 ≤ ρ∗(c, c2) and 0 = ρ∗(c2, c2) = ρ∗(c2, c3) = ρ∗(c · c, c2 · c) < ρ∗(c, c2). In F(X,W(H))

there exists a point a , e such that xy = a provided e < {x, y}. Hence the metric ρ∗ is not
strongly invariant on F(X,W(H)). We observe that W(H) is a Burnside variety of the exponent
(3,2). The above considerations permit to state that on the free monoid F(X,W(H)) any invariant
quasi-metric is not strongly invariant.

For any pseudo-distance d S. Nedev [147] considered the adjoint pseudo-distance da defined
by da(x, y) = d(y, x).

Two properties P1 and P2 are called adjoint properties if the pseudo-distance d on a space X

has property P1 if and only if the adjoint pseudo-distance da on a space X has property P2. If P1

= P2 and the properties P1 and P2 are adjoint, then we say that the property P1 is auto-adjoint.

Remark 2.5.1. The auto-adjoint properties are the conditions for pseudo-distance to be invariant
or strongly invariant on a semigroup G.

The proof of the following assertion is simple.
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Proposition 2.5.1. Let V be a non-trivial quasivariety of topological monoids, ρ be a pseudo-
distance on a space X with basepoint pX . If d = ρa, then d∗ = ρ∗a, i.e. ρa∗ = ρ∗a.

The quasivariety of topological monoids V is rigid if for any space X , any word a ∈ F(X,V),
any point c ∈ X \ {px} and any representation ac = x1x2...xn, where x1, x2, ..., xn ∈ X , there exists
m ≤ n such that xm = c and a = x1x2...xm−1. In this case xi = pX = e for each i > m.

The variety of all topological monoids is rigid.

Theorem 2.5.1. Let V be a non-Burnside rigid quasivariety of topological monoids, ρ be a quasi-
metric on a space X with basepoint pX and ρ(x, pX) = ρ(y, pX) for all x, y ∈ X \ {pX }, or ρ(pX, x)

= ρ(pX, y) for all x, y ∈ X \ {pX }. Then ρ∗(ac, bc) = ρ∗(ca, cb) = ρ∗(a, b) for all a, b, c ∈ F(X,V).

Proof. Assume that ρ(pX, x) = ρ(pX, y) for all x, y ∈ X \ {pX }. It is sufficient to prove the assertion
of the theorem for c ∈ X . Assume that ρ∗(ac, bc) = r < ρ∗(a, b), where a, b ∈ F(X,V) and c ∈ A.
Then, by definition, there exist the representations ac = x1x2 · · · xn and bc = y1y2 · · · yn such that
ρ∗(ac, bc) = Σ{d(xi, yi) : i ≤ p}.

From the definition of rigidity, there exist p, q ≤ n such that xp =yq = c, a = x1x2...xp−1, b =
y1y2...yq−1 and xi = y j = pX with p < i ≤ n and q < j ≤ n. We can assume that n = max{p, q}.

Case 1. n = p = q.
In this case a = x1x2 · · · xn−1, b = y1y2 · · · yn−1 and ρ∗(a, b) ≤ Σ{d(xi, yi) : i ≤ n − 1} =

Σ{d(xi, yi) : i ≤ n} = ρ∗(ac, bc) < ρ∗(a, b), a contradiction.
Case 2. q < p = n.
Then yn = pX , xn = yq = c, a = x1x2 · · · xn−1, b = y1y2...yq−1 = y′1y

′
2...y

′
n−1, where y

′
j = y j for

j < q and y′j = pX for j ≥ q. Since ρ(xq, pX) ≤ ρ(xq, c) + ρ(c, pX), we have ρ∗(a, b) ≤ Σ{d(xi, y
′
i ) :

i ≤ n − 1} ≤ Σ{d(xi, yi) : i ≤ n} = ρ∗(ac, bc) < ρ∗(a, b), a contradiction.
Case 3: p < q = n.
Then xn = pX , yn = xp = c, a = x1x2 · · · xp−1 = x′1x′2...x

′
n−1, b = y1y2...yn−1, where x′i = xi for

i < p and x′i = pX for i ≥ p. Since ρ(pX, yp) ≤ ρ(pX, c), we have ρ∗(a, b) ≤ Σ{d(x′i, yi) : i ≤ n− 1}
≤ Σ{d(xi, yi) : i ≤ n} = ρ∗(ac, bc) < ρ∗(a, b), a contradiction.

Therefore, we proved that ρ∗(ac, bc) = ρ∗(a, b) for all a, b, c ∈ F(X,V). By virtue of
Proposition 2.4.1, we have ρ∗(ca, cb) = ρ∗(a←c←, b←c←) = ρ∗(a←, b←) = ρ∗(a, b) for all a, b, c ∈

F(X,V).
Since the properties "ρ(x, pX) = ρ(y, pX) for all x, y ∈ X \ {pX }" and "ρ(pX, x) = ρ(pX, y)

for all x, y ∈ X \ {pX }" are adjoint, the proof is complete. �

Corollary 2.5.1. Let V be the non-Burnside rigid quasivariety of topological monoids, the space X

is linear ordered such that pX � x for any x ∈ X . If ρ ∈ {ρl, ρr, ρs}, then ρ∗ is a strongly invariant
quasi-metric on F(X,V).
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The following question is open.

Problem2.5.1. DoesTheorem2.5.1 hold for any non-Burnside quasivariety of topologicalmonoids?

2.6. Free monoids of T0-spaces

Suppose that X is a topological space. Let x and y be points in X . We say that x and y can
be separated by a function if there exists a continuous function f : X → [0, 1] into the unit interval
such that f (x) = 0 and f (y) = 1.

A functionally Hausdorff space is a space in which any two distinct points can be separated
by a continuous function.

The pseudo-distance d is continuous on a space X if any d-open subset U ∈ T(d) is open in
X .

Lemma 2.6.1. Let Y be a non-empty finite subspace of a T0-space X . Then on X there exists a
continuous pseudo-quasi-metric dY such that dY on Y generates the topology of the subspace Y .

Proof. There exists a finite minimal family {U1,U2, ...,Un} of open subsets of X such that T =
{U1 ∩ Y,U2 ∩ Y, ...,Un ∩ Y } is the topology of the subspace Y . For each i ≤ n we put di(x, y)

= 1 for x ∈ Ui, y ∈ X \ Ui and di(x, y) = 0 for x ∈ X \ Ui or y ∈ Ui. Then di is a continuous
pseudo-quasi-metric on X and T(di) = {∅,Ui, X}. Hence dY (x, y) = max{di(x, y) : i ≤ n} is the
desired pseudo-quasi-metric on X . �

The following theorem improves Theorem 2.3.3 and solves Problem 2.1.2 for complete non-
Burnside quasivarieties of topological monoids.

Theorem 2.6.1. LetV be a non-trivial complete non-Burnside quasivariety of topological monoids.
Then:

1. For each T0-space X on the free monoid Fa(X,V) there exists a T0-topology T(qm) such
that:

– (Fa(X,V), T(qm)) ∈ V;
– X is a subspace of the space (Fa(X,V), T(qm));
– the topology T(qm) is generated by the family of all invariant pseudo-quasi-metrics on

Fa(X,V) which are continuous on X .
2. For each T0-space X the free topological monoid F(X,V) exists and is abstract free.
3. A space X is a T1-space if and only if spaces F(X,V) and (Fa(X,V), T(qm)) are T1-spaces.
4. A space X is functionally Hausdorff if and only if the spaces F(X,V) and (Fa(X,V), T(qm))

are functionally Hausdorff.
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Proof. Fix a T0-space X . Let Q(X) be the family of all continuous pseudo-quasi-metrics on X and
IQ(X) be the family of all invariant pseudo-quasi-metrics on (Fa(X,V)) which are continuous on
X . Then T(qm) is the topology on (Fa(X,V)) generated by the pseudo-quasi-metrics IQ(X).

Claim 1. X is a subspace of the space (Fa(X,V), T(qm)).
By virtue of Theorem 2.4.1, for each ρ ∈ Q(X) we have ρ̂ ∈ IQ(X) and ρ(x, y) = ρ̂(x, y)

for all x, y ∈ X . Hence the pseudometrics Q(X) and IQ(X) generate on X the same topology. By
virtue of Lemma 2.6.1, the topology of the space X is generated by the family of all continuous
pseudo-quasi-metrics Q(X). Hence X is a subspace of the space (Fa(X,V), T(qm)).

Claim 2. (Fa(X,V), T(qm)) is a T0-space.
Fix two distinct points a, b ∈ Fa(X,V). Let Y be a finite subspace of X such that pX ∈ Y and

a, b ∈ Fa(Y,V) ⊆ Fa(X,V). By virtue of Lemma 2.6.1, on X there exists a continuous pseudo-
quasi-metric dY which is a quasi-metric onY . From the assertion 4 of Theorem 2.4.1 it follows that
d̂Y is a quasi-metric on Fa(Y,V). Hence d̂Y (a, b) + d̂Y (b, a) > 0. Therefore (Fa(X,V), T(qm)) is a
T0-space.

Claim 3. The topology T(qm) is generated by the family of all invariant pseudo-quasi-metrics
Fa(X,V) which are continuous on X .

That assertion follows from the definition of the topology T(qm).
Claim 4. (Fa(X,V), T(qm)) ∈ V.
Since the topology T(qm) is generated by the invariant pseudo-quasi-metrics,

(Fa(X,V), T(qm)) is a a topological monoid. Hence the assertion of Claim 4 follows from Claim 2
and completeness of the quasivariety V.

Claim 5. For the T0-space X the free topological monoid F(X,V) is abstract free.
Let G be the topological monoid (Fa(X,V), T(qm)). There exists a continuous homomor-

phism h : F(X,V) −→ G such that h(x) = x for each x ∈ X . Since G is abstract free relatively to
X , h is a continuous isomorphism. Claim 5 is proved.

Claim 6. A space X is a T1-space if and only if the spaces F(X,V) and (Fa(X,V), T(qm))

are T1-spaces.
If F(X,V) is a T1-space, then X is a T1-space as a subspace of T1-space. If (Fa(X,V), T(qm))

is a T1-space, then F(X,V) is a T1-space, since F(X,V) admits a continuous isomorphism onto
(Fa(X,V), T(qm)).

Assume now that X is a T1-space. Fix two distinct points a, b ∈ Fa(X,V). Let Y be a finite
subspace of X such that pX ∈ Y and a, b ∈ Fa(Y,V) ⊆ Fa(X,V). By virtue of Lemma 2.6.1, on
X there exists a continuous pseudo-quasi-metric dY which is a discrete metric on Y . Then d̂Y is a
discrete metric on Fa(Y,V) and Fa(Y,V) is a discrete subspace of (Fa(X,V), T(qm)). Hence {a, b}
is a discrete subspace and (Fa(X,V), T(qm)) is a T1-space. Claim 6 is proved.

Claim 7. Let Y be a finite subspace of the functionally Hausdorff space X and pX ∈ Y .
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Then there exists d ∈ IQ(X) such that d is a pseudo-metric and d(a, b) ≥ 1 for all distinct points
a, b ∈ Fa(Y,V).

Let {(xi, yi) : i ≤ n} be the family of all ordered pairs x, y ∈ Y such that x , y. For any
i ≤ n fix a continuous function fi : X → [0, 1] such that hi(xi) = 0 and hi(yi) = 1. Then rY (x, y) =
min{1, Σ{| fi(x) − fi(y)| : i ≤ n}} is a continuous pseudo-metric on X and rY (x, y) = 1 for any two
distinct points x, y ∈ Y . Then r̂Y is the desired pseudo-metric from IQ(X).

Claim 8. The space X is functionally Hausdorff if and only if the spaces F(X,V) and
(Fa(X,V), T(qm)) are functionally Hausdorff.

If F(X,V) is a functionally Hausdorff space, then X is a T1-space as a subspace of a function-
ally Hausdorff space. If (Fa(X,V), T(qm)) is a functionally Hausdorff space, then F(X,V) is a func-
tionally Hausdorff space, since F(X,V) admits a continuous isomorphism onto (Fa(X,V), T(qm)).

Assume now that X is a functionally Hausdorff space. Fix two distinct points a, b ∈ Fa(X,V).
Assume that Y = Sup(a, b) = {x1, x2, ..., xn}, where xi , x j for i , j. Since X is functionally
Hausdorff space, there exists a construction function f : X → [0, 1] such that f (xi) , f (x j)

for i , j. Consider the continuous pseudo-metric ρ(x, y) = | f (x) − f (y)|, x, y ∈ X . We have
ρ(xi, yi) , 0 for i , j. Hence ρ is a metric on Y . Then ρ∗ is a continuous pseudo-metric on
Fa(X,V), and ρ∗ is a metric on Fa(Y,V). Hence ρ∗(a, b) , 0. The function g(x) = ρ∗(a, x) is
continuous on (Fa(X,V), T(qm)), g(a) = 0 and g(b) , 0. The function f is continuous on the space
(Fa(X,V), T(qm)), f (a) = 0 and f (b) = 1. Hence (Fa(X,V), T(qm)) is a functionally Hausdorff
space. The Claim 8 and Theorem 2.6.1 are proved. �

Corollary 2.6.1. Let V be a complete non-trivial quasivariety of topological monoids. Then for
each completely regular space X:

– on the free monoid Fa(X,V) there exists a completely regular topology T(m) generated by
a family of invariant pseudo-metrics such that (Fa(X,V), T(m)) ∈ V, X is a subspace of the space
(Fa(X,V), T(m));

– the free topological monoid F(X,V) exists, it is a functionally Hausdorff space and abstract
free.

The following question is open.

Problem 2.6.1. LetV be a non-trivial quasivariety of topological monoids. Under which conditions
for a space X the free topological monoid F(X,V) is a Hausdorff space, or a regular space, or a
completely regular space?

Remark 2.6.1. Let X be a T0-space and V be a non-trivial complete non-Burnside quasivariety of
topological monoids. Then on F(X,V) there exist:

– the free topology T( f ) such that (F(x,V), T( f )) is the free monoid of the space X in the
quasivariety V;
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– the topology T(qm) generated by the invariant continuous pseudo-quasi-metrics on
(F(x,V), T( f ));

– the topology T(m) generated by the invariant continuous pseudo-metrics on (F(x,V), T( f )).
These topologies satisfy the following properties:
P1. T(m) ⊂ T(qm) ⊂ T( f ).
P2. (F(x,V), T(m)), (F(x,V), T( f )) ∈ V.
P3. (F(x,V), T(m)) ∈ V if and only if X is a functionally Hausdorff space.

If the point pX is isolated in X andV is the variety of all topological monoids, then on F(X,V)

we have T(qm) = T( f ). The invariant pseudo-metrics on topological groups were examined by
G. Birkhoff [33] and Sh. Kakutani [120, 121]. There exists a locally compact topological group
G with countable base without invariant metrics (see [120, 98, 99]). Since in G the involution
x → x−1 is a homeomorphism, the topology of G is not generated by some family of invariant
pseudo-quasi-metrics.

The following question is open.

Problem 2.6.2. LetV be a non-trivial quasivariety of topological monoids. Under which conditions
on F(X,V) we have that T(qm) = T( f )?

2.7. Free semi-topological monoids of T0-spaces

A semi-topological semigroup is a semigroupwith topology in which all translations x → ax,
x → xa are continuous.

A classW of semi-topological monoids is called a quasivariety of monoids if:
(F1) the classW is multiplicative;
(F2) if G ∈ W and A is a submonoid of G, then A ∈ V;
(F3) every space G ∈ W is a T0-space.
A class W of semi-topological monoids is called a complete quasivariety of monoids if it is

a quasivariety with the next property:
(F4) if G ∈ V and T is a T0-topology on G such that (G,T) is a semi-topological monoid,

then (G,T) ∈ V too.
A quasivariety V of topological monoids is non-trivial if |G | ≥ 2 for some G ∈ V.
Let X be a non-empty topological space with a basepoint pX and W be a quasivariety of

topological monoids.
A free monoid of a space X in a class W is a semi-topological monoid F(X,W) with the

properties:
– X ⊆ F(X,V) ∈ W and pX is the unity of F(X,V);
– the set X generates the monoid F(X,V);
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– for any continuous mapping f : X −→ G ∈ V, where f (pX) = e, there exists a unique
continuous homomorphism f̄ : F(X,V) −→ G such that f = f̄ |X .

The abstract free monoid Fa(X,W) of a space X in a classW is defined for quasivarieties of
topological monoids.

Theorem 2.7.1. Let W be a non-trivial quasivariety of semi-topological monoids. Then for each
space X the following assertions are equivalent:

1. There exists G ∈ W such that X is a subspace of G and pX is the neutral element in G.
2. For the space X there exists the unique free semi-topological monoid F(X,W).

Proof. Is similar to the proof of Theorem 2.1.1. �

Corollary 2.7.1. Let W be a non-trivial quasivariety of semi-topological monoids. Then for each
space X there exists the unique abstract free monoid Fa(X,W).

LetW be a non-trivial quasivariety of semi-topological monoids.
We put Wt = {G ∈ W : G is a topological monoid}. Obviously, Wt is a quasivariety of

topological monoids.
Fix a space X for which there exists the free semi-topological monoid F(X,W). Then there

exists a unique continuous homomorphism λX : Fa(X,V) −→ F(X,V) such that λX(x) = x for each
x ∈ X . The monoid F(X,W) is called abstract free if λX is a continuous isomorphism.

Theorem 2.7.2. Let W be a non-trivial non-Burnside quasivariety of semi-topological monoids.
Then for each space X the following assertions are equivalent:

1. The classWt is a non-trivial non-Burnside quasivariety of topological monoids.
2. For each space X we have Fa(X,W) = Fa(X,Wt).
3. For each T0-space X on the free monoid Fa(X,W) there exists a T0-topology T(qm) such

that:
– (Fa(X,V), T(qm)) ∈ Wt ⊆ W;
– X is a subspace of the space (Fa(X,W), T(qm));
– the topology T(qm) is generated by the family of all invariant pseudo-quasi-metrics on

Fa(X,V) which are continuous on X .
4. For each T0-space X there exists the free topological monoid F(X,W) and it is abstract

free. Also, there exists a continuous isomorphism µX : F(X,W) −→ F(X,Wt) such that µX(x) =
x for each x ∈ X .

5. A space X is aT1-space if and only if spaces F(X,W) and (Fa(X,W), T(qm)) areT1-spaces.
6. A space X is functionally Hausdorff if and only if the spaces F(X,W) and

(Fa(X,W), T(qm)) are functionally Hausdorff.
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Proof. Assertion 1 is obvious. For any space X denote by Xt the set X with the discrete topology.
Then Gt ∈ Wt for each G ∈ W. Fix a T0-space X . The space Fa(X,W) is discrete. Hence
Fa(X,W) ∈ Wt and Assertion 2 is proved.

Assertion 3 follows from Assertion 2 and Theorem 2.6.1.
Assertions 4 - 6 follow from Assertion 3 and Theorem 2.6.1. �

Condition of completeness is essential.

Example 2.7.1. Let B be the semigroup ω with the topology T(B) = {∅, B} ∪ {B \ F : F is a finite
subset of B}. Then B is a semi-topological monoid and B is not a topological monoid. Denote
now by W(B) the quasivariety generated by B. Then the elements of W(B) are the submonoids of
the monoids of the form BM . Thus any non-trivial monoid G ∈ W(B) is not a topological monoid.
Therefore the class W(B)t is trivial.

2.8. On topological digital spaces

A space X is called an Alexandroff space if it is a T0-space and the intersection of any family
of open sets is open [6].

Alexandroff spaces were first introduced in 1937 by P. S. Alexandroff [6] (see also [12])
under the name discrete spaces, where he provided the characterizations in terms of sets and
neighbourhoods.

