
INSTITUTE OF APPLIED PHYSICS

Manuscript
C.Z.U. 530.145+535.14

Ceban Victor

QUANTUM BEHAVIORS OF OPTICAL AND OPTOMECHANICAL
SYSTEMS POSSESSING ARTIFICIAL ATOMS

131.01 - Mathematical Physics

Thesis in physics

Ph.D. supervisor: MACOVEI Mihai,
Dr. Sci., Assoc. Prof.

Author: CEBAN Victor

CHIŞINĂU, 2020



INSTITUTUL DE FIZICĂ APLICATĂ

Cu titlu de manuscris
C.Z.U. 530.145+535.14

CEBAN Victor

DINAMICA CUANTICĂ A SISTEMELOR OPTICE ŞI
OPTOMECANICE CU ATOMI ARTIFICIALI

Specialitatea: 131.01 - Fizică matematică

Teză de doctor în ştiinţe fizice

Conducător Ştiinţific: MACOVEI Mihai,
dr. hab. în şt. fiz.-mat., conf. cerc.

Autorul: CEBAN Victor

CHIŞINĂU, 2020



© Ceban Victor , 2020



OUTLINE

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

SUMMARY (Engl., Rom., Rus.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

SHORTCUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1. NANOSCALE QUANTUM OPTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1. Modern quantum optics from the beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2. Artificial atoms in optical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3. From optical to optomechanical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4. Artificial atoms in optomechanical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.5. Collective effects with artificial atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.6. Conclusions to the Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2. THE OPTOMECHANICAL INTERACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1. The optical part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2. The mechanical part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3. The damping phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4. Conclusions to the Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3. AN ARTIFICIAL ATOM PLACED ON AMECHANICAL RESONATOR . . . . . . . . . . 64

3.1. The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2. The master equation projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3. Generation of sub-Poissonian distributed phonon fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4. Quantum cooling and phonon assisted population inversion . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5. Conclusions to the Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4



4. AN ARTIFICIAL ATOM PLACED IN AN OPTICAL RESONATOR . . . . . . . . . . . . . . . 90

4.1. The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2. The cavity in resonance with sidebands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3. The cavity in resonance with the central frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4. Conclusions to the Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.MULTIPLE ARTIFICIAL ATOMS PLACED ON AMECHANICAL

RESONATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1. The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2. Small number of quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3. Large number of quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4. Conclusions to the Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

RESPONSIBILITY DECLARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5



ACKNOWLEDGEMENTS

I would like to cordially thank my supervisor Mihai Macovei for his inspiring guidance through

all mywork presented here. I’m very thankful to him for enlighteningme into the world of quantum

physics and for his unconditional assistance to my formation.

I’m very grateful to all my colleagues, Profirie Bardețchi, Corneliu Gherman, Viorel Ciornea,

Sergiu Cârlig, Elena Cecoi, Alexandra Mîrzac and Ion Cojocaru, for their fruitful discussions and

friendly support they have provided me since my first day at the Institute of Applied Physics.

I’m heartfully thankful to my beloved parents and specially to my grandparents, who have

nourished my curiosity about the universe I’m living in, since I remember myself.

6



SUMMARY

to the thesis ”Quantum behaviors of optical and optomechanical systems possessing
artificial atoms”, presented by Victor Ceban

for conferring the scientific degree of Ph.D. in Physics, Speciality 131.01 ”Mathematical
Physics”, Chişinau, 2020.

The thesis has been written in English language and consists of the introduction, 5 chapters,
general conclusions and recommendations, and the list of 200 references. The thesis contains 127
pages of basic text, 25 figures and 145 formulas. The results presented in the thesis are published
in 20 scientific publications.

Key words: sub-Poissonian phonon laser, quantum interferences, phonon superradiance, fast
phonon dynamics, phonon assisted population inversion, artificial atoms, quantum-dots, quantum-
wells, quantum optomechanics, cavity quantum electrodynamics.

The goal: The determination and analysis of different quantum properties of the dynamics of
an optical or mechanical resonator interacting with semiconductor artificial atoms.

Research objectives: The identification of various emitter-resonator coupling schemes related
to different characteristic features of artificial atoms; The demonstration of the quantum statistics
of an optical or mechanical resonator when interacting with an artificial atom; The identification of
possible quantum interferences in systems possessing multi-level artificial atoms; The observation
of the behaviour of the quanta distribution of a nanomechanical resonator under different interaction
conditions; The demonstration of the influence of collective phenomena to the behaviour of an
optomechanical system.

Scientific novelty and originality of the results: the phonon superradiant behaviour has been
demonstrated in solid matter quantum nanomechanical resonators; the phenomenon of destructive
quantum interference has been manipulated in order to effectively decouple an artificial atom from
an optical cavity; a perturbation treatment of moderately strong quantum-dot-acoustic-resonator
dynamics has allowed the observation of sub-Poissonian distributed phonon fields, i.e., quantum
phonon lasing.

The main scientific problem solved consists in analysing the phenomena related to the quan-
tum statistics of different types of quantum oscillators interacting with artificial atoms, in order to
predict the conditions required to prepare the quantum oscillator in a specific quantum state.

Theoretical significance and applicative value: in this thesis it was demonstrated the quan-
tum dynamics of open quantum systems with an elevated degree of complexity, which include
diverse interactions among various components such as artificial atoms, laser light, optical cavi-
ties, nanomechanical resonators and the surrounding environment.

The model of a pumped two-level quantum-dot coupled to a quantum mechanical resonator
operating in a moderately strong coupling regime has been solved. A coherent phonon generation
scheme with sub-Poissonian quantum distribution of the vibrational quanta of the acoustic nanome-
chanical resonator has been proposed in order to improve phonon based sensing techniques.

A setupmade of an equidistant ladder-type three-level quantum-well with perpendicular dipoles
placed in an optical cavity has been investigated in the good cavity limit. A scheme for a quantum
switch based on quantum interference effect was proposed. The cavity electromagnetic field is
turned on and off by varying the parameters of the input pumping lasers.

The collective behaviour of a sample of initially excited two-level quantum-dots placed on
a quantum mechanical resonator has been reported among the firsts investigations in the current
literature. Therefore, a mechanism generating phonons with fast dynamics has been established.
Ultra-short intense phonon pulses are generated via this mechanism, similarly to the superradiance
effect.

The implementation of the scientific results: the research presented in this thesis has been
successfully implemented in the framework of the bilateral moldo-german project 13.820.05.07/GF
and national institutional project 15.817.02.09F, and may be further used for educational purposes.
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ADNOTARE

la teza ”Dinamica cuantică a sistemelor optice și optomecanice cu atomi artificiali”,
elaborată de Victor Ceban pentru conferirea gradului științific de doctor în științe fizice la

specialitatea 131.01 ”Fizică matematică”,
Chișinău, 2020.

Teza este scrisă în limba engleză și constă din introducere, 5 capitole, concluzii generale și
recomandări, și lista a 200 titluri bibliografice. Teza conține 127 pagini de text de bază, 25 figuri
și 145 formule. Rezultatele prezentate în teză sunt publicate în 20 lucrări științifice.

Cuvinte cheie: laser fononic de tip sub-Poissonian, interferențe cuantice, superradianță fonon-
ică, dinamică rapidă a fononilor, inversia populației asistată de fononi, atomi artificiali, puncte
cuantice, gropi cuantice, optomecanică cuantică, electrodinamica cuantică de cavitate.

Scopul tezei: Determinarea și analiza diferitor proprietăți cuantice ale dinamicii unui rezonator
optic sau mecanic care interacționează cu un atom artificial pe bază de semiconductor.

Obiectivele tezei: Identificarea diferitor scheme de cuplare emițător-rezonator legate de diferite
proprietăți caracteristice atomilor artificiali; Demonstrarea statisticii cuantice a unui rezonator optic
saumecanic, când acesta interacționează cu atomii artificiali; Identificarea eventualelor interferențe
cuantice în sisteme care conțin atomi artificiali cu mai multe nivele; Observarea comportamentului
distribuției cuantelor unui rezonator nanomecanic pentru diferite condiții de interacțiune; Demon-
strarea influenței fenomenelor colective asupra comportamentului sistemelor optomecanice.

Noutatea științifică și originalitatea rezultatelor: Comportamentul superradiant al fononilor
a fost demonstrat pentru rezonatoare nanomecanice cuantice pe bază de materie solidă; Fenomenul
de interferență destructivă a fost manipulat pentru a decupla efectiv un atom artificial de o cav-
itate optică; Tratarea dinamicii la nivel perturbativ a permis observarea fononilor distribuiți sub-
Poissonian, adică observarea efectului laser fononic cuantic, pentru regimuri de cuplare moderat
intens a punctului cuantic cu rezonatorul acustic.

Problema științifică soluționată constă în analiza fenomenelor legate de statistica cuantică
ale diferitor tipuri de oscilatoare cuantice care interacționează cu atomi artificiali, cu scopul de a
prezice condițiile necesare pentru a pregăti oscilatorul cuantic într-o stare cuantică specifică.

Semnificația teoretică și valoarea aplicativă: în această teză, este demonstrată dinamica
cuantică a sistemelor cuantice deschise cu un grad înalt de complexitate, care includ diverse in-
teracțiuni între diferite componente, cum ar fi: atomi artificiali, lumină laser, cavități optice, re-
zonatoare nanomecanice și mediul ambiant.

Modelul unui punct cuantic pompat, cu două nivele, care interacționează cu un rezonator nanome-
canic a fost rezolvat pentru un regim de cuplare moderat intens. A fost popusă o schemă de generare
a fononilor coerenți, în care a fost obținută o distribuție sub-Poissoniană ale cuantelor vibraționale
a rezonatorului nanomecanic acustic.

Un dispozitiv constituit dintr-o groapă cuantică cu trei nivele echidistante amplasată într-o cav-
itate optică a fost investigat în limita cavității cu factor de calitate înalt. A fost propusă o schemă
a unui întrerupător cuantic bazată pe efectul de interferență cuantică. Câmpul electromagnetic a
cavității apare și dispare variind parametrii laserelor de pompare.

Comportamentul colectiv a unui eșantion de puncte cuantice cu două nivele, inițial excitate,
amplasate pe un rezonator nanomecanic, a fost studiat printre primii în literatura de specialitate.
Astfel, a fost stabilit un mecanism de generare a fononilor cu dinamică rapidă. Prin intermediul
acestui mecanism sunt generate pulsuri ultra-scurte și intense de fononi, similar efectului de super-
radianță.

Implementarea rezultatelor științifice: studiile prezentate în această teză au fost cu succes
implementate în cadrul proiectului bilateral moldo-german 13.820.05.07/GF și proiectului național
instituțional 15.817.02.09F, și pot fi utilizate cu scop didactic pentru studenții ciclului universitar
și post-universitar.
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АННОТАЦИЯ

к диссертации «Квантовая динамика оптических и оптомеханических систем
искусственных атомов», представленной Виктором Чебан на соискание ученой
степени доктора физических наук по специальности 131.01 «Математическая

физика», Кишинэу, 2020

Диссертация написана на английском языке и состоит из введения, пяти глав, общих за-
ключений и рекомендаций, и списка цитируемой литературы из 200 источников. Диссерта-
ция содержит 127 страниц базового текста, 25 графиков и 145 формул. Результаты диссер-
тационной работы опубликованы в 20 научных публикациях.

Ключевые слова: фононный лазер субпуассоновского типа, квантовая интерференция,
фононное сверхизлучение, инверсия населенности обусловленной фононами, искусствен-
ные атомы, квантовая оптика и квантовая оптомеханика.

Цель диссертации:Определение и изучение различных квантовых свойств оптического
либо механического резонатора, взаимодействующего с искусственными атомами, возника-
ющими в полупроводниковой среде.

Задачи диссертации: Выявление различных схем соединения излучатель-резонатор в
зависимости от характеристических свойств искусственных атомов. Доказательство кван-
товой статистики оптического либо механического резонатора при его взаимодействии с
искусственными атомами. Выявление возможных явлений квантовой интерференции в си-
стемах, содержащих многоуровневые искусственные атомы. Изучение поведения распреде-
ления квантов возбуждения наномеханических резонаторов в различных условиях их взаи-
модействия с искусственными атомами. Доказательство влияния коллективных явлений на
поведение оптомеханической системы.

Научная новизна и оригинальность результатов: Выяснены особенности поведения
фононов в сверхизлучательном состоянии в случае твердотельных квантовых наномехани-
ческих резонаторов; установлена возможность манипулирования явлением деструктивной
квантовой интерференции с целью эффективного отключения взаимодействия искусствен-
ного атома и оптического резонатора; доказана возможность получения субпуассоновских
фононов, т.е. возможность осуществления квантового фононного лазера.

Основная научная задача, решаемая диссертацией, заключается в исследовании яв-
лений, обусловленных видами статистики различных квантовых осцилляторов, взаимодей-
ствующих с искусственными атомами, в целях определения условий, необходимых для со-
здания квантового осциллятора в определенном квантовом состоянии.

Теоретическая значимость и прикладная ценность: в настоящей диссертационной ра-
боте изучена квантовая динамика сложных открытых квантовых систем, включающих раз-
личные виды взаимодействия между разными компонентами системы, такими как искус-
ственные атомы, лазерное излучение, оптические и наномеханические резонаторы, и окру-
жающая среда. Исследована динамика двухуровневой модели квантовой точки в поле ла-
зера, умеренно сильно взаимодействующей с наномеханическим резонатором. Предложен
способ генерации когерентных фононов, которым получено субпуассоновское распределе-
ние вибрационных квантов акустического наномеханического резонатора, способствующий
улучшению сенсорных технологий, основанных на фононах. Теоретически предложена схе-
ма устройства, состоящего из эквидистантной многозвенной трехуровневой квантовой ямы с
перпендикулярными диполями, расположенной в оптическом резонаторе высокой добротно-
сти. На базе последней предлагается создать квантовый триггер на основе явления квантовой
интерференции. Показано, что изменяя параметры лазеров накачки возникает возможность
манипулирования интенсивностью электромагнитного поля в резонаторе. Впервые изучен
коллектив возбужденных двухуровневых квантовых точек, расположенных на квантовом на-
номеханическом резонаторе и показана возможность излучения интенсивных ультракорот-
ких импульсов фононов по аналогии со сверхизлучательным эффектом.

Внедрение научных результатов: представленные в настоящей диссертации резуль-
таты были успешно применены в рамках двухстороннего молдавско-немецкого проекта
13.820.05.07/GF и национального институционного проекта 15.817.02.09F.
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SHORTCUTS

QD - Quantum dot

QW - Quantum well

EMF - Electromagnetic field

RWA - Rotating wave approximation

{a, a†} - photonic operators

{b, b†} - phononic operators

{Si, Si} - atomic bare-state operators

{Ri, Ri} - atomic dressed-state operators

γ - spontaneous emission rate

κ - damping rate of a reservoir

n̄ - mean phonon number of a thermal reservoir

⟨n⟩ - mean phonon (or photon) number of a resonator

g(2)(0) - second-order phonon-phonon (or photon-photon) correlation function

L - the Liouville superoperator

ρ - density operator

H - Hamiltonian

Ω - Rabi frequency
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INTRODUCTION

Actual research status:

Light is the best carrier of quantum information. Photons are good at transporting a specific

quantum state over long distances due to reduced noise and strong correlations, which are the key

features for technological applications such as quantum communications and quantum cryptogra-

phy. The feasibility of such technologies have been recently justified by remarkable reports where

a quantum state of a single-photon have been successfully teleported from Earth to an orbit satellite

over a distance of about 1400 km [1], while cryptographic quantum keys have been successfully

distributed in optical fibre over distances of about 400 km with a rate of 6.5 kbps [2].

New horizons open up with the possibility of distribution of quantum states to multiple sources

via information nodes, leading to light based quantum networks [3]. Quantum information pro-

cessing would allow the use of photons for computational operations [4]. A quantum simulation

with less than a hundred of photons would bypass the calculation capacity of modern classical

computers. The concept of simulating quantum systems with different photon based quantum sys-

tem would significantly improve current modelling capacity of complex structures in such fields

as chemistry and biology. A successful realisation of a waveguide circuit able to operate with four

input photons have been recently reported [5].

The implementation of quantum information technologies, as well as various light based sens-

ing and imaging applications, requires a good degree of control and manipulation of photon emis-

sion, propagation and detection phenomena. Artificial atoms possess some important features

which make them perspective candidates for such technological implementations. Various types

and architectures of artificial atoms allow one to engineer optical emitters with some particular

characteristics suitable for a specific setup requirements. Especially in the framework of low-loss

integrated quantum photonics circuits and on-chip realisation of optical setups, the technical as-

pects of a setup may impose important limitations and constraints. In this context, superconducting

circuits and semiconductor artificial atoms, such as quantum-dots, have shown good efficiency as

on-demand single-photon sources [6], which is a key ingredient for quantum information technolo-

gies.

Artificial atoms also possess several important differences from real atoms, as they interact

with electrical signals and with the mechanical motion. Their optoelectrical and optomechanical

couplings suggest various applications in optical sensing and metrology techniques, as well as,
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applications for hybrid quantum technologies as an interface for the integration of photonic devices

into modern electronics. Moreover, their optomechanical coupling opens a new door to quantum

confinement of the mechanical motion of matter at mesoscopic scales.

The optomechanical interactions become an important actor for nanoscale optical devices such

as nanofibres, superconducting detectors, photonic crystal cavities and various photonic integrated

circuits. At this size scales, the mechanical vibrations of the device intrinsically influence the

quantum optical effects via the light radiation force. Reciprocally, the manipulation of the quantum

mechanical motion can be achieved via optical control. For example, recent reports on optical

cooling of a macroscopical mechanical resonator down to its quantum ground state [7] represents

an important experimental breakthrough in the quantum manipulation of the mechanical motion

via light sources.

Various optomechanical devices have been developed in order to manipulate the quantum op-

tical and quantum mechanical phenomena [8]. Quantum mechanical resonators with high quality

factors have been engineered via different architectural approaches, e.g., suspended micro-mirrors

and membranes, microtoroids, microspheres, microdisks, nanobeams, nanorods and multi-layered

acoustical cavities. A particular interest represents semiconductor based resonators which allow

on-chip fabrication and integration to more complex photonic devices. As such, a photonic crystal

nanobeam represents a photonic crystal nanocavity shaped as a beam, while a semiconductor mi-

crodisk mecahnical resonator represents a whispering-gallery-mode optical cavity. Both of these

nanoscale devices allow the confinement of co-localised optical and mechanical modes with high

optical and mechanical quality factors. Another important feature consists in the possibility to

embed semiconductor artificial atoms such as quantum-dots into these devices.

The implementation of artificial atoms into optomechanical devices introduces a completely

new coupling regime between the optical and mechanical parts, as the effective optomechanical

coupling strength is increased a few orders of magnitude [9]. Among various coupling schemes,

quantum-dots embedded on different mechanical resonators possess a particularity to not require

any additional electric or magnetic fields to couple to the mechanical motion. The intrinsic optome-

chanical coupling of the quantum-dot embedded on a crystal originates from the deformations of

the quantum-dot which appear due to the mechanical vibrations of the crystal lattice. Enhanced op-

tomechanical couplings could induce strong photon-phonon correlations observed when optically

cooling a nanomechanical resonator with an embedded quantum-dot on it [10].

Strong optomechanical coupling regimes had introduced a series of investigations on optical

phenomena which can be influenced by the coupling of the emitters to the mechanical motion such
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as the surrounding thermal vibrations interacting with a quantum-dot. Phenomena as asymmetry

in the side-peaks of the Mollow triplet [11] and phonon assisted population inversion [12] appear

due to the interaction of the quantum-dot with the environmental thermal phonons. If comparing

to real atoms, the entanglement of a pair of quantum-dots is enhanced due to their coupling to a

common environmental phonon reservoir [13].