If (X,T) is an Alexandroff space, then we say that T is a T0-discrete topology.
We observe the importance of distances with natural values. We affirm that this fact is

important from topological point of view as well.

Theorem 2.8.1. On a space X there exists a quasi-metric with the natural values if and only if X

is an Alexandroff space.

Proof. Let X be an Alexandroff space. For any x ∈ X denote by Mx the intersection of all open
sets which contains x. Then Mx is the minimal open set which contains the point x ∈ X . Observe
that if x, y ∈ X , x , y, and y ∈ Mx , then My ⊂ Mx and x < My. Consider the distance ρ(x, y),
where ρ(x, x) = 0 for any x ∈ X , ρ(x, y) = 0 if y ∈ Mx , and ρ(x, y) = 1 if y < Mx . We affirm that ρ is
a quasi-metric with natural values. By construction, ρ(x, y) ∈ {0, 1} and ρ has natural values. Let
x, y, z ∈ X . If ρ(x, y) = ρ(y, z) = 0, then y ∈ Mx and z ∈ My ⊂ Mx . Hence ρ(x, z) = 0. In this case
ρ(x, y) + ρ(y, z) = ρ(x, z). If ρ(x, y) + ρ(y, z) ≥ 1, then ρ(x, z) ≤ 1 and ρ(x, y) + ρ(y, z) ≥ ρ(x, z).
Therefore ρ is a quasi-metric.

If d is a quasi-metric on X with natural values, then Mx = {y ∈ X : d(x, y) < 1} is the
minimal open set which contains the point x ∈ X . Therefore (X,T(d)) is an Alexandroff space, and
this concludes the proof of Theorem 2.8.1. �
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General criteria of quasi-metrizability of spaces were proved in [147].
Let � be a partial ordering on a set X . For any point x ∈ X we put M(x, �) = {y ∈ X : x � y}.

Then {M(x, �) : x ∈ X} is a base of the T0-discrete topology T(�) on X .
Let T be a T0-topology on a set X . For any points x, y ∈ X we put x �T y if and only if

x ∈ clX {y}. Then �T is a partial ordering on X . By construction, � = �T(�), T ⊂ T(�T ) and T =
T(�T ) if and only if T is T0-discrete topology (see [6]).

For any T0-topology T on X we put aT = T(�T ). If M(x) = ∩{U ∈ T : x ∈ U}, then
{M(x) : x ∈ X} is the minimal base of the topology aT . We say that aT is the Alexandroff
modification of the topology T .

The following assertion is obvious.

Proposition 2.8.1. LetT be aT0-topology on a set X . Then aT is the uniqueT0-discrete topology on
the space X such that �T = �aT . Moreover, �T = �T ′ for any intermediary topology T ⊂ T ′ ⊂ aT .

Theorem 2.8.2. Let (G,T) be a topological semigroup. Then (G, aT) is a topological semigroup
too.

Proof. We put M(x) = ∩{U ∈ T : x ∈ U}. Then {M(x) : x ∈ X} is the base of the topology aT

and M(x) · M(y) ⊂ M(x · y). The proof is complete. �

Corollary 2.8.1. LetV be a non-trivial complete non-Burnside quasivariety of topological monoids.
Then for each space X the following assertions are equivalent:

1. F(X,V) is an Alexandroff space.
2. On a space F(X,V) there exists a quasi-metric with the natural values.
3. X is an Alexandroff space.

Proposition 2.8.2. Let G be a topological semigroup and X be a connected subspace of G. If X

algebraically generates the semigroup G, then G is a connected space.

Proof. For each n ∈ N we put Gn(X) = {x1 · x2 · ... · xn : x1, x2, ...xn ∈ X}. By construction,
the subspace Gn(X) of G is connected as a continuous image of the connected space Xn and
Gn(X) ⊂ Gn+1(X). Hence G = ∪{Gn(X) : n ∈ N} is a connected space. The proof is complete. �

A digital space is a pair (D, α), where D is a non-empty set and α is a binary, symmetric
relation on D such that for any two elements x, y ∈ D there is a finite sequence {x0, x1, ..., xn} of
elements in D such that x = x0, y = xn and (x j, x j+1) ∈ α for j ∈ 0, 1, ..., n − 1}.

The topological methods may be applied in the study of reflexive or anti-reflexive binary
structures. We develop that point of view for reflexive digital structures.

Let ρ be a distance on the non-empty set D. We consider that (x, y) ∈ αρ if and only if
ρ(x, y) · ρ(y, x) = 0. We say that αρ is the binary relation generated by the distance ρ.
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A binary relation α on the set D is compatible with the topology T on D if T is a T0-topology
and (x, y) ∈ α if and only if x ∈ cl(X,T){y} or x ∈ cl(X,T){y}.

Proposition 2.8.3. If a binary relation α on the set D is compatible with the topology T on D, then
the binary relation α is compatible by the T0-discrete topology aT .

Proof. For any x ∈ D denote Mx = ∩{U ∈ T : x ∈ U}. Let Ta be the topology on D generated by
the open base {Mx : x ∈ D}. Then Mx is the minimal open set from Ta which contains the point
x ∈ X . It is obvious that x ∈ cl(X,T){y} if and only if x ∈ cl(X,aT){y}. The proof is complete. �

Proposition 2.8.4. Let a symmetric binary relation α on the non-empty set D is compatible with
the T0-discrete topology T on D. The following assertions are equivalent:

1. (D, α) is a digital space.
2. (D,T) is a connected space.
3. There exists a discrete quasi-metric ρ on D such that α = αρ and the space (D,T(ρ)) is

connected.

Proof. Implication 1 → 2 follows from Proposition 2.8.3. Implication 2 → 3 → 2 follows from
Theorem 2.8.1.

Assume that (D,T) is a connected Alexandroff space.
For any x ∈ D denote by M1(x) the intersection of all open sets which contains x. Let

Mn+1(x) = ∪{M1(y) : M1(y) ∩ Mn(x) , ∅} and Mω(x) = ∪{Mn(x) : n ∈ N}.
By construction, if y ∈ M1(x), then (x, y) ∈ α. Hence, if y ∈ Mn(x), then there is a sequence

{x0, x1, ..., xn} of elements in D such that x = x0, y = xn and (x j, x j+1) ∈ α for j ∈ {0, 1, ..., n − 1}.
Fix x ∈ D. We affirm that the set Mω(x) is closed. If the set Mω(x) is not closed, then there

exists a point y ∈ clX Mω(x) \ Mω(x). Hence M1(y) ∩ Mω(x) , ∅. In this case M1(y) ∩ Mn(x) , ∅

for some n ∈ N and y ∈ Mn+1(x) , ∅, a contradiction. Thus the set Mω(x) is non-empty and
open-and-closed. Since (X,T) is a connected space, we have Mω(x) = X . Therefore (D, α) is a
digital space. Implication 2→ 1 is proved. The proof is complete. �

If the digital structure α on a set D is compatible with a T0-discrete topology T on D, then we
say that (D,T) is a topological digital space and put (D, α) ≡ (D,T). Otherwise the digital space
(D, α) is not topological. Hence a topological space X is a topological digital space if and only if
X is a connected Alexandroff space (see [114, 122, 123]).

From Corollary 2.8.1 and Propositions 2.8.2 and 2.8.4 follows:

Corollary 2.8.2. LetV be a non-trivial complete non-Burnside quasivariety of topological monoids.
Then for each space X the following assertions are equivalent:

1. F(X,V) is a topological digital space.
2. X is a topological digital space.
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There exists non-topologically digital spaces (D, α) (see [114]). For example, let D =
{a, b, c, d, e} and α = {(a, a), (a, b), (b, a), (b, b), (b, c), (c, b), (c, c), (c, d), (d, c),
(d, d), (d, e), (e, d), (e, e), (e, a), (a, e)}. Then the digital space (D, α) is not topological.

If D is a non-empty set and α = D × D, then (D, α) is a digital space such that for any linear
ordering � on D we have α = b(�) and binary relation α is compatible with the topology T((�).
We observe that a topology is compatible with a unique binary structure and a binary structure may
be compatible with a set of arbitrary cardinality of topologies.

Now let α be an anti-reflexive digital structure on G. Let ρ be a distance on the non-empty
set D. We consider that (x, y) ∈ αρ if and only if x , y and ρ(x, y) · ρ(y, x) = 0. We say that αρ is
the binary relation generated by the distance ρ. A binary anti-reflexive relation α on the set D is
compatible with the topology T on D if T is a T0-topology and (x, y) ∈ α if and only if x , y and
x ∈ cl(X,T){y} or x ∈ cl(X,T){y}. For anti-reflexive digital structures similar assertions hold as in
the reflexive case.

2.9. Conclusions for chapter 2

Free objects in a given class of algebras of same type (groups, rings, semigroups, monoids,
etc.) play an important role in algebra and theoretical computer science. According to definition, a
language is a subset of a free monoid over a given alphabet. Some information can be represented
as an element of the given free monoid. In this chapter:

– were defined non-Burnside quasi varieties of topological monoids;

– for each quasivariety for any space free topological and free abstract monoids are defined.

If V is the class of all topological monoids, then:

– V is a rigid quasivariety of topological monoids;

– F(X,V) = Fa(X,V) is the space of all canonical strings on the alphabet X .

Free monoids research permits to obtain the following generel conclusions:

1. For each non-trivial quasivariety V of topological monoids and any non-empty space X was
proposed a method of construction of the abstract free monoid Fa(X,V).

2. Was established that for any non-Burnside quasivariety V and any quasi-metric ρ on a set X

with basepoint pX on free monoid Fa(X,V) there exists a unique stable quasi-metric ρ̂ with
the properties:

(a) ρ(x, y) = ρ̂(x, y) for all x, y ∈ X .
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(b) If d is an invariant quasi-metric on Fa(X,V) and d(x, y) ≤ ρ(x, y) for all x, y ∈ X , then
d(x, y) ≤ ρ̂(x, y) for all x, y ∈ Fa(X,V).

(c) If ρ is a metric, then ρ̂ is a metric as well.

(d) If Y ⊆ X , d = ρ|Y and d̂ is the maximal invariant extension of d on Fa(Y,V), then
Fa(Y,V) ⊆ Fa(X,V) and d̂ = ρ̂|Fa(Y,V).

(e) For any quasi-metric ρ on X and any points a, b ∈ Fa(X,V) there exists n ∈ N and
representations a = a1a2...an, b = b1b2...bn such that a1, b1, a2, b2, ..., an, bn ∈ X and
ρ̂(a, b) =

∑
{ρ(ai, bi) : i ≤ n}.

3. Was introduced the notion of rigid non-Burnside quasivariety V and proved that for the
extension ρ̂ on Fa(X,V) of the quasi-metric ρ on X we have ρ̂(a, b) = ρ̂(ca, cb) = ρ̂(ac, bc)

for all a, b, c ∈ Fa(X,V).

4. The method of extension of quasi-metrics on free monoids in the complete non-Burnside
quasivariety of topological monoids permit:

– to construct distinct admissible topologies of Fa(X,V) for any T0-space X;

– to prove that the free topological monoid Fa(X,V) exists for any space X;

– to establish that the free topological monoid F(X,V) is abstract free, i.e. is canonically
isomorphic with the abstract free monoid Fa(X,V).

This fact solves problems posed by A. I. Maltsev in 1958 for free universal topological
algebras. Similar results were obtained for quasivarieties of semi-topological monoids as
well.

5. It was proved that if V is a complete quasivariety of topological monoids, then :

– X is an Alexandroff space if and only if F(X,V) is an Alexandroff space;

– X is a digital space if and only if F(X,V) is a digital space.
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3. MEASURES OF SIMILARITY ON MONOIDS OF STRINGS

In this chapter we continue with the study of the results obtained in the previous chapter,
mainly the extension method of a quasi-metric on a free monoid, and apply them on the monoid
of strings on an alphabet A. This allows to introduce the notion of parallel decomposition, which
leads to new interesting results related to measure of similarity, efficiency and penalty of alignment
of a pair of strings, as well as relations between the former. Furthermore, properties of Hamming,
Levenshtein and Graev-Markov distances are analyzed.

The examined properties and the results obtained in this chapter are published in the articles
[36, 37, 38, 43, 55, 56, 57, 58, 59, 62, 63] and serve as a foundation for the next chapter. The
mentioned results can also be applied in various problems related to similarity between sequences
of characters.

3.1. Monoid of strings on alphabet A

A monoid is a semigroup with an identity element. Fix a non-empty set A. The set A is
called an alphabet. We put Ā = A ∪ {ε}. Let L∗(A) be the set of all finite strings a1a2 . . . an with
a1, a2, . . . , an ∈ Ā. Let ε be the empty string. Consider the strings a1a2 . . . an for which ai = ε for
some i ≤ n. If ai , ε, for any i ≤ n or n = 1 and a1 = ε, the string a1a2 . . . an is called an irreducible
string or canonical string. The set Supp(a1a2 . . . an) = {a1, a2, . . . , an} ∩ A is the support of the
string a1a2 . . . an and l(a1a2 . . . an) = |{i ≤ n : ai , ε}| is the length of the string a1a2 . . . an. For
two strings a1 . . . an and b1 . . . bm, their product (concatenation) is a1 . . . anb1 . . . bm. If n ≥ 2,
i < n and ai = ε, then the strings a1 . . . an and a1 . . . ai−1ai+1 . . . an are considered equivalent. In
this case any string is equivalent to one unique canonical string. Two strings a and b are called
equivalent, denoted a ∼ b, if a and b are equivalent to the same canonical string. We identify the
equivalent strings and κ : L∗(A) −→ L(A) is the operation of the identification. The set L(A) of all
canonical strings is the family of all classes of equivalent strings. In this case L∗(A) is a semigroup
and L(A) becomes a monoid with identity ε. The set L(A) is not a subsemigroup of L∗(A). Only
the set L(A) \ {ε} is a subsemigroup of the semigroup L∗(A).

Let Supp(a, b) = Supp(a) ∪ Supp(b) ∪ {ε}, and Supp(a, a) = Supp(a) ∪ {ε}. It is well
known that any subset L ⊂ L(A) is an abstract language over the alphabet A.

Remark 3.1.1. If V is the variety of all monoids, then L(A) = Fa(A,V). Thus, we can apply the
results of Chapter 2 to study the monoids of strings L(A) on the alphabet A.

Let a, b be two strings. For any two representations a = a1a2 . . . an and b = b1b2 . . . bm we
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put

dH(a1a2 . . . an, b1b2 . . . bm) =|{i : ai , bi, i ≤ min{n,m}}|

+|{i : n < i ≤ m, bi , ei}|

+|{ j : m < j ≤ n, a j , ei}|.

The function dH is called the Hamming distance on the space of strings [106, 55, 56].
Now we put:

dG(a, b) = in f {dH(a, b) : a = a1a2 . . . an, b = b1b2 . . . bn}.

The function dG is called the Graev – Markov distance on the space of strings [98, 135].

Remark 3.1.2. Let ρ(x, x) = 0 and ρ(x, y) = 1 for all x, y ∈ Ā and x , y. Then ρ is the discrete
metric on Ā. Therefore dG = ρ

∗ on L(A).

The V. I. Levenshtein’s distance dL(a, b) between two strings a = a1a2 . . . an and b =
b1b2 . . . bm is defined as the minimum number of insertions, deletions, and substitutions required
to transform one string into the other [130, 56].

We put A−1 = {a−1 : a ∈ A} , ε−1 = ε, (a−1)−1 = a for any a ∈ A and consider that A−1 ∩ Ā =
∅. Denote Ǎ = A ∪ A−1 ∪ {ε}. Let Ľ(A) = L(Ǎ) be the set of all strings over the set Ǎ. The strings
over the set Ǎ are called words. A word a = a1a2 . . . an ∈ Ľ(A) is called an irreducible string if
either n = 1 and a1 ∈ Ǎ, or n ≥ 2, ai , ε for any i ≤ n and a−1

j , a j+1 for each j < n.
Let a = a1a2 . . . an ∈ Ľ(A) and n ≥ 2. Then:
- if i ≤ n and ai = ε, then the words a1 . . . an and a1 . . . ai−1ai+1 . . . an are considered

equivalent;
- if i < n and a−1

i = ai+1, then the words a1a2 . . . an and a1 . . . ai−1εai+2 . . . an are considered
equivalent.

In this case, any word a1a2 . . . an ∈ Ľ(A) is equivalent to one unique irreducible word from
Ľ(A). We identify equivalent words. Classes of equivalence form free group F(A) over A with
unity ε. We have that L(A) is a subsemigroup of the group F(A).

Let a = a1a2 . . . an ∈ F(A) be an irreducibleword. The representation a = x1x2 . . . xm ∈ L∗(A)

is called an almost irreducible representation of a if there exist 1 ≤ i1 < i2 < ... < in ≤ m such that
a j = xij for any j ≤ n and xi = ε for each i ∈ {1, 2, ...,m} \ {i1, i2, ..., in}. If a = a1a2 . . . an ∈ L∗(A)

is a representation of the string a, then a1a2 . . . an is an almost irreducible word.
If a = a1a2 . . . an, then as = anan−1 . . . a1 and a−1 = a−1

n a−1
n−1 . . . a

−1
1 . The word as is the

symmetric word of a and a−1 is the inverse word of a. If a and b are equivalent words, then the
words a−1 and b−1 are equivalent, as well as the words as and bs.
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Hence the mappings ·s, ·−1 : F(A) −→ F(A) are the group automorphisms. Obviously that
L(A)s = L(A).

Let a, b ∈ A and a , b, then we put dH(a, b) = dH(a−1, b−1) = dH(a, ε) = dH(ε, a) = dH(a−1, ε)

= dH(ε, a−1) = 1. If a ∈ A and b ∈ A−1, then dH(a, b) = dH(b, a) = 2. For any x ∈ Ǎ we put dH(x, x)

= 0. Thus dH is a metric on Ǎ. For any two words a1a2 . . . an, b1b2 . . . bm ∈ Ľ(A) we put:

dH(a1a2 . . . an, b1b2 . . . bm) =Σ{dH(ai, bi) : i ≤ min{n,m}}

+|{i : n < i ≤ m, bi , ei}|

+|{ j : m < j ≤ n, a j , ei}|.

For a, b ∈ F(A) we put:

ď(a, b) = in f {dH(a, b) : a = a1 . . . an ∈ Ľ(A), b = b1 . . . bn ∈ Ľ(A)}.

Remark 3.1.1. The function ď is called the Graev – Markov distance on the free group [98].
The method of extensions of distances for free groups, used by us, was proposed by A. A. Markov
[135] and M. I. Graev [98]. For metrics on free universal algebras it was extended in [52], for
quasi-metrics on free groups and varieties of groups it was examined in [163, 67].

M. I. Graev [98] has proved the following assertions:
G1. ď is an invariant metric on F(A) and ď(a, b) = dH(a, b) for all a, b ∈ A∗.
G2. If ρ is an invariant metric on F(A) and ρ(x, y) ≤ dH(x, y) for any x, y inA∗, then

ρ(x, y) ≤ ď(x, y) for any x, y ∈ F(A).
G3. For any two words a, b ∈ F(A) there exist m ≥ 1 and two almost irreducible represen-

tations a = x1x2 . . . xm and b = y1y2 . . . ym such that ď(a, b) = dH(x1x2 . . . xm, y1y2 . . . ym).

Theorem 3.1.1. The distance dG on a monoid L(A) has the following properties:
1. dG is a strong invariant metric on L(A) and dG(x, y) = dG(zx, zy) = dG(xz, yz) for all

x, y, z ∈ L(A).
2. dG(a, b) = dG(as, bs) for all a, b ∈ L(A).
3. If ρ is an invariant metric on L(A) and ρ(x, y) ≤ dG(x, y) for all x, y ∈ Ā, then

ρ(a, b) ≤ dG(a, b) for all a, b ∈ L(A).
4. For any a, b ∈ L(A) there exist n ∈ N, x1, x2, . . . , xn ∈ Supp(a, a) and y1, y2, . . . , yn ∈

Supp(b, b) such that a = x1x2 . . . xn, b = y1y2 . . . yn such that n ≤ l(a) + l(b) and dG(a, b) = |{i :
i ≤ n, ai , bi}| = dH(x1x2 . . . xn, y1y2 . . . yn).

5. dG(a, b) = ď(a, b) ≤ dH(a, b) for all a, b ∈ L(A) .

Proof. Fix a, b ∈ L(A). Let a = a1a2 . . . an , b = b1b2 . . . bn. If n > l(a) + l(b), then there
exists i ≤ n such that ai = bi = ε, a = a1a2 . . . ai−1ai+1 . . . an, b = b1b2 . . . bi−1bi+1, . . . bn and
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dH(a1a2...an, b1b2...bn) = dH(a1...ai−1ai+1...an, b1...bi−1bi+1...bn). Hence dG(a, b) =

in f {dH(a1a2 . . . an, b1b2 . . . bn) : a = a1a2 . . . an , b = b1b2 . . . bn, n ≤ l(a) + l(b)}. Since
we have finite pairs of parallel representations a = a1a2 . . . am, b = b1b2 . . . bm of length m ≤

l(a) + l(b), there exist n ∈ N, x1, x2, . . . , xn ∈ Supp(a, a) and y1, y2, . . . , yn ∈ Supp(b, b) such that
a = x1x2 . . . xn, b = y1y2 . . . yn with n ≤ l(a) + l(b) and dG(a, b) = |{i : i ≤ n, ai , bi}| =

dH(x1x2 . . . xn, y1y2 . . . yn). Thus, Assertion 4 is proved. Assertion 2 is obvious.
Fix a, b ∈ L(A) and c ∈ A. It is clear that dG(ca, cb) ≤ dG(a, b). Assume that dG(ca, cb) <

dG(a, b). Then there exist representations ca = x1x2 . . . xn and cb = y1y2 . . . yn such that n ≤

l(a) + l(b) + 2 and dG(ca, cb) = dH(x1x2 . . . xn, y1y2 . . . yn), where A ∩ {xi, yi} , ∅ for each
i ≤ n. If x1 = y1, then x1 = y1 = c. In this case a = x2 . . . xn, b = y2 . . . yn and dG(a, b) ≤

dH(x2 . . . xn, y2 . . . yn) = dH(x1x2 . . . xn, y1y2 . . . yn) = dH(ca, cb) < dH(a, b), a contradiction.
Hence x1 , y1. In this case we have two possibilities: x1 = c, y1 = ε or x1 = ε, y1 = c. We can
assume that x1 = c and y1 = ε. Let 1 < j, y j = c and yi = ε for each i < j. We put u1 = vi = ε for
each i ≤ j, ui = xi for each i ≥ 2 and vk = yk for each k > j. Then b = u1u2 . . . un, b = v1v2 . . . vn,
0 = dH(u1, v1) < dH(x1, y1) = 1, dH(x j, y j) ≤ 1, dH(u j, v j) ≤ 1 and dH(ui, vi) = dH(xi, yi) for
i ∈ {2, 3, ..., j − 1, j + 1, ..., n}. Hence dG(a, b) ≤ dH(u1u2...un, v1v2...vn) ≤ dH(x1x2...xn, y1y2...yn)

= dG(ca, cb) < d(a, b), a contradiction. Hence dG(ca, cb) = d(a, b). From Assertion 2 it follows
that dG(ac, bc) = dG(a, b). Assertion 1 is proved.

We put d(x, x) = 0 and d(x, y) = 1 for any distinct strings x, y ∈ L(A). Let ID(A) denote the
family of all invariant metrics ρ on L(A) with the property: ρ(x, y) ≤ d(x, y) for all x, y ∈ (̄A).
Since d ∈ ID(A), the set ID(A) is non-empty. Now we put d∗(a, b) = sup{ρ(a, b) : ρ ∈ ID(A)}.
One can easily observe that d∗ ∈ ID(A), d(a, b) ≤ d∗(a, b) for any a, b ∈ L(A) and d(x, y) = d∗(x, y)

= 1 for all distinct x, y ∈ (̄A).
Property 1. If ρ ∈ ID(A), then

ρ(x1x2 . . . xn, y1y2 . . . yn) ≤|{i ≤ 1 : xi , yi}|

=dH(x1x2 . . . xn, y1y2 . . . yn)

for any two strings (x1x2 . . . xn, y1y2 . . . yn) ∈ L(A).
This property follows from the conditions of invariance of metric d.
Property 2. dG = d∗ = dL .
Since dG and d∗ are invariant distances on L(A) and they are constructed with the conditions

of extremity

d∗(a, b) = sup{ρ(a, b) : ρ ∈ ID(A)},
dG(a, b) = in f {dH(a, b) : a = a1a2 . . . an , b = b1b2 . . . bn},

we have dG = d∗. In the following section of this chapter it was proved that d∗ = dL . The equality
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dG(a, b) = ď(a, b) for all a, b ∈ L(A) follows from the Graev’s assertion G3 in the above Remark.
This completes the proof of the theorem. �

Example 3.1.1. The metrics d, dG = dL = d∗ are strong invariant on L(A). On L(A) there
exists a metric dr ∈ ID(A) which is invariant, but not strong invariant. Fix a real number r for
which 2−1 ≤ r < 1. We put dr(x, x) = 0 for each x ∈ L(A), d(x, y) = r for any distinct strings
x, y ∈ L(A) \ {ε} and d(0, x) = d(x, 0) = 1 for any x ∈ L(A) \ {ε}. Then d is an invariant metric on
G. Fix a ∈ A. Since r = d(a, aa) = d(ε · a, a · a) < d(ε, a) = 1, the metric dr is not strong invariant.

Remark 3.1.2. For the metric dH we have dH(a, b) ≤ max{l(a, l(b)} for any strings a, b ∈ L(A).
The Hamming distance dH is left invariant: dH(xa, xb) = d(a, b) for all strings x, a, b ∈ L(A).
Assume now that x, y, z ∈ A, a = xyzxyz, b= yzxy and c = xyz. Then dG(a, b) = 2 and 6 =
dH(a, b) < dH(ac, bc) = 9. Therefore, metric dH is not right invariant.

3.2. Relations to Hamming and Levenshtein distances

If a, b ∈ L(a, b) and a = a1a2 · · · an, b = b1b2 · · · bm are the canonical decompositions, then
for m ≤ n the number

dH(a, b) = dH(b, a) = |{i ≤ m : ai , bi}| + n − m

is called the Hamming distance [106] between strings a and b.
The Levenshtein distance [130] between two strings a = a1a2 · · · an and b = b1b2 · · · bm is

defined as the minimum number of insertions, deletions, and substitutions required to transform one
string to the other. A formal definition of Levenshtein’s distance dL(a, b) is given by the following
formula:

dL(a1 · · · ai, b1 · · · b j)=



i, if j=0,

j, if i=0,

min


dL(a1 · · · ai−1, b1 · · · b j) + 1

dL(a1 · · · ai, b1 · · · b j−1) + 1

dL(a1 · · · ai−1, b1 · · · b j−1) + 1(ai,bj ),

where 1(ai,bj ) equals to 0 if ai = b j and to 1 otherwise.

Theorem 3.2.1. dL(a, b) = ρ∗(a, b) ≤ dH(a, b) for any a, b ∈ L(A).

Proof. To prove the equality dL(a, b) = ρ∗(a, b), we will first prove that dL(a, b) ≤ ρ∗(a, b), and
then that dL(a, b) ≥ ρ∗(a, b).
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We begin with the observation that the parallel decompositions of two strings a, b allow
more transparent evaluation of the Levenshtein distance dL(a, b). If a = v1u1v2u2 · · · vn and
b = w1u1w2u2 · · ·wn are optimal parallel decompostions, then for transformation of b to a it is
sufficient to transform any wi to vi. The cost of transformation of wi to vi is ≤ max{l(wi), l(vi)}.
Hence dL(a, b) ≤ ρ∗(a, b).

The proof of the inequality dL(a, b) ≥ ρ∗(a, b) is based on the Levenshtein distance formula, as
well as the construction of the transformation of string a to string b. We observe that the Levenshtein
distance is calculated recursively using the memoization matrix and dynamic programming

technique [77, p. 359–378]. A small snapshot of the memoization matrix calculation is presented
below.

Table 1: Construction of memoization matrix for Levenshtein distance

Diag Above

Left
min(Above + delete,

Left + insert, Diag + 1ai,bj )

Distance dL calculated on subtrings a1 · · · ai of string a and substring b1 · · · b j of string b is
equal to the minimum of the following values:

• dL(a1 · · · ai−1, b1 · · · b j) + 1, (1)

• dL(a1 · · · ai, b1 · · · b j−1) + 1, (2)

• dL(a1 · · · ai−1, b1 · · · b j−1) + 1ai,bj . (3)

Remark : the operation (1) is the delete operation, (2) is the insert operation, and (3) is the
substitution operation.

Once all of the above values are calculated and the memoization matrix is filled, the distance
is given by the value in the cell on the nth row and mth column.

The construction of the transformation of string a into string b is based on the values of the
memoization matrix. At each point of the construction process, we will execute operations on both
strings a and b, and obtain another pair of strings a′ and b′ equivalent to the initial pair a and b.
We use the top-down analysis approach to describe the transformation process step by step. The
process below starts with i = n, j = m, p = 0, q = 0 and both a′, b′ as empty strings:

• if when calculating dL(a1 · · · ai, b1 · · · b j) we used operation (1), then we deleted a character
from string a at position i, which is equivalent to inserting the ε character in string b

at the corresponding position. In this case, in the building process of a′ and b′, we put
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p := p + 1, v′p = {ai},w′p = {ε}, a′ := v′p ∪ a′, b′ := w′p ∪ b′. Next, we proceed to calculate
dL(a1 · · · ai−1, b1 · · · b j).

• if when calculating dL(a1 · · · ai, b1 · · · b j) we used operation (2), then we inserted the ε
character in string a at position i. In this case, in the building process of a′ and b′, we put
p := p + 1, v′p = {ε},w′p = {b j}, a′ := v′p ∪ a′, b′ := w′p ∪ b′. Next, we proceed to calculate
dL(a1 · · · ai, b1 · · · b j−1).

• if when calculating dL(a1 · · · ai, b1 · · · b j) we used operation (3), then we either substituted
the character at position i of string a with the character at position j of string b, or we did not
make any change in case if ai = b j . If ai = b j , we put q =: q + 1,u′q = {ai}, a′ := u′q ∪ a′,
b′ := u′q ∪ b′. If ai , b j , we put p =: p+ 1, v′p = {ai}, w′p = {b j}, a′ := v′p ∪ a′, b′ := w′p ∪ b′.
Next, we proceed to calculate dL(a1 · · · ai−1, b1 · · · b j−1).

According to the above steps, we observe that string a′ is equivalent to string a, and string b′ is
equivalent to bby construction. But, we also have that the decomposition a′ = v′pu′qv

′
p−1u′q−1 · · · u

′
1v
′
1

and a′ = w′pu′qw
′
p−1u′q−1 · · · u

′
1w
′
1 obtained from the above construction process, represent a parallel

decomposition of strings a and b. Thus, we have that dL(a, b) = E(a, b) ≥ ρ∗(a, b). This completes
the proof of the equality dL(a, b) = ρ∗(a, b).

We will now prove the second part of the theorem, namely that ρ∗(a, b) ≤ dH(a, b). Let
dH(a, b) < max{l(a), l(b)} = n, where n = l(a) ≥ l(b) = m. Then a = a1a2 · · · an, b = b1b2 · · · bm,
ai , ε for any i ≤ n, and or m = 1 and b1 = ε, or b j , ε for any j ≤ m. In this case dH(a, b) =

n − |{i ≤ m : ai = bi}| and we have the representations a = (a1)(a2) · · · (am)(am+1 · · · an) and
b = (b1)(b2) · · · (bm)(ε) which generate two parallel decompositions α, β with E(α, β) = dH(a, b).
Therefore ρ∗(a, b) ≤ E(α, β) = dH(a, b). The proof is complete.

�

Corollary 3.2.1. Distance dL is strictly invariant, i.e. dL(ac, bc) = dL(ca, cb) = dL(a, b) for any
a, b, c ∈ L(A).

Remark 3.2.1. The Hamming distance dH is not invariant.

Example 3.2.1. Let n = m+ p and strings a = (01)n, b = (10)m, c = (01)p. We obtain the following
distance values for the above strings:

dL(a, b) = 2p, ρ∗(a, b) = 2p, dH(a, b) = 2n,

dL(ac, bc) = 2p, ρ∗(ac, bc) = 2p, dH(ac, bc) = 2n.

Remark 3.2.2. If l(a) = l(b), then dH(ac, bc) = dH(a, b) for any a, b, c ∈ L(A). Additionally, the
following equality always holds:
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dH(ca, cb) = dH(a, b).

3.3. Efficiency and penalty of two strings

The longest common substring and pattern matching in two or more strings is a well known
class of problems. For any two strings a, b ∈ L(A) we find the decompositions of the form
a = v1u1v2u2 . . . vkukvk+1 and b = w1u1w2u2 . . .wkukwk+1, which can be represented as a =

a1a2 . . . an, b = b1b2 . . . bn with the following properties:
- some ai and b j may be empty strings, i.e. ai = ε, b j = ε;
- if ai = ε, then bi , ε, and if b j = ε, then a j , ε;
- if u1 = ε, then a = v1 and b = w1;
- if u1 , ε, then there exists a sequence 1 ≤ i1 ≤ j1 < i2 ≤ j2 < . . . < ik ≤ jk ≤ n such that:
u1 = ai1 . . . a j1 = bi1 . . . b j1 , u2 = ai2 . . . a j2 = bi2 . . . b j2 , uk = aik . . . a jk = bik . . . b jk ;
- if v1 = w1 = ε, then i1 = 1;
- if vk+1 = wk+1 = ε, then jk = n;
- if k ≥ 2, then for any i ∈ {2, . . . , k} we have vi , ε or wi , ε.
In this case l(u1) + l(u2) + . . . + l(uk) = |{i : ai = bi}|.
The above decompositions forms are called parallel decompositions of strings a and b

[55, 56, 57]. For any parallel decompositions a = v1u1 . . . vkukvk+1 and b = w1u1 . . .wkukwk+1

the number

E(v1u1 . . . vkukvk+1,w1u1 . . .wkukwk+1)

=
∑

i≤k+1
{max{l(vi), l(wi)}} = dH(x1x2 . . . xn, y1y2 . . . yn)

is called the efficiency of the given parallel decompositions. The number E(a, b) is equal to the min-
imum of efficiency values of all parallel decompositions of the strings a, b and is called the common
efficiency of the strings a,b. It is obvious that E(a, b) is well determined and E(a, b) = dG(a, b). We
say that the parallel decompositions a = v1u1v2u2 . . . vkukvk+1 and b = w1u1w2u2 . . .wkukwk+1

are optimal if the following equality holds:

E(v1u1v2u2 . . . vkukvk+1,w1u1w2u2 . . .wkukwk+1) = E(a, b).

This type of decompositions are associated with the problem of approximate string matching [146].
If the decompositions a = v1u1 . . . vkukvk+1 and b = w1u1 . . .wkukwk+1 are optimal and k ≥ 2,
then we may consider that ui , ε for any i ≤ k.

Any parallel decompositions a = a1a2 . . . an = v1u1v2u2 . . . vkukvk+1 and b = b1b2 . . . bn =
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w1u1w2u2 . . .wkukwk+1 generate a common sub-sequence u1u2 . . . uk . The number

m(a1a2 . . . an, b1b2 . . . bn) = l(u1) + l(u2) + . . . + l(uk)

is the measure of similarity of the decompositions [27, 151]. There exist parallel decompositions
a = v1u1v2u2 . . . vkukvk+1 and b = w1u1w2u2 . . .wkukwk+1 for which the measure of similarity
is maximal. The maximum value of the measure of similarity of all decompositions is denoted
by m∗(a, b). The maximum value of the measure of similarity of all optimal decompositions is
denoted by mω(a, b). We can note that mω(a, b) ≤ m∗(a, b). For any two parallel decompositions
a = a1a2 . . . an and b = b1b2 . . . bn as in [56], we define the penalty factors as

pr(a1a2 . . . an, b1b2 . . . bn) = |{i ≤ n : ai = ε}|,

pl(a1a2 . . . an, b1b2 . . . bn) = |{ j ≤ n : b j = ε}|,

p(a1a2 . . . an, b1b2 . . . bn) = |{i ≤ n : ai = ε}| + |{ j ≤ n : b j = ε}|

= pr(a1a2 . . . an, b1b2 . . . bn) + pl(a1a2 . . . an, b1b2 . . . bn)

and

Mr(a1a2 . . . an, b1b2 . . . bn)

= m(a1a2 . . . an, b1b2 . . . bn) − pr(a1a2 . . . an, b1b2 . . . bn)

Ml(a1a2 . . . an, b1b2 . . . bn)

= m(a1a2 . . . an, b1b2 . . . bn) − pl(a1a2 . . . an, b1b2 . . . bn)

M(a1a2 . . . an, b1b2 . . . bn)

= m(a1a2 . . . an, b1b2 . . . bn) − p(a1a2 . . . an, b1b2 . . . bn)

as the measures of proper similarity.
The number dH(a1a2 . . . an, b1b2 . . . bn) = |{i ≤ n : ai , bi}| is the Hamming distance

between decompositions and it is another type of penalty. We have that

p(a1 . . . an, b1 . . . bn) ≤ dH(a1 . . . an, b1 . . . bn).

The assertions from the following theorem establish the main results.

Theorem 3.3.1. Let a and b be two non-empty strings, a = a1a2 . . . an and b = b1b2 . . . bn

be the initial optimal decompositions, and a = a′1a′2 . . . a
′
q and b = b′1b′2 . . . b

′
q be the second
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decompositions, which are arbitrary. Denote by

m = m(a1a2 . . . an, b1b2 . . . bn), m′ = m(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

p = p(a1a2 . . . an, b1b2 . . . bn), p′ = p(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

pl = pl(a1a2 . . . an, b1b2 . . . bn), p′l = pl(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

pr = pr(a1a2 . . . an, b1b2 . . . bn), p′r = pr(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

r = dH(a1a2 . . . an, b1b2 . . . bn), r′ = dH(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

M = m − p, M′ = m′ − p′,

Ml = m − pl, M′l = m′ − p′l,

Mr = m − pr, M′r = m′ − p′r .

The following assertions are true:

1. p′ − p = 2(m′ − m) + 2(r′ − r).

2. If the second decompositions are non optimal, then Ml > M′l and Mr > M′r .

3. If the second decompositions are optimal, then Ml = M′l and Mr = M′r and the measures Ml

and Mr are constant on the set of optimal parallel decompositions.

4. If m′ ≥ m and the second decompositions are non optimal, then p′ > p, pl′ > pl , p′r > pr

and M > M′.

5. If m′ = m and the second decompositions are optimal, then p′ = p, pl′ = pl , p′r = pr and
M′ = M .

6. If m′ ≤ m and the second decompositions are non optimal, then m′ − r′ < m − r .

The proof of Theorem 3.3.1 follows from the next lemmas.

Lemma 3.3.1.

pr(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q) = q − l(a),

pl(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q) = q − l(b),

p(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q) = 2q − l(a) − l(b).