In a different manner, the optomechanical coupling can be explored to optically control the

quantum state of the mechanical motion. Quantum optics dispose of a broad gamut of precise tools

able to manipulate the optomechanical setup. Unprecedentedly, this have allowed the preparation

of various exotic quantum states of motion of matter at macroscopic scales. In this regard, im-

portant achievements have been reported in the recent years due to a continuous advance in the

state-of-the-art techniques of engineering of optomechanical devices [9]. A single-phonon state

has been observed in an optically cooled nanomechanical resonator [7]. Quantum squeezed states

of mechanical motion had been successfully observed within a micrometre-scale mechanical res-

onator [14]. The acoustic analogue of the optical laser has been experimentally observed in various

optomechanical setups based on electromechanical resonators [15], compound microcavities [16]

or pumped ions [17]. Meanwhile, theoretical investigations suggest a large variety of phonon laser

schemes, whereas setups based on quantum-dots embedded on quantum mechanical resonators

have been described in [18, 19, 20].

In the context of quantum statistics, the coherently distributed quanta refers as a reference limit

among classical and quantum states of a quantum resonator. Hence, a particular attention has been

paid to identify optomechanical setups able to prepare the mechanical resonator in a pure quantum

state. In this regard, remarkable optomechanical schemes had been identified for the generation of

phonon fields with specific quantum statistics such as antibunching [20], negative Wigner function

of the phonon states [21] and sub-Poissonian phonon distributions [22].

A major technological challenge to the implementation of artificial atoms into optical and op-

tomechanical experiments arises when collective phenomena are considered. Collective effects

often require the use of ensembles of identical emitters. Although this condition is easily validated

by setups based on real atoms, in the case of artificial atoms there is a severe limitation in engi-

neering quasi-identical artificial atoms. The current limitations of quantum-dot growth techniques

are defined by the required high degree of resemblance in size and geometry of the quantum-dots.

Moreover, the physics of collective phenomena also impose additional restrictions to the spatial

distribution of the considered emitters, which becomes particularly challenging in the case of ex-

perimental setups based on quantum-dots.
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A brilliant experimental realisation of a two-photon interference scheme has been reported in

[23]. The considered setup is based on two separate quasi-identical quantum-dots with a high

degree of resemblance. Remarkably, a different experiment based on Dicke collective states of

closely-spaced quantum-dots have successfully reported the observation of superradiance effect

[24], which have required the implementation of quasi-identically engineered artificial atoms.

The purpose of the thesis:

The determination and analysis of different quantum properties of the dynamics of an optical

or mechanical resonator interacting with semiconductor artificial atoms.

Objectives of the thesis:

• Identification of various emitter-resonator coupling schemes related to different characteris-

tic features of artificial atoms.

• Estimation of the quantum statistics of the dynamics of the quantum harmonic resonator

when interacting with the artificial atom.

• Identification of possible quantum interferences when a multi-level artificial atom is consid-

ered.

• Observation of the behaviour of the distribution of quanta of the resonator under different

interaction conditions.

• Investigation of the influence of collective phenomena to the behaviour of a considered res-

onator.

Research hypothesis:

Artificial atoms possess distinctive features when compared to real atoms. Quantum systems

with unique properties can be identified when exploring the characteristics of the coupling of the

artificial atoms with phonon and photon fields.
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Analytical methods:

• The density matrix formalism has been adopted in order to apply the general reservoir theory

to characterize the damping phenomena required for the description of open quantum sys-

tems. The effect of the surrounding environment to each component of the quantum system

have been considered.

• The rotating wave approximations, the secular approximation, the dressed-state transforma-

tion, the perturbation theory and different changes of representations have been applied to

the system dynamics in order to accurately reduce its complexity without loosing much of

the generality of the problem.

• The method of projection of the master equation into the system state basis has been applied

in order to define a solvable system of coupled equations for the modified density matrix

elements. The quantum statistics of the investigated boson fields have been estimated from

the variables of the solved system of equations.

• The method of determination of the equations of motion directly from the master equation

has been applied in order to define a solvable system of coupled equation for the parame-

ters of interest. The method allows one to solve the equation of motion of the investigated

parameters describing the system dynamics.

• The method of factorization of high order correlations has been applied in order to reduce

the complexity of system of equations involving collective operators. This method is applied

when building the equations of motion directly from the master equation does not allow one

to close and solve the system equation. The factorization of some high order correlation

addresses this issue.

Thesis’s structure:

In the first Chapter it is discussed various approaches of implementation of artificial atoms into

modern nanoscale quantum optics. Important experimental realisations in cavity-electrodynamics

and optomechanical devices containing different types of artificial atoms are described. Various

challenges, advantages and limitations related to specific types of artificial atoms and their integra-

tion into optical cavities and quantum mechanical resonators are discussed. The general discussion
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aims to give an overview on how optical and optomechanical nanoscale devices develop nowadays

in order to define the framework of this thesis.

In the secondChapter, the general theoretical framework of the thesis is presented. A synthesis

of various theoretical approaches have been demonstrated and adapted to the following investiga-

tions. The quantum optical and optomechanical interactions are presented and discussed. The

physical interpretation and the various theoretical assumptions are given for the Hamiltonian terms

corresponding to the analytic models presented in the following chapters. A separate discussion is

presented for the reservoir theory approach used to define various damping effects. The decoherent

phenomena appear from imperfections of a quantum systems and its interaction with surrounding

environment. The possibility to introduce this kind of phenomena to the analytic descriptions of

the following quantum systems, is crucial for a realistic treatment of eventual quantum effects.

In the third Chapter it is discussed a particular case of interaction of a pumped two-level ar-

tificial atom with a quantum mechanical resonator. The theoretical framework defining the model

is presented and analysed from the perspective of strong coupling regimes which may be reached

when a quantum-dot coupled with a semiconductor mechanical resonator is considered. The re-

lated coupling strengths require a novel treatment of the quantum dynamics in order to accurately

describe the quantum statistics of the mechanical resonator. The corresponding analytic approach

is using a perturbation treatment which is compared to the treatment applied to systems with weaker

coupling regimes where the perturbation treatment is not justified. The improved accuracy which is

obtained from the novel analytic approach is investigated in various scenarios such as phonon gen-

eration setup, quantum cooling and bad cavity limits. The changes and important features related

to the observed quantum phenomena are presented.

In the fourth Chapter it is discussed the case when a particular type of artificial atom interacts

with an optical resonator. An artificial atom made of a quantum-well which may be engineered

as a three-level ladder-type emitter with equidistantly shifted energetic levels is considered. The

particularity of this type of emitter consists in its interaction with the optical resonator, where both

of its transitions are coupled to the cavity. As the optical resonator indistinguishably interacts with

both atomic transitions in the good cavity limit, the interaction amplitudes may interfere with each

other. The artificial atom is prepared in a superposition of states via two lasers each pumping a dif-

ferent transition. Consequently, the interaction amplitudes are also influenced by how the atom is

prepared and the configuration of the pumping lasers may be used to tune the interference phenom-

ena up to a completely destructive interference case. The laser pumping introduces another effect

into the system, which consists in the energy splitting of the emitter’s spectra where side-bands
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appear. Different possibilities of control and manipulation of the quantum interference phenomena

are investigated by tuning the cavity in resonance with each of spectra peaks. Each case requires

a particular adaptation of the analytic treatment applied to solve the system dynamics, which is

presented and discussed.

In the fifth Chapter it is discussed the influence of the collective behaviour of multiple two-

level artificial atoms interacting with a quantum mechanical resonator. The chapter considers a

closely-spaced sample of quantum-dots which allows for superradiant dynamics to occur. The

investigation is focused on two different approaches, one considering samples made from a few

quantum-dots where a complete analytical solution is found for the system dynamics and a dif-

ferent approach considering large quantum-dot samples where several approximations may be ap-

plied in order to solve the system dynamics. The two approaches are complementary, where one

approach allows for a analytic interpretation of the observed collective phenomena, while the other

allows the investigation of the effect at larger scales. The atomic superradiance effects lead to

several essential changes of the collective dynamics. Comparing to the case of separate individual

emitters, the collective superradiance is characterized by faster decay dynamics with more intense

fluorescence spectra peaks. The coupling to the mechanical motion is different than the coupling

to electromagnetic field. Therefore, the changes in the collective dynamics of the quantum systems

affects the mechanical vibrations differently than the optical counterpart. The investigation of the

quantum statistics of the vibrational motion of the quantum mechanical resonator is presented and

discussed.
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1 NANOSCALE QUANTUM OPTICS

This thesis treats the fundamental problem of the interaction of an emitter with a quantum har-

monic oscillator through the prism of quantum optics. One has chosen to use artificial atoms as

emitters and explore the related features when comparing to real atoms. Various quantum phe-

nomena have been theoretically observed when combining these features with either an optical or

a mechanical resonator. This chapter gives an overview on modern nanoscale quantum optics and

the phenomena related to the implementation of artificial atoms, in order to build a general picture

which lead to the formulation of the problems treated in this thesis.

The chapter is organized as follows. In the introductory paragraph 1.1, one shortly describes

how quantum optics have evaluated since the beginning to the modern days. In paragraph 1.2, one

discusses various types of artificial atoms and their implementation into integrated cavity-quantum

electrodynamic setups, with a particular attention given to quantum interference phenomena. In

paragraph 1.3 one presents the treatment of modern micro- and nano-scale quantum optical devices

from the point of view of optomechanics. In paragraph 1.4 one discusses how the interaction of the

artificial atoms with the quantum mechanical vibrations influences the optical processes and vice

versa. In this context, some particular quantum effects, which appear within the dynamics of the

mechanical vibrations, are presented. The collective interaction of artificial atoms and the related

phenomena is discussed in paragraph 1.5. A summary is given in paragraph 1.6.

1.1 Modern quantum optics from the beginning

The quantum optics studies various phenomena related to the granular aspect of light. The story

of this realm of quantum physics starts at the beginning of the previous century with the blackbody

radiation model introduced by Max Plank [25, 26], where the light emission was treated in discrete

units of energy. Einstein went further with this topic and have stated the light wave-particle duality

via the energy fluctuations of the blackbody radiation [27, 28], a few years later after his Nobel

Price worth paper on the photoelectric effect [29] was published.

After a half-century research of quantum optics, another Nobel Price worth experimental real-

isation had been achieved by Gordon, Zeicer and Townes [30] based on the theoretical approach

proposed by Basov and Prokhorov [31] on the microwave amplification by stimulated emission
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of radiation, i.e., the maser. A few years later the first experiment on light amplification by stim-

ulated emission, i.e., laser, had been performed by Maiman [32], whereas the major theoretical

background explaining the physics of coherent light processes including the statistical approach

have been developed by Glauber [33], Mandel [34] et al..

The understanding of the phenomena related to the nature of light and the nature of its inter-

action with the matter are broadly required by most of the fundamental and many interdisciplinary

research fields, as well as, by various industrial applications. Modern quantum optics are used

to understand the surrounding universe from the macro-scale to molecular and sub-atomic scales,

while its industrial application broad palette vary from heavy industry and communications to hi-

tech appliances and gadgets. This broad gamut of research and applications requires a permanent

innovation in the fundamental understanding of quantum optical processes.

One powerful domain of quantum optics focused on addressing the problems of its fundamen-

tals is the cavity quantum electrodynamics. It was established by Purcell’s investigations on the

spontaneous emission behaviour, which led to the effect of enhancement of the emission rate of an

atom when it is placed in a cavity [35]. The enhancement of the spontaneous emission rate was

proportional to the quality factor of the cavity, when the cavity was tuned in resonance with the

atomic transition. In empty space, the spontaneous emission appears due to atom interaction with

the surrounding electromagnetic vacuum. The cavity electromagnetic field is different than the

vacuum as it accepts only several frequencies. In contrast, the electromagnetic vacuum is made of

a continuous spectra of frequencies. Therefore, the Purcell effect originates from the change in the

density of modes of the electromagnetic field. The ratio of the spontaneous emission rates within

the cavity and in free space is proportional to the ratio of the densities of modes, which is propor-

tional to the cavity quality factor. Moreover, if the cavity is detuned from the atomic transition

frequencies, an opposite effect occurs as out of resonance the cavity would not accept a photon

of different frequency. This will lead to a decrease in the spontaneous emission rate. Pioneering

experimental investigations on this effect were presented in [36] and later in [37]. In the following

paragraph, one will discuss the importance of the Purcell effect in the context of cavity quantum

electrodynamics with quantum-dots.

The realm of cavity quantum electrodynamics have evolved since theoretically and experimen-

tally in identifying and describing the atom-field interaction. The experimental realisation of one-

atom maser [38], i.e., micromaser, have added another dimension to this realm of research by in-

troducing the strong atom-cavity coupling regimes. The theoretical description of strong-coupling

cavity dynamics was given by Jaynes and Cummings [39], where the quantum interaction of a
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two-level atom with a single-mode cavity field was given. This model is used in following studies

presented in this thesis and its detailed description is given in the next chapter. The strong-coupling

dynamics has allowed the prediction and the experimental observation of many fundamental quan-

tum optical phenomena, e.g., collapse and revival of Rabi oscillations [40] where the oscillation of

the population of a two-level atom between its ground and excited states disappears and re-appears

because of the granular aspect of the cavity electromagnetic field, sub-Poissonian photon statistics

[41] which represent a pure quantum feature of the light that cannot be obtained from classical

sources, single-atom effects [42], trapping states [43] where the atom is prepared in a specific su-

perposition of states and cases when light prepared in a pure Fock photon state [44].

One issue of modern cavity quantum electrodynamics is the discrepancy between the theoretical

and experimental progress, as the experimental possibilities in the state-of-the-art of the modern

techniques and methods are limited if comparing to the permanently increasing requirements of

the theoretical framework. Therefore, novel approaches in this realm of research are permanently

investigated. An important actor in this investigation represents the use of artificial atoms, which

brings several opportunities over the real-atom-cavity models. The possibility to engineer a single

emitter permanently confined within the cavity allows one to reach larger cavity-emitter interaction

times if comparing to atom trapping techniques. Moreover, it is possible to create artificial atoms

adopted for a specific experimental requirement, such as the energetic levels of artificial atoms

which are related at a certain degree to their design.

With more and more integration of quantum physics in modern technologies, new progress

vectors appear such as quantum computation and quantum information treatment and transfer. The

classical computers deal with the notion of bits, which can be associated in quantum physics with

two-level state systems, also called qubits. Here, the photons are good candidates to substitute

electrons in computational operations [4]. Many of cavity quantum electrodynamics features are

brought in this new dimension, as photons in cavities are good candidates to create computational

quantum simulators [45] or nodes of a quantum network [3].

The quantum communications are more focused on quantum cryptography processes [46] in or-

der to ensure a secure treatment of information. The quantum information transfer studies focus on

confining quantum entangled states over large distances. Recently, the world record of maintaining

two quantum entangled photons was set over a distance of about 1400 km [1]. This remarkable

result allowed to teleport the state of a qubit made of an independent single-photon from a ground

observatory to a low-Earth-orbit satellite. The most remarkable in this kind of processes, is that the

state of the qubit is instantaneously transferred at the moment when the entanglement is broken,
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i.e., the ”spooky action at a distance” as commented by Einstein.

In this context of novel quantum technologies, the field of integrated quantum photonics have

been successfully developing during the last decades [47, 48]. This realm of quantum optics and

condensed matter engineering techniques is driven by the requirement to build on-chip devices

able to produce on demand various optical effects. With the possibility to build optical cavities of a

few hundred nanometres in size, the semiconductor based artificial atoms present a major interest

for a on-chip integration of a cavity quantum electrodynamic model within the strong coupling

cavity-emitter regime [49].

Considering the tendencies of modern development of quantum optics, perspective candidates

for further scientific investigations are the artificial atoms. Various related scientific research di-

rections had been established during the last decades. Artificial atoms possess a discrete electronic

structure similarly to real atoms. This allows various quantum optic effects which had been pre-

viously obtained with real atoms, to be produced by setups based on artificial atom. There are

several important differences among real and artificial atoms from the point of view of quantum

optics. Namely, one would highlight the following major features of artificial atoms, comparing to

real atoms:

→ on-chip integration of various quantum setups

→ interaction with mechanical vibrations, i.e., the phonons

→ the possibility to engineer different designs and architectures in order to tune the character-

istics of the artificial atom, e.g., the transition frequency and the coupling strengths

→ a few orders of magnitude higher coupling regimes with the optical cavity

→ significantly higher operating temperatures

→ additional control by applying a voltage

→ the single-atom like experiments where large type of emitter-cavity interaction times may

be achieved, i.e., no need to trap the atom.

While many other differences among real and artificial atoms may be considered either an ad-

vantage or a downside depending on the context, it is to note that artificial atoms have amajor disad-

vantage in comparison with real atoms, which is the impossibility to engineer completely identical

artificial atoms. Particularly, it affects the quantum collective effects which will be discussed later

in this chapter, however the reproducibility of an investigated setup should be considered separately

for each case.

In following paragraphs one will discuss various implementations of these features. In the

next paragraph 1.2, one will discuss how artificial atoms are implemented in systems with opti-
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cal resonators. One will discuss the current state-of-the-art in experimental realisation of various

phenomena related to cavity quantum electrodynamics with this type of emitters.

In this context, a more focused description is made on the quantum interference phenomena.

Various cavity quantum interference phenomena is obtained depending on the characteristics of

the considered emitter, while artificial atoms may be engineered in order to fit some requirements

such as degenerate transition frequencies in some particular case. In chapter 4 of this thesis one

will show how these two particularities may be combined in order to obtain a quantum interfer-

ence phenomena with a three-level artificial atom with degenerate transition frequencies when it is

placed in an optical resonator.

In paragraph 1.3 one will discuss the impact of mechanical vibrations on cavity quantum elec-

trodynamics. The treatment of modern micro-sized optical cavities converge to the realm of op-

tomechanics situated at the frontier of quantum optics and condensed matter physics. Various

approaches related to studies of the interaction of cavity fields and mechanical vibrations will be

presented.

In paragraph 1.4 one will discuss how the coupling of artificial atoms with the mechanical

vibrations adds another dimension to the optomechanical treatment. One will present the techno-

logical framework required for the implementation of artificial atoms in order to generate coherent

or even sub-Poissonian phonon statistics. In chapter 3 of this thesis one will show how this effect is

obtained when an artificial atom is placed in an acoustical cavity or on a nanomechanical resonator.

In paragraph 1.5 one will discuss how collective effects may be obtained with artificial atoms.

Particularly, one will focus on Dicke type interactions which occur among closely spaced atoms.

The possibility to obtain such type of interactions with artificial atoms will be presented. In chapter

5 of this thesis one will show how superradiant collective interaction of an ensemble of artificial

atoms influences the dynamics of a quantum mechanical resonator.
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1.2 Artificial atoms in optical systems

In this paragraph one will present the different artificial atom architectures which are among

the most applied in modern quantum optics, such as:

→ quantum-dots

→ quantum-wells

→ quantum-wires

→ superconducting circuits

→ nitrogen-vacancy centres in diamonds.

Further studies of this thesis will be focused on semiconductor based artificial atoms as quantum-

dots and quantum-wells. Therefore, more detailed discussions on the artificial atom implementa-

tion in quantum optics will be related to this type of emitters.

The common aspects of real and artificial atoms, is that their electronic discrete energetic levels

appear as a consequence of the electron confinement in space. The real atom electrons are confined

via their natural attraction force to the positively charged protons localised in the centre of the atom.

In semiconductor based artificial atoms, the confinement is achieved when a semiconductor

material with a smaller band gap is embedded on a material with a larger gap. As the electron is

confined within the material with the smaller gap, the shape of the embedded crystal will define the

properties of the artificial atom. Quantum-dots represent point-like crystals where the electron is

confined in all three dimensions, a quantum-wire allows for a two-dimensional confinement within

an one-dimensional crystal, the quantum-well represents a single dimensional electron confinement

within a two-dimensional embedded layer. Only quantum-dots represent a discrete spectrum of

energies, while the quantum-wires and quantum-wells energy levels refers to the formation of mini-

bands within their spectra.

The difference in materials in nitrogen-vacancy centres in diamonds is created by an impurity

made of a nitrogen atom which substitutes a vacancy of a missing carbon atom in the diamond

lattice [50]. Similarly to quantum-dots, they allow a three-dimensional confinement and have a

discrete energy spectrum. However, this type of artificial atoms have different properties due to

their size of a single atom, comparing to the size of quantum-dots which are made at different scales

varying from a few hundred atoms to tens of thousands. This difference is expressed in their optical

and optomechanical properties.