Proof. Follows immediately from the definitions of penalty factors and parallel decompositions. �

Lemma 3.3.2. p′ − p = 2(m′ − m) + 2(r′ − r).
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Proof. From Lemma 3.3.1 it follows that p′ − p = (2q − l(a) − l(b)) − (2n− l(a) − l(b)) = 2(q − n).
Since q = m′ + r′ and n = m + r , the proof is complete. �

Lemma 3.3.3. p′l − pl = p′r − pr = (m′ − m) + (r′ − r).

Proof. We can assume that l(a) ≤ l(b). Then pl = (l(b) − l(a)) + lr and pl − pr = l(b) − l(a). Hence
pl − pr = p′l − p′r and p′l − pl = p′r − pr . The equality p′ − p = (p′r − pr) + (p′l − pl) and Lemma 3.3.2
complete the proof. �

Lemma 3.3.4. Assume that m′ > m. Then:
1. M > M′, Ml ≥ M′l and Mr ≥ M′r .
2. Ml > M′l and Mr > M′r provided that the second decompositions are non optimal.
3. Ml = M′l and Mr = M′r provided that the second decompositions are optimal.

Proof. Since the initial decompositions are optimal, we have r′ ≥ r . Moreover, we have r′ = r if
and only if the second decompositions are optimal as well. By virtue of definitions, we have n =
m + r and q = m′ + r′. Therefore n < q. From Lemma 3.3.2, it follows that p′ − p = 2(m′ − m) +
2(r′ − r) and p < p′. Thus p′ − p > m′ − m and M = m − p > m′ − p′ = M′.

Also, from Lemma 3.3.3, it follows that p′l − pl = p′r − pr = (m′ − m) + (r′ − r). Hence, Ml

= m − pl = (m′ − p′l) + (r
′ − r) = M′l + (r′ − r) and Mr = m − pr = (m′ − p′r) + (r′ − r) = M′r +

(r′ − r). Since r′ ≥ r and r′ = r if and only if the second decompositions are optimal, the proof is
complete. �

Corollary 3.3.1. The measures Ml and Mr are constant on the set of optimal parallel decomposi-
tions.

Lemma 3.3.5. Let m′ = m. Then:
1. M ≥ M′, Ml ≥ M′l and Mr ≥ M′r .
2. Ml > M′l and Mr > M′r provided that the second decompositions are non optimal.
3. Ml = M′l and Mr = M′r provided that the second decompositions are optimal.

Proof. We have that n = m + r and q = m′ + r′. Since r ≤ r′, we have that n ≤ q.
Assume that M < M′. Then m − p < m′ − p′, p′ = 2q − l(a) − l(b) and p = 2n − l(a) − l(b).

Hence m − 2n + l(a) + l(b) < m − 2q + l(a) + l(b), or −2n < −2q and n > q, a contradiction.
From Lemma 3.3.3 it follows that p′l − pl = p′r − pr = r′ − r . Hence p′l ≥ pl and p′r ≥ pr . If

the second decompositions are non optimal, then p′l > pl and p′r > pr . Assertions are proved. �

Lemma 3.3.6. Assume thatm′ < m and the second decompositions are non optimal. Then Ml > M′l
and Mr > M′r .
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Proof. Since the initial decompositions are optimal, we have r′ > r . By virtue of Lemma 3.3.3, we
have p′l − pl = p′r − pr = (m′−m)+ (r′−r). Hence, Ml = m− pl = (m′− p′l)+ (r

′−r) = M′l + (r
′−r)

and Mr = m− pr = (m′− p′r)+ (r
′− r) = M′r + (r

′− r). Since r′− r > 0, the proof is complete. �

Remark 3.3.1. From Assertions of Theorem 3.3.1 it follows that on the class of all optimal
decompositions of given two strings:

- the maximal measure of proper similarity is attained on the optimal parallel decomposition
with minimal penalties (minimal measure of similarity);

- the minimal measure of proper similarity is attained on the optimal parallel decomposition
with maximal penalties (maximal measure of similarity).

For any two non-empty strings there are parallel decompositions with maximal measure of
similarity and optimal decompositions on which the measure of similarity is minimal.

We present below an example that illustrates the relations on proper similarities and penalties
implied by Assertion 4 of Theorem 3.3.1.

Example 3.3.1. Let

A A A A C C C

C C C B B B B

be trivial optimal decompositions of strings a, b, and

A A A A

ε ε ε ε

©«
C C C

C C C

ª®®®®®®¬
ε ε ε ε

B B B B

be their non-optimal decompositions. Then

m′ = 3, r′ = 8, p′ = 8,

m = 0, r = 7, p = 0.

In this example we have that −5 = m′− r′ > m− r = −7 and −5 = m′− p′ = M′ < M = m− p = 0.

The following example shows that there are some exotic non-optimal parallel decompositions
a = a′1a′2 · · · a

′
q and b = b′1b′2 · · · b

′
q, such that for optimal decompositions a = a1a2 · · · an and

b = b1b2 · · · bn we have m′ < m, p′ < p, and M′ > M .
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Example 3.3.2. Let

A B C D

C D E F

©«
E

E

ª®®®®®®¬
F

D

be trivial non-optimal decompositions of strings a, b and

A B

ε ε

©«
C D E F

C D E F

ª®®®®®®¬
ε ε

E D

be their optimal decompositions. Then

m′ = 1, r′ = 5, p′ = 0,

m = 4, r = 4, p = 4.

We have that m′ − p′ = M′ > M = m − p, and m′ − r′ < m − r .

The above examples show that Theorem 3.3.1 cannot be improved in the case of m′ < m.
Decompositions with minimal penalty and maximal proper similarity are of significant inter-

est. Moreover, if we solve the problem of text editing and correction, the optimal decompositions
are more favorable. Therefore, the optimal decompositions are the best parallel decompositions
and we may solve the string match problems only on class of optimal decompositions.

Remark 3.3.2. The optimal decompositions:

• describe the proper similarity of two strings,

• permit to obtain long common sub-sequences,

• permit to calculate the distance between strings,

• permit to appreciate changeability of information over time.

3.4. Computational algorithms of distances

Let A be a given alphabet and Ā = A∪ε. A (dis)similarity measure on a set Ā is a function of
two variables s : Ā × Ā −→ R, possibly subject to additional properties. A range similarity query
centered at a ∈ Ā consists of all x ∈ Ā determined by the inequality s(a, x) < k or s(a, x) > k,
depending on the type of similarity measure. A similarity workload is a workload whose queries
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are generated by a similarity measure. The formula d(a, b) = s(a, a)− s(a, b), a, b ∈ A is a distance.
In many cases d(a, b) is a quasi-metric. By instance, applied to the similarity measure given by
BLOSUM62, as well as to most other matrices from the BLOSUM family, d is a quasi-metric on
A.

Hence any quasi-metric ρ on Ā may be considered as a similarity. The similarity ρ on Ā may
be extended on the space of strings L(A). If ρ is a quasi-metric on Ā then its extension on L(A) is
a quasi-metric ρ1 on L(A) such that ρ1(x, y) = ρ(x, y) for all x, y ∈ Ā. Obviously, there exist many
extensions of the given quasi-metric ρ on Ā. In the Chapter 2 we proved that on L(A) there exists
the extension dH of the Hamming distance and the extension dL of Levenstein distance. For any
extension ρ1 on L(A) of ρ on Ā are important the algorithms of calculating of the distance ρ1(a, b)

for any two strings a, b ∈ L(A). We say that the calculation of the distance dL(a, b) is determined by
some parallel decompositions of the given two strings a and b. The decompositions a = a1a2...an

and b = b1b2...bm of the strings a, b are parallel if n = m. Let ρ be a quasi-metric on Ā. The
decompositions a = a1a2...an and b = b1b2...bm of the strings a, b are called ρ-optimal if n = m

and dH(a, b) =
∑
{(ρ(ai, bi) : i ≤ n}. Hence, are important the algorithms of calculation of the

distance dH(a, b) and the algorithms of construction of all optimal pairs of parallel decompositions
of the given two strings a and b.

The algorithm of computing the Levenshtein distance for the case of a discrete metric is
well known. Below we show a well known algorithm that permits to calculate the Graev-Markov-
Levenstein distance between two irreducible strings for any metric.

Algorithm 1:Metric:
Given x, y ∈ F(A) compute ď(x, y), for the case of metric.
Data: x = x1x2 . . . xn, y = y1y2 . . . ym, metric function ď on Ǎ.
Parameters: costs of insertion and removal operations - costinsert and costremove

respectively.
Result: dL(x, y), and matrix D.
// initialize distance matrix

1 for i ← 1 to m do D[i,0]=i;
2 for j ← 1 to n do D[0,j]=j;
// initialize loop variables

3 i := 1, j := 1;
4 for j ← 1 to n do
5 for i ← 1 to m do
6 if dist(xi, y j) = 0 then
7 d[i, j] := d[i-1, j-1];
8 else

// Dynamic Programming recursive function
9 d[i,j] := min(d[i-1, j] + costremove, min(d[i, j-1] + costinsert , d[i-1, j-1] +

dist(xi, yi)));
10 return D[m, n], D;
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For any two non-empty strings there exist the parallel decompositions with maximal measure
of similarity and the optimal decompositions on which measure of similarity is minimal. The
pseudo-code of such algorithm is presented below:

Algorithm 2:Maximal Measure of Similarity:
Finds maximum value of measure of similarity of x, y ∈ L(Ā).
/* Helper functions to compute similarity and penalty factors */

1 Function similarity (a,b)
2 n = max(length(a), length(b))
3 sim = 0
4 for i ← 1 to n do
5 if (a[i] == b[i]) sim = sim + 1
6 return sim;
7 Function penalty (a,b)
8 n = max(length(a), length(b))
9 pen = 0
10 for i ← 1 to n do
11 if (a[i] == ε) pen = pen + 1
12 if (b[i] == ε) pen = pen + 1
13 return pen;
/* Main Algorithm Body */
Data: x = x1x2 . . . xn, y = y1y2 . . . ym.
Result: Maximal measure of similarity of x and y.
// Calling Metric or Quasi-Metric Functions

14 d, D := metric(x, y);
// Calling BackTracking function BuildOPD

15 BuildOPD(n,m,x,y,a,b,D,S);
16 max_sim = 0
17 for ((a,b): S) do
18 sim = similarity(a,b) - penalty(a,b)
19 max_sim = max_sim < sim ? sim : max_sim
20 return max_sim

The above algorithmmakes calls to function BuildOPD, which uses the memoization matrix
to generates optimal parallel decompositions. This algorithm uses the memoization matrix D[m, n]

calculated in the previous algorithm. The idea is to traverse from the bottom right cell D[m, n] to
the top left cell D[0, 0] and at each step to evaluate whether the minimal distance was obtained by
replacement, deletion or insertion. The algorithm uses recursive backtracking to reconstruct all
decompositions of strings a and b. The pseudocode for this function is presented below.
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Algorithm 3: Optimal Parallel Decompositions (OPD):
Generate all optimal parallel decompositions of given x, y ∈ L(A).
/* BackTracking Function Building Optimal Parallel Decompositions */

1 Function BuildOPD (n,m; x,y,a,b; D, S)
// n, m - current indexed in D matrix
// x, y - input strings; a,b - building blocks of OPD
// D - memoization matrix of x and y

2 if (n = 0)and(m = 0) then
3 S.append(reverse(a), reverse(b));
4 else
5 if ((n > 0)and(m > 0)) and ((D[n,m] = D[n − 1,m − 1] + dist(xn, ym)) or

((D[n,m] = D[n − 1,m − 1]) and (dist(xn, ym) = 0))) then
6 BuildOPD(n-1,m-1,a+xn,b+ym, D, S);
7 if (n > 0) and (D[n,m] = D[n − 1,m] + costremove) then
8 BuildOPD(n-1,m,a+xn,b+ε, D, S);
9 if (m > 0) and (D[n,m] = D[n,m − 1] + costinsert) then
10 BuildOPD(n,m-1,a+ε,b+ym, D, S);

/* Main Algorithm Body */
Data: x = x1x2 . . . xn, y = y1y2 . . . ym.
Parameters: costs of insertion and removal operations - costinsert and costremove

respectively.
Result: Strings representing optimal parallel decompositions.
// Calling Levenshtein Distance or Quasi-Metric Functions

11 d, D := LevenshteinDistance(x, y);
// Initialize building blocks of OPD

12 a := ”; b := ”; S = [];
// Calling BackTracking function BuildOPD

13 BuildOPD(n,m,x,y,a,b,D, S);

In the worst case scenario its complexity is O(m + n) (this happens when we separately
traverse the matrix horizontally and vertically). This result is achieved with the help of prioritizing
the direction of analysis when traversing the matrix. We first look to the north-west and only
afterwards to the northern and western cell values. We stop the reconstruction process once the
algorithm reaches the cell at D[0, 0]. The reasoning behind this decision is to find the most optimal
decomposition among all possible decompositions of strings a and b.

3.5. General applications and examples

First and foremost let us look at how we can apply the above results in information distance
problems such as string search, text correction, and pattern matching. We have presented one such
example in the previous section – the edit distance.

We also mentioned the problem of DNA/RNA sequence alignment, which goes back as early
as 1970 [151]. Applications in bioinformatics of the distance ρ∗ include phylogenetic analysis,
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whole genome phylogeny, and detection of acceptable mutations [157]. Other applications using
edit operations like insertions and editions in DNA can be found in [155].

We begin this section with the pseudo-codes of the decompositions alignment algorithm,
which constructs the shortest optimal parallel decompositions of strings a and b that give the value
of distance ρ∗. This algorithm is a modification of the previously presented BuildOPD algorithm.
We modified the classical version of the pseudo-code to print only the most optimal decomposition
(shortest), instead of printing all possible paths.

Algorithm 4: Shortest Optimal Parallel Decomposition (sOPD):
Generate shortest optimal parallel decomposition of given x, y ∈ L(A).
/* BackTracking Function Building Optimal Parallel Decompositions */

1 Function Build_sOPD (n,m; x,y,a,b; D)
2 if (n = 0)and(m = 0) then
3 return (reverse(a), reverse(b));
4 else
5 if ((n > 0)and(m > 0)) and ((D[n,m] = D[n − 1,m − 1] + dist(xn, ym)) or

((D[n,m] = D[n − 1,m − 1]) and (dist(xn, ym) = 0))) then
6 BuildOPD(n-1,m-1,a+xn,b+ym);
7 else if (n > 0) and (D[n,m] = D[n − 1,m] + costremove) then
8 BuildOPD(n-1,m,a+xn,b+ε);
9 else if (m > 0) and (D[n,m] = D[n,m − 1] + costinsert) then
10 BuildOPD(n,m-1,a+ε,b+ym);

Data: x = x1x2 . . . xn, y = y1y2 . . . ym.
Parameters: costs of insertion and removal operations - costinsert and costremove

respectively.
Result: Strings representing optimal parallel decompositions.

11 d, D := LevenshteinDistance(x, y);
12 a := ”; b := ”; BuildOPD(n,m,x,y,a,b,D);

In the worst case scenario its complexity is O(m + n) (this happens when we separately
traverse the matrix horizontally and vertically). This result is achieved with the help of prioritizing
the direction of analysis when traversing the matrix. We first look to the north-west and only
afterwards to the northern and western cell values. We stop the reconstruction process once the
algorithm reaches the cell at D[0, 0]. The reasoning behind this decision is to find the most optimal
decomposition among all possible decompositions of strings a and b. The example that follows is
a good illustration of this approach.

Example 3.5.1. Let’s investigate the example where a = industry and b = interest. In this case
we have ρ∗(a, b) = 6. The possible decompositions of strings a and b are as follows:
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industry inεεdustry inεdεustry indεεustry inεduεstry

interest interestεε interestεε interestεε interestεε

The first pair of parallel string decompositions is the optimal one as it has minimal string
length. Another good example of two strings decomposition into their building blocks ui, v j, and
w j is illustrated below.

Example 3.5.2. Consider the alphabet Ā = {ε, X,Y, Z,W} and two strings a = X XYYW ZY X and
b = Y X XW ZW XY . For this example we obtain that ρ∗(a, b) = 5 as well as the following optimal
decomposition:

ε

Y

©«
X X

X X

ª®®®®®®¬
Y Y

W Z

©«
W

W

ª®®®®®®¬
Z

X

©«
Y

Y

ª®®®®®®¬
X

ε

Lets look at results in detection of the mutational events. We extend the parallel decom-
positions and present the construction of the semiparallel decompositions. We take into con-
sideration the ordering � and the corresponding distance ρ∗l . From this point of view, for any
two strings a, b ∈ L(A) we find the decompositions of the form a = v1u1v2u2 · · · vkukvk+1 and
b = w1u′1w2u′2 · · ·wku′kwk+1, where

• ui, u′i are canonical substrings of the strings a and b and ui, u′i may be empty strings;

• v j is a substring of a and v j may be an empty string;

• w j is a substring of b and w j may be an empty string;

• ρ∗l (ui, u′i) = 0 for all i ≤ k;

Like in the case with parallel decompositions, the semiparallel decompositions are optimal if

ρ∗l (a, b) = Σ{ρ(vi,wi) : i ≤ k + 1}.

This given interpretation of the metric and string decompositions can be used in the study of
the minimum number of acceptable and unacceptable (when metric ρ∗r is used) mutational events
required to convert one sequence to another.

To illustrate the application of the semiparallel decomposition let us partition the strings from
the previous example.

84



Example 3.5.3. Let a = X XYYW ZY X and b = Y X XW ZW XY , with the alphabet Ā =

{ε, X,Y, Z,W}, on which we consider the classic ordering �, meaning that ρ∗l (zi, z j) = 0 for all
zi, z j ∈ Ā, where zi � z j . This time we obtain that ρ∗l (a, b) = 3, as well as the following optimal
decomposition:

©«
X X

Y X

ª®®®®®®¬
Y

X

©«
Y

W

ª®®®®®®¬
W

Z

©«
Z

W

ª®®®®®®¬
Y

X

©«
X

Y

ª®®®®®®¬
For semiparallel decompositions we can define measure of similarity, penalty, and proper

similarity.

Remark 3.5.1. Our algorithms are effective for any quasi-metric on Ā. Some authors consider the
possibility to define the generalized Levenshtein metric with distinct values ρ(a, b) and ρ(b, a). It is
necessary to require that ρ(a, b) is a quasi-metric. In other cases we may obtain some confusions
as will be seen from the next example.

Example 3.5.4. Let A = {a, b}, Ā = {ε, a, b}. The following table defines the distance ρ on Ā:

0 0 1 ε

1 0 0 a

0 1 0 b

ε a b y
x

In this example we have 0 = ρ(a, b) + ρ(b, ε) < ρ(a, ε) = 1 and:
1. for u = aba, v = ba we get ρ̄(u, v) = ρ̄(v, u) = 0,
2. for u = a, v = b we get ρ̄(u, v) = ρ̄(v, u) = 0, when ρ(v, u) = 1.

Example 3.5.5. Let us examine the example from [151] in the context of the results achieved. We
have strings a = AJCJNRCKCRBP and b = ABCN JROCLCRPM for which there are eight
pairs of optimal decompositions. We present two of them, the shortest and the longest:

©«
A

A

ª®®®®®®¬
J

B

©«
C

C

ª®®®®®®¬
ε

N

©«
J

J

ª®®®®®®¬
N R

R O

©«
C

C

ª®®®®®®¬
K

L

©«
C R

C R

ª®®®®®®¬
B P

P M
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©«
A

A

ª®®®®¬
J

B

©«
C

C

ª®®®®¬
J

ε

©«
N

N

ª®®®®¬
ε

J

©«
R

R

ª®®®®¬
ε

O

©«
C

C

ª®®®®¬
K

L

©«
C R

C R

ª®®®®¬
B

ε

©«
P

P

ª®®®®¬
ε

M

For the first pair we have ρ∗ = 7, m = 6, p = 1, and M = 5. For the second pair we have
ρ∗ = 7, m = 8, p = 5, and M = 3. Our algorithms allow us to calculate all optimal decompositions
with distinct measure of similarity. Authors from [151] prefer the second pair of decomposition
since it has maximal possible measure of similarity. We consider more preferable the first pair,
which has the maximal proper similarity.

In fact, for any two non-empty strings there exist the parallel decompositions with maximal
measure of similarity and the optimal decompositions on which measure of similarity is minimal.
The following example shows that there exist some exotic non optimal parallel decompositions
a = a′1a′2 · · · a

′
q and b = b′1b′2 · · · b

′
q, such that for optimal decompositions a = a1a2 · · · an and

b = b1b2 · · · bn we have m′ < m, p′ < p and M′ > M .

Example 3.5.6. Let a = ABCDEF and b = CDEFED be trivial non optimal decompositions of
strings a, b, and a = ABCDEFεε and b = εεCDEFED be their optimal decompositions. Then
m′ = 1, r′ = 5, p′ = p′l = p′r = 0 and m = 4, r = 4, p = 4, pl = pr = 2. In this example we have that
M′l = M′r = M′ = m′ − p′ = 1 − 0 = 1 > 0 = 4 − 4 = m − p = M , m′ − r′ = −4 < 0 = m − r , Ml =
4 − 2 = 2 > 1 = M′l , Mr = 4 − 2 = 2 > 1 = M′r .

Example 3.5.7. Let a = AAAACCC and b = CCCBBBB be trivial optimal decompositions of
strings a, b, and a = AAAACCCεεεε and b = εεεεCCCBBBB be their non-optimal decomposi-
tions. Then m′ = 3, r′ = 8, p′ = 8 and m = 0, r = 7, p = pl = pr = 0. In this example we have that
−5 = m′ − r′ > m − r = −7 and −5 = m′ − p′ < m − p = 0.

The above examples show that Theorem 3.3.1 cannot be improved in the case of m′ < m.

3.6. Conclusions for chapter 3

An important role plays the measures of similarity between information, how much we
distinguish one sequence of information from another. Distance is one of the general methods of
establishing similarity. One of the building steps of the process of computing measure of similarity
is generating the parallel decompositions of a pair of strings. We presented the pseudocode of the
algorithm 3 that builds all optimal parallel decompositions of two strings. Efficiency, penalty and
similarity were defined for given parallel decompositions. Decompositions with minimal penalty
and maximal proper similarity are of significant interest. Moreover, if we consider the problem
of text editing and correction, the optimal decompositions are more favorable. Therefore, optimal
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decompositions are the best parallel decompositions andwemay solve the stringmatching problems
only on class of optimal decompositions.

The obtained relations between efficiency, penalty and similarity permit to formulate the
following conclusions:

1. For any two non-empty strings there exist parallel decompositions with maximal measure of
similarity and optimal decompositions on which measure of similarity is minimal.

2. On the class of all optimal decompositions of given two strings:

– the maximal measure of proper similarity is attained on the optimal parallel decompo-
sition with minimal penalties (minimal measure of similarity);

– the minimal measure of proper similarity is attained on the optimal parallel decompo-
sition with maximal penalties (maximal measure of similarity).

3. It was established that optimal decompositions:

– describe the proper similarity of two strings;

– permit to obtain long common sub-sequences;

– permit to calculate the distance between strings;

– permit to appreciate changeability of information over time.
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4. GEOMETRICAL AND TOPOLOGICAL ASPECTS OF INFORMATION
ANALYSIS

This chapter is the final chapter of this thesis, and focuses on the applicative part of the
theoretical results obtained in previous chapter. More specifically, the problem of constructing
the weighted means and the bisector sets of a pair of strings is solved in this chapter. Next, the
analysis of the question of the convexity of the set of the weighted means is presented. The chapter
concludes with the study of the image processing methods using the notions of scattered and digital
spaces. One of the results of this study establishes that the Khalimsky topology is the minimal
digital topology in the class of all symmetrical topologies on the discrete line Z.

The results of the research presented in this chapter, along with the results discussed in the
previous chapters fully cover the research goals stated in the first chapter. The results from this
chapter are published in the articles [39, 40, 41, 42, 60, 61, 65] and can be applied in the study of
various theoretical as well as practical problems.

4.1. Construction of the weighted means of a pair of strings

On the given alphabet Ā = A ∪ {ε} fix a quasi-metric d with the Graev extension dG.

Lemma 4.1.1. Let a, b, c ∈ L(A), n ≥ 1 and a′ = a1a2...an, b′ = b1b2...bn, c′ = c1c2...cn be
representations of the strings a, b, c respectively. If

dG(a, b) = Σ{d(ai, bi) : i ≤ n} = Σ{d(ai, ci) + d(ci, bi) : i ≤ n},

then the following assertions hold:
1. The strings a′ = a1a2...an and b′ = b1b2...bn form the parallel d-optimal representations

of the pair of strings a and b.
2. The strings a′ = a1a2...an and c′ = c1c2...cn form the parallel d-optimal representations

of the pair of strings a and c.
3. The strings c′ = c1c2...cn and b′ = b1b2...bn form the parallel d-optimal representations

of the pair of strings c and b.

Proof: Follows from the inequality dG(x, y) ≤ dG(x, z) + dG(z, y), for any strings x, y, z ∈

L(A). �
We define the following sets:

MdG (a, b) = {x ∈ L(A) : dG(a, b) = dG(a, x) + dG(x, b)}

and
M∗dG (a, b) = {x ∈ L∗(A) : dG(a, b) = dG(a, κ(x)) + dG(κ(x), b)}
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as the sets of weighted d-means of the oriented pair of strings a, b ∈ L(A).
Assume that

MdH (a, b) = {x ∈ L∗(A) : dH(a, b) = dH(a, x) + dH(x, b)}

is the set of H-weighted d-means of the oriented pair of strings a, b ∈ L∗(A).
First, we construct equivalent representations of strings from MdG (a, b) with respect to given

parallel d-optimal decompositions of a and b.

Theorem 4.1.1. Any fixed parallel d-optimal decompositions of a pair given strings a, b ∈ L(A)

generate weighted means, simultaneously with their equivalent representations, which form parallel
d-optimal decompositions with the fixed representations of the given strings.

Proof: We present the proof by construction. Let a′ = a1a2...an and b′ = b1b2...bn be
the fixed parallel d-optimal decompositions of the strings a and b. Denote M̄∗dG (a

′, b′) = {c =
c1c2...cn ∈ L∗(A) : dH(a′, c) + dH(c, b′) = dG(a, b)} and M̄dG (a

′, b′) = {κ(c) : c ∈ M̄∗dG (a
′, b′)},

where κ : L∗(A) −→ L(A) is the operation of the identification.
We aim to construct strings of form c′ = c1c2...cn such that for c = κ(c′) we have dG(a, b) =

dG(a, c) + dG(c, b) = Σ{d(ai, ci) + d(ci, bi) : i ≤ n}.
For each i ≤ n we fix ci ∈ Md(ai, bi) = {x ∈ Ā : d(ai, x) + d(x, bi) = d(ai, bi)} and put c′ =

c1c2...cn. Let c = κ(c′). From Lemma 4.1.1 it follows:

• the strings a′ = a1a2...an and c′ = c1c2...cn form the parallel d-optimal representations of the
pair of strings a and c;

• the strings c′ = c1c2...cn and b′ = b1b2...bn form the parallel d-optimal representations of the
pair of strings c and b;

• dG(a, b) = dG(a, c) + dG(c, b);

• c ∈ MdG (a, b).

The numbers n(a′, b′) = |M̄dG (a
′, b′)| and n∗(a′, b′) = |M̄∗dG (a

′, b′)| are estimated by the fol-
lowing relations:

n(a′, b′) ≤ n∗(a′, b′) = Π{|Md(ai, bi)|i ≤ n},

Π{|Md(ai, bi)|i ≤ n} ≥ 2|{i≤n:ai,bi}|.

This completes the proof of the theorem. �
In the case of discrete metric when dG(a, b) is an even number, we have the following

algorithm for constructing the medians of a pair strings:
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Algorithm 5:Medians of OPD of x and y:
Given x, y ∈ L(Ā) construct m ∈ L(Ā), s.t. d∗(x,m) = d∗(m, y).
Data: x = x1x2 . . . xn, y = y1y2 . . . ym.
Result: Set M of median strings m.

1 d := d∗(x, y);
2 if d is odd then
3 return "distance d∗(x, y) is odd, set M is an empty set."
// Generate Optimal Parallel Decompositions of strings x,y

4 OPD(x, y) := BuildOPD(x,y);
5 I = {i : 1 ≤ i ≤ l∗(x′)};
6 foreach (x′, y′) ∈ OPD(x, y) do
7 I1 = {i : x′i = y′i };
8 I2 = I \ I1;
9 foreach I3 = Choose (|I | − d)/2 elements from I2 do

10 m := m1m2 . . .m|I |, where mi=

{
x′i, i ∈ I1 ∪ I3

y′i, otherwise.
11 M := M ∪ {m};
12 return M;

Remark 4.1.1. One can notice that the median of a pair of strings is a special case of the above
theorem. In particular, if C ⊂ {1, 2, ..., n}, and

Σ{d(ai, bi) : i ∈ C} = Σ{d(ai, bi) : i < C},

putting ci = ai for i ∈ C and ci = bi for i < C, for c = κ(c1c2...cn) we get dG(a, b) = 2dg(a, c) =
2dG(c, b) and c is an element of the median of a pair of strings a, b.

Further we present an important result which will be used to prove the converse of Theorem
4.1.1.

Lemma 4.1.2. Let a, b and c be three strings for which dG(a, b) = dG(a, c) + dG(c, b). Then there
exist n ≥ 1 and the strings a′ = a1a2...an, b′ = b1b2...bn and c′ = c1c2...cn such that:

1. The strings a′ = a1a2...an and b′ = b1b2...bn form the parallel d-optimal representations
of the pair of strings a and b.

2. The strings a′ = a1a2...an and c′ = c1c2...cn form the parallel d-optimal representations
of the pair of strings a and c.

3. The strings c′ = c1c2...cn and b′ = b1b2...bn form the parallel d-optimal representations
of the pair of strings c and b.

4. The representation c′ = c1c2...cn of the string c ∈ MdG (a, b) is generated by the parallel
d-optimal representations a′ = a1a2...an, b′ = b1b2...bn of the pair of strings a and b.

Proof: First we examine the case when c ∼ ε, i.e. the string c is equivalent to ε. We fix the
parallel d-optimal representations a′ = a1a2...an and b′ = b1b2...bn of the pair of strings a and b.
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Then we put c′ = c1c2...cn, where ci = ε for each i ≤ n. In this case the assertions of Lemma are
proved.

Assume now that the κ(c) , ε. Then l(c) = k ≥ 1. In this case we use the following
algorithm:

1. Fix the parallel d-optimal representations a1 = u1u2...up and c1 = v1v2...vp of the pair of
strings a and c and the parallel d-optimal representations c2 = w1w2...wm and b2 = z1z2...zm of the
pair of strings c and b.

2. We determine the sets {i ≤ p : vi , ε} = {i j : j ≤ k} and {i ≤ m : si , ε} = {s j : j ≤ k},
where 1 ≤ i1 < i2 < ... < ik ≤ p and 1 ≤ s1 < s2 < ... < sk ≤ m.

3. We calculate n1 =max{i1, s1}, n2 =max{i2−i1, s2−s1} + n1, ..., nk =max{ik−ik−1, sk−sk−1}

+ nk−1, n = nk+1 = max{p − ik,m − sk} + nk .
4. Fix twomonotone injectionmappings f : {1, 2, ..., p} → {1, 2, ..., n} and g : {1, 2, ...,m} →

{1, 2, ..., n} such that f (i1) = g(s1) = n1 and f (i j) = g(s j) = n j for each j ≤ k.
5. We construct the string c′ = c1c2...cn, where cnj = vij = wsj for each j ≤ k and ci= ε if

i < {n1, n2, ..., nk}.
6. Fix the representation a′ = a1a2...an of the string a such that anj = uij for each j ≤ k. We

can assume that a f (i) = ui for each i ≤ p and ai = ε for i < f ({1, 2, ..., p}).
7. Fix the representation b′ = b1b2...bn of the string a such that bnj = zsj for each j ≤ k. We

can assume that bg(i) = zi for each i ≤ m and bi = ε for i < g({1, 2, ...,m}).
8. The representations a′ = a1a2...an, b′ = b1b2...bn and c′ = c1c2...cn are constructed.
From the above, by construction, we obtain the following:

dH(a1a2...an, c1c2...cn) = dH(u1u2...up, v1v2...vp) = dG(a, c),

dH(c1c2...cn, b1b2...bn) = dH(w1w2...wm, z1z2...zm) = dG(c, b),

dG(a, b) ≤ dH(a1a2...an, b1b2...bn) ≤ Σ{d(ai, bi) : i ≤ n}.

Also, the following equalities hold:

Σ{d(ai, bi) : i ≤ n} = Σ{d(ai, ci) + d(ci, bi) : i ≤ n}

= dG(a, c) + dG(c, b) = dG(a, b).

Hence a′ = a1a2...an, b′ = b1b2...bn and c′ = c1c2...cn are the desired representations. The proof is
complete. �

We are now ready to state the converse of Theorem 4.1.1.
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Corollary 4.1.1. Any weighted mean of a fixed pair of strings is generated by some of their optimal
parallel decompositions.

Remark 4.1.2. Let a, b ∈ L(A). Then from Lemma 4.1.2 it follows:
1. Any weighted mean of a fixed pair of strings is generated by some of their optimal

irreducible parallel decompositions.
2. If for any x, y ∈ Ā the set Md(x, y) of all weighted means is finite, then of the oriented pair

of points a, b ∈ L(A) the set Md(a, b) of all weighted means is finite too.

Lemma 4.1.2 is not true for arbitrary strings.

Example 4.1.1. Let {0, 1} ⊂ A, where 0 , 1. Consider that d(x, x) = 0 for any x ∈ Ā and d(x, y)

= 1 for any distinct elements x, y ∈ Ā. We say that d is the discrete metric on Ā. Then d, dH and
dG are metrics.

Consider the canonical strings a = 01, b = 0 and c = 1. We have dG(a, b) = dH(a, b) =
dG(a, c) = dH(a, c) = dG(c, b) = dH(c, b) = 1.

Fix the representations a′ = a1a2...an, b′ = b1b2...bn and c′ = c1c2...cn of the strings a, b

and c respectively. Assume that:
- the strings a′ = a1a2...an and b′ = b1b2...bn form the parallel d-optimal representations of

the pair of strings a and b.
- the strings a′ = a1a2...an and c′ = c1c2...cn form the parallel d-optimal representations of

the pair of strings a and c.
There exist 1 ≤ i < j ≤ n such that ai = 0, a j = 1 and as = ε for s < {i, j}. Since dG(a, b) =

Σ{d(as, bs) : s ≤ n} = 1, we have bi = 0 and bs = ε for s , i. Since dG(a, c) = Σ{d(as, cs) : s ≤ n}

= 1, we have c j = 1 and and cs = ε for s , j. Thus dH(b1b2...bn, c1c2...cn) =2 > 1 =dG(b, c) and
the strings c′ = c1c2...cn and b′ = b1b2...bn does not form the parallel d-optimal representations
of the pair of strings c and b. Thus the requirement dG(a, b) = dG(a, c)+ dG(c, b) is essential in the
conditions of Lemma 4.1.2.

Example 4.1.2. Let {0, 1} ⊂ A, where 0 , 1. Consider that d(x, x) = 0 for any x ∈ Ā and d(x, y)

= 1 for any distinct elements x, y ∈ Ā. Then d, dH and dG are metrics.
Let a′ = a1a2...an and b′ = b1b2w2 . . . bnun be the fixed parallel d-optimal decompositions

of the strings a and b. Let N = {i ≤ n : ai , bi}. For any proper subset M of N we put cM =
c1c2...cn, where ci = ai for i < M and ci = bi for i ∈ M . For the improper subsets we have c∅ =a

and cN = b. As was proved in Theorem 4.1.1, c = κ(cM) ∈ MdG (a, b). We observe that M̄∗dG (a
′, b′)

is the set of all strings cM , M ⊂ N , and M̄dG (a
′, b′) = κ(M̄∗dG (a

′, b′)).
The number n∗(a′, b′) of such strings from the set M̄∗dG (a

′, b′), generated by the above method,
is equal to 2|N |. We mention that the number n(a′, b′) of the canonical strings M̄dG (a

′, b′) may be
< 2|N |.
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Let a = 1 and b = 0000 be the canonical representation of the given strings. We have dG(a, b)

= dH(a, b)= 4. For a and bwe have the following parallel d-optimal decompositions a′= 1εεε, b′=
0000. These parallel decompositions generate the following eight canonical strings 1, 0, 00, 10, 000,
100, 0000, 1000. We have M̄dG (a

′, b′) = {1, 0, 00, 10, 000, 100, 0000, 1000}, N = {1, 2, 3, 4} and 8 =
|CdG (a

′, b′)| < 2|N | = 24 =16. The other parallel d-optimal decompositions a′′= εεε1, b′′= 0000 of
a, b present the following set of canonical strings M̄dG (a

′′, b′′) = {1, 0, 00, 01, 000, 001, 0000, 0001}
with N = {1, 2, 3, 4}. We have that M̄dG (a

′, b′) ∩ M̄dG (a
′′, b′′) = {1, 0, 00, 000, 0000}.

Let a, b ∈ L∗(A). The following remarks shows that the construction of the H-weighted d-
means c ∈ MdH (a, b) is more simple than the construction of the weighted d-means c ∈ MdG (a, b).

Remark 4.1.3. Let a, b ∈ L(A). Then:
1. If x, y ∈ L∗(A), x ∼ y and x ∈ M∗dG (a, b), then y ∈ M∗dG (a, b).
2. If x ∈ L∗(A), x ∼ y, then x ∈ M∗dG (a, b) if and only if κ(x) ∈ MdG (a, b).

If a ∈ L∗(A), c = c1c2...cn, n ≥ 1 and ci = a for any i ≤ n, then we put c = an.

Remark 4.1.4. Let a, b, c ∈ L∗(A) and n ≥ 1. Then c ∈ MdH (a, b) if and only if c · εn ∈ MdH (a, b).
The string c = c1c2...cn is called H-irreducible if n = 1 or cn , ε. Hence are true the following
two assertions:

1. l∗(c) ≤ max{l∗(a), l∗(b)} for any H-irreducible element c ∈ MdH (a, b).
2. If the string c ∈ MdH (a, b) is not H-irreducible, then there exist a unique H-irreducible

string c′ ∈ MdH (a, b) and a number n = l∗(c) − l∗(c′) such that c = c′ · εn.

Assume that

M̄dH (a, b) = {x ∈ MdH (a, b) : l∗(c) = max{l∗(a), l∗(b)}}

is the set of H-weighted d-means c of the oriented pair of strings a, b ∈ L∗(A) with l∗(c) =
max{l∗(a), l∗(b)}.