The superconducting circuits have various architectures [51], but they all are based on anRLC

superconducting circuit which implements Josephson junctions [52]. This allows one to include a
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non-linear element into the quantum harmonic behaviour of the circuits. As within the supercon-

ducting regime the circuit resistance vanishes, the dynamics is reduced to a LC circuit case. Due

to the quantum harmonic behaviour of LC circuits, their infinite energetic levels are degenerated.

The inclusion of a non-linearity, i.e., a Josephson junction, allows one to break the degeneracy of

energetic levels. As the energy levels are not equally distributed anymore, one is able to select

some particular levels, such as the first two levels in order to form a qubit.

The implementation of a specific type of artificial atom into an optical system may be deter-

mined by some experimental limitations [53]. Superconducting circuits are mostly operable in

microwave frequencies, whereas quantum-dots transitions are more suited to optical frequencies.

The temperature conditions for coherent manipulations vary significantly for each particular type

of emitter. Real atoms are operated at temperatures varying from nanokelvins to microkelvins.

Ions require better conditions within the scale of millikelvins. Superconducting circuits are oper-

ated within similar conditions of millikelvins. Quantum optical experiments with quantum-dots

are manipulated at significantly higher temperatures of a few kelvins. A remarkable feature of the

nitrogen-vacancy centres in diamonds is that they are operable at room temperatures.

Another differentiation among various types of artificial atoms is their characteristic sizes [53].

Superconducting circuits dimensions are of order of micrometres, while quantum-dots dimensions

are significantly smaller of order of a few nanometres. Another important feature is the inter-

atomic distance, which is important for two-emitter or collective phenomena. Quantum-dots may

be spaced at distances of tens of nanometres, while superconducting circuits are spaced at microme-

tre distances.

It is to note that experimental challenges in using a particular type of artificial atoms are related

to many more characteristics e.g., the phonon assisted quantum optical effects when the artificial

atom couples to mechanical vibrations, the possibility of additional control via magnetic or electric

fields or via an applied voltage, dephasing processes andmanymore. Although all these challenges,

remarkable on-chip realisation of various cavity quantum electrodynamics experiments have been

implemented with quantum-dots [49] and superconducting circuits [6]. For example, an on-chip

realisation of a superconducting circuit interacting with a microwave waveguide optical cavity is

presented in Fig.1.1.
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Fig. 1.1: a. An on-chip realisation of a superconducting circuit interactingwith amicrowave optical
resonator; b. interdigital coupling capacitors defining the edges of the optical waveguide resonator;
c. the superconducting flux qubit; d,e. various Josephson junctions. The figure is taken from [54].

In what follows, one will focus on semiconductor based artificial atoms such as quantum-dots.

Their fabrication techniques have rapidly advanced during the last two decades and nowadaysmany

fundamental quantum optic effects have been experimentally observed. Among the most wide-

spread types of quantum-dots one will highlight here the colloidal quantum-dots and the epitaxially

grown quantum-dots.
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The colloidal quantum-dot nanocrystals are formed in chemical solutions. The manipulation of

their growth kinetics allows a good control degree of their shape and size. Scales of a few nanome-

tres may be achieved in size for quantum-dots composed of a few hundreds of atoms, while their

shape may be controlled to obtain architectures such as dot-in-rods or tetrapods. This kind of emit-

ters have shown good potential for single-photon sources. Strong photon anti-bunching effect have

been observed in the fluorescence of single colloidal CdSe/ZnS quantum-dot [55]. Moreover, sim-

ilar effect have been found for a cavity quantum electrodynamics setup operated at room tempera-

ture, made of a single colloidal CdSe/ZnS quantum-dot placed in a vertical microcavity [56]. The

possibility of operating the setup at room temperature suggests a good candidate of single-photon

source for technological purposes.

An even more widespread type of quantum-dots for quantum optic experiments are the self-

assembled quantum-dots. Their synthesis is based on molecular beam epitaxy growth, where small

crystals are formed due to the relaxation of the strain which appears from the difference in the lattice

constants of the two materials. For example, many optic experiments are implementing InAs/GaAs

self-assembled quantum-dots obtained via the Stranski-Krastanov self-organized growth [57]. The

strained InAs lattice form small nanocrystals shaped as flat lenses deposed on the GaAs substrate.

They are made a few nanometres in heigh and a few tenths of nanometres in diameter. The InAs

material has a smaller bandgap among the valence and conduction bands, if compared to the GaAs

substrate, which allows one to spatially confine the exciton formed within the quantum-dot. The

formation of the exciton may be obtained under optical or electrical pumping, both pumping meth-

ods being experimentally available for this type of quantum-dots. When operated at cryostat tem-

peratures of a few kelvins, these type of artificial atoms have narrow emission lines. This makes

them suitable candidates for experiments based on cavity quantum electrodynamics effects.

When implementing this type of artificial atoms into cavity quantum electrodynamics setups,

several major experimental challenges arise. An important challenge appears from the quantum-

dot architecture as it is deposed on a substrate. Thus, the light emitted from the quantum-dot may

be trapped in the substrate surrounding it. This challenge becomes more prominent when weak

cavity fields are considered. Different techniques based either on using quantum optics effects or

by engineering the spatial cavity modes are applied to address the issue [58].
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Fig. 1.2: a. A pillar microcavity with a quantum-dot inside. The position of the quantum-dot is
represented as a red triangle. The figure is taken from [6].; b., c. Photonic crystal cavities with
embedded quantum-dots. The figures are taken from [60, 61], respectively.

For technological applicability of quantum optic effects, micro- or nano-scale optical cavities

are considered. A particular interest is focused on pillar microcavities [59] and photonic crystal

cavities [60, 61] as this type of optical cavities can be engineered with an embedded quantum-dot

inside, as presented in Fig.1.2. Considering the ensemble of engineering limitations, additional

experimental challenges related to the Purcell effect appear. As previously mentioned, different

frequency tuning of the atom-cavity defines how the emitter will emit. One may achieve suppres-

sion or enhancement of photon spontaneous emission in the cavity depending on the fine tuning of

the engineered quantum-dot-microcavity setup.

Various techniques are applied in order to tune either the cavity or the quantum-dot frequencies.

The nanocavity frequency may be tuned by varying its refractive index via a photodarkening effect.

It is achieved when deposing a thin chalcogenide glass layer on the top of the cavity [62]. Another

method of fine tuning is achieved by deposing nitrogen or xenon gas condensate onto the cavity

at kelvin temperature [63]. Both methods have reported a shift of a few nanometres in the wave-

length of the photonic crystal nanocavity. The quantum-dot can be tuned by shifting its transition

frequency when applying a magnetic or an electric field. Correspondingly, the Zeeman shift [64]

and the Stark shift [65] effects have been successfully observed in self-assembled quantum-dots.
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More experimental challenges appear when an optical pump is introduced. For example, the

observation of the Mollow triplet is possible when a two-level emitter is resonantly pumped with

an intense laser. Under the pumping effect, the fluorescence spectra of the emitter is described

by a central peak centred at the emitter transition frequency and two side-bands equally shifted in

both directions from the central peak. The distance between the side-bands and the central peak is

related to the intensity of the applied laser. Note that the corresponding theoretical framework will

be presented in the next chapter.

The experimental observation of this effect had had to address a major problem of eliminating

the scattered laser light from the quantum-dot emission light, as the laser is in resonance with the

quantum-dot transition. It had been achieved via the polarization and spectral selection [66] or

by engineering an integrated cavity-quantum-dot setup with orthogonal excitation and emission

directions [67].

All the previously presented remarkable achievements in quantum optics setups based on quantum-

dots and the corresponding experimental breakthroughs have allowed for further observation of

more complex fundamental quantum effects. The photon blockade effect have been successfully

observed for a quantum-dot put inside a photonic crystal nanocavity [68]. The photon blockade

phenomenon appears when a first photon is emitter in a cavity. The single-photon-cavity system

has a different resonance frequency than the empty cavity. Therefore, the probability of emitting

a second photon at the cavity frequency is significantly decreased due to this difference, resulting

in the so called blockade of emitting the second photon. The possibility to create the experimental

setup on a chip, makes it a good candidate for a single-photon transistor.

The first experimental realisation of quantum teleportation using single quantum-dots have

been reported in [69]. Two independently generated indistinguishable photons had been prepared

in a polarization entangled state by sending the photons on two different arms of an interferometer.

With an observed fidelity of 80%, quantum-dots are making good opportunities for technological

applications in the realm of quantum teleporting and communications. Another method of prepara-

tion of entangled photons have been reported in [70], where time-bin entangled photons have been

observed out of a biexciton cascade from a resonantly excited quantum-dot.

Progress for technological applications of quantum opticswith artificial atoms have been achieved

in various major developing challenges. On-chip realisation of a quantum-dot-based setup able to

emit, guide and detect a few-photon electromagnetic field have been reported in [71]. A crypto-

graphic key had been successfully distributed over a distance of 35 km of optic fibre using single-

photons from quantum-dot-microcavity system [72]. An optic two-qubit logic gate based on indis-
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tinguishable photons emitted from a self-assembled quantum-dot in an optical pillar microcavity

have been achieved in [73]. As the setup is realized from semiconductor based components, it

suggests a future development for scalable optical quantum computing devices.

A particular phenomenon investigated in this thesis is the quantum interference. Quantum in-

terference effects involving various atomic transition amplitudes have been intensively investigated

recently [74, 75, 76]. It originates from indistinguishability of the corresponding transition path-

ways. As a consequence, quenching of spontaneous emission occurs due to quantum interference

effects between decaying pathways which are dependent on mutual orientation of corresponding

transition dipoles [77, 78, 79]. Laser- or phase-control of spontaneous emission processes were

demonstrated there. Also, quantum interference effects lead to very narrow spectral lines in the

spontaneous emission spectrum of pumped molecular, semiconductor or highly charged ion sys-

tems [80, 81]. Furthermore, such spontaneously generated coherences in a large ensemble of nuclei

operating in x-ray regime and resonantly coupled to a common cavity environment were experi-

mentally demonstrated in [82].

Previously it was shown that multi-level atoms interacting with the vacuum of a preselected

cavity mode, in the bad-cavity limit, exhibit cavity induced quantum interference which is similar

to the spontaneously generated coherences due to parallel transition dipoles [83, 84]. Quantum in-

terference effects in an ensemble of 229Th nuclei interacting with coherent light were demonstrated

too, in [85]. Destructive or constructive interference effects were observed even in a strongly

pumped few-level quantum- dot sample [86, 87]. Protection of bipartite entanglement [88] or con-

tinuous variable entanglement [89] via quantum interferences were shown to occur as well. Finally,

electromagnetic induced transparency is an another phenomenon of quantum destructive interfer-

ence which makes a resonant opaque medium highly transparent and dispersive within a narrow

spectral band [90].

A powerful tool in the control and manipulation of interference effects originates from an ad-

ditional degree of freedom of the system given by its phase dependence. For example, quantum

interference effects influence the collective fluorescence of a driven sample of emitters, which

becomes sensitive to phase dependence. Thus, the phase difference of the two lasers pumping a

collection of three-level emitters may decrease and cancel its fluorescence when quantum interfer-

ences appear from a coherently driven source [91]. The superfluorescent behaviour of a sample of

four-level emitters is modified by the vacuum induced quantum interferences and may be enhanced

by varying the phase difference of the pumping lasers [92]. Moreover, for a well-chosen phase the

sample may be trapped in its excited state and thus decoupled from the surrounding environment.

29



The phase dependent complete or partial cancellation of the spontaneous emission is reached when

a single four-level emitter is considered [93]. The spontaneous emission properties may also be

controlled via the phase difference of the pumping laser and a squeezed surrounding reservoir for

a three-level ladder-type emitter [94]. In a different scenario, phase dependent systems may be

used to study the phase itself, e. g. , the carrier-envelope phase of a few-cycle laser pulse may be

determined via the behaviour of the populations of a qubit system [95].

A more challenging goal has been the realization of quantum effects in systems made of artifi-

cial atoms such as quantum-wells, as these systems possess additional degrees of freedom, which

leads to stronger decoherent phenomena [96]. The particular interest in this type of artificial atoms

for the current realm is the possibility to tailor their energetic states via the layer thicknesses and

materials used for the quantum-well [97]. Quantum interference phenomena as gain without in-

version have been experimentally obtained for pumped three-level ladder-type coupled triple wells

[98], while electromagnetically induced transparency has been observed in three-level quantum-

well systems withΛ-type transitions [99] as well as ladder-type intersubband transitions [100, 101].

A direct detection of ac Stark splitting, i.e. , dressed-state splitting, has been experimentally

achieved in [100] forΞ-type quantum-wells. This type of quantum-well is particularly interesting as

it may be engineered as an equidistant three-level emitter [96, 97], an emitter difficult to implement

with real atoms. A quantum switch based on a quantum interference scheme composed of a Ξ-type

quantum-well with equidistant energetic levels had been suggested in [102, 103].

30



1.3 From optical to optomechanical systems

Shortly after the firsts remarkable achievements in cavity quantum electrodynamics investiga-

tions described in the previous sections, the realm of optomechanics emerged. First predicted by

Maxwell, the electromagnetic radiation force had been experimentally observed for more than a

century ago [104]. It appears when the matter is irradiated by a beam of light and one of the first

investigations in optomechanics have been questioning what would happen if one of the cavity

mirrors would be engineered in order to be able to move under the action of this force. A large va-

riety of modern optomechanical devices have been developed since, many of which are presented

in Fig.1.3. In what follows, one will discuss different experimental and engineering approaches in

optomechanics, in order to highlight how it combines with the previously discussed realm of cavity

quantum electrodynamics.

Although the model of an optical cavity with a vibrating mirror have been intensely investi-

gated for half of century, it still presents a major interest for modern research. Various setups have

been implemented at different scales, from micrometre size mirrors suspended on various types of

micromechanical resonators to massive mirrors of tens of kilograms in mass.

At macro-scale, a tremendous research have been done to stabilise the mechanical motion of the

large mirrors of the LIGO (Laser Interferometer Gravitational Wave Observatory) interferometer.

With each mirror weighing about ten kilograms, one was able to cool down the mirrors up to an

effective temperature of 1.4µK, which corresponds to a phonon occupation number value of∼ 200

[105].

Similarly to the realm of cavity quantum electrodynamics, the optomechanical setups have

evolved in order to reduce their sizes, with micro-mirrors currently reaching the scale of tens of

micrometres in size. There are various techniques to either couple a micrometre mirror to a mi-

cromechanical resonator such as an AFM cantilever [106] or to fabricate a mechanical resonator

which would substitute the classical mirror, e.g., a mirror made from a doubly-clamped monocrys-

talline resonator made from an epitaxial AlGaAs Bragg-type reflector [107] or a mirror made from

micro-optomechanical trampoline resonator composed of a SiO2/Ta2O5 dielectric reflective thin

layer deposed on a silicon nitride resonator [108]. The last two types of devices are presented in

Fig.1.3.b and Fig.1.3.d, respectively.
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Fig. 1.3: Various types of optomechanical devices. The figure is taken from [8].

Instead of considering an optical cavity where a mirror vibrates, a different approach in op-

tomechanics consists in considering a rigid cavity with a mechanical resonator inside. In this type

of systems, the optical and the mechanical components are distinct objects. The major advantage

is the possibility to focus more on the mechanical part of the system without being limited by the

design of the optical cavity. Namely, one is able to consider smaller and lighter mechanical res-

onators with diverse optomechanical properties, as well as resonators that allow artificial atoms to

be embedded.
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One may differentiate the various mechanical resonators in two categories: nanomechanical

resonators and membranes. The nanomechanical resonators represent an one-dimensional object,

i.e., the length is significantly higher than the dimensions of its cross-section. It can be singly

or double-clamped, i.e., it may have one or both ends fixed to a substrate. Various resonance

frequencies and quality factors can be obtained by varying the length, the shape of the cross-section

or the material of the nanomechanical resonator.

An optomechanical setup made of a singly clamped carbon-based nanorod inserted in a fibre-

based optical cavity have been reported in [109]. The nanorods are grown on a AFM cantilever via

electron-beam deposition and measure a few micrometres in length and about a hundred nanome-

tres in diameter as shown in Fig.1.3.r. At room temperature, they oscillate at a resonance frequency

in the range of a few MHz with a low quality factor of order of hundreds. Similar quality factors at

room temperatures, but significantly different dimension ratios can be achieved with nanomechan-

ical resonators made from suspended carbon nanotubes [110]. The resonator consists of a bundle

of a few carbon nanotubes, a few tens of micrometres in length and less than ten nanometres in

diameter, which resonantly vibrates at a frequency of about 500 kHz. A significant increase of the

mechanical quality factor up to orders of 105−106, is observed at room temperature for high stress

silicone nitride nanomechanical resonators [111]. The resonator is similar in size to nanorods, but

has a doubly-clamped geometry and a resonance frequency of 580KHz. Moreover, nanomechan-

ical resonators with tunable resonance frequency up to few GHz of magnitude and high quality

factors of order ∼ 104 are obtained from stressed doubly-clamped carbon nanotubes operated at

cryogenic temperatures [112].

The second type of mechanical resonators that can be inserted in an optical cavity are thin mem-

branes which represent a two-dimensional object with a micrometre sized cross-section and under a

hundred nanometres width. An example of a suspended membrane is shown in Fig.1.3.e. The main

difference between membranes and nanomechanical resonators are defined by their mass, size and

geometry which defines different mechanical resonance frequency ranges and optomechanical cou-

plings. However, a more important difference is related to the flat shape of the membrane that scat-

ters the light in a defined direction which may be controlled in order to reach stable cavity modes.

The considerably larger overall sizes of the membranes, when comparing to one-dimensional res-

onators, influences the cavity modes as the membrane changes the effective refractive index of the

cavity. Besides the changes of the cavity mode induced by the static membrane, the mechanical

vibration of the membrane may perturb and mix the cavity modes.

Successful experimental realisations of optomechanical setups consisting of membranes placed
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in optical cavities have been recently reported. A mechanical resonance frequency of 261kHz and

a high mechanical quality factor of order of ∼ 106 have been observed at cryogenic temperatures

for a high-stress stoichiometric Si3N4 membrane interacting with an optical cavity of frequency of

1064 nm [113]. A fibre-based optical cavity interacting with an inserted silicon nitride membrane

had been investigated in [114], where a fundamental mechanical frequency of 1.74 MHz and a

quality factor of order of ∼ 104 had been reported.

Although the optomechanics had initially derived from the domain of cavity quantum electro-

dynamics, the two realms have inevitably meet again due to technological progress in engineering

small optical setups at micrometre scales for on-chip applications. The experimental treatment

of modern cavity quantum electrodynamics based on micro-scale optical cavities [59, 60] can-

not be realistically applied without considering the intrinsic optomechanical effects which become

prominent at this size scales. Moreover, the optomechanical coupling of this kind of systems can

be manipulated in various ways in order to influence either the optical or the quantum mechanical

effects.

A good example of combining a photonic crystal cavity with a mechanical resonator is the

case of photonic crystal nanobeams. Such a device is presented in Fig.1.3.o. Similarly to the

geometry of a nanomechanical resonators, a photonic crystal cavity had been shaped as a beam,

i.e., with its length a few order of magnitude longer than its width and height. The architecture

of the crystal cavity allows one to confine not only optical modes, but also mechanical modes.

The resulting optomechanical device allows an additional control of the co-localized optical and

mechanical modes, if comparing to simple photonic crystal cavities where bulk phonon modes

are considered. Even better confinement of mechanical modes are obtained by engineering the

photonic crystal nanobeam into a phononic shield [115]. In this experiment, one was able to confine

an optical mode resonance at a wavelength of 1544.8 nm and a mecahnical mode resonance at a

frequency of 5.1GHz. At a cryogenic temperature about ten Kelvins, the phonon mode quality

factor of the device was of order of 106, which is two order of magnitude higher than the quality

factors of unshielded photonic crystal nanobeams.

Another example of obtaining co-localized optical and mechanical modes are the whispering-

gallery-mode microresonators. Various architectures of this type of optomechanical devices such

as microtoroids [116], microdisk resonators [117] and optical microsphere resonators [118] are

presented in Fig.1.3.g, Fig.1.3.h and Fig.1.3.l, respectively. The optical properties of whispering-

gallery-mode cavities allow exceptional high photon lifetimes to be obtained, reaching quality fac-

tor values up to 109 order. The possibility to fabricate such resonators at micro-scale sizes make
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them good candidates for optomechanical purposes. Moreover, the radial symmetry leads to strong

optomechanical coupling if comparing to previously described devices, as well as good mechanical

quality factor values of order of hundreds or even higher depending on particular type of resonator

geometry.