Remark 4.1.5. We present below the algorithm of construction of elements from MdH (a, b). From
the above remark it follows that is sufficient to construct the strings c ∈ MdH (a, b) for which l∗(c)

= max{l∗(a), l∗(b)}. Fix two strings a, b ∈ L∗(A) with p = l∗(a) and l∗(b) = q.
1. We put n = max{p, q}.
2. We construct:
- a′ = a = a1a2...an and b′ = b = b1b2...bn if p = q;
- a′ = a · εq−p = a1a2...an and b′ = b b1b2...bn if p < q;
- a′ = a = a1a2...an and b′ = b · εp − q = b1b2...bn if q < p.
3. For each i ≤ n we fix ci ∈ Md(ai, bi) = {x ∈ Ā : d(ai, x) + d(x, bi) = d(ai, bi)}.
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4. Put c = c1c2...cn.
5. Have c ∈ M̄dH (a, b).
By construction, we have dH(a, b) = dH(a′, b′) = dH(a′, c) + dH(c, b′) = dH(a, c) + dH(c, b)

and c ∈ MdH (a, b).
One can observe that from dH(a, c) + dH(c, b) = dH(a, b) it follows that ci ∈ Md(ai, bi) for

each i ≤ n. Therefore, any string c ∈ M̄dH (a, b) with l∗(c) = n can be constructed by the above
algorithm. Hence that algorithm permit to construct all strings c ∈ MdH (a, b)

The number m∗(a, b) = |M̄dH (a, b)| is estimated by the following relations:

m∗(a, b) = Π{|Md(ai, bi)|i ≤ n} ≥ 2|{i≤n:ai,bi}|.

If d is discrete metric on Ā with d(x, y) = 1 for any pair of distinct elements x, y ∈ Ā, then
Md(x, y) = {x, y} for any x, y ∈ Ā and

m∗(a, b) = 2|{i≤n:ai,bi}| for any a, b ∈ L∗(A).

4.2. Problem of convexity of the set of weighted means

Let (X, d) be a metric space. A subset L ⊆ X is called d-convex if Md(a, b) ⊆ L for any
a, b ∈ L.

On the alphabet Ā = A∪ {ε} consider the distance metric d : d(x, x) = 0 and d(x, y) = 1 for
distinct x, y ∈ Ā. Any subset of (A, d) is d-convex. In 2016 Professor Gh. Zbăganu informed us
about the following questions:
Question 1. Is it true that the set MdH (a, b) is dH-convex in (L∗(A), dH) for any a, b ∈ L∗(A)?
Question 2. Is it true that the set MdG (a, b) is dG-convex in (L∗(A), dG) for any a, b ∈ L∗(A)?

Theorem 4.2.1. The set MdH (a, b) is dH-convex in (L∗(A), dH) for any a, b ∈ L∗(A).

Proof: We can assume that a = a1a2...an and b = b1b2...bn. Then x = x1x2...xn ∈ MdH (a, b)

if and only if xi ∈ {ai, bi} for any i ≤ n. If c = c1c2...cn, f = f1 f2... fn are two strings from
MdH (a, b) and x = x1x2...xn ∈ MdH (c, f ), then xi ∈ {ci, fi} ⊆ {ai, bi} ∪ {ai, bi} = {ai, bi} and
x ∈ MdH (a, b). The proof is complete. �

Theorem 4.2.2. There exists a finite alphabet A and two strings a, b ∈ L(A) for which the set
MdG (a, b) is not dG-convex.

Proof: The proof follows from the following examples. �
For a metric space, it is easy to construct an example where d-convex property does not hold.
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Example 4.2.1. Consider a, b, c, c1, c2 satisfying the following relations:

d(a, b) = 8, d(a, c1) = d(c1, b) = 4, d(c1, c2) = 6,

d(c1, c) = d(c, c2) = 3, d(a, c) = 6, d(c, b) = 4.

We have that c1, c2 ∈ Md(a, b) and c ∈ Md(c1, c2), but c < Md(a, b).

Although it is easy to find contradicting examples in general metric space, it is not so trivial
for the case of the space of strings. The examples with weighted means of strings presented below
give the answer to the above question.

Example 4.2.2. Let A = {A, B,C,D, E, F,G,H, I, J, L} and the strings a, b, c, c1, c2 defined as
follows:

a = CDBDHLBEBLAJ,
b = CABHDLIBFBLJG,

c1 = CDBHDHLBEBLAJ,
c2 = CABDHDLIBFBLAJG,
c = CDBDHDHLIBEBLAJG.

We compute the dG distance values for these strings using algorithm 1:

dG(a, b) = 7, dG(a, c1) = 1,
dG(c1, b) = 6, dG(c1, c2) = 6,

dG(c1, c) = dG(c, c2) = 3,
dG(a, c) = 4, dG(c, b) = 5.

We have that c1, c2 ∈ MdG (a, b) and c ∈ MdG (c1, c2), but c < MdG (a, b).

The previous example focuses on the weighted means of strings a and b. In the next example
we present a more elegant counter-example that studies the midpoints of a pair of strings.

Example 4.2.3. We compute the dG distance for these strings:

a = ZCBXAGB, b = XBDCYTGABK,
c1 = ZCBXYTGABK, c2 = XBDCYXAGB,

c = ZCBXYXAGB,

and get the following values:

dG(a, b) = 8, dG(a, c1) = dG(c1, b) = 4, dG(c1, c2) = 8,
dG(c1, c) = dG(c, c2) = 4, dG(a, c) = 2, dG(c, b) = 8.
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Analogously as in previous example, we obtained that c1, c2 ∈ MdG (a, b) and c ∈ MdG (c1, c2), but
c < MdG (a, b).

Example 4.2.4. Let A = {B,C,D, J,K, L, M, N,O, P,Q, R},

a = DJCJNRCKCRBP, b = DBCN JROCLCRPM,

a′ = DJCN JNRCKCRBP, b′ = DBCJN JROCLCRBPM,

c = DJCJN JNROCKCRBPM .

For the above strings, we have that:

dG(a, b) = 7, dG(a, a′) = 1, dG(a′, b) = 6, dG(a, b′) = 5,

dG(b′, b) = 2, dG(a′, b′) = 6, dG(a′, c) = dG(c, b′) = 3,

dG(a, c) = 4, dG(c, b) = 5.

Hence a′, b′ ∈ MdG (a, b), c ∈ MdG (a
′, b′), but c < MdG (a, b). Therefore, it follows that the set

MdG (a, b) is not convex.
In construction of strings a′, b′ and c we used the dG-optimal parallel representations of pairs

of strings a, b and a′, b′ respectively. The string a′ is constructed using the following dG-optimal
parallel representations:

©«
D

D

ª®®®®®®¬
J

B

©«
C

C

ª®®®®®®¬
ε

N

©«
J

J

ª®®®®®®¬
N R

R O

©«
C

C

ª®®®®®®¬
K

L

©«
C R

C R

ª®®®®®®¬
B P

P M

The string b′ is constructed using the following dG-optimal parallel representations:

©«
D

D

ª®®®®®®®¬
J

B

©«
C

C

ª®®®®®®®¬
J

ε

©«
N

N

ª®®®®®®®¬
ε

J

©«
R

R

ª®®®®®®®¬
ε

O

©«
C

C

ª®®®®®®®¬
K

L

©«
C R

C R

ª®®®®®®®¬
B

ε

©«
P

P

ª®®®®®®®¬
ε

M

The string c is constructed using the following dG-optimal parallel representations:

©«
D

D

ª®®®®®®®¬
J

B

©«
C

C

ª®®®®®®®¬
ε

J

©«
N J

N J

ª®®®®®®®¬
N

ε

©«
R

R

ª®®®®®®®¬
ε

O

©«
C

C

ª®®®®®®®¬
K

L

©«
C R B P

C R B P

ª®®®®®®®¬
ε

M

Example 4.2.5. Let alphabet A and strings a, b, a′, b′, c be as in the previous example. We put
m = QQQQQQQQ. Consider the strings amb, bma, a′ma′, b′mb′ and cmc. We obtain the

96



following:

dG(amb, bma) = 14,

dG(amb, a′ma′) = dG(a′ma′, bma) = 7,

dG(amb, b′mb′) = dG(b′mb′, bma) = 7,

dG(a′ma′, b′mb′) = 12,

dG(a′ma′, cmc) = dG(cmc, b′mb′) = 6,

dG(amb, cmc) = dG(cmc, bma) = 9.

Hence a′ma′, b′mb′ are from the middle of the segment MdG (amb, bma), the string cmc is from the
middle of the segment MdG (a

′ma′, b′mb′), but cmc < MdG (amb, bma).

4.3. Construction of the bisector of a pair of strings

The set BdG (a, b) = {x ∈ L(A) : dG(a, x) = dG(x, b)} is called the dG-bisector of an oriented
pair of irreducible strings a, b ∈ L(A).

The set BdH (a, b) = {x ∈ L∗(A) : dH(a, x) = dH(x, b)} is called the dH-bisector of an
oriented pair of strings a, b ∈ L∗(A). Also, we denote the set B̄dH (a, b) = {x ∈ BdH (a, b) : l∗(x) =

max{l∗(a), l∗(b)}}, and the set B0
dH
(a, b) = {x ∈ BdH (a, b) : l∗(x) ≤ max{l∗(a), l∗(b)}}.

Our aim is to construct the strings from BdH (a, b) and BdG (a, b).

Lemma 4.3.1. BdH (ε, ε) = BdG (ε, ε).

Lemma 4.3.2. Let a, b ∈ L∗(A), c ∈ BdH (a, b) and l∗(c) ≥ max{l∗(a), l∗(b)}. Then c · x ∈ BdH (a, b)

for any x ∈ BdH (ε, ε).

Corollary 4.3.1. BdH (a, b) = B0
dH
(a, b) ∪ {x · y : x ∈ B̄dH (a, b), y ∈ BdH (ε, ε)}.

Lemma 4.3.3. Let a, b ∈ L∗(A) and c ∈ BdH (a, b). Then c · ε ∈ BdH (a, b).

Hence the set B0
dH
(a, b) is determined by the set B̄dH (a, b) and the set BdH (a, b) is determined

by the sets B̄dH (a, b) and BdH (ε, ε). We can assume that the set BdH (ε, ε) is well determined. For
instance, if d is a metric, then BdH (ε, ε) = L∗(A). Therefore, it is sufficient to propose methods of
construction of the strings from B̄dH (a, b). Moreover, we can assume that l∗(a) = l∗(b).

Theorem 4.3.1. Let a = a1a2...an and b= b1b2...bn be two strings from L∗(A). There exist methods
to construct elements c = c1c2...cn ∈ B̄dH (a, b).
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Proof: We present the proof by construction.
Method 1.We divide the construction process of c into following steps:
Step 1. We fix two disjoint subsets P andQ of the set {1, 2, ..., n} for whichΣ{d(ai, bi) : i ∈ P}

= Σ{d(bi, ai) : i ∈ Q}.
Step 2. For each i ∈ R = {1, 2, ..., n} \ P ∪ Q fix an element ci ∈ Bd(ai, bi) = {x ∈ Ā :

d(ai, x) = d(x, bi)}.
Step 3. For each i ∈ P we put ci = ai.
Step 4. For each i ∈ Q we put ci = bi.
Step 5. We put c = c1c2...cn.
We affirm that c = c1c2...cn ∈ B̄dH (a, b). Indeed, dH(a, c) = Σ{d(ai, ci) : i ∈ P} + Σ{d(ai, ci) :

i ∈ Q} + Σ{d(ai, ci) : i ∈ R} = Σ{d(ai, ai) : i ∈ P} + Σ{d(ai, bi) : i ∈ Q} + Σ{d(ai, ci) : i ∈ R} =
Σ{d(ai, bi) : i ∈ Q} + Σ{d(ai, ci) : i ∈ R} and dH(c, b) = Σ{d(ci, bi) : i ∈ P} + Σ{d(ci, bi) : i ∈ Q}

+ Σ{d(ci, bi) : i ∈ R} = Σ{d(ai, bi) : i ∈ P} + Σ{d(bi, bi) : i ∈ Q} + Σ{d(ci, bi) : i ∈ R} =
Σ{d(ai, bi) : i ∈ P} + Σ{d(ci, bi) : i ∈ R}. Since Σ{d(ai, bi) : i ∈ P} = Σ{d(bi, ai) : i ∈ Q} and
Σ{d(ci, ai) : i ∈ R} = Σ{d(ci, bi) : i ∈ R}, we have dH(c, a) = dH(c, b) and c = c1c2...cn ∈ B̄dH (a, b).

Method 2. Method 2 is an extension of Method 1. We follow the same steps as in Method
1, with some modification :

Step 2′. For each i ∈ R = {1, 2, ..., n} \ P ∪ Q we take ci such that Σ{d(ai, ci) : i ∈ R}

=Σ{d(ci, bi) : i ∈ R}.
This completes the proof of the theorem. �

Remark 4.3.1. Theorem 4.3.1 permits to propose a method of construction of some elements from
the dG-bisector BdG (a, b) = {x ∈ L(A) : dG(a, x) = dG(x, b)}:

Step 1. Fix the parallel decompositions a′ = a1a2...an and b′ = b1b2...bn of the strings
a, b ∈ L(A).

Step 2. By the Method 1 construct some c = c1c2...cn ∈ B̄dH (a, b).
Step 3. Compute dG(c, a) and dH(c, b).
Step 4. If dG(a, c) = dH(c, b), then c ∈ BdG (a, b)

Example 4.3.1. Let B = {0, 1, 2, 3} ⊂ A. Consider the metric d on Ā for which:
- d(x, x) = 0 and d(x, y) = d(y, x) for any x, y ∈ Ā;
- d(x, y) = 2 for any distinct elements x, y ∈ Ā with {x, y} \ B , ∅;
- d(0, 1) = d(0, 2) = d(1, 3) = d(2, 3) = 2, and d(0, 3) = d(1, 2) = 3.

Then d, dH and dG are metrics.
For a = 00, b = 11 and c = 23 we have:
- dH(a, b) = dG(a, b) = 4;
- dH(a, c) = dG(a, c) = 5;
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- dH(c, b) = dG(c, b) = 5;
- c ∈ BdG (a, b) ∩ B̄dH (a, b);
- the string c is not constructible in B̄dH (a, b) by Method 1. String c is constructed by Method

2.

Example 4.3.2. Let c be the cardinality of continuum. There exists a subset P of the interval [1, 2]
with the following properties:

- |P | = c, where c is the power of continuum;
- if k ≥ 1, t1, t2, ..., tk ∈ P, n1,m1, n2,m2, ..., nk,mk ∈ N andΣ{ni ·ti : i ≤ k}=Σ{mi ·ti : i ≤ k},

then ni = mi for each i ≤ k.
Consider that P = {tµ : µ ∈ M}. Let A be a non-empty set such that 2 ≤ |A| ≤ c. Fix on Ā

some linear ordering �. Denote by {(xγ, yγ) : γ ∈ Γ} the set of all ordered pairs (x, y) ∈ Ā × Ā

for which x � y and x , y. Fix an injection ϕ : Γ −→ P. We put d(x, x) = 0 for any x ∈ Ā and
d(xγ, yγ) = d(yγ, xγ) = ϕ(γ) for any γ ∈ Γ. Then the mapping d : Ā × Ā −→ P ∪ {0} is a metric
on Ā with the properties:

- d(x, y) = 0 if and only if x = y;
- d(x, y) = d(y, x) for all x, y ∈ Ā;
- if (x, y) , (u, v) and x , y, then d(x, y) , d(u, v);
- if x 66= y, then d(x, y) ∈ P.
In this case for any strings a, b, c ∈ L∗(A) with c < {a, b} we have dH(a, c) , dH(c, b). Hence

BdH (a, b) = ∅ for any distinct strings a, b ∈ L∗(A). In particular, BdG (a, b) = ∅ for any distinct
strings a, b ∈ L(A).

Lemma 4.3.4. Let d be a quasi-metric on Ā and a, b and c be three strings from L(A). Then there
exist n ≥ 1 and the strings a′ = a1a2...an, b′ = b1b2...bn and c′ = c1c2...cn such that:

1. The strings a′ = a1a2...an and b′ = b1b2...bn form the parallel representations of the pair
of strings a and b.

2. The strings a′ = a1a2...an and c′ = c1c2...cn form the parallel d-optimal representations
of the pair of strings c and a.

3. The strings c′ = c1c2...cn and b′ = b1b2...bn form the parallel d-optimal representations
of the pair of strings c and b.

Proof: We begin by examining the case when c ∼ e. We fix the parallel d-optimal represen-
tations a′ = a1a2...an and b′ = b1b2...bn of the pair of strings a and b. Then we put c′ = c1c2...cn,
where ci = ε for each i ≤ n. In this case the assertions of Lemma are proved.

Assume now that the κ(c) , ε. Then l(c) = k ≥ 1. In this case we use the following
algorithm:
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1. Fix the parallel d-optimal representations a1 = u1u2...up and c1 = v1v2...vp of the pair of
strings a and c, and the parallel d-optimal representations c2 = w1w2...wm and b2 = z1z2...zm of the
pair of strings c and b.

2. We determine the sets {i ≤ p : vi , ε} = {i j : j ≤ k} and {i ≤ m : si , ε} = {s j : j ≤ k},
where 1 ≤ i1 < i2 < ... < ik ≤ p and 1 ≤ s1 < s2 < ... < sk ≤ m.

3. We calculate n1 =max{i1, s1}, n2 =max{i2−i1, s2−s1} + n1, ..., nk =max{ik−ik−1, sk−sk−1}

+ nk−1, n = nk+1 = max{p − ik,m − sk} + n = nk .
4. Fix twomonotone injectionmappings f : {1, 2, ..., p} → {1, 2, ..., n} and g : {1, 2, ...,m} →

{1, 2, ..., n} such that f (i1) = g(s1) = n1 and f (i j) = g(s j) = n j for each j ≤ k.
5. c′ = c1c2...cn, where cni = vi1 = wsj for each j ≤ k and ci= ε if i < {n1, n2, ..., nk}.
6. Fix the representation a′ = a1a2...an of the string a such that anj = uij for each j ≤ k. We

can assume that a f (i) = ui for each i ≤ p and ai = ε for i < f ({1, 2, ..., p}.
7. Fix the representation b′ = b1b2...bn of the string a such that bnj = zsj for each j ≤ k. We

can assume that bg(i) = zi for each i ≤ m and bi = ε for i < g({1, 2, ...,m}.
8. The representations a′ = a1a2...an, b′ = b1b2...bn and c′ = c1c2...cn are constructed.
Indeed, by construction, dH(a1a2...an, c1c2...cn) = dH(u1u2...up, v1v2...vp) = dG(a, c) and

dH(c1c2...cn, b1b2...bn) = dH(w1w2...wm, z1z2...zm) = dG(c, b) Hence a′ = a1a2...an, b′ = b1b2...bn

and c′ = c1c2...cn are the desired representations. The proof is complete. �
The method presented in the above Lemma 4.3.4 of constructing strings a′, b′, and c′ is called

the strings alignment process of a, b, and c.
The following theorem shows that Method 1 permits to construct all points of the set BdG (a, b)

for the special metric d.

Theorem 4.3.2. Let A be a non-empty set and consider on Ā the discrete metric d with d(x, x)

= 0 for any x ∈ Ā and d(x, y) = 1 for any distinct elements x, y ∈ Ā. For any a, b ∈ L(A)

and c ∈ BdG (a, b) there exist the parallel decompositions a′ = a1a2...an, b′ = b1b2...bn and c′ =
b1b2...bn of the strings a, b and c, respectively, such that:

1. c′ = c1c2...cn ∈ B̄dH (a
′, b′) and the string c′ is constructible by Method 1 in B̄dH (a

′, b′).
2. The representations a′, b′, c′ satisfy conditions of Lemma 4.3.4.

Proof: In this case dH and dG are metrics.
By virtue of Lemma 4.3.4, there exist n ≥ 1 and the strings a′ = a1a2...an, b′ = b1b2...bn and

c′ = c1c2...cn such that:
1. The strings a′ = a1a2...an and b′ = b1b2...bn form the parallel representations of the pair

of strings a and b.
2. The strings c′ = c1c2...cn and a′ = a1a2...an form the parallel d-optimal representations of

the pair of strings c and a.
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3. The strings c′ = c1c2...cn and b′ = b1b2...bn form the parallel d-optimal representations of
the pair of strings c and b.

By construction, we have dG(a, c) = dH(a′, c′) = dH(c′, b′) = dG(c, b). We put Q = {i ≤ n :
ci = ai}, P = {i ≤ n : ci = bi} \ Q and R = {1, 2, ..., n} \ P ∪ Q = {i ≤ n : ci < {ai, bi}}. If
i ∈ Q \ P, then ci = ai = bi. Hence Σ{d(ai, ci) : i ∈ R} = Σ{d(ci, bi) : i ∈ R} = |R| = r , dG(a, c)

= Σ{d(ai, ci) : i ≤ n} = Σ{d(ai, ci) : i ∈ P} + Σ{d(ai, ci) : i ∈ Q} + Σ{d(ai, ci) : i ∈ R} =
Σ{d(ai, ci) : i ∈ P} + Σ{d(ai, ci) : i ∈ R} = |P | + q = p + r and dG(c, b) = Σ{d(ci, bi) : i ≤ n}

= Σ{d(ci, bi) : i ∈ P} + Σ{d(ci, bi) : i ∈ Q} + Σ{d(ci, bi) : i ∈ R} = Σ{d(ci, bi) : i ∈ Q} +
Σ{d(ci, bi) : i ∈ R} = p + r . Therefore ci = ai for i ∈ P, ci = bi for i ∈ Q, ci ∈ Bd(ai, bi) for i ∈ R

and Σ{d(ai, ci) : i ∈ P} = Σ{d(ci, bi) : i ∈ Q}. The proof is complete. �
Below we present the pseudo-code of alignment algorithm of a pair of equivalent strings:

Algorithm 6: Alignment of two equivalent strings:
Given x, y ∈ L(Ā) with x ∼ y, construct z ∈ L(Ā), s.t. (z, z) ∼ (x, y).
Data: x = x1x2 . . . xn, y = y1y2 . . . ym.
Result: String z.

1 i := 1, j := 1;
2 while (i <= n) or ( j <= m) do
3 if x

[
i
]
= y

[
j
]
then

4 z := z + x
[
i];

5 i := i + 1;
6 j := j + 1;
7 if (x

[
i
]
= ε) and (y

[
j
]
<> ε) then

8 z := z + ε;
9 i := i + 1;
10 if (y

[
j
]
= ε) and (x

[
i
]
<> ε) then

11 z := z + ε;
12 j := j + 1;
13 return z;

4.4. Alexandroff spaces

For a topological space X and the points a, b ∈ X we put O(a) = ∩{U ⊂ X : a ∈ U,U is
open in X} and a � b if and only if b ∈ clX {a}. Then � is an ordering on X and it is called the
Alexandroff order or the Alexandroff - Birkhoff order generated by the topology of the space X

[6, 34]. A binary relation � on a space X is an order if it is reflexive, antisymmetric and transitive,
i.e. for all a, b, c ∈ X , we have that:

- a � a (reflexivity);
- if a � b and b � a, then a = b (antisymmetry);
- if a � b and b � c, then a � c (transitivity).
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For a space X and point x ∈ X we put O(x) = ∩{U ⊂ X : x ∈ U,U is open in X} and A(x)

= O(x) ∪ clX{x}. If y ∈ A(x), then x ∈ A(y) and the points x, y are called adjacent points in the
space X .

Any ordering � on a set generates the topology T(�) with the base O(x, �) = {y ∈ X : y �
x} : x ∈ X}. The topological space (X, T(�)) is an Alexandroff space [6, 12].

Quasi-metric [14, 147] on a set X we call a function d : X × X −→ R with the properties:
(M1): d(x, y) ≥ 0 for all x, y ∈ X;
(M2): d(x, y) + d(y, x) = 0 if and only if x = y;
(M3): d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
If d(x, y) = d(y, x) for all x, y ∈ X , then the quasi-metric d is called a metric.
A function d with the properties (M1) and (M2) is called a distance on a set X . A function

d with the property (M1) is called a pseudo-distance on a set X . A function d with the properties
(M1) and (M3) is called a pseudo-quasi-metric on a set X .

Let d be a pseudo-distance on X and B(x, d, r) = {y ∈ X : d(x, y) < r} be the ball with the
center x and radius r > 0. The set U ⊂ X is called d-open if for any x ∈ U there exists r > 0 such
that B(x, d, r) ⊂ U. The family T(d) of all d-open subsets is the topology on X generated by d. A
pseudo-distance space is a sequential space, i.e. a set B ⊂ X is closed if and only if together with
any sequence it contains all its limits [87].

If d is a quasi-metric, then T(d) is a T0-topology. For any distance that statement is not true.
The pseudo-distance is an integer or a discrete pseudo-distance, if d(x, y) ∈ {0, 1, 2, ...} for

any x, y ∈ X [147, 56]. If d is a discrete quasi-metric on X , then O(a) = B(a, d, 1) for any point
a ∈ X and the space (X,T(d)) is an Alexandroff space.

If � is an ordering on a set X , then we define two quasi-metrics dl and dr on X , where:
- dl(x, x) = dr(x, x) = 0 and dl(x, y) = dr(y, x) for any x, y ∈ X;
- for x � y and x , y we put dl(x, y) = 1, dl(y, x) = 0, dr(x, y) = 0, dr(y, x) = 1;
- if x � y and y � x, then dl(x, y) = dr(x, y) = 1.
In this case ds(x, y) = dr(x, y)+ dl(x, y) is a metric. In general, a sum of quasi-metrics is also

a quasi-metric, and may not be a metric.
For any points a, b ∈ X we put (−, a] = {y ∈ X : y � a}, [a,+) = {y ∈ X : a � y} and [a, b]

= {y ∈ X : y � b} ∩ {y ∈ X : a � y}. As in [85, 90] we say that V is an f -set if V is open and
there exists a point oV ∈ V such that V = [oV,+). Any f -set is an ω-set. The set L = [a,+) is called
an ω-set and oL = a.

For any point a ∈ X we have B(x, dl, r) = (−, a] and B(x, dl, r) = [a,+) for any r ∈ (0, 1].
Obviously, T(�) = T(dr) is the topology induced by the ordering �.

If X is an Alexandroff space, then any set V = O(x) is an f -set with oV = x.
From the above, it follows:
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Theorem 4.4.1. For a topological space X the following assertions are equivalent:

1. X is an Alexandroff space.

2. Any ω-set is an f -set of X .

3. The topology of X is induced by some ordering.

4. The topology of X is generated by some integer pseudo-quasi-metric.

4.5. Scattered and digital topologies in image processing

Any topological space X is considered to be a Kolmogorov space, i.e. a T0-space: for any
two distinct points x, y ∈ X there exists an open subset U of X such that U ∩ {x, y} is a singleton
set [87]. Denote by clX F the closure of the set F in the space X and by |L | the cardinality of the
set L. Let ω = {0, 1, 2, ....}, N = {1, 2, ....} and ω(n) = {0, 1, 2, ..., n} for each n ∈ ω.

It is well known that distinct algebraic and topological structures have been introduced to
accommodate the needs of information theories. In the process of studying of the continuous
objects by the computer methods, they are approximated by finite objects or by digital images
[1, 31, 35, 56, 79, 126, 164, 166, 183].

Digital image processing is a process which from a topological point of viewmay be described
in the following way:

1. Fix an infinite space X (a continuous image of the original) and a property P of subspaces
of the space X .

2. By some procedure we construct a number n ∈ ω, a finite subset H = {hi : i ∈ ω(n)} ⊂ Z

of levels and a finite family {Gi : i ∈ ω(n)} of open non-empty subsets of the space X with the
properties:

- Gi ∩ Gk = ∅ for all 0 ≤ i < k ≤ n;
- for any i ∈ ω(n) and each x ∈ Gi there exists an open subset G(x) such that x ∈ G(x) ⊂ Gi

and G(x) is a subset with the property P in X;
- the set G = {Gi : i ∈ ω(n)} is dense in X .
The set G is the P-kernel and X \ G is the P-residue of the space X .
3. The intensity mapping IP : X → ω ⊆ H is determined with the property: IP(x) =

maximal{hi : x ∈ clXGi} for each x ∈ X . We have Gi ⊂ I−1
P
(hi) for each i ∈ ω(n).

4. On H is determined a digital topology for which the mapping IP is continuous.
5. By some procedure we construct a finite T0-space K and for any x ∈ X we determine a

non-empty subset DP(x) of K such that:
- for any c ∈ K the set X(c) = {x ∈ X : c ∈ DP(x)} is closed and is called a P-cell of X;

103



- for any c ∈ K there exist i ∈ ω(n) and an open non-empty subset X′(c) ⊂ Gi such that X(c)

= clX X′(c).
The family {X(c) : c ∈ K} is called a P-complex and the mapping DP represent an approx-

imation of X by a finite space K . Methods of constructions of the objects K , DP and X(c) are
called the methods of digitalization. This procedure is known in image processing literature as
"thinning", "skeletonization", "digitalization" and "segmentation" process. In the concrete situa-
tions, the P-cells are called pixels, voxels etc. The mapping DP can be considered as a model of a
digitizer.

Typical problems arising in this context are:
- Which topological (geometrical) properties does the finite spaces H and K share with the

space X?
- Is DP or its inverse mapping continuous in some sense as a set-valued mapping?
- Classification of points and curves in the digital spaces. Study of digital invariants.
- Determine more "simple" topologically (homotopically) equivalent spaces of the space X ,

if the space K is too complicated.
The inverse problem of discretization and digitalization is in some sense the problem of

finding a continuous model for a given finite space K .
Methods of discreteness of spaces bring us to the notions of a P-scattered space and of a

P-decomposable space.

4.6. Algorithms and scattered spaces

In many cases it is necessary to find a procedure or an algorithm that allows us to study from
a certain point of view a given space or some object. As a rule, this procedure of study can be
extended to a much larger class of spaces.

Let P be a property of spaces. We say that the subspace Y of X has the property P in X if
there exists a subspace Z of X with property P such that Y ⊂ Z . A space X is a space with local
property P if for any point x ∈ X there exists an open subspace U with the property P in X such
that x ∈ U.

In [68, 82, 189, 190] were introduced the following classes of spaces.

Definition 4.6.1. A space X is called a P-scattered space if for any non-empty closed subspace Y

of X there exists a non-empty open subset U of Y such that the subspace U has the property P in X .

Definition 4.6.2. A space X is called a P-decomposable space if there exist an ordinal number
α0 ≥ 1 and a family {Xα : α < α0} of non-empty subspaces of X such that:

1) X = {Xα : α < α0} and Xα ∩ Xβ = ∅ for any 0 ≤ α < β < α0;
2) the set ∪{Xα : α < β} is open in X for each β ≤ α0;
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3) Xα is a space with local property P in X .
We say that {Xα : α < α0} is a P-decomposition of the space X .

If X is a P-decomposable space, then the index of P-decomposition idP(X) is the minimal
ordinal number α0 for which there exists a P-decomposition {Xα : α < α0} of the space X .

In [68, 82, 189, 190] were proved the following assertions:
A1. Any P-scattered space is P-decomposable. In this case idP(X) is the index of P-

scatteredness of the space X .
A2. If any closed subspace of a space with property P is a space with the property P, then

any P-decomposable space is P-scattered.
A3. Any non-empty closed subspace of a P-scattered space is a P-scattered space.
A4. If any non-empty subspace of a space with property P is a space with the property P,

then any subspace of a P-scattered space is a P-scattered space.
Let X be a P-scattered space. IfY is a closed subspace of X , then P-kernelX(Y ) = ∪{U ⊂ Y :

U is open in Y and has property P in X}. Let X0 = P-kernelX(X) and Xα = P-kernelX(X \ ∪{Xβ :
β < α}) for each ordinal number α. Then idP(X) = minimal{α : Xα = ∅}.

Example 4.6.1. Let C be the property of a space to be a connected space. Then any connected or
locally connected space is a C-decomposable space. A closed subspace of a connected space is
not obligatory connected. The unit segment [0, 1] in the Euclidean topology is connected and the
Cantor subspace of the unit interval does not have any non-empty open connected subsets. Hence,
[0, 1] is a C-decomposable space but is not a C-scattered space.

Example 4.6.2. Let S be the property of a space to be a singleton space. The S-scattered space is
called a scattered space. A space X is scattered if for any non-empty subspace Y of X there exists
a point y ∈ Y such that the set {y} is open in Y , i.e. y is an isolate point of Y . Denote by ids(X) =
idS(X) the index of scateredness of the scattered space X . Any S-decomposable space is scattered.

Example 4.6.3. Let k be the property of a space to be a compact space. A space X is k-scattered if
for any non-empty closed subspaceY of X there exist a non-empty open subsetU ofY and a compact
subset F of Y such that U ⊂ F [7, 188]. Any closed subspace of a k-scattered space is k-scattered.
A subspace of a k-scattered space is not obligatory k-scattered. Indeed, the subspace of rationals
from the unit interval [0, 1] is not k-scattered whereas the unit interval is k-scattered. Any scattered
space is k-scattered. The unit interval is k-scattered but not scattered. Any k-decomposable space
is k-scattered.

Example 4.6.4. Let SP be the property: intersection of a countable family of open subsets is open.
A space X is SP-scattered [113] if for any non-empty subspaceY of X there exists a non-empty open
subset U ofY such that U is a space with the property SP. Any subspace of a SP-scattered space is

105



SP-scattered. Any scattered space is SP-scattered. Any SP-decomposable space is SP-scattered.
A space with the property SP is called a P-space. A point a ∈ X of a space X is a P-point if any
countable family of neighbourhoods of the point a contains a neighbourhood of the point a in X .
A space X is a P-space if any point a ∈ X is a P-point. There exists a hereditarily paracompact
not scattered P-space.

Example 4.6.5. Let FP be the property of a space to be a finite space. A space X is FP-scattered
[113] if for any non-empty subspace Y of X there exists a non-empty open subset U of Y such that
U is a finite set. Any subspace of a FP-scattered space is FP-scattered. A space is scattered if and
only if it is FP-scattered.

We mention the following universal theorem.

Theorem 4.6.1. Let P, Γ and Q be the properties of spaces with the following conditions:

– any space with property P has the properties Q and Γ;

– a closed subspace of the space with the property Γ is a space with the property Γ;

– if Y = Z ∪ S is a space with the property Γ, where S is a closed subspace with property P
and Z is a subspace with local property Q in Y , then the space Y has the property Q;

– if S and Z are open subspaces of the space Y with the property Γ, F is a subspace of Y with
the property P and x ∈ S \ Z ⊂ F, then there exist an open subset U of Y and a subspace Φ
with the property Γ such that x ∈ U, U ⊂ Φ ⊂ Z ∪ (F \ Z) and Φ \ Z has the property P.

Then any P-decomposable space X with the property Γ has the property Q.

Proof. Fix a P-decomposition {Xα : α < α0} of the space X . It is sufficient to prove that X

is a space with local property P. For any point x ∈ X we will construct an open subset Ux with the
property Q in X such that x ∈ Ux.

If x ∈ X0 then there exists an open subset Ux with the property P in X such that x ∈ Ux.
Since any subspace with the property P in X has the property Q in X , then Ux has the property Q

in X such that x ∈ Ux.
Assume that 0 < α < α0 and for any point x ∈ ∪{Xβ : β < α} the open setUx is constructed.

Fix a point a ∈ Xα. Then there exist an open subset S of X and a subset F of X with the property
P such that x ∈ S ⊂ ∪{Xβ : β ≤ α} and S ∩ Xα ⊂ F. The set Z = ∪{Xβ : β < α} is open in X , Z

is a subspace with local property Q in X and a ∈ V \ Z . Hence, there exist an open subset Ua of X

and a subspace Φ with the property Γ such that a ∈ Ua, U ⊂ Φ ⊂ Z ∪ (F \ Z) and Φ \ Z has the
property P. Since Z and U ∩ Z are subspaces with local property Q in X , the subspace Φ has the
property Q. Hence Ua has the property Q in X . The proof is complete. �
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Theorem 4.6.1 opens the possibility of studying P-decomposable spaces using induction and
algorithms.

In [68] Theorem 4.6.1 was proved for regular spaces and for normalT1-spaces was introduced
the invariant dimPX = supremum{dimF : F has the property P and it is a closed subset of X}.
For a paracompact P-decomposable space we have dimX = dimPX ([68], p. 19). This fact follows
from Theorem 4.6.1. It is true, since any regular countable space is zero-dimensional.

Corollary 4.6.1. If X is an SP-scattered paracompact space, then dimX = 0.

In [187] it was shown that every paracompact scattered space is zero-dimensional. The
authors of [113] mention: "we do not know if this conclusion holds for paracompact SP-scattered
spaces". By virtue of above corollary, the response is affirmative.

Remark 4.6.1. Let P, Q and Γ be as in Theorem 4.6.1 and Q means that there exists a procedure
that allows us to study from a concrete sense the spaces with the property P. Then this procedure
can be extended to the procedure of studying the P-decomposable spaces with the property Γ.
Indeed, assume that the properties P, Q and Γ satisfy the following conditions:

– any space with property P has the property Γ;

– for any space Y with the property Γ and locally with the property P there exists an algorithm
Q1 to study the space Y ;

– if Z is an open non-empty subspace of the space with the property Γ, then for each point
z ∈ Z there exists an algorithm Q2 to construct an open subset U such that z ∈ U ⊂ Z and
U is a space with the property Γ;

– if Y = Z ∪ S is a space with property Γ, Z is open and locally with the property that exists
an algorithm to study locally the space Z and Y \ Z has the property P, then there exists an
algorithm Q3 to study the space Y ;

– a closed subspace of the space with the property Γ is a space with the property Γ.

Assume that X is a space with the property Γ and the P-decomposition {Xα : α < α0}. Then:

1. for any α < α0 and any point a ∈ Xα we apply the algorithm Q2 of construction of an open
subset Ua such that a ∈ Ua ⊂ ∪{Xβ : β < α} and Ua is a space with the property Γ;

2. we apply the algorithm Q3 to study Ua;

3. we apply the algorithm Q1 to study X .
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4.7. Local finiteness and digital spaces

Let A be an Alexandroff space. On A consider the natural ordering: a � b if and only if
b ∈ clX {a}. We put aδb if a � b or b � a, i.e. the points a, b are comparable. The space A is
a topological digital space if and only if the space A is chain-connected, i.e. for any two points
x, y ∈ A there exist a number n = i(x, y) ∈ N and a finite sequence x1, x2, ..., xn ∈ A such that x1 =
x, xn = y and xiδxi+1 for any i < n (see [12, 122, 123, 78, 79, 4, 21, 128, 196]).

A topological space X is called:
- locally finite if each point x ∈ X has a finite open set containing x.
- strongly locally finite if each point x ∈ X has a finite open set and a finite closed set

containing x.
A local finite space is an Alexandroff space and a scattered space. For any point x ∈ A we

put f -dim(x, A) = |O(x)| and f -dimX = sup{ f -dim(x, A) : x ∈ A}.
A local finite space is an Alexandroff space and a scattered space. For any point x ∈ A we

put f -dim(x, A) = |O(x)| and f -dimX = sup{ f -dim(x, A) : x ∈ A}.
We say that a space A is an f -bounded Alexandroff space if there is given a natural number

n ∈ N such that for any point x ∈ A there exists an open subset W x sequence such that x ∈ W x and
|W x | ≤ n, i.e. f -dimA ≤ n.