A particular interest for potential devices based on artificial atoms are the microdisk resonators

made from semiconductor material, shown in Fig.1.3.h. Engineered a few micrometres in diameter

and a few hundreds of nanometres in width, they show good perspective for on-chip fabrication

purposes. An optomechanical GaAs disk resonator with highmechanical and optical quality factors

had been recently reported in [117]. Amechanical quality factor of order of 103 at room temperature

and 104 under vacuum and cryogenic conditions had been achieved for the fundamental breathing

mode of frequency of 1.37 GHz.

Although the presented optomechanical devices have led to various technological and scientific

breakthroughs [8, 119, 120] far beyond the description given in this section, they all have a severe

physical limitation, which is the weak coupling of the electromagnetic field with the mechanical

motion via the radiation force. Going beyond this limitation, would reveal even more optical and

optomechanical effects. Adding artificial atoms into the previously discussed optomechanical de-

vices would address this issue, while giving new degrees of freedom of control and manipulation

to the optomechanical setups.
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1.4 Artificial atoms in optomechanical systems

A new dimension of research in optomechanics is related to the insertion of various artificial

atoms into optomechanical devices. A mature technological framework have been developed in

engineering semiconductor artificial atoms and superconducting qubits into optomechanical setups

and firsts experimental achievements had been already reported during the past decade. Various

concepts on how artificial atoms can be implemented are presented in Fig.1.4 and will be discussed

further.

A key particularity in phenomena related to optomechanical systems based on artificial atoms

is the strong effective optomechanical coupling which can be achieved. This introduces a new

perspective in the coherent control of quantummechanical motion ofmatter, as well as a new degree

of manipulation of quantum optical processes. While each type of artificial atom couples in its own

way to a mechanical system, a different theoretical framework is required for each case. However,

the overall dynamics of this interaction is similar, which allows one to compare the various systems

from the point of view of the effective optomechanical coupling that can be achieved [9].

Superconducting circuits may couple with a mechanical resonator in different ways depending

on their type. In Fig.1.4.a, a superconducting circuit qubit made of a Cooper pair confined on a

small superconducting island interacts with a vibrating gate electrode. An strong effective coupling

in range of 5 − 50 MHz is achieved for such configuration [121]. In Fig.1.4.b, a flux supercon-

ducting qubit formed by the direction of the current circulating within a loop is interacting with the

mechanical vibrations of the loop via the Lorentz force created by an applied magnetic field. An

optomechanical coupling strength in the range of 0.1− 1MHz have been observed in [122].

Qubits associated with electronic or nuclear spin states such as quantum-dots or defect cen-

tres may interact with the vibrations of a magnetized nanomechanical resonator tip as shown in

Fig.1.4.c. An effective coupling constant value in the range of 10 − 100 kHz have been reported

for a spin qubit made of a nitrogen-vacancy centre in diamond [123].

In Fig.1.4.d a qubit made from a quantum-dot or a defect centre is embedded on a nanomechan-

ical resonator and couples to the mechanical vibration through the deformations which appear from

the flexural motion of the resonator. The intrinsic coupling of the quantum-dot with the nanome-

chanical resonator is different from the previous optomechanical coupling schemes which require

an external applied field. In the case of a quantum-dot coupled to a double-clamped semiconductor

beam resonator, an optomechanical coupling value of the order of 1 − 10 MHz is expected [124].

One of the firsts experimental reports have observed a coupling strength of 450 kHz, for a singly-
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Fig. 1.4: Schematic representations of the interaction of different artificial atoms with quantum
mechanical resonators. Namely: a) a superconducting circuit qubit made of a Cooper pair; b) a
flux superconducting qubit; c) a spin qubit; d) a quantum-dot or a defect centre. The figure is taken
from [9].

clamped cone-shaped nanowire oscillating at a mechanical frequency of 530 kHz with a quality

factor of the order of 103 [125].

The strong interaction strengths which appear from the intrinsic coupling of quantum-dots with

the phonon environment may significantly influence some quantum optical phenomena. For ex-

ample, broader spectral lines and asymmetrical Mollow triplet side-peaks had been observed for

a coherently pumped quantum-dot [11], while a decrease in the side-band splitting with increas-

ing temperature of the quantum-dot had been observed in [126]. The population inversion of a

pumped quantum-dot occurs due to its coupling to the surrounding mechanical vibrations [12]. A

significant enhancement of the entanglement a pair of pumped quantum-dots coupled to a phonon

reservoir have been suggested in [13].

Strong optomechanical coupling strength effects works in both directions. Not only the op-

tical processes are influenced by the mechanical vibration, but the mechanical motion may be
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controlled and manipulated by optical influence. This opens important opportunities in various

quantum cooling techniques as well as in the preparation of pure quantum states of mechanical

motion via a coherent control of phonon generation. These aspects of optomechanical phenomena

will be discussed further.

Various techniques have been used to cool down the matter close to its ground vibrational state.

First related experimental achievements were obtained on single atoms using two-level sideband

cooling [127] and resolved-sideband Raman cooling [128] techniques. The last technique was

further expanded to cool a collection of atoms trapped in a two-dimensional optical lattice [129].

Since then, various techniques had been theoretically suggested and experimentally applied, in

order to diversify and enhance the quantum cooling mechanism in different ways. Thus, cooling

schemes using quantum optical effects as electromagnetically induced transparency for multiple

multilevel trapped atoms [130] have shown a good applicability. The use of quantum interferences

for laser cooling has been further extrapolated for the nonresolved-sideband regimes [131]. The

process of two-photon cooling have allowed distinguishing different matter states of a nonlinearly

coupled qubit-resonator system [132]. Furthermore, more exotic schemes were proposed to give

additional control to quantum cooling processes as well as to cool the matter at larger scales. For

example, cooling at laser-qubit resonance can be obtained in a photonic-crystal environment [133].

Faster cooling dynamics may be achieved via quantum interferences within a two-mode cavity with

a movable mirror [134] or via the collective effects of a collection of coupled qubits interacting with

a superconducting circuit [135].

A big step forward for the state-of-the-art in the quantum control of the matter at mesoscopic

scales had been reported for cooling experiments which involves nanomechanical resonators [7,

136]. Remarkably, near-ground state cooling of the fundamentalmechanicalmode had been achieved.

The addition of a quantum-dot to a setup based on a nanomechanical resonator would allow even

stronger cooling effects to occur [137]. Moreover, for this kind of optomechanical setup, strong

correlations of the electromagnetic and quantum mechanical vibrations had been predicted in [10].
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Earlier experiments in laser generation of coherent phonons in different bulk materials [138,

139, 140] were succeeded by new optomechanical and electromechanical setups, achieving im-

portant experimental results in the acoustical analog of the optical laser by using piezoelectrically

excited electromechanical resonators [15] and laser driven compound microcavities [16] or trapped

ions [17]. In the meantime, theoretical models propose improvements in the background theory of

the experiments like the PT-symmetry approach [141] and two cavity optomechanics [142], as well

as new possible setups using vibrating membranes [142, 143], quantum-dots embedded in semi-

conductor optomechanical resonators [18, 19, 20] and Bose-Einstein condensate under the action

of magnetic cantilever [144].

Pure quantum behaviour of themechanical motion such as phonon antibunching [20], squeezing

[145, 146] and negative Wigner function of phonon states [21] had been reported. Sub-Poissonian

statistics of vibrational states is another pure quantum property. The domain of this statistics starts

at the limit of a classical coherent state having a Poissonian distributed quanta and may end up with

a pure Fock state at the other limit. Studies on the quanta statistics had already revealed many pure

quantum features for different physical systems and remarkable results were achieved in a large

spectrum of photonic quantum electrodynamics’s applications [41, 147] as well as in Bose-Einstein

condensate’s physics [148, 149]. As for optomechanics, sub-Poissonian distributed phonon fields

have been already predicted in setups based on vibrating mirrors [145, 22] and in single-electron

transistors [150]. Within strong optomechanical coupling regimes, sub-Poissonian statistic may

also occur for quantum-dots embedded on a nanomechanical resonator or multi-layered acoustical

cavities [151].
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1.5 Collective effects with artificial atoms

Two-atom quantum systems are one of the most trivial models for the study of collective effects

and have an important role in the theoretical and experimental research of quantum optical effects

such as quantum interferences, atomic entanglement and superradiance. Quantum interferences

had been observed for two photodissocciated atoms of a Ca2 molecule where a single photon is

shared among the atoms [152]. A two-atom-cavity interferometer was first built in analogy with

the Young’s interferometer, where each trapped atom acts as slit and the interference occurs due

to indistinguishable pathways of the atoms-field interaction [153]. Depending on the superposi-

tion of the pathways, this type of interferences shows cavity-induced saturation of the resonance

fluorescence spectra or photon bunching effect [154]. One of the basic model of quantum atomic

entanglement effects is the two-atom system either placed in a cavity [155] or interacting with the

surrounding vacuum field [156].

The observation of the Rydberg blockade regime between two neutral atoms was reported in

[157, 158], which is a crucial prerequisite towards the creation and control of atomic entanglement.

The dipole-dipole interaction may also be manipulated when the environmental vacuum field is

considered in the case of two three-level Λ-type atoms, where the surrounding reservoir induces

the coupling of orthogonal transitions. Therefore, the spatial orientation of these atoms determines

the steady-state dynamics of the system [159]. The coherent trapping effect is influenced as well

by the dipole-dipole interaction of the two two-level atoms trapped in a cavity [160].

First discovered by Dicke [161], the phenomenon of superradiance can be understood as a

collective giant dipole resulting from an ensemble of closely packed emitters. As a result, the

spontaneous emission dynamics is modified, leading to a reduced radiative lifetime as well as an

enhanced emission intensity proportional to the square of the number of excited emitters. Two-

atom systems may be considered as the edge for collective effects. Superradiance and subradiance

was first observed in the spontaneous emission variation for two trapped Ba138+ ions [162]. Non-

decaying atomic collective states were predicted for two-atom systems prepared in a subradiant

state [163].

Interestingly, the speed up of the spontaneous decay also occurs for single-photon excitations

[164], i.e., when only a single emitter of the atomic sample is excited. From early experiments with

driven gases [165], superradiance has been investigated intensely in various theoretical and exper-

imental approaches [166, 167, 168, 169, 170]. Since then, remarkable results have been achieved

and superradiance was observed in molecular aggregates [171] and crystals [172], as well as in
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Bose-Einstein condensates where Dicke phase transition occurs [173].

As previously mentioned, artificial atoms have a major a disadvantage in comparison with real

atom as they cannot be engineered to be completely identical. This issue creates a severe tech-

nological challenge when it comes to collective processes. Remarkably, two-photon interferences

have been observed in a setup based on two separate quantum-dots [23] which requires a high de-

gree of resemblance among the two qubits. Another important goal was achieved in the realm of

condensed matter physics, where superradiance was observed within a collection of quantum-dots

[24].

In the realm of optomechanics, significant results have been achieved for collective effects

in condensed matter physics [170]. Particularly, superradiance was observed in a collection of

artificial atoms as quantum-dots [24]. Moreover, phonon superradiance effects were predicted

for molecular nanomagnets [174] and nanomechanical resonators as vibrating membranes [175],

while subradiance with phonons was reported for a system using coupled quantum-dots, in analogy

with the subradiant photon effect for a two-ion system [176]. Single-photon superradiance has

been reported recently for artificial atomic samples [177], whereas an analytical framework for the

engineering of single-photon superradiance in extended media was developed in [178]. quantum-

wells allow for even more exotic superradiant behaviour as their excited states, i.e., the excitons,

are created in a two-dimensional layer [170], which is different from the quantum-dot case where

excitons are well localized in space.
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1.6 Conclusions to Chapter 1

Modern quantum optics progresses towards the fields of quantum communications and quan-

tum computing. Among various technological concepts related to these fields, a strong require-

ment arises in engineering small optical devices at micro- and nano-scales. Photon emitters made

of artificial atoms are good candidates for such proposes as they possess several advantages over

real-atom-based sources. Various types of artificial atoms such as superconducting circuits and

semiconductor based artificial atoms may be embedded within the optical device and some of them

allow on-chip engineering. Beyond optical interactions, artificial atoms may be electrically con-

trolled which suggest different applications in modern electronics. quantum-dots are particularly

interesting as single-photon sources required for quantum communications, being able to emit pho-

tons on-demand.

With decreasing sizes of the optical setups, optomechanical interactions become more promi-

nent. Specially, when considering semiconductor based artificial atoms such as quantum-dots,

which intrinsically couple to the mechanical vibrations. Their optomechanical coupling strength is

several orders of magnitude higher than the coupling resulting from the action of the radiation force.

Within such strong coupling regimes, optical processes are co-existing with quantum mechanical

ones. Which allows one to use quantum optical treatment to manipulate the quantum mechanical

motion of solid matted at mesoscopic scale.

Various technological approaches related to the implementation of artificial atoms to nano-scale

quantum optics have been presented in this chapter. One have separately treated the achievements

and the challenges related to optical and optomechanical systems. Various implementation of such

systems, as well as, the related phenomena, have been discussed.
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2 THE OPTOMECHANICAL INTERACTION

The fundamentals of this thesis relies on the theory of an emitter interacting with a quantum

harmonic oscillator. One uses artificial atoms as emitters and considers their specific properties

if comparing to atoms. Namely, artificial atoms as quantum-dots may be deposed on different

types of quantum mechanical resonators and interact with phonons in the good cavity limit. While

other type of artificial atoms as quantum-wells allow to engineer their energetic levels to form

an equidistant three-level emitter, which allows one to obtain strong quantum interferences when

interacting with an optical resonator. Investigations following in the next chapters rely on the same

fundamental theory, although each particular case requires a specific treatment. Therefore, this

chapter regroups the fundamental physics of all the following investigations, in order to give the

reader a clearer overview on the physical processes to be discussed.

The optical part of the quantum systems is discussed in the first paragraph of this chapter. Both,

optical and opto-mechanical setups are directly related to the quantum interaction of the emitter

with an electromagnetic field. Moreover, damping processes as the spontaneous emission decay,

which is omnipresent in quantum system with atomic-like emitters, may be fully explained only

through the prism of the qubit-field interaction. All the necessary details for the description of a

system interacting with an electromagnetic field are deduced and discussed and will be applied into

the following chapters. The description of the laser pumping effect of a two-level quantum-dot,

given in the Chapter 3, will rely on the semi-classic interaction given here. Also, a fully quantum

description of the interaction of the electromagnetic field with a quantum-well will be required in

Chapter 4.

The mechanical part of opto-mechanical systems is treated in the second paragraph of this

chapter. This type of treatment may affect both, the optical and the mechanical behaviour of such

systems. The particularity of the treatment consists in considering phonons as bosonic fields and,

therefore, all the tools of the quantum optics theory can be applied in order to describe them. Al-

though phonons and photons are treated as bosons from the analytical point of view, their physical

meaning is completely different and requires a separate approach. The quantum systems studied

in Chapters 3 and 5, are focused on the investigation of the quantum statistics of the mechanical

resonator’s phonons.

All quantum systems presented in this thesis are open quantum systems, where each of its

elements, e.g., the artificial atoms, the phonons and the photons, are exposed to the damping effect

of the surrounding environment. The photon leaking into the electromagnetic vacuum, the thermal
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phonon surroundings or the spontaneous emission of the artificial atoms will be described and

defined in the third paragraph of this chapter. For each type of damping mechanics, one will apply

the general reservoir theory for the specific type of interaction.

2.1 The optical part

The two-level artificial atom is described by its excited state |e⟩, the ground state |g⟩ and the

transition frequency among these two states ωqd. The atomic operators describing the artificial

atom’s dynamics are defined as S+ = |e⟩⟨g|, S− = |g⟩⟨e| and Sz = 1
2
(|e⟩⟨e| − |g⟩⟨g|). They obey

the standard commutation relations for SU(2) algebra:

[
S±, S∓] = ±2Sz,[
S∓, Sz

]
= ±S∓. (2.1)

As the qubit state basis is represented via its two states {|e⟩, |g⟩}, the identity operator is defined

as |g⟩⟨g|+ |e⟩⟨e| = 1. The free qubit Hamiltonian is deduced by applying the identity operator on

both sides of HQD:

HQD = (|g⟩⟨g|+ |e⟩⟨e|)HQD (|g⟩⟨g|+ |e⟩⟨e|) = }ωg|g⟩⟨g|+ }ωg|e⟩⟨e|, (2.2)

where }ωg = ⟨g|HQD|g⟩ and }ωe = ⟨e|HQD|e⟩ are the two eigenenergies of HQD and the off-

diagonal terms of HQD are null, i.e., ⟨e|HQD|g⟩ = ⟨g|HQD|e⟩ = 0, as this Hamiltonian does not

contain any interactional terms. For the sake of simplicity, one may consider a different origin in

the energy coordinate, so that:

HQD = }
(ωe − ωg)

2
|e⟩⟨e| − }

(ωe − ωg)

2
|g⟩⟨g| = }ωqdSz, (2.3)

where ωqd = ωe − ωg.

The quantum-dot-laser interaction is described within the dipole approximation where the field

variations in the proximity of the qubit are considered irrelevant, i.e., when k ·r ≪ 1, where k is the

wavevector and r is the coordinate fixed on the atom position r0. Considering a gauge-independent

field E(r0, t), linearly polarized along the x axis, one defines the quantum-dot-laser Hamiltonian
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in the dipole approximation as:

HQD−laser = −er · E(r0, t) = −exE(r0, t) = −exE cos (ωLt), (2.4)

where e is electron charge, x is the atom’s coordinate, E is the laser field amplitude and ωL is the

laser frequency. In the first equality of eq.(2.4) was given the general expression of the interaction

of the qubit’s electron with a gauge-independent electromagnetic field. In the second equality, one

has projected the scalar product among the polarization axis. While, in the last equality one has

inserted the classic expression of an electromagnetic fieldE(r0, t) = E cos (ωLt) which is justified

as long as intense laser fields are considered. This type of interaction is called the semi-classical

quantum-dot-laser interaction as the laser field is treated classically. In order to introduce the atomic

induced dipole momenta, one applies the identity operator |g⟩⟨g|+ |e⟩⟨e| = 1 on both sides of the

position operator x as follows:

HQD−laser = −e (|g⟩⟨g|+ |e⟩⟨e|)x (|g⟩⟨g|+ |e⟩⟨e|) E cos (ωLt)

= − (℘ge|g⟩⟨e|+ ℘eg|e⟩⟨g|) E cos (ωLt), (2.5)

where, within the second equality of the equation, one has introduced the off-diagonal elements of

the qubit’s dipole matrix ℘ge = e⟨g|x|e⟩ and ℘eg = e⟨e|x|g⟩. The off-diagonal elements obey the

relation ℘ge = ℘∗
eg. As the quantum-dot possess only an induced dipole and not a permanent one,

the diagonal elements of the dipole matrix are null, i.e., {⟨g|x|g⟩, ⟨e|x|e⟩} = 0. This relations were

used in the calculus of eq.(2.5), where one has eliminated the diagonal elements.

For the sake of simplicity and without loosing the generality of the actual problem, one will

further consider the off-diagonal dipole matrix elements to be real, i.e., ℘ge = ℘eg = ℘:

HQD−laser = −
(
℘geS

− + ℘egS
+
) (
eiωLt + e−iωLt

)
E/2

= −}Ω
(
S− + S+

) (
eiωLt + e−iωLt

)
, (2.6)

this assumption allows one to define the Rabi frequency Ω = ℘E/2}, which is the frequency of the

oscillation of the atomic population between its ground and excited states under the effect of the

laser pumping. One has also used the trigonometric relation cos (ωLt) = (eiωLt + e−iωLt) /2.

In order to simplify the previous expression of the laser-quantum-dot interaction Hamiltonian,

one expresses it in the interaction picture according to the free Hamiltonian of the considered system

HQD = }ωqdSz. This is done by applying to the interaction Hamiltonian, the corresponding unitary
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transformation U(t) = exp(−iHQDt/}):

HQD−laser = U †(t){−}Ω
(
S− + S+

) (
eiωLt + e−iωLt

)
}U(t)

= −}Ω
(
S−ei(ωL−ωqd)t + e−i(ωL−ωqd)tS+

)
−}Ω

(
S−e−i(ωL+ωqd)t + ei(ωL+ωqd)tS+

)
, (2.7)

where in the last equality of the equation one has used the relations U †(t)S−U(t) = S−e−iωqdt and

U †(t)S+U(t) = S+eiωqdt. These relations have been deduced by applying the atomic commutation

relations of eqs.(2.1) to the mathematical expansion:

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + ... (2.8)

which leads to a Taylor expansion of the exponential functions e±iωqdt.

Within the interaction picture, a secular approximation is applied to the interactionHamiltonian.

In this approximation, the atomic terms rotating at frequencies±(ωL+ωqd)were neglected as they

are rapidly oscillating and their contribution at time scales larger than 1/(ωL + ωqd) is null. As the

characteristic time scale of the dynamics of the laser-quantum-dot interaction is given by 1/Ω, the

secular approximation is valid as long as this time scale is big enough to consider the contribution

of the fast terms null, i.e., 1/(ωL + ωqd) ≪ 1/Ω or Ω ≪ (ωL + ωqd). Therefore, the interaction

Hamiltonian, within the secular approximation is given as:

HQD−laser = −}Ω
(
S−ei(ωL−ωqd)t + e−i(ωL−ωqd)tS+

)
− }Ω

(
S−e−i(ωL+ωqd)t + ei(ωL+ωqd)tS+

)
≃ −}Ω

(
S−ei(ωL−ωqd)t + e−i(ωL−ωqd)tS+

)
. (2.9)

One obtains the final form of the laser-quantum-dot interaction Hamiltonian by returning into

the initial representation, i.e., the Schrödinger picture. It is done by applying an inverse unitary

transformation U †(t), in a similar way that the calculus of eq.(2.7). Therefore, one obtains:

HQD−laser = −}Ω
(
S−eiωLt + e−iωLtS+

)
. (2.10)

This term represents the semi-classical light-qubit interaction, as a classical treatment was applied

to the electromagnetic field in eq.(2.4). This treatment is justified for intense coherent light. A

general description of the light-qubit interaction requires, however, a fully quantum treatment of

the interacting electromagnetic field.

One shall begin to characterize the quantum electromagnetic field by identifying its free Hamil-

tonian. The classical Hamiltonian is found from the solutions of the Maxwell’s equations for a
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single-mode linearly polarized gauge-independent electromagnetic field in empty space [179, 180]

and may be expressed as:

Hharmonic oscillator =
1

2

(
mω2q2 +

p2

m

)
. (2.11)

This expression is equivalent to the Hamiltonian of a harmonic oscillator, where m is a constant

with the dimension of a mass which equals the unitary value m = 1 for the case of an electro-

magnetic field, q is the position and p is the momentum of the oscillator. The Hamiltonian of

the quantum field is deduced via the correspondence rule by inserting the canonical position and

momentum operators q and p, respectively, into eq.(2.11). Similarly to the quantum harmonic os-

cillator case, one performs the second quantization by defining the non-hermitian creation operator

a† and annihilation operator a as:

ae−iωt = (ωq + ip)/
√
2}ω,

a†eiωt = (ωq − ip)/
√
2}ω, (2.12)

which obey the commutation relation:

[a, a†] = 1. (2.13)

With the new set of operators, the free field Hamiltonian within the second quantization is given

as:

Hphotons = }ω
(
a†a+

1

2

)
. (2.14)

The photon field basis is defined via the eigenfunctions of the Hamiltonian of the free field

Hphotons. The lowest eigenenergy is given by the non-vanishing part of the Hamiltonian term }ω/2

and the corresponding eigenfunction |0⟩ is called the vacuum state. This state describes the empty

field, i.e., the field with no photons. The non-zero energy of the vacuum state is generally explained

by the quantum fluctuations of the quantum harmonic oscillator at rest. In our particular case, those

are the quantum fluctuations of the electromagnetic vacuum responsible for different fundamental

quantum phenomena as the spontaneous emission effect or the Casimir effect [181].

The Hermitian quantity n = a†a is called the number operator and defines the eigenenergies

corresponding to Hphotons as:

En = }ω(n+ 1/2), (2.15)
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where two near eigenenergies differ by the amount }ω corresponding to a single elementary exci-

tation of the oscillator, i.e., a photon in the current case. Therefore, the number operator counts the

number of photons corresponding to a particular field state.

After the vacuum state, the next higher eigenenergy is increased by the amount }ω. The corre-

sponding eigenfunction |1⟩ is obtained by applying the creation operator to the vacuum state, i.e.,

|1⟩ = a†|0⟩, and is called the first Fock state. The complete Fock basis {|n⟩, n ∈ N} is built by

successively applying the creation operator, so that nth Fock state is defined after a normalization

as :

|n⟩ =
1√
n!
(a†)n|0⟩. (2.16)

The Fock basis represents an infinite basis of orthogonal vectors, i.e., ⟨m|n⟩ = δm,n, where δ is the

Kronecker function.

Note that this quantum description of a single-mode electromagnetic field, may be generalized

for the case of a multi-mode field by considering that each mode of the field is described by a

different independent harmonic oscillator. Therefore, the dynamics of the multi-mode field will be

described via the Hamiltonian:

Hmulti−mode =
∑
j

}ωj
(
a†jaj +

1

2

)
, (2.17)

where one has indexed the frequency, the creation and annihilation operators of each of the field

modes and one has summed over all the field modes. As the field modes are described via in-

dependent oscillators, each mode is described via a set of independent creation and annihilation

operators a†j and aj , so that [aj, a
†
i ] = δj,i and an independent Fock basis {|nj⟩, nj ∈ N}, so that

⟨nj|ni⟩ = δj,i.

The quantum treatment applied to the electromagnetic field in eqs.(2.11-2.17), may be applied

to any other type of dynamics that can be expressed via the model of a quantum harmonic oscillator.

The fields that obey this dynamics are called bosonic fields, the creation and annihilation are called

the bosonic operators. For example, the phonon fields that will be discussed in the next paragraph,

have a harmonic dynamics and obeys the same quantization rules as the electromagnetic fields,

therefore they are expressed via a similar set of bosonic operators.

Once one has quantized the field’s dynamics and defined the field operators. One may apply

the bosonic operators of eqs.(2.12) to the general form of the quantum-dot-laser interaction term

given in the first equality of eq.(2.4). More precisely, the expression of the single-mode gauge-

independent linearly polarized field obtained from the solution of the classic Maxwell’s equations,
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within the second quantization is obtained as follows:

E(r, t) = Eq(t) sin(k · r) = E
√

}
2ω

(a†eiωt + ae−iωt) sin(k · r), (2.18)

where in the first equality one has used the correspondence rule on the position operator q(t), while

in the second equality one has expressed the position operator via the bosonic operators. Similarly

to the semi-classical treatment, one applies the dipole approximation by considering the field in-

variant in the proximity of the qubit, i.e., k · r ≪ 1. Therefore, within the dipole approximation,

the field expression becomes:

E(r0, t) = E0(a†eiωt + ae−iωt), (2.19)

where r0 is the position of the artificial atom and one defines E0 = E
√

}
2ω

sin(k · r0). Inserting

the field expression in the general form of the interaction term of eq.(2.4), the artificial-atom-field

quantum interaction for a field polarized along the x axis, is defined as:

HQD−field = −er · E(r0, t) = −exE(r0, t) = −exE0(a†eiωt + ae−iωt), (2.20)

where x is the atom’s position operator r projected along the field’s polarisation axis x. Similarly to

eqs.(2.5-2.6), one defines the induced transition dipole momenta℘ by inserting the identity operator

|g⟩⟨g|+ |e⟩⟨e| = 1 on both sides of x as follows:

HQD−field = −e (|g⟩⟨g|+ |e⟩⟨e|)x (|g⟩⟨g|+ |e⟩⟨e|) E0(a†eiωt + ae−iωt)

= − (℘ge|g⟩⟨e|+ ℘eg|e⟩⟨g|) E0(a†eiωt + ae−iωt)

= −℘
(
S− + S+

)
E0
(
a†eiωt + ae−iωt

)
. (2.21)

This Hamiltonian form may be simplified by applying a secular approximation, similarly to

the semi-classical treatment aproach of eqs.(2.7-2.9). Within the interaction picture, the system

Hamiltonian is expressed as:

HQD−field = }g
(
S−e−iωqdt + S+eiωqd

) (
a†eiωt + ae−iωt

)
, (2.22)

where one defines the coupling constant g = −℘E/}. Within this representation, one is able

to split the fast-rotating terms from the slow-rotating ones. Considering that the characteristic

time scale of the quantum-dot-field interaction 1/g is larger than the period of the fast-oscillating

terms 1/(ω + ωqd), i.e., g ≪ (ω + ωqd), one may apply the secular approximation and neglect the
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contribution of the fast terms. Within this approximation, the system Hamiltonian is expressed as:

HQD−field = }g
(
S−a†ei(ω−ωqd)t + e−i(ω−ωqd)taS+

)
. (2.23)

Back in the Schrödinger representation, the Hamiltonian describing the two-level quantum-dot

interacting with a single-mode quantum field is given as:

H = }ωqdSz + }ωa†a+ }g
(
S−a† + aS+

)
. (2.24)

This Hamiltonian is known as the Jaynes-Cummings model [39] describing a two-level emitter

interacting with a single-mode quantum field. Note that within the quantum treatment of the atom-

field interaction, the Rabi frequency does not explicitly appear within the interaction term, however

it may be deduced by solving the dynamics of the Hamiltonian. One of the main differences be-

tween the semi-classic and quantum treatments, is that for the last case one obtains different Rabi

frequencies for each of the states of the field. As the photons are distributed among different pos-

sible field states, the overlap of different Rabi oscillations leads to the pure quantum phenomena

of collapse and revivals of the oscillations of the population of the pumped atom [180]. However,

with increasing the photon number, the Rabi frequencies corresponding to high photon occupation

numbers become very close to each other. Therefore, the overlap of these oscillations lead to longer

population oscillation lifetimes. In this manner, for infinitely large photon numbers, the population

collapse is completely cancelled and the two theories converge.

Finally, within the case of amulti-mode electromagnetic field, the interaction of the emitter with

each of the field’s mode is considered separately. Therefore, the free field and the interaction terms

of eq.(2.24) are indexed according to each field mode and summed over all the modes. Therefore:

H = }ωqdSz +
∑
j

}ωja†jaj +
∑
j

}gj
(
S−a†j + ajS

+
)
, (2.25)

where j is the index of the jth field mode.
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2.2 The mechanical part

The nature of the quantum vibrations of the mechanical resonator are described via the model

of a one dimensional lattice made of a chain of N ions connected with their closest neighbours

through a linear force field, as in they were connected via springs. The atoms are all identical

and equally spaced, described via a mass m, momentum pj and position qj of the jth ion. The

interaction occurring among two neighbouring atoms is described via the force constantK, which

for the case of a spring describes its rigidity. The system Hamiltonian is obtained by summing the

kinetic energies of the ions and the spring potential energies as:

Hph =
N∑
j=1

(
p2j
2m

+
K

2
(qj − qj−1)

2

)
. (2.26)

The quantum version of the Hamiltonian is obtained by applying the correspondence rule and

introducing the canonical position and momentum operators that obey the commutation relation

[pj, qi] = −i}δj,i, where δj,i is the Kronecker function. In order to treat the many-body Hamil-

tonian of eq.(2.26) in a collective manner, one applies a discrete Fourier transformation, i.e., an

inverse decomposition in Fourier series, to the atomic canonic operators. Namely, the canonic

operators, in the reciprocal space are defined as:

qk =
1√
N

N∑
j=1

qje
−ikR0

j ,

pk =
1√
N

N∑
j=1

pje
−ikR0

j , (2.27)

where R0
j are equilibrium position of the ions. Note, that as one considers a finite lattice of length

L, the interatomic distance is given as L/N . As the lattice is made of identical atoms, the lattice

constant a is the same as the interatomic distance, hence, a = L/N . Therefore, the k space of the

Fourier transform is defined within the lattice first Brillouin zone as:

k ∈
{
2πn

Na
− π

a
, n ∈ N

}
. (2.28)

With the new set of operators, the expression of the Hamiltonian of eq.(2.26) becomes:

Hph =
∑
k

(
1

2m
pkp-k +

K

2
qkq-k(2− eika − e−ika)

)
. (2.29)

From the definition of the discrete Fourier transformations of eq.(2.27), onemay further express
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the Hermitian conjugate of the canonical operators as:

q-k = q†k,

p-k = p†k. (2.30)

The analogy with the case of the quantum harmonic oscillator is highlighted by defining the

lattice eigenfrequencies as:

ω2
k =

2K

M
(1− cos ka), (2.31)

which in the neighbouring of k → 0, behaves as ωk→0 ≃ ka
√
K/M . It represents the dispersion

relation of acoustical phonons. Note that optical phonons are not supported by the current model

and requires to consider a lattice made of different kinds of atoms. However, a more sophisticated

model will not change or improve the description of the acoustical phonons dynamics. Hence,

the current model is suitable for the following studies as the investigations of the following op-

tomechanic setups are related to the acoustical phonons only due to the couplings strengths of the

light-matter mechanics.

The dispersion relation allows the lattice Hamiltonian to be expressed as a sum of independent

harmonic oscillators over all the lattice modes, similarly to the free Hamiltonian of the electromag-

netic field discussed in eq.(2.25):

Hph =
∑
k

1

2

(
pkp

†
k

m
+mω2

kqkq
†
k

)
. (2.32)

The only differencewith the electromagnetic treatment is the quadratic terms that appear as pkp†k and

qkq
†
k, instead of p2k and q2k, respectively. Therefore, the second quantization requires the following

set of bosonic operators:

bke
−iωkt = (mωkqk + ipk)/

√
2m}ωk,

b†−ke
iωkt = (mωkqk − ipk)/

√
2m}ωk, (2.33)

which obey the commutation relation [bk, b
†
k′ ] = δk,k′ . With the new set of bosonic operators and

by considering the dispersion relation property ωk = ω−k, the free lattice Hamiltonian is expressed

as:

Hph =
∑
k

}ωk
(
b†kbk +

1

2

)
. (2.34)

In the case of a mechanical resonator a single-mode field is selected. The rest of lattice modes
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are considered through the reservoir theory as damping phenomenon and are expressed as a ther-

mally distributed reservoir. Different architectures have been implemented in order to obtain

single-mode phonon field for a quantum mechanical resonator [8]. Some of these architectures

allow an artificial atom to be embedded on the mechanical resonator, e.g., multi-layered acoustical

cavities use distributed Bragg reflectors in order to achieve high values of the cavity quality factors

[182], just as the case of nano-mechanical beams [183] where single-mode phonons are achieved

due to the beam geometry.

The quantum vibrations of the mechanical resonator are described by the single-mode phonon

field of frequency ωph and the bosonic operators b and b†. The resonator free Hamiltonian is defined

as:

Hph = }ωph
(
b†b+

1

2

)
. (2.35)

For simplicity, one may further neglect the }ωph/2 term of Hph as it does not contribute to the

following investigations of the phonon dynamics.

The phonon vibrations are expressed as an oscillation of the ions within the lattice of the

mechanical resonator. If these oscillations are small comparing to the inter-atomic distance, the

phonon-electron interaction may be treated as a perturbation of the ion-electron interaction. In a

general form, the Hamiltonian of the interaction of a electron with a lattice of ions is given as [184]:

He−ions =

∫
drϱ(r)

∑
m

Ve−ion(r− Rm), (2.36)

where ϱ(r) is the electron charge density operator, Ve−ion is the electron-ion interaction potential

that is summed over all the m ions. The electron and ion position are described by r and Rm,

respectively. The ionmechanical oscillation q around the equilibrium positionR0may be expressed

as Rm = R0+q. For small oscillations q, a first order Taylor expansion of the interaction potential

around the equilibrium position may be performed as:

Ve−ion = Ve−ion(r− R0)− q · ∇Ve−ion(r− R0) +O(q2), (2.37)

where the first term represents the interaction of the electron with the ions in equilibrium and the

second is the phonon-electron interaction potential.

In order to introduce the boson operators instead of position ones, it is more convenient to

expand the electron-phonon potential in Fourier series over the phonon wave-vectors k, similarly

to the discrete Fourier transformations of eq.(2.27). This transformation allows one to use the

property of the spacial derivatives in the Fourier space on the ∇ operator of the electron-phonon
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potential term, as follows:

Ve−ph = −q · ∇Ve−ion(r− R0) = − i

N

∑
k

q · kV (k)eik·(r−R0). (2.38)

This expression describes the interaction of an electron with a single ion.

In order to define the quantum-dot-phonon interaction, one sums the electron-phonon inter-

action potential over all the quantum-dot’s ions. This allows one to insert the canonic operators

of eq.(2.27) expressed in the reciprocal space and generalized for the three dimensional case, as

follows:

Ve−ph = − i

N

∑
m

∑
k

qm · kV (k)eik·(r−R0,m) = − i√
N

∑
k

qk · kV (k)eik·r. (2.39)

Here, the phonon operators of eq.(2.33) are inserted into the expression of Ve−ph by decompos-

ing the lattice oscillation of the phonon mode k over the directions of q. Therefore, the second

quantization of the electron-phonon interaction potential term, is given as:

Ve−ph =
∑
k

1√
2mωkN

(b†k + bk)k V (k)eik·r. (2.40)

The Hamiltonian of the interaction of the phonons with the quantum-dot’s electron is obtained

by introducing the expression of the electron-phonon interaction potential defined in eq.(2.40) into

the general Hamiltonian form of the electron-ions interaction of eq.(2.36):

He−ph =
∑
k

∫
drϱ(r) 1√

2mωkN
(b†k + bk)k V (k)eik·r. (2.41)

Here, a Fourier transformation can be applied to the charge density operator after a rearrangement

of the terms of eq.(2.41), namely, ϱ(k) =
∫
drϱ(r)eik·r. Therefore, the quantum-dot-phonon inter-

action Hamiltonian may be expressed as:

He−ph =
∑
k

Mkϱ(k)(b†k + bk), (2.42)

where the term Mk = k V (k)/
√
2mωkN , represents a constant that be carried out of the integral

of eq.(2.41) and treated separately from ϱ(k).

Generally, the quantum-dot-phonon interaction matrix elements are given asM i,j
k =Mkϱi,j(k).

These matrix elements are defined via the elements of the charge density operator given in matrix

form, which is expressed as:

ϱi,j(k) =

∫
drψ∗

iψje
ik·r|i⟩⟨j|, (2.43)
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where ψi is the wave function of the electron in state i [184]. When a quantum-dot is considered,

the dominant effect in the interaction of the electron with the phonons is the deformation potential,

which for lowest deformation order is phenomenologically described via an experimentally defined

constant. The deformation potential constants are given as Dc or Dv for the electron being in the

conduction or valence band, respectively. Therefore the termMk = k V (k)/
√
2mωkN represents

a constant, as V (k) = {Dc, Dv}.

Under the laser pumping, the quantum-dot is excited when an electron from the valence band is

thrown to the conduction band and thus an exciton is formed. It is the quantum-dot’s spacial con-

fined exciton, that interacts with deformations induced via the phonon oscillations. The quantum-

dot excited state is represented not only by the electron from the conduction band, but also by

the positively charged ”hole” left in the valence band, and the entire electron-hole system shall be

considered in order to fully describe the quantum-dot-phonon interaction. As within the quantum-

dot the exciton is strongly confined, the electron-hole wave function may be approximated by the

product of the single electron and hole wave functions [184]. Therefore the complete quantum-dot-

phonon interaction is obtained by applying a similar treatment of eqs.(2.36 - 2.42) separately to the

hole dynamics, additionally to the electron-phonon coupling. The final interaction Hamiltonian is

given as:

HQD−ph =
∑
k

(M
(e)
k ϱ(e)e,e(k) +M

(h)
k ϱ(h)e,e (k))(b

†
k + bk), (2.44)

where, one has applied the index (e) to the terms describing the electron in the conduction band

and (h) for the ones describing the hole in the valence band. The diagonal quantum-dot-phonon

interaction matrix elements of HQD−ph are considering only the excited state which represents the

exciton. Also, one has neglected the off-diagonal elements, by restricting to low energetic phonons

that do not allow for interband transitions.

The final form of the quantum-dot-phonon interaction, is obtained by inserting the expression

of ϱ(h)e,e (k) and ϱ(e)e,e(k) given by eq.(2.43), which leads to:

HQD−ph = }|e⟩⟨e|
∑
k

gk(b
†
k + bk), (2.45)

with gk = k(
√
2mωkN})−1

(
Dc

∫
dre|ψ(e)|2eik·re −Dv

∫
drh|ψ(h)|2eik·rh

)
.

The case of the mechanical resonator is described by a single-mode phonon field. One may

note S+S− = |e⟩⟨e|. Therefore, by selecting only one mode in eq.(2.45), one obtains:

HQD−ph = }gS+S−(b† + b). (2.46)
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2.3 The damping phenomena

The system dynamics is described by the master equation of the density matrix operator. The

density operator is defined as ρ = |Ψ⟩⟨Ψ| and contains the same information as the system wave

function |Ψ⟩. The master equation of ρ in its general form is derived from the Schrödinger equation

for the system wave function and describes the same dynamics. The general form of the master

equation is called the Liouville-von Neumann equation and is given as:

ρ̇ = − i

}
[H, ρ]. (2.47)

Although it is equivalent to the Scrödinger equation, the master equation allows to analytically

describe the system damping processes in a simpler way through the formalism of the reservoir

theory. The main concept of the reservoir theory relies on the assumptions that the surrounding

reservoir is a subsystem that weakly interacts with the considered model and has no memory. The

first assumption is applied via the Born approximation, where the changes within the reservoir

originating from the weak interaction with the system, can be neglected and the reservoir rests at

equilibrium all the time. The last assumption is expressed via a Markovian approximation and, in a

general case, is validated if a infinite large system is considered for the reservoir, comparing to the

studied system. In this case, once the quantum information goes from the system into the reservoir,

it is irreversibly lost from the system.

Let us consider a system S interacting with a reservoir R, then the system reduced density

matrix ρS is obtained by tracing the system-reservoir density matrix ρSR over the reservoir states,

i.e., ρS = TrR[ρSR]. Within the interaction picture, the general master equation of the system-

reservoir dynamics states is given via the von Neumann equation:

ρ̇SR(t) = − i

}
[V (t), ρSR(t)], (2.48)

where the interaction potential V (t) is expressed via the system Hamiltonian within the interaction

picture.

The general solution of ρSR(t) is given as function of the initial time of the interaction t0 and

may be expressed as:

ρSR(t) = ρSR(t0)−
i

}

∫ t

t0

[V (t′), ρSR(t
′)]dt′. (2.49)
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Inserting this solution of ρSR(t) in the von Neumann equation (2.48) leads to:

ρ̇SR(t) = − i

}
[V (t), ρSR(t0)]−

1

}2

∫ t

t0

[
V (t), [V (t′), ρSR(t

′)]
]
dt′, (2.50)

where one applies the Born approximation which consists of the assumption of a weak system-

reservoir interaction, i.e. V (t) ≪ 1. Within the Born approximation, the solution of eq.(2.50) is

treated as a first order development expressed as ρSR(t) = ρS(t) ⊗ ρR(t0) + ρint(t). The first

term represents the case when no system-reservoir interaction occurs, where one considers the

reservoir always at equilibrium, i.e., as a time-independent term ρR(t) ≡ ρR(t0). The second term

ρint is the interaction term of the linear development that satisfies the condition Tr[ρint] = 0 as

it contains only off-diagonal elements. This assumption allows one to deduce the equation of the

system reduced density matrix by tracing the system-reservoir density operator of eq.(2.50) over

the reservoir states as follows:

ρ̇S(t) = − i

}
TrR

[
[V (t), ρS(t0)⊗ ρR(t0)]

]
− 1

}2
TrR

[∫ t

t0

[
V (t), [V (t′), ρS(t)⊗ ρR(t0)]

]
dt′
]
, (2.51)

where one has considered that the statistics of the systems do not have memory, i.e., the Markovian

approximation, and therefore do not depend of the past, i.e., of the initial time t0. This allows one

to transform ρS(t
′) → ρS(t) within the integral of eq.(2.51). Therefore, the damping terms of the

master equation are deduced by inserting the system-reservoir interaction Hamiltonian term ex-

pressed within the interaction picture into eqs.(2.47)-(2.51). The different interaction Hamiltonian

terms depend on the nature of each damping phenomenon and will be discussed separately in what

follows.

The effect of the surrounding temperature is described via a reservoir made of a multi-mode

boson field with thermally distributed vibrational quanta. It may describe the thermal damping pro-

cess either of the vibrations of the mechanical resonator or the oscillations of the electromagnetic

field, as both cases are described via bosonic operators. In the case of the mechanical motion, the

environmental damping reservoir is described via the surrounding temperature T , and the mechan-

ical resonator may either receive or loose phonons from its interaction with the thermal bath. In

the case of a electromagnetic field, the reservoir is represented by an empty thermal bath, i.e., a

thermal reservoir of temperature T = 0 possessing no photons. In this case, the damping effect

occurs when the photons irreversibly escape the cavity, which results only in a loosing effect for

the optical resonator.

The field-reservoir interactionHamiltonian is defined via aweak quantum interaction of a single
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mode field with the multi-mode reservoir field. In its general form, the interaction of two boson

fields of same kind, e.g., photons or phonons, is given as:

Hfield−reservoir =
∑
k

}gk(ak + a†k)(a+ a†), (2.52)

where a, a† are the single-mode field operators, ak, a†k are the operators describing the kth mode

of the reservoir field. The total interaction term is obtained via the summation over the infinite

independent reservoir’s k modes. The interaction Hamiltonian may be simplified by eliminating

the fast-rotating terms within the interaction picture, similarly to the method applied in eq.(2.9).

The field and reservoir free Hamiltonians are expressed via the simplified form of eq.(2.35). In

order to highlight the temporal dependency of the interaction terms, one goes in the interaction

picture by applying the unitary transformation U(t) = exp(−i(ωa†a+
∑

k ωka
†
kak)t) and thus:

Hfield−reservoir = U †(t){
∑
k

}gk(ak + a†k)(a+ a†)}U(t)

=
∑
k

}gk
(
a†kae

−i(ω−ωk)t + a†ake
i(ω−ωk)t + aake

−i(ω+ωk)t + a†a†ke
i(ω+ωk)t

)
≃

∑
k

}gk
(
a†kae

−i(ω−ωk)t + a†ake
i(ω−ωk)t

)
. (2.53)

The approximation performed in the last line of eq.(2.53) on the bosonic terms is called the rotating

wave approximation (RWA) and is valid as long gk ≪ (ω+ωk), i.e., the characteristic time scale of

the field-reservoir dynamics is larger than the oscillations of the fast-rotating terms. Inserting the

Hamiltonian of eq.(2.53) in the general form of the master equation of the reduced density matrix

of eq.(2.51) of the field-reservoir system, leads to:

ρ̇field(t) = −i
∑
k

gk

(
⟨a†k⟩[a, ρfield(t0)]e

−i(ω−ωk)t + ⟨ak⟩[ρfield(t0), a†]ei(ω−ωk)t
)

−
∫ t

t0

dt′
∑
k,k′

gkgk′

{(
aaρfield(t

′)− 2aρfield(t
′)a+ ρfield(t

′)aa
)

×e−i(ω−ωk)t−i(ω−ωk′ )t
′⟨a†ka

†
k⟩

−
(
a†a†ρfield(t

′)− 2a†ρfield(t
′)a† + ρfield(t

′)a†a†
)
ei(ω−ωk)t+i(ω−ωk′ )t

′⟨akak⟩

−L(a†)(t′)e−i(ω−ωk)t+i(ω−ωk′ )t
′⟨a†kak′⟩

−L(a)(t′)ei(ω−ωk)t−i(ω−ωk′ )t
′⟨aka†k′⟩

}
, (2.54)

where the Liouville superoperator is defined as L(O)(t) = 2Oρ(t)O† −O†Oρ(t)− ρ(t)O†O for

a given operator O. Here. the brackets ⟨...⟩ describe the average value of the reservoir operator
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Ok defined as the trace over the reservoir’s states, i.e., ⟨Ok⟩ = TrR[OkρR]. Depending on the

reservoir properties, the eq.(2.54) may be simplified for each specific case. In the case of a thermal

reservoir, the reservoir reduced density operator ρR is defined as (see p. 251, [179]):

ρR =
∏
k

(
1− e−}ωk/kBT

)
e−}ωka

†
kak/kBT , (2.55)

where kB is the Boltzmann constant and T is the reservoir temperature. For this density operator,

the average values of the reservoir operators are estimated as:

⟨aka†k′⟩ = (n̄k + 1)δk,k′ ,

⟨a†kak′⟩ = n̄kδk,k′ ,

⟨a†k⟩ = 0,

⟨ak⟩ = 0,

⟨a†ka
†
k′⟩ = 0,

⟨akak′⟩ = 0, (2.56)

where one has used the property a†kak|nk⟩ = nk|nk⟩ where |nk⟩ is a state of the kth mode of the

reservoir field described within the Fock state basis. One has defined the mean number of quanta

of the kth mode of the reservoir field from the eq.(2.55) as:

n̄k =
1

e}ωk/kBT − 1
. (2.57)

What one highlights here is that n̄k is found as the average value of nk over all the mode’s states.

Inserting the average values of the reservoir operators of eq.(2.56) into the eq.(2.54) leads to

the following master equation:

ρ̇field(t) =

∫ t

t0

dt′
∑
k

g2k

(
n̄kL(a†)(t′)e−i(ω−ωk)(t−t′) − (1 + n̄k)L(a)(t′)ei(ω−ωk)(t−t′)

)
.

(2.58)

In order to simplify the expression of eq.(2.58) one replace the sum over the modes of the field

by an integral as the modes of the reservoir have infinitely closely-spaced frequencies. Therefore

one may apply the transformation to a spherical coordinate volume element in k space as:
∑

k →
C
4π

∫ 2π

0
dϕ
∫ π
0
dθ sin θ

∫∞
0
dkk2, where C is a constant. This leads to:
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ρ̇field(t) = C
∫ t

t0

dt′
∫ ∞

0

dkk2g2k

(
n̄kL(a†)(t′)e−i(ω−ωk)(t−t′) − (1 + n̄k)L(a)(t′)ei(ω−ωk)(t−t′)

)
.

(2.59)

Finally, one assumes that the single-mode field of frequency ω interacts mostly with the modes of

the reservoir with the frequency close to ω, e.g., the intensity spectrum of the cavity at the exit of

its mirrors would be a peak centred around its frequency ω. Thus, one may replace k = ω/c within

the k dependent integral quantity k2g2k = ω2g2k=ω/c/c
2 and carry it out of the integral (see p. 207,

[179]). Here, c is the speed of sound of the mechanical resonator. Carrying the quantity k2g2k out

of the integral, allows one to change the integration limit from k = 0 to k → −∞ and one obtains

two similar delta functions in eq.(2.60), as
∫∞
−∞ dωke

i(ω−ωk)(t−t′) = 2πδ(t− t′) that allow to reduce

the eq.(2.60) to:

ρ̇field(t) = κ

(
n̄

∫ t

t0

dt′L(a†)(t′)δ(t− t′) + (1 + n̄)

∫ t

t0

dt′L(a)(t′)δ(t− t′)

)
, (2.60)

where n̄ = n̄k=ω/c and κ = 2πω2g2k=ω/cC/c3 are the constants that appears after inserting the

dispersion relation k = ω/c into the previous integral. By applying the property of the delta

functions, one obtains:

ρ̇field(t) = κ
(
n̄L(a†)(t) + (1 + n̄)L(a)(t)

)
. (2.61)

Here the first term represents the pumping effect which describes the boson quanta that come into

the single-mode field from the reservoir, while the second term represents the damping effect which

describes the resonator’s losses of quanta transferred into the reservoir. The damping constant κ

may also be expressed in a simple form via the resonator quality factor Q as κ = ω/Q. Note that

for an empty thermal bath, i.e., when n̄ = 0, the pumping term vanishes, while the damping term

doesn’t as the oscillator quanta can leak into the empty reservoir. This is the case of an optical

resonator interacting with the electromagnetic vacuum.

ρ̇ electromagnetic vacuum(t) = κL(a)(t). (2.62)

The spontaneous emission phenomenon originates from the interaction of the artificial atom

with the surrounding electromagnetic vacuum. Although, the electromagnetic vacuum is an empty

reservoir, i.e., n̄ = 0, its empty electromagnetic field possesses quantum fluctuations with a non-

zero energy. More precisely, the energy of the vacuum fluctuations may be obtained from the field
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free Hamiltonian. Within the second quantization, the free Hamiltonian of the electromagnetic

quantum field is defined via the bosonic creation and annihilation operators and is expressed simi-

larly to the equation (2.35) but with a different frequency ω and a different set of bosonic operators

a and a†. When the eigenenergy of the vacuum state is considered, it is given by the non-vanishing

term of the Hamiltonian }ω/2. Therefore, the atom interaction with the surrounding vacuum leads

to its decay to a less energetic state due to the fluctuation of the empty vacuum field.

In order to define the spontaneous emission damping term, one inserts theHamiltonian quantum-

dot-field quantum interaction term of eq.(2.23) generalized for a multi-mode field and expressed

into the interaction picture, into the equation of the system reduced density operator of eq.(2.51).

This leads to the following expression:

ρ̇SE(t) = −i
∑
k

gk

(
⟨a†k⟩[S

−, ρSE(t0)]e
−i(ωqd−ωk)t + ⟨ak⟩[ρSE(t0), S+]ei(ωqd−ωk)t

)
−

∫ t

t0

dt′
∑
k,k′

gkgk′

{(
S−S−ρSE(t

′)− 2S−ρSE(t
′)S− + ρSE(t

′)S−S−
)

×e−i(ωqd−ωk)t−i(ωqd−ωk′ )t
′⟨a†ka

†
k⟩

−
(
S+S+ρSE(t

′)− 2S+ρSE(t
′)S+ + ρSE(t

′)S+S+
)
ei(ωqd−ωk)t+i(ωqd−ωk′ )t

′⟨akak⟩

−L(S+)(t′)e−i(ω−ωk)t+i(ω−ωk′ )t
′⟨a†kak′⟩

−L(S−)(t′)ei(ω−ωk)t−i(ω−ωk′ )t
′⟨aka†k′⟩

}
, (2.63)

where ρSE is the quantum-dot reduced density matrix operator of the quantum-dot-reservoir density

matrix operator.

Note that the obtained equation is similar to the field-reservoir damping term, if replacing the

field bosonic operators a and a† of eq.(2.54) by the atomic operators S− and S+ respectively. More-

over, the assumptions and simplifications applied in eqs.(2.54 - 2.61) are valid for the quantum-

dot-reservoir interaction case as well. Therefore, the spontaneous emission damping term has a

similar form with the field damping term estimated in eq.(2.61). The only difference, is that for

the spontaneous emission terms, one considers an empty thermally distributed vacuum reservoir.

It corresponds to a thermal reservoir with a null temperature T = 0. Therefore, one sets n̄ = 0

and the pumping terms thus vanishes for the expression of the spontaneous decay damping term,

similarly to the case of eq.(2.62), which leads to:

ρ̇SE = γL(S−). (2.64)

The spontaneous emission rate γ is estimated via the Weisskopf-Wigner theory of two-level-atom-
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reservoir interaction [185] and is given as γ = 1
4πϵ0

4ω3℘2

3}c3 , where ϵ0 is the vacuum permitting con-

stant and c is the speed of light constant.

The dephasing damping term is responsible for loss of coherence due to imperfections and

impurities within the quantum-dot [186]. In its general form these processes may be expressed via

the Hamiltonian form given in [187]:

Hdephasing = }µ(t)Sz, (2.65)

where µ(t) is a delta-correlated Gaussian stochastic variable with zero mean value, which may be

described as a noise term added to the quantum-dot transition frequency ωqd. The term is given by

the simplified version of the free quantum-dot Hamiltonian term of eq.(2.3) where one has applied

the following transformation: ωqd → ωqd + µ(t). The master equation of the dephasing term is

deduced from the von Neumann equation as:

ρ̇dephasing = − i

}
[H, ρdephasing] = −iµ(t)[Sz, ρdephasing]. (2.66)

The master equation form after the stochastic average of the density operator is given via the de-

phasing rate γc as (see p. 173, [187]):

˙̄ρdephasing = γcL(Sz), (2.67)

where γc = limt→∞ℜ{1
2

∫ t
0
ds
∫ t
0
ds′⟨µ(s)µ(s′)⟩} for Markovian processes and the bar over the

density operator designates the stochastic average. For the sake of simplicity one will further use

the simplified notation ˙̄ρdephasing ≡ ρ̇dephasing in the coming chapters.
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2.4 Conclusions to Chapter 2

In this chapter one had described all the necessary components required to establish the system

dynamics equations of the following optical and optomechanical setups. Thus, all of the further

considered interaction terms of the system Hamiltonian, e.g., the atomic laser pumping effect, the

qubit-electromagnetic-field and the quantum-dot-phonon interactions, have been deduced and de-

scribed. Moreover, all the background theory necessary for the description of the quantum statistics

have been discussed.

The decoherence effect which appears from the interaction of the quantum optomechanical

and optical open systems with their environments have been treated though the general reservoir

theory. This treatment have allowed one to implement the damping phenomena into the master

equation separately from the coherent phenomena. In this way, one has reduced the complexity of

the equations describing the system dynamics due to the adopted master equation formalism.

In what follows, the elements defined within this chapter will be used to build the analytical

model of each particular investigated case. Each model consists of a system Hamiltonian describ-

ing all the coherent processes which appear within the quantum system. The system dynamics is

described via themaster equation of the quantum system, which is built from the damping terms and

the Liouville-von-Neumann equation containing the Hamiltonian terms. However, in its ”rough”

form, the master equation cannot be directly solved for more complex systems. It requires to adapt

a set of various transformations and approximations in order to be solved without loosing too much

of the generality of the problem. Therefore, each of the investigated quantum systems will require

an additional particular treatment in order to be able to describe its dynamics and behaviour with

enough precision.
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3 AN ARTIFICIAL ATOM PLACED ON A MECHANICAL
RESONATOR

In this chapter, one studies a system composed of an artificial atom placed on a quantum me-

chanical resonator. The system dynamics is investigated for moderate strong couplings of the

artificial atom with the mechanical vibrations. For this coupling regimes, the analytic approach

requires a treatment beyond the secular approximation of the system Hamiltonian in the interaction

picture. One identifies that within strong coupling regimes, the generated mechanical vibrations

show pure quantum features as sub-Poissonian distribution of the vibrational quanta. Moreover,

within the cooling configuration, the quantum cooling effect is enhanced for this regime.

Let us consider a model consisting of a driven two-level quantum-dot embedded in a mechan-

ical resonator made of a multi-layered acoustical nano-cavity, where the quantum-dot is pumped

by an intense laser field and interacts with cavity single-mode phonon field as shown in Fig.3.1.

This setup allows the cavity phonons to be created or annihilated depending on the chosen laser-

quantum-dot detuning. The physics of this processes is explained as follows. The excitation of

the quantum-dot corresponds to the formation of an exciton (electron-hole) localized within the

quantum-dot. The interaction of the exciton charge with the deformation of the lattice is described

via the deformation potential. Therefore, for a detuned laser, Raman-type transitions occur.

Fig. 3.1: The schematic of the investigated model: A two-level quantum-dot is embedded in a
multilayered acoustical nanocavity. The quantum-dot is pumped near resonance with a coherent
laser source and may spontaneously emit a photon.
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For a blue-detuned laser, i.e., when the laser is set above the resonance frequency, the laser

excitation leads to the creation of an exciton and phonons in the cavity through anti-Stokes-type

transitions. This scheme does not lead to the generation of phonons as the created phonons are

annihilated when the transition occurs in the opposite sense. This is valid as long as one does

not consider the interaction of the quantum-dot with the surrounding electromagnetic vacuum, i.e.,

the quantum-dot spontaneous decay phenomenon. The last one, gives another possibility to the

quantum-dot to decay, but this time without annihilating the mechanical vibrations. If considering

both decay mechanisms, the system generates phonons but their field is infinitely increased as long

as the mechanical resonator is considered perfect, i.e., no damping phenomena are introduced.

Therefore, a third effect is introduced in order to describe a realistic system, which is the cavity

damping by a thermal environmental reservoir. Thus, the leaking effect of the cavity will not allow

the vibrational quanta to cumulate infinitely.

Red-detuned laser pumping leads to Stokes-type transitions, where a laser excitation of the

quantum-dot occurs together with phonon annihilation. Similarly to the case of phonon generation,

the cooling effect is achieved when the quantum-dot spontaneous emission and the thermal phonon

reservoir are considered. When the quantum-dot spontaneously decay, the previously annihilated

phonons are not created as it would be for the case of the decay under the laser pumping. Therefore,

the cooling effect is achieved because of the spontaneous emission effect. But, if not considering

the surrounding thermal environment, any cooling scheme would lead to an absolute cooling of the

mode, which is not a realistic case. The thermal reservoir is required because of its pumping effect

into the phonon mode, which balance the cooling effect and leads to a more realistic case.

In figure 3.2 a general overview of the system dynamics is given by the mechanical resonator

mean phonon number as a function of the laser-quantum-dot detuning. At laser-quantum-dot reso-

nance, there is no phonon emission or annihilation and the mechanical resonator is in equilibrium

with the surrounding thermal bath. The blue-detuned laser pumping, i.e., negative detunings, leads

to phonon generation, thus their mean number is increased over the value of the equilibrium with

the thermal bath. The red-detuned case leads to cooling effect where the mean phonon number

decreases down to the resonator near-ground-state.

In what follows, a more detailed description of the model is given in the next section, where

the system Hamiltonian and its master equation are explained as well as its solving technique. The

following three sections focus on the discussion of observed phenomena. Namely, the generation

of sub-Poissonian distributed phonon fields is presented in section three, the quantum cooling effect

and the phonon assisted population inversion in section four. The summary is given in section five.
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Fig. 3.2: The quantum dynamics of the mean phonon number of the mechanical resonator as func-
tion of the laser-quantum-dot detuning. The phonon generation and cooling regimes are defined
by the sign of the detuning.

3.1 The model

The investigated dynamics is determined from the system Hamiltonian and its master equation

which also includes the surrounding damping phenomena. The model consists of a pumped two-

level quantum-dot with a transition frequency ωqd described via Hamiltonian free term HQD of

eq.(2.3). The laser pumping effect is described via the semi-classic interaction term HQD−laser

given in eq.(2.10) where the laser of frequency ωL is treated in a classical way. The quantum-dot is

embedded on a mechanical resonator of frequency ωph, which is described via the free termHph of

eq.(2.35). The interaction of the quantum-dot with the quantum mechanical resonator is described

via the term HQD−ph given in eq.(2.46). Hence, the system Hamiltonian H is built as:

H = HQD +Hph +HQD−laser +HQD−ph

= }ωqdSz + }ωphb†b+ }Ω(S+e−iωLt + eiωLtS−) + }gS+S−(b† + b), (3.1)

where Ω is the Rabi frequency of the laser-quantum-dot interaction and g is the coupling strength

of the interaction of the quantum-dot with the phonons of the mechanical resonator.

The master equation of the system density matrix operator ρ, is formed from the Liouville-von

Neumann equation of eq.(2.47) of the Hamiltonian of eq.(3.1) together with the damping terms
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describing the resonator phonon field damping and pumping effects expressed via the term ρ̇field

of eq.(2.61) resulting from its interaction with a thermal environment, and the quantum-dot’s spon-

taneous emission decay expressed via the term ρ̇SE of eq.(2.64) and dephasing effect expressed via

the term ρ̇dephasing of eq.(2.67):

ρ̇ = − i

}
[H, ρ] + ρ̇field + ρ̇SE + ρ̇dephasing

= − i

}
[H, ρ] + κ(1 + n̄)L(b) + κn̄L(b†) + γL(S−) + γcL(Sz), (3.2)

where κ is the phonon damping rate of a thermal reservoir described via its mean phonon number

n̄, γ is the spontaneous emission rate and γc is the dephasing rate.

In what follows, the system dynamics is found by projecting the master equation within the

quantum-dot-phonon state basis. This leads to a system of coupled equations that may be numer-

ically solved as the model’s physical properties allows the system to be truncated. However, the

master equation (3.2) with Hamiltonian of eq.(3.1) cannot be properly solved in its initial form, as

it will require the implementation of drastic approximations leading to inaccurate results and even

to a loss of quantum features. Hence, a series of transformations is applied in order to bring the

master equation to a solvable form allowing the use of several approximations without loosing the

generality of the investigation. More precisely, the system dynamics is solved via applying the

dressed-state transformation to the quantum-dot state basis and then, in the interaction picture, one

shall focus on simplifying the Hamiltonian and different master equation terms.

The semi-classical dressed-state transformation refers to the diagonalization of the Hamiltonian

of the laser-quantum-dot sub-system defined via the free quantum-dot Hamiltonian term of eq.(2.3)

and the quantum-dot-laser interaction term of eq.(2.10), where the laser is treated classically. The

eigenstates of this subsystem are called the dressed-states and describe a new Hilbertian basis for

the atomic states. The dressed-states are defined via a linear transformation of the initial, so called

bare-states, defined as:

|+⟩ = sin θ|g⟩+ cos θ|e⟩,

|−⟩ = cos θ|g⟩ − sin θ|e⟩. (3.3)

where θ = arctan (2Ω/∆)/2 and ∆ = ωqd − ωL. The new atomic operators are defined as:

67



R+ = |+⟩⟨−|,

R− = |−⟩⟨+|,

R++ = |+⟩⟨+|,

R−− = |−⟩⟨−|,

Rz = R++ −R−−. (3.4)

Their expressions in the old basis, i.e., the bare-states, are deduced from the eqs.(3.3), which defines

the new atomic commutation relation as:

[R±, R∓] = ±Rz,

[R∓, Rz] = ±2R∓. (3.5)

Within the dressed-state basis, i.e., after diagonalization, the laser-quantum-dot sub-system

Hamiltonian becomes:

Hsub−system = }ωqdSz + }Ω(S+e−iωLt + eiωLtS−) = }Ω̄Rz, (3.6)

where Ω̄ =
√

Ω2 + (∆/2)2 is the generalized Rabi frequency for the detuned laser-quantum-dot

interaction. Within the new basis, the Hamiltonian of the eq.(3.6) is significantly simplified up to

a diagonal term and the full system Hamiltonian of eq.(3.1) is transformed as:

H = }Ω̄Rz + }ωphb†b

+ }g(b† + b){sin2 θ R−− + cos2 θ R++ − sin (2θ)
2

(R+ +R−)}. (3.7)

In this form, all off-diagonal elements are related to the quantum-dot-phonon interaction term.

Therefore, if changing the representation to the interaction picture of the Hamiltonian in its cur-

rent form, this would allow one to distinguish the different off-diagonal terms according to their

frequency of oscillation and to determine the criteria required for a rotating wave approximation

(RWA) of the quantum-dot-phonon interaction. Note, that from a technical approach, the dressed-

state transformation is a powerful analytical tool that allows one to apply some approximations to

a particular set of off-diagonal elements after excluding the ones describing the laser-quantum-dot

interaction. This method is used in various models and contexts, wherein the bare-state basis does

not allow one to simplify the system dynamics and conserve the generality of the problem at the
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same time.

For the current model, the change of representation to the interaction picture of the dressed-

state Hamiltonian is done via a unitary transformation U(t) = ei(Ω̄Rz+ωphb
†b)t according to the first

two diagonal terms of eq.(3.7). Considering the phonon frequency ωph and the generalized Rabi

frequency Ω̄ of same order, one splits the slow-rotating terms of the Hamiltonian oscillating at

frequencies ±(ωph − 2Ω̄) from the fast-rotating ones corresponding to the frequencies ±ωph and

±(ωph + 2Ω̄). Therefore, within the interaction picture, the system Hamiltonian is given as:

H = Hslow +Hfast,

Hslow = −}g
sin (2θ)

2
{b†R−ei(ωph−2Ω̄)t + H.c.},

Hfast = }g(sin2 θR−− + cos2 θR++){b†eiωpht + H.c.}

− }g
sin (2θ)

2
{b†R+ei(ωph+2Ω̄)t + H.c.}. (3.8)

Considering the criteria of splitting of the fast-terms, one may neglect Hfast via a secular ap-

proximation [179, 76] as long as g ≪ ωph, Ω̄, similarly to the approximation of eq.(2.9). This

condition applied on the quantum-dot-phonon coupling strength defines the weak coupling regime.

When the coupling constant g is increased closer to the magnitudes of ωph and Ω̄, the contribution

of the fast-terms to the system dynamics continues to be small, however it cannot be completely

neglected all the time. In this case, one may treat the contribution ofHfast as a first order perturba-

tion. One refers to this coupling regimes as a strong coupling regime. Although, this regime implies

stronger quantum-dot-phonon couplings comparing to the weak coupling case, note that one will

further consider only moderate strong coupling constants that allows one to apply a perturbative

treatment. Within the strong coupling regime, the first-order contribution of the fast rotating terms

Heff
fast is estimated as [188, 189]:

Heff
fast = − i

}
Hfast(t)

∫
dt′Hfast(t

′) = H0 − }∆̄Rz + }βb†bRz, (3.9)

where

∆̄ =
g2

2

(
cos (2θ)
ωph

− sin2 (2θ)
4(ωph + 2Ω̄)

)
(3.10)

and

β = g2
sin2 (2θ)

4(ωph + 2Ω̄)
. (3.11)
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Here, H0 is a constant and can be dropped as it does not contribute to the system’s dynamics. The

perturbative treatment of eq.(3.9) is completely compatible with the weak coupling regime as for

smalls values of g, {∆̄, β} = 0 and the contribution of the fast terms vanishes as in the case of the

secular approximation. Moreover, the transition from one regime to other does not simply refers to

the magnitude of g, but is related to the order of ∆̄ and β which are proportional to g2. Therefore,

one will further investigate the cases where a usual secular approximation is sufficient to fully

describe the dynamics and the cases where the perturbative treatment is required, i.e., when the

fast terms are introducing a change to the dynamics of the system and the secular approximation is

no longer justified. One will refer to the last case as the beyond the secular approximation case.

The final Hamiltonian is defined as the sum ofHslow andHeff
fast, and its expression is given back

into the Schrödinger representation as:

H = Hslow +Heff
fast

= }(ωph − 2Ω̄)b†b− }∆̄Rz + }βb†bRz − }g
sin (2θ)

2

(
b†R− +R+b

)
. (3.12)

The previous transformations are also applied to the master equation of eq.(2.47). The dressed-

state form of the master equation is given as:

∂ρ

∂t
= − i

}
[H, ρ] + κ(1 + n̄)L(b) + κn̄L(b†)

+ γ+L(R−) + γ−L(R+) + γ0L(Rz), (3.13)

where within the interaction picture, one has kept only the non-oscillating atomic damping terms

and have neglected all other terms rotating at frequencies ±2Ω̄ via a secular approximation. This

approximation is justified as long as 2Ω̄ ≫ γ. Within the new basis, the spontaneous emission

processes are described by three terms [190] determined by the quantum-dot’s dressed-state decay

rates:

γ+ = γ cos4 θ +
1

4
γc sin2 (2θ),

γ− = γ sin4 θ +
1

4
γc sin2 (2θ),

γ0 =
1

4
[γ sin2 (2θ) + γc cos2 (2θ)]. (3.14)
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3.2 The master equation projection

In its current form, the master equation of eq.(3.13) with the Hamiltonian of eq.(3.12) may

be solved by projecting it into the system basis. The projection of the density operator gives the

elements of the density matrix. Therefore, the projection of the master equation leads to a system

of differential equations given by the equations of motion of the density matrix elements. It is a

system of coupled first order linear differential equation of dimension determined by the number

of the quantum-dot states multiplied by the number of all possible phonon states. As the phonon

field is defined within a basis of infinite states, the system is defined by 2 × ∞ variables. One

shall further adapt the solving method to the properties of the phonon state basis in order to obtain

a system of equation that may be truncated.

The phonon field basis, as the basis of any other single-mode boson field, is defined via the

eigenfunctions of theHamiltonian of the free field givenwithin the second quantization of eq.(2.35),

i.e., the Fock states. The phonon probability distribution is given via the diagonal elements of the

reduced density matrix of the phonon field. The entire system is described within the Hilbert space

defined by the quantum-dot-phonon state basis {|i, n⟩} ≡ {|i⟩ ⊗ |n⟩} which is a vectorial product

of the atom dressed-state basis {|i⟩, i ∈ {|+⟩, |−⟩}} and phonon Fock state basis {|n⟩, n ∈ N}.

In the Hilbert space, the phonon field represents a vectorial sub-space of the system, so its reduced

density matrix is determined by tracing the system density matrix over the quantum-dot state basis,

i.e., ρphonon = TrQD[ρ]. As the mechanical resonator is treated as a quantum field with a limited

average number of phonons, its quanta probability distribution decreases asymptotically to zero

when n → ∞. In other words, the phonon probability to occupy a certain Fock state decreases to

zero for high enough Fock states.

The model’s dynamics is solved by using the asymptotic behaviour of the phonon distribution

in order to truncate the system of equations of motion of the reduced density matrix elements.

This criterion may be applied only to the diagonal matrix elements and the quantities related to

them. However, a direct projection of the diagonal elements would require the use of off-diagonal

elements that may not vanish for n→ ∞. The solving method consists in rearranging and combin-

ing those off-diagonal elements in order to form a closed system of equations of motion containing

only the quantities that obey an asymptotic behaviour, instead of directly projecting all the involved

matrix elements.

A first projection of the master equation of eq.(3.13) into the quantum-dot’s dressed-state ba-

sis, defines the four equations of motion of the elements of the reduced quantum-dot density matrix
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ρi,j = ⟨i|ρ|j⟩, where {i, j ∈ |+⟩, |−⟩}. The projection within the quantum-dot basis have elimi-

nated the atomic operators from the equations of motion of ρi,j that are defined only via the field’s

operators. A next projection within the phonon basis, will lead to a system of equations defined

only via the scalar values of the projected quantities. One combines the off-diagonal matrix ele-

ments appearing in the equations of motion of ρ̇++ and ρ̇−− by forming Hermitian variables that

contain the cross-correlation terms of the quantum-dot-phonon interaction [191]. The new set of

variables is thus defined as:

ρ(1) = ρ++ + ρ−−,

ρ(2) = ρ++ − ρ−−,

ρ(3) = b†ρ+− − ρ−+b,

ρ(4) = b†ρ+− + ρ−+b,

ρ(5) = ρ+−b
† − bρ−+,

ρ(6) = ρ+−b
† + bρ−+. (3.15)

By forming the new set of Hermitian variables, one has eliminated the oscillating part of the off-

diagonal elements that do not vanish asymptotically. Therefore, a further projection within the

phonon basis will lead to a system that may be numerically solved. One continues to project within

the quantum-dot basis the equations of motion of the new quantities, until the system of equation

closes and finally obtain a set of six equations of motion, one for each of the new variables. The

expressions of their equations of motion may be also deduced directly from the derivatives of ρi,j .

A next projection within the phonon Fock basis {|n⟩} defines a new infinite system of differential

equations where the variables are given by the scalar values P (i)
n = ⟨n|ρ(i)|n⟩:

Ṗ (1)
n = ig

sin(2θ)
2

(
P (3)
n − P (5)

n

)
− 2κ(1 + n̄)

(
nP (1)

n − (n+ 1)P
(1)
n+1

)
− 2κn̄

(
(n+ 1)P (1)

n − nP
(1)
n−1

)
,

Ṗ (2)
n = −ig sin(2θ)

2

(
P (3)
n + P (5)

n

)
2(γ+ − γ−)P

(1)
n − 2(γ+ + γ−)P

(2)
n

− 2κ(1 + n̄)
(
nP (2)

n − (n+ 1)P
(2)
n+1

)
− 2κn̄

(
(n+ 1)P (2)

n − nP
(2)
n−1

)
,
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Ṗ (3)
n = ign

sin(2θ)
2

(
P (1)
n − P (2)

n − P
(1)
n−1 − P

(2)
n−1

)
− i (β(2n− 1)− δ)P (4)

n

− (γ+ + γ− + 4γ0)P
(3)
n − κ(1 + n̄)

(
(2n− 1)P (3)

n − 2(n+ 1)P
(3)
n+1 + 2P (5)

n

)
− κn̄

(
(2n+ 1)P (3)

n − 2nP
(3)
n−1

)
,

Ṗ (4)
n = −i (β(2n− 1)− δ)P (3)

n − (γ+ + γ− + 4γ0)P
(4)
n

− κ(1 + n̄)
(
(2n− 1)P (4)

n − 2(n+ 1)P
(4)
n+1 + 2P (6)

n

)
− κn̄

(
(2n+ 1)P (4)

n − 2nP
(4)
n−1

)
,

Ṗ (5)
n = −ig(n+ 1)

sin(2θ)
2

(
P (1)
n + P (2)

n − P
(1)
n+1 + P

(2)
n+1

)
− i (β(2n+ 1)− δ)P (6)

n

− (γ+ + γ− + 4γ0)P
(5)
n − κ(1 + n̄)

(
(2n+ 1)P (5)

n − 2(n+ 1)P
(5)
n+1

)
− κn̄

(
(2n+ 3)P (5)

n − 2nP
(5)
n−1 − 2P (3)

n

)
,

Ṗ (6)
n = −i (β(2n+ 1)− δ)P (5)

n − (γ+ + γ− + 4γ0)P
(6)
n

− κ(1 + n̄)
(
(2n+ 1)P (6)

n − 2(n+ 1)P
(6)
n+1

)
− κn̄

(
(2n+ 3)P (6)

n − 2nP
(6)
n−1 − 2P (4)

n

)
, (3.16)

where δ = ωph − 2Ω̄ + 2∆̄. The dimension of the new system of equations is 6 × ∞, where

the infinite dimension is introduced after the second projection by the infinite amount of the Fock

states. When one uses the previously discussed truncation criterion, only a certain amount of first

nmax Fock states is considered and the dimension of the system used for numerical calculation

becomes 6 × nmax. The current projection method gives an important advantage over a direct

projection mechanism, not only in terms of analytical accuracy of the approximations applied for

its truncation, but also in terms of computational performance of the numerical calculations. From

algorithmic point of view, the direct projection method leads to a system of dimension ∞ × ∞,

that after truncation leads to an algorithm using a set of n2
max equations. This is a severe numerical

limitation in number of elementary operations, comparing to the method of eqs.(3.15-3.16) which

uses a system of only 6× nmax dimension.

The truncation threshold nmax depends of the mean number of the field bosons and their dis-

tribution. The applied threshold is validated empirically, by checking if a higher threshold will not

introduce a significant change within the estimated statistics. The following results uses thresh-

olds that give incertitudes of orders 10−5 − 10−4 if comparing to the results obtained with a higher
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threshold like, e.g., 2nmax. The influence of a further increase of the threshold, may be monitored

in order to verify the asymptotic behaviour. However, any increase of the threshold also increases

the number of the numerical operation and, thus, decreases the computational power of the algo-

rithm. Further, the thresholds are set for incertitudes of a few orders smaller than the value ranges

of the investigated results. It is to note, that most of the plots are estimated by varying some of

the system parameters and, at some point, it may drastically change the boson mean number or

the field distribution. Therefore, a permanent evaluation of the validity of the applied threshold is

recommended in order to validate the results.

The numerical algorithm was built in two different languages by using different numerical

solving methods, in order to validate the numerical calculations. As one focuses on the steady-

state behaviour of the statistics, the temporal derivates of the system variables are cancelled. This

is possible to be done, as the system variables were built by eliminating the oscillatory elements

of the off-diagonal terms. Within the steady-state regime, the differential system of equations is

reduced to a simple linear system of coupled equations. It has been solved by using a C code

for a solving method of linear matrix equations like A · X = B and also by using the Wolfram

Mathematica’s numerical solving methods like the NSolve[...] commands. As both algorithms

lead to the same numerical results, the solving technique have been considered valid.

Once the equations of motion are solved, the system dynamics is found by combining the den-

sity matrix diagonal elements. The mechanical resonator’s statistics are described via the mean

phonon number ⟨n⟩ and the phonon-phonon second-order correlation function g(2)(0) =

⟨b†b†bb⟩/⟨b†b⟩2. Both quantities are expressed only by field operators and may be deduced from

the resonator’s reduced density matrix. Let us consider a system made of two sub-systems A and

B, and an operatorO of the sub-system A. In the general case, the statistical value of any operator

is found via the density matrix operator as ⟨O⟩ = Tr[ρO]. But as the operator O applies only to

the sub-system A, it may be carried out from the tracing over the states of the sub-system B, i.e.,

⟨O⟩ = Tr[ρO] = TrB[TrA[ρO]]. If one consider the case of the current model and the operatorO

as a field operator, then its statistical average is deduced as

⟨O⟩ = TrQD[Trphonon[ρO]] = TrQD[
∞∑
n=0

⟨n|ρO|n⟩]. (3.17)

The resonator’s mean phonon number ⟨n⟩ is expressed from eq.(3.17) as:

⟨n⟩ = ⟨b†b⟩ = TrQD

[ ∞∑
n=0

⟨n|ρ b†b |n⟩
]
= TrQD

[ ∞∑
n=0

n⟨n|ρ|n⟩
]
, (3.18)
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where one has applied the field operators to the ket as b†b |n⟩ = n|n⟩. Next, one develops the trace

summation over the system states as:

⟨n⟩ =
∑

i={+,−}

∞∑
n=0

n⟨n, i|ρ|n, i⟩ =
∞∑
n=0

n⟨n|ρ++ + ρ−−|n⟩ =
∞∑
n=0

n⟨n|ρ(1)|n⟩, (3.19)

where one has swapped the sums over the system states in order to perform the tracing over the

quantum-dot’s states first. Finally one may introduce in the last equality, the variables used in

the system of equations (3.16), i.e., P (1)
n and truncate the sum over the infinite Fock states for the

numerical calculus:

⟨n⟩ =
∞∑
n=0

nP (1)
n ≃

nmax∑
n=0

nP (1)
n . (3.20)

In a similar way, the phonon-phonon second-order correlation function is estimated as:

g(2)(0) =
⟨b†b†b b⟩
⟨b†b⟩2

=
1

⟨n⟩2
TrQD

[ ∞∑
n=0

⟨n|ρ b†b†b b|n⟩
]
=

1

⟨n⟩2
TrQD

[ ∞∑
n=0

n(n− 1)⟨n|ρ|n⟩
]

=
1

⟨n⟩2
∑

i={+,−}

∞∑
n=0

n(n− 1)⟨n, i|ρ|n, i⟩ = 1

⟨n⟩2
∞∑
n=0

n(n− 1)⟨n|ρ(1)|n⟩

=
1

⟨n⟩2
∞∑
n=0

n(n− 1)P (1)
n ≃ 1

⟨n⟩2
nmax∑
n=0

n(n− 1)P (1)
n , (3.21)

where one has applied the relation b†b†bb |n⟩ = n(n− 1)|n⟩.

Both of these parameters serve to the description of the quanta distribution of the resonator’s

vibrational motion. In terms of statistical distribution, the mean phonon number gives the informa-

tion on the field intensity and gives the basic distribution parameter. The second-order correlation

functions describes what kind of distribution one obtains. For coherent fields, described by Poisso-

nian distributions, one obtains g(2)(0) = 1. For more narrow distributions, the field’s second-order

correlation function decreases and has a minimum value g(2)(0) = 1/n for a completely narrow

distribution like the Dirac delta function centred at n. The fields with narrower distributions are

called sub-Poissonian distributed fields, while the Dirac peak corresponds to fields prepared in a

pure Fock state. On the other side, broader distributions than the Poissonian ones, correspond to

values g(2)(0) > 1 and the case when g(2)(0) = 2 represents a thermal distributed field with an

exponential distribution. Fields with distributions of higher values of g(2)(0) > 2 are called super-

Poissonian fields and have a more prominent exponential-like behaviour than the thermal fields.

Note, that the analysis of the second-order correlation function does not expand to the investigation

of bunching or anti-bunching behaviours as one estimates here only the particular value g(2)(τ = 0)
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of the general second-order correlation function g(2)(τ) = ⟨b†(t)b†(t+ τ)b(t+ τ) b(t)⟩/⟨n⟩2 [179].

In what follows, we shall study the system in the steady-state regime, i.e., Ṗ (i)
n = 0 for {i =

1 · · · 6}. The second-order correlation function given by Eq. (3.21) and the average phonon number

in Eq. (3.18) are used to describe the phonon field behaviors in the acoustical cavity mode [33].

The system of coupled equations (3.16) is completed with an additional equation describing the

conservation of probability of the systemwave function, that in the terms of density matrix operator

is given as Tr[ρ] = 1, and once truncated the system is solved by setting the model’s parameters

{γ, γc, g, ωph, κ, n̄,Ω,∆}.

3.3 Generation of sub-Poissonian distributed phonon fields

The main focus of the current investigation is the generation of phonon fields. As discussed

at the beginning of the chapter, this is achieved within blue-laser configurations, i.e., when the

laser frequency is set higher than the quantum-dot’s transition frequency. Moreover, the possibility

to generate coherent phonon fields in similar opto-mechanical devices has been reported in [18],

together with a diverse palette of recent remarkable experimental achievements on the phonon

laser analog obtained with piezoelectrically excited electromechanical resonators [15], laser driven

compound microcavities [16] and trapped ions [17]. Therefore, the study of the fields statistics

would allow one to understand the nature of the generated phonons and the possibility to confine a

certain type of quantum fields.

As previously discussed, the coherent fields have a Poissonian distribution of quanta with a

corresponding value of the second-order correlation function g(2)(0) = 1. The sub-Poissonian dis-

tributed fields have their second-order correlation function values below unity and possess quan-

tum features as they cannot be generated from classical sources and need some quantum setups and

manipulations in order to be obtained. In this context, the coherent fields represent the edge be-

tween quantum sub-Poissonian fields and classical fields with g(2)(0) > 1 like the thermal ones. In

what follows, one will focus on the possibility to obtain a phonon laser analog with sub-Poissonian

quantum features, by studying the required laser parameters as well as the influence of the thermal

environment.

The influence of the pumping laser on the opto-mechanical setup within the steady-state regime

is given in the Fig.3.3 where different mesh styles where used to differentiate the regions corre-
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Fig. 3.3: The second-order phonon-phonon correlation function g(2)(0) (3D surface) and the me-
chanical resonator’s mean phonon number ⟨n⟩ (2D density plot) as functions of the Rabi frequency
2Ω normalized by the quantum-dot spontaneous emission rate γ and the quantum-dot-laser detun-
ing ∆ normalized by the Rabi frequency. The figure is published in [151].

sponding to classical and quantum fields, i.e., the regions where g(2)(0) goes below or above unit.

The system parameters were set to n̄ = 0.01, κ/γ = 5 × 10−3, γc/γ = 0.1, g/γ = 15 and

ωph/γ = 30. The gray transparent regions of the two-dimensional density plot are related to mean

phonon numbers smaller than unity, i.e., ⟨n⟩ < 1.

At quantum-dot-laser resonance, i.e.,∆ = 0, the laser excitations of the quantum-dot lead to no

annihilation or creation of phonons. As expected, the mechanical resonator is found in equilibrium

with its surroundings, whereas the mean phonon number corresponds to the thermal bath mean

phonon number, i.e., ⟨n⟩ = n̄, while the phonon field is thermally distributed, i.e., g(2)(0) = 2.

A similar resonator-reservoir bath equilibrium is found for large detunings. Although for this case

anti-Stokes type transition occurs, the quantum-dot-laser detuning is too high comparing to the

resonator’s frequency so that the transition probability converges to zero and, therefore, ⟨n⟩ → n̄.

Moreover, high enough laser frequencies could excite higher energetic levels so that the two-level

model of the quantum-dot energetic structure would no longer be justified.

The relevant part of the results of the Fig.3.3 are found within the limits of the two-level model,
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i.e., for reasonable detuning values. The second-order correlation function region where sub-

Poissonian distributed fields are generated is represented with a different mesh style and it overlaps

with the region of the density plot where higher phonon numbers are generated. The model predicts

quite intense phonon fields with quantum features. Lower laser intensity allows one to generate

higher phonon numbers. This case corresponds to lower values of the Rabi frequency and weaker

dynamic Stark splitting of the dressed-state energy levels, which allows more phonons to be gen-

erated when the spontaneous emission occurs. However, note that the current model is limited at

lower values of Rabi frequencies by the requirements of the perturbative treatment of eq.(3.9).

Fig. 3.4: The second-order phonon-phonon correlation function g(2)(0) (3D surface) and the me-
chanical resonator’s mean phonon number ⟨n⟩ (2D density plot) as functions of the Rabi frequency
2Ω and the mechanical resonator damping rate κ, both normalized by the quantum-dot spontaneous
emission rate γ.

The interaction of the system with the thermal surroundings is described in Fig.3.4, where one

represents the previous quantities, i.e., the second-order correlation function and the mean phonon

number, as functions of the Rabi frequency Ω and the resonator damping rate κ of its interaction

with the thermal bath. The other system parameters are n̄ = 0.01, ∆/2Ω = −0.7, γc/γ = 0.1,

g/γ = 15 and ωph/γ = 30. Similarly to the previous figure, different mesh styles were used for

the g(2)(0) < 1 and g(2)(0) > 1 plot regions. The choice of the laser-quantum-dot detuning∆, was

made from the Fig.3.3 where the plot region of g(2)(0) < 1with stronger sub-Poissonian behaviour

have been selected. The second-order correlation function admits two separate plot regions where
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the vibrational quanta are sub-Poissonian distributed. These plot regions are represented in a dif-

ferent mesh style in Fig.3.4. As for the case of phonon generation small mean phonon numbers

are irrelevant, the region of the density plot corresponding to ⟨n⟩ < 1 is represented in transparent

grey colour. Therefore, one observes that the plot region of sub-Poissonian distributed quanta cor-

responding to strong reservoir-resonator couplings, i.e., higher orders of magnitude of the thermal

damping rate of κ/γ ∼ 1− 10 are not of interest to the study of phonon emission as the generated

mean phonon number is small due to strong phonon leaking into the thermal bath.

The relevant plot region corresponds to weak reservoir-resonator interactions which reduces

the phonon losses. The small values of the thermal damping rate κ can be also determined by

the chosen mechanical resonator, able to capture a single phonon mode with a high quality factor

Q = ωph/κ. In Fig.3.4 the plot region where the phonon losses are small, i.e., κ/γ < 10−2,

allows sub-Poissonian distributions to be obtained for a high mean phonon number generated in

the mechanical resonator. And the mean phonon number ⟨n⟩ within the steady-state regime is

increasing when the damping rate κ is decreasing.

The phonon distribution Pn ≡ P
(1)
n for a system with two different damping rates is represented

in Fig.3.5. One considers here a system described by 2Ω/γ = 20, ∆/2Ω = −0.8, γc/γ = 0.1,

g/γ = 10, ωph/γ = 20 and a thermal bath with n̄ = 0.1. The strong damping case is given when

the system interacts with the bath at a damping rate of κ/γ = 25 and the corresponding phonon

distribution is represented in red bars. The weak damping case is given for κ/γ = 4 ∗ 10−3 and the

corresponding phonon distribution is represented in blue bars.

When the system is strongly damped, the steady-state regime represents an equilibrium of the

mechanical resonator with the thermal reservoir. In Fig.3.5 one has treated the case when the mean

phonon number decreases to ⟨n⟩ ≃ 0.111, close to the bath mean phonon occupation number of

n̄ = 0.1. The second-order correlation function reaches the value of g(2)(0) ≃ 1.98 close to the

value of a pure thermal field g(2)(0) = 2. In this case the phonon distribution is well fitted by a

pure thermal distribution given via the distribution function [179]:

Pn =
⟨n⟩n

(⟨n⟩+ 1)n+1
. (3.22)

The case of a weaker damping of the mechanical resonator leads to a quasi-coherent phonon

field with a significant increase of the mean phonon number ⟨n⟩ ≃ 29. The mean phonon number

may be further increased by decreasing the resonator’s damping rate or by increasing the phonon-

coupling constant. However, the increase of the coupling constant is strongly restricted by the

considered theoretical model and, more precisely, by the first order perturbation treatment applied
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Fig. 3.5: The phonon probability distribution for different thermal damping rates. On the left side,
the red bars represent the case of strong thermal damping. On the right side, a weak damping case
is represented in blue bars.

to the fast rotating terms of the system Hamiltonian in the dressed-state interaction picture. A

coupling strength g higher then the orders of magnitude of ωph or Ω̄ would no longer justify the

applied approach and would require to consider higher orders of the perturbation development of

eq.(3.9). Still, the current literature report experimental realization of nano-mechanical resonators

and acoustic cavities with quality factors of higher than 104 order, therefore even higher phonon

numbers than the ones reported in Fig.3.5 may be considered.

In Fig.3.5 one also compares the observed quanta distribution of the steady-state phonon field

with a coherent field distribution defined as a Poissonian distribution given as:

Pn =
⟨n⟩ne⟨n⟩

n!
, (3.23)

where one has used the observed value of ⟨n⟩ ≃ 29. The second order correlation function of a

coherent field is g(2)(0) = 1, while for the observed one obtains g(2)(0) ≃ 0.99. The difference

between the theoretical distribution and the observed one is about 1% in terms of g(2)(0). It is

similar to the thermal equilibrium case of the strong damping regime, where this difference was in

the same vicinity of 1%. However, the theoretical fit does not match so well the expected quasi-

coherent distribution. The obtained phonon field has a visibly narrower distribution, although the

small difference in g(2)(0) terms. This feature of a narrower distribution represents a sub-Poissonian

distributed phonon field, which is defined for correlation function values in the range of g(2)(0) < 1.

Sub-Poissonian quanta distributions represent a pure quantum feature of a field as classical field
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sources do not allow one to obtain this type of fields and quantum manipulations are required.

Another parameter which influences the phonon damping phenomena is the temperatures of

the surrounding reservoir, which is related to the mean phonon number of the thermal bath n̄. The

temperature effect on the damping mechanics is represented in Fig.3.6, where different orders of

magnitude of n̄ were considered. Here, the phonon statistics evolution as function of normalized

damping rate κwas plotted for different bath phonon numbers. The system parameters are the same

as in Fig.3.5.

Fig. 3.6: (a) The phonon second-order correlation function g(2)(0) and (b) the mean phonon number
⟨n⟩ as function of normalized damping rate κ for different surrounding temperatures.

The previously discussed weak damping regimes are not affected by the considered change of

the surrounding temperatures. All curves converge when decreasing the damping rate κ. How-

ever, higher temperatures, i.e., higher values of n̄, allow the thermal equilibrium to be reached

at considerably lower damping rates. Therefore, the definition of weak damping regime where

quasi-coherent phonon field are obtained and strong damping regimes corresponding to a quasi-

equilibrium with the thermal surrounding is related not only to the damping rate, but also to the

temperature of the thermal bath.

It is to note, that for strong damping regimes, the decrease in temperature leads to prominent

sub-Poissonian phonon distributions. This suggests that one is able to obtain narrower distribu-

tions of quantum states by decreasing the temperature of the surrounding environment. Within this

condition, the phonons of the mechanical resonator are more likely to be found in some specific

quantum states, as the probability distribution becomes more centred around the value of the mean

phonon number. This effect could be explored to improve the discreteness of the phonon states in

order to prepare the mechanical oscillator as a superposition of only a few Fock states or in a pure
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Fock state. However, the regions with prominent sub-Poissonian distributions of Fig.3.6, does not

allow one to obtain significantly high values of the mean phonon number at low temperatures.

Fig. 3.7: The phonon statistics, i.e., g(2)(0) represented in blue curves and ⟨n⟩ plotted in red curves,
as functions of the normalized cavity damping rate κ. The beyond the secular approximation treat-
ment is given in continuous curves, whereas the dashed curves represent the treatment within the
secular approximation. The figure is published in [151].

One of the most distinctive aspect of the current theoretical model consists in the implementa-

tion of a perturbation treatment to the fast rotating Hamiltonian terms within the dressed-state basis

and interaction picture. As previously discussed in eq.(3.9), this method allows one to go beyond a

traditional secular approximation and consider the regime of moderate strong couplings where the

fast terms may be treated as a perturbation of the system Hamiltonian, instead of being definitively

neglected. In order to highlight the contribution of the fast terms to the system dynamics, the cur-

rent model is compared to a similar model where a secular approximation was applied. In Fig.3.7

one presents the phonon statistics for two different models, i.e., the one that goes beyond the secular

approximation (continuous curves) and the other treated within the secular approximation (dashed

curves). The second order correlation function is represented in blue lines and the mean phonon

number in red lines. The other system parameters are 2Ω/γ = 25, ∆/(2Ω) = −0.7, n̄ = 0.04,

γc/γ = 0.1, g/γ = 15 and ωph/γ = 35.

One observes that the estimated second-order correlation functions in both cases converges for

higher and smaller cavity damping rates. Although both models predict g(2)(0) ≃ 1 for lower

values of κ/γ, the quantum features are proper only beyond the secular approximation. The inset
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of Fig.3.7 gives a close look on how the second-order correlation function converges to a a quasi-

coherent field in the weak damping regime, in the region around 10−3 ≤ κ/γ ≤ 10−2. The secular

approximation model predicts a classical field as its distribution is always a bit larger than the

Poissonian, i.e., one observes g(2)(0) > 1 while asymptotically converging. On the contrary, the

treatment beyond the secular approximation predicts a similar quasi-coherent phonon distribution,

but with g(2)(0) < 1. Thus, only the beyond the secular approximation model may reveal to

quantum features of the phonon field. Moreover, for the weak damping regime, a significant change

in the estimation of the mean phonon number ⟨n⟩ is introduced by the model beyond the secular

approximation.

The perturbation terms become more important for the second-order correlation function in the

region of stronger damping rates, i.e., in the region about 0.1 ≤ κ/γ ≤ 1. Although, in this region,

the overall behaviour of the system dynamics is the same for both models, the beyond the secular

approximation model predicts a more prominent sub-Poissonian distribution.
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3.4 Quantum cooling and phonon assisted population inversion

The contribution of the fast rotating terms to the system dynamics have shown some significant

contribution to the estimation and understanding of the process of phonon generation scheme. One

has used a blue-detuned pumping laser, i.e., ωqd < ωL, which leads to a phonon generation process.

Stronger quantum-dot-phonon coupling regimes were considered where the contribution of the

fast-rotating terms of the system ”dressed” Hamiltonian can be treated as a perturbation. In this

paragraph, one proposes to switch the pumping laser detuning to the red-detuned region„ i.e.,∆ =

ωqd−ωL > 0, where quantum cooling effect can be achieved, and to investigate the consequences

of the perturbation treatment on this effect.

The quantum dynamics of the system is investigated in the steady-state regime via the cavity

mean phonon number ⟨n⟩ and its second-order phonon-phonon correlation function g(2)(0) pre-

sented in Fig.3.8 as functions of the detuning∆ divided by the Rabi frequencyΩ. The other system

parameters are κ/γ = 10−3, n̄ = 30, 2Ω/γ = 40, g/γ = 30, γc/γ = 0.1 and ωph/γ = 35. The

negative laser-quantum-dot detuning, i.e., a blue-detuned laser, corresponds to anti-Stokes transi-

tions that leads to the generation of phonons and thus to values of ⟨n⟩ considerably higher than than

the thermal bath mean phonon number ⟨n⟩ ≫ n̄. The quantum-dot-laser resonant case, i.e.,∆ = 0,

does not contribute to the phonon statistics as there does not occur any Raman-type interactions and

the cavity is in equilibrium with the thermal reservoir. Consequently, the mean phonon number is

given by ⟨n⟩ = n̄ and the phonons are thermally distributed, i.e., g(2)(0) = 2.

The quantum cooling regime is reached for red-detuned laser, i.e., in the region ∆ > 0. The

cooling mechanics is based on Stokes transitions among the laser driven quantum-dot and phonons

combined with the spontaneous emission effect, as discussed at the beginning of this chapter. The

mean phonon number ⟨n⟩ first decreases to the near-ground state. However