A connected Alexandroff space is called a topological digital space.
Let n ∈ N. We say that a space A is a topological n-digital space if for any two points

x, y ∈ A there exists a finite sequence x1, x2, ..., xn ∈ A such that x1 = x, xn = y and xiδxi+1 for any
i < n. A singleton space is considered topological 1-digital space. A topological space X is called
a bounded digital space if A is a digital space with f -dimX < ∞.

A point x ∈ X is called a maximal or a closed point of X if the set {x} is closed in X . If �
is the ordering generated by the topology of the space X , then the maximal points coincide with
the maximal points relative to the ordering �. If the set {x} is open in X , then x is an initial or an
open point of X . Denote by Max(X) the set of all maximal points. If X is a weakly locally finite
space, then the initial points coincide with the minimal points relative to the ordering �. If x ∈ X

is either open or closed it is called pure, otherwise it is called mixed [138]. In [85] a maximal point
is called a vertex point.

Let f : X −→ X be a homeomorphism and a ∈ X . Then f -dim( f (a), X) = f -dim(x, X) and
x is a maximal (initial) point if and only if f (a) is a maximal (initial) point.

We say that a space X is s-homogeneous if for any two points a, b ∈ X with f -dim(a, X) =
f -dim(b, X) there exists a homeomorphism f : X −→ X for which f (a) = b. It is obvious that a
non-discrete locally discrete space is not homogeneous.

Example 4.7.1. Let X = {1, 2, 3, ..., n, ...} be a space with the topology T = {∅, X} ∪ {{1, 2, ..., n} :
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n ∈ N}. By construction, the point 1 is the unique initial point of X and the set of maximal points
is empty. The space X is digital and locally finite, f -dim(n, X) = n for any point n ∈ N.

Proposition 4.7.1. Let γ be a family of open subsets of a space X , n ∈ N and f -dimX ≤ n. If
Max(X) ⊂ ∪γ, then γ is a cover of X .

Proof. First, we prove the following assertions.
Claim 1. IfY is a non-empty subspace of X , thenY is a locally finite space and f -dimY ≤ f -

dimX .
This assertion is obvious.
Claim 2. If Y is a non-empty closed subspace of X , then Y ∩ Max(X) , ∅.
Let Y be a non-empty closed subspace of the space X . For any point a ∈ X we put O(a) =

∩{U ⊂ X : a ∈ U,U is open in X}. The set O(a) is open in X . If a ∈ O(y) and a , y, then
O(a) ⊂ O(y). Assume that m = maximum{|Y ∩ O(y)| : y ∈ Y }. Obviously m ≤ n. Fix a ∈ Y for
which |O(a) ∩ Y | = m. If y ∈ Y \ {a}, then a < O(y). Hence {a} = Y \ ∪{O(y) : y ∈ Y \ {a} is a
closed subset of X and a ∈ Max(X).

Claim 3. X = ∪γ.
The set Y = X \ ∪γ is closed and Y ∩ Max(X) = ∅. By virtue of Claim 2, we have Y = ∅.

Hence X = ∪γ. The proof is complete. �

Corollary 4.7.1. For a locally finite space X the following assertions are equivalent:

1. X is a compact space.

2. X is a finite space.

3. f -dimX < ∞ and the set Max(X) is finite.

The Claim 2 in the proof of Proposition 4.7.1 is true for any strongly locally finite space (see
[85], Theorem 8).

Let I = [0, 1] be the unit interval with the usual Euclidean topology generated by the metric
d(x, y) = |x − y | for all x, y ∈ I.

A space X is arc-connected if for any ordered pair of points a, b ∈ X there exists a continuous
function f : I→ X such that f (0) = a and f (1) = b. In this case we say that f (I) is an arc with the
endpoints a and b, the point a is the initial point and b is the terminal point of the arc.

Theorem 4.7.1. Let X be a T0-space, a, b ∈ X , n ∈ N and if for any two points x, y ∈ A there
exists a finite sequence x0, x1, x2, ..., xn ∈ X such that x0 = a, xn = b and xiδxi+1 for any i < n.
Then there exist the set {ti ∈ I : i ∈ ω(n)} and a continuous mapping g : I → X such that g(I) =
{ri ∈ I : i ∈ ω(n)}, 0 = t0 < t1 < t2 < ... < tn = 1 and g(ti) = xi for any i ∈ ω(n).

109



Proof. We apply the mathematical induction for n.
Let a = b and n = 1. In this case t0 = 0, t1 = 1 and g : I→ X is a constant function with g(I)

= {a} = {b}.
Let n = 1 and a , b. We have two possible cases.
Case 1. a � b.
We put g([0, 2−1)) = {a} and g([2−1, 1]) = {b}. Since {a} is an open set of the subspace

{a, b} and {b} is closed in {a, b}, the mapping g is continuous.
Case 2. b � a.
We put g([0, 2−1]) = {a} and g((2−1, 1]) = {b}. Since {a} is a closed set of the subspace

{a, b} and {b} is open in {a, b}, the mapping g is continuous.
For n = 1 the theorem is true. Assume that m ≥ 2 and the theorem is true for any n < m. We

put c = xn−1. Thus, there exist the set {ri ∈ I : 1 ∈ ω(n − 1)} and a continuous mapping ϕ : I→ X

such that ϕ(I) = {xi ∈ I : 1 ∈ ω(n − 1)}, 0 = r0 < r1 < r2 < ... < rn−1 = 1 and g(ri) = xi for any
i ∈ ω(n − 1). We put ti = 2−1ri for any i ∈ ω(n − 1), and put tn = 1.

We have two possible cases.
Case 3. c � b.
We put g(t) = ϕ(2t) for each t ∈ [0, 2−1], g([2−1, 1)) = {c} and g(1) = b. Since there exists an

open subset U of X such that U ∩ {c, b} = {c}, the mapping g is continuous.
Case 4. b � a.
We put g(t) = ϕ(2t) for each t ∈ [0, 2−1] and g((2−1, 1]) = {b}. Since there exists an open

subset U of X such that U ∩ {c, b} = {b}, the mapping g is continuous.
The proof is complete. �

Corollary 4.7.2. Any digital space is arc-connected.

Corollary 4.7.3. Any connected local finite space is a digital arc-connected space.

4.8. Discrete line and scattered spaces

The image classification problem is to find a fragmentation of an image under study into
certain regions such that each region represents a class of elementary partitions (that means a set of
pixels or voxtels) with the same label. The regions are separated by boundaries (see [12, 4, 196]).
The article [164] is an overview of recent research of generalized topological property in the field
of digital image processing.

Digital image processing is by nature a discrete process. This discrete nature causes few
problems at the geometric level. At a topological level, this is however different. The notion at
the base of topology, the neighborhood, is radically different from continuous spaces to discrete
spaces. Algorithms based on topological information are numerous (see [128]).
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Assume that the domain X of the plane R2 represents the image of the original Φ and that
image is represented by an observed data function I : X → R of the level intensity. We have I(X)

= {ci : 1 ≤ i ≤ n}. The function I is constructed in the following way:
- we determine for the image X the levels {ci : 1 ≤ i ≤ n} ⊂ ω;
- find a family {Oi : 1 ≤ i ≤ n} of open subsets of X , where the O = ∪{Oi : 1 ≤ i ≤ n} is

dense in X , Oi ∩O j = ∅ for 1 ≤ i < j ≤ n and Oi is the set of points of the intensity ci;
- for any i ∈ {1, 2, ..., n} and any x ∈ Oi we put I(x) = ci;
- if x ∈ X \ ∪{Oi : 1 ≤ i ≤ n}, then I(x) = sup{i : x ∈ clXOi};
- by the method of digitalization we construct a finite subset K of X which represents the

original image.
In [4] it is considered that I(x) = cn for any x ∈ X \ ∪{Oi : 1 ≤ i ≤ n}. The process of

constructing the open sets {Oi : 1 ≤ i ≤ n} is called a fenestration of the topological space X (see
[126]).

On Z = {0, 1,−1, 2,−2, ..., n,−n, ...} one can consider one of the following topologies:
- the left topology Tl = {Z(−∞,n) = {m ∈ Z : m ≤ n} : n ∈ Z} ∪ {∅,Z};
- the right topology Tr = {Z(n,+∞) = {m ∈ Z : m ≥ n} : n ∈ Z} ∪ {∅,Z};
- the topology of Khalimsky TKh with the open base BKh = {{2n − 1} : n ∈ Z} ∪ {{2n −

1, 2n, 2n + 1} : n ∈ Z} [122, 123].
We mention that the function I of the domain X in the Euclidean topology in the space (Z, Tl)

is continuous.
The space (Z, TKh) is called the Khalimsky line, (Z2, T2

Kh) is called the Khalimsky plane,
(Z3, T3

Kh) is called the Khalimsky space.
The Khalimsky’s line, plane and space are s-homogeneous scattered locally finite non-

compact spaces.

Remark 4.8.1. 1. Let D be a topological space and g : D → Z be a function. For each n ∈ Z

we put O(g, n) = ∪{U ⊂ X : g(U) = {n} : U is open in X}. A continuous function f of D

in (Z, Tl) is a intensity level function on D provided f (X) = {0, 1, 2, ..., n} for some n ∈ N and
O( f , i) ⊂ f −1(i) ⊂ clDO( f , i) for any i ∈ {0, 1, 2, ..., n}.

2. Any intensity function f : D → Z determines on D the property P( f ): a subset U of the
subspace Y of the space D has the property P( f ) if the set U is open in Y and f (U) is an open
singleton subset of f (Y ) as the subspace of the space (Z, Tl). Relatively to this property D is a
P( f )-scattered space.

Any level intensity function on a space D generates some similarity on D. A similarity
measure on a space D is a function of two variables s : D × D −→ R, where s(x, y) > 0 and
s(x, x) − s(x, y) ≥ 0 for any x, y ∈ D [31, 111, 112, 107, 156].
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The space Z = {0, 1,−1, 2,−2, ..., n,−n, ...} is called the discrete line. The digital topologies
on Z are important for the process of digitalization.

We say that the topology T on Z is symmetric if (Z, T) is a scattered Alexandroff space, the
set {0} is not open in (Z, T) and for any n ∈ Z the mapping Sn : Z → Z, where Sn(x) = 2n − x

for each x ∈ Z, is a homeomorphism. If T is a symmetric topology on Z, then the translations
T2n : Z→ Z, where T2n(x) = 2n + x for all n, x ∈ Z, are homeomorphisms of the space (Z, T).

Theorem 4.8.1. For a topology T on Z the following assertions are equivalent:
1. The topology T is symmetric.
2. There exists a non-empty subset L ⊂ {2n − 1 : n ∈ N} such that:
- U0 = {0} ∪ L ∪ {−n : n ∈ L} is the minimal open neighbourhood of the point 0 in the space

(Z, T);
- the family B(L) = {T2n(U0) : n ∈ Z} ∪ {{2n − 1} : n ∈ Z} is an open base of the topology

T on Z.

Proof. Assume that L ⊂ {2n−1 : n ∈ N} is a non-empty subset,U0 = {0}∪L∪{−n : n ∈ L}

and B(L) = {T2n(U0) : n ∈ Z} ∪ {{2n − 1} : n ∈ Z}. Obviously, B(L) is an open base of the
concrete symmetric topology T(L) on Z. This fact proves the implication 2→ 1.

Fix a symmetric topology T on Z. Let V0 be the minimal neighbourhood of the point 0 and
M = V0 ∩ N.

Claim 1. M ⊂ {2n − 1 : n ∈ Z}.
Assume that k ≥ 1 and 2k ∈ M . Then Sk is a homeomorphism and V2k is a minimal open

neighbourhood of the point 2k in the space (Z, T). By construction, we have k ∈ V0∩V2k and (Z, T)
is not a T0-space, a contradiction. The Claim 1 is proved.

Claim 2. V0 = {0} ∪ M ∪ {−n : n ∈ L} is the minimal open neighbourhood of the point 0 in
the space (Z, T).

This fact follows from construction and Claim 1.
Claim 3. The set {2n − 1} is open in (Z, T) for each n ∈ Z.
Since (Z, T) is a scattered space the set {a} is open in (Z, T) for some a ∈ Z. The points 2n

are not isolated in the space (Z, T). Hence a = 2k − 1 for some k ∈ Z. Since Sn−k(2k − 1) = 2n + 1
and Sn−k is a homeomorphism, the set {2n+ 1} is open in (Z, T) for each n ∈ Z. Claim 1 is proved.

From the Claims 2 and 3 it follows that the family B(M) = {T2n(V0) : n ∈ Z} ∪ {{2n − 1} :
n ∈ Z} is an open base of the topology T on Z and T = T(M). This fact proves the implication
1→ 2. The proof is complete. �

Remark 4.8.2. 1. The set of symmetric topologies on Z is oriented by the relation of inclusion.
We have T(L) ⊂ T(M) if and only if L ⊂ M . Hence, the topology T(L) is a minimal symmetric
topology if and only if L is a singleton set.
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2. Let m ∈ {0, 1, 2, ...} and Lm = {2m + 1}. Then the set Hm = ∪{n(2m + 1) : n ∈ Z} is an
open and closed subset of the space (Z, T(Lm)). We have Z = Hm if and only if m = 0. Hence, the
minimal symmetric topology T(Lm) is a digital topology if and only if m = 0.

3. The topology of Khalimsky TKh with the open base BKh = {{2n − 1} : n ∈ Z} ∪ {{2n −

1, 2n, 2n + 1} : n ∈ Z} is of the form T(L) for L = {1} = L0. Therefore the topology of Khalimsky
is the unique minimal digital symmetric topology on the discrete line Z.

4.9. Conclusions for chapter 4

In Chapter 4 the concept of the parallel decompositions of a given pair of strings developed
for solving geometrical and topological problems associated with distinct problems of information
analysis. In particular:

1. Any pair of optimal parallel decompositions of the given two strings allows us to construct
some set of the weighted means and/or bisectors of these strings. It was also shown that any
weighted mean is generated by some optimal parallel decompositions. These moments have
solved negatively the problem of convexity of the two-string segment. Therefore, parallel
decompositions:

• permit the calculation of the median of two strings;

• permit the calculation of the weighted means of two strings;

• permit to solve the problem of convexity of the weighted means of two strings.

• permit to analyze the properties of a bisector of two strings;

2. Were proposed the algorithms of image processing using the notions of scattered and digital
spaces. In the class of Alexandroff topologies on the discrete line were specified the sym-
metrical topologies. It was established that the Khalimsky topology is the minimal digital
topology in the class of all symmetrical topologies on the discrete line Z.
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GENERAL CONCLUSIONS AND RECOMMENDATIONS

The research carried out within the Ph.D. thesis "Distances on Free Monoids and Their
Applications in Theory of Information" fully corresponds to the goals and the objectives set out in
the introduction chapter.

The study of the results obtained permit to highlight the following general results:

1. It was established that for any non-Burnside quasivariety V and any quasi-metric ρ on a set X

with basepoint pX on free monoid Fa(X,V) there exists a unique stable quasi-metric ρ̂ with
the properties:

(a) ρ(x, y) = ρ̂(x, y) for all x, y ∈ X;

(b) If d is an invariant quasi-metric on Fa(X,V) and d(x, y) ≤ ρ(x, y) for all x, y ∈ X , then
d(x, y) ≤ ρ̂(x, y) for all x, y ∈ Fa(X,V);

(c) If ρ is a metric, then ρ̂ is a metric as well;

(d) If Y ⊆ X , d = ρ|Y and d̂ is the maximal invariant extension of d on Fa(Y,V), then
Fa(Y,V) ⊆ Fa(X,V) and d̂ = ρ̂|Fa(Y,V);

(e) For any quasi-metric ρ on X and any points a, b ∈ Fa(X,V) there exists n ∈ N and
representations a = a1a2...an, b = b1b2...bn, such that a1, b1, a2, b2, ..., an, bn ∈ X and
ρ̂(a, b) =

∑
{ρ(ai, bi) : i ≤ n}. [62]

2. The method of extension of quasi-metrics on free monoids in the complete non-Burnside
quasivariety of topological monoids permit: to construct distinct admissible topologies of
Fa(X,V) for any T0-space X , to prove that the free topological monoid Fa(X,V) exists for
any space X , to establish that the free topological monoid F(X,V) is abstract free, i.e. is
canonically isomorphic with the abstract free monoid Fa(X,V) [44, 57, 62].

This fact solves problems posed by A. I. Maltsev for free universal topological algebras [133].
Similar results were obtained for quasivarieties of semi-topological monoids as well [62].

3. It was proved that if V is a complete non-Burnside quasivariety of topological monoids, then
X is an Alexandroff space if and only if F(X,V) is an Alexandroff space, and X is a digital
space if and only if F(X,V) is a digital space [61].

We mention that conclusions 1, 2 and 3 do not hold for complete Burnside quasivarieties.

4. Based on distance extension methods, the notions of parallel decompositions and the measure
of similarity were introduced in the space of strings [63]. Theorem 3.3.1 which describes
the relationships between measure of similarity, penalty and optimality of parallel decompo-
sitions [56, 58, 59].

5. Different interesting relations between Hamming, Levenshtein and Graev distances were
established on L(A) [36, 37, 38, 55].
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6. It was proved that on the class of all optimal decompositions of given two strings the maximal
measure of proper similarity is attained on the optimal parallel decomposition with minimal
penalties (minimal measure of similarity), and the minimal measure of proper similarity is
attained on the optimal parallel decomposition with maximal penalties (maximal measure of
similarity) [43, 63].

7. Algorithms were proposed for constructing the elements of the sets of weighted means
MdG (a, b) and bisector BdG (a, b) of a given pair of strings a and b [39, 64]. It was illustrated
how to use optimal parallel decompositions to generate elements of MdG (a, b), BdG (a, b), and
the set of midpoints between a and b [42, 41, 64].

8. It was proved that any weighted mean of a pair of strings is generated by some of their optimal
parallel decompositions [64]. It was also proved that the set MdG (a, b) is not convex [40].

9. Algorithms for digital image processing were elaborated using the properties of scattered and
digital topologies, and it was established that the Khalimsky topology is the minimal digital
topology in the class of all symmetrical topologies on the discrete line Z [60, 61, 65].

Advantages and value of thesis results. The proposed elaborations have a significant
scientific value due to their high degree of novelty and originality. The scientific results in this
thesis have a theoretical and applicative value in domains of algebra, topology and theoretical
computer science. For example, the methods of extensions of pseudo-quasimetrics that can be used
for construction of special topologies on free monoids. The methods of parallel decompositions,
measure of similarity, efficiency and penalty can be applied in text analysis problems.

Recommendations. The results obtained can be used in various fields and may have prac-
tical applications in algebra and theory of information. Based on the above conclusions, we
recommended the following:

• there is a special interest in investigating quasimetrics on the space of free monoids, as
extensions of quasimetrics with particular properties on an alphabet. For instance, as it was
proved, quasimetric are strictly invariant on rigid quasivarieties. This is usual for groups, but
it is very rare for semigroups and monoids;

• the results research can be continued both from algebraic and applicative points of view.
Researching metrics on monoids is of particular interest;

• the results obtained with optimal parallel decompositions can be used in the domain of
sequences alignment;

• the new algorithm proposed for weighted means construction can be more effective because
it takes into consideration the empty symbol, and generates more elements of the MdG set
than the classical algorithms. This fact, in its turn, can be useful in the context of information
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communication through the channel with noise, or text editing/correction software, where
the loss of information is admissible;

• algorithms for generating weighted means and bisectors of strings can be applied in the
domain of data analysis and clustering algorithms. For instance, the geometrical centroid of
a set of elements can be calculated as the intersection of the bisectors of elements.

• further research can be continued with the study of algorithms and properties of optimal
parallel decompositions of three and more strings;

• thesis contents can serve as a platform for university facultative and optional courses.
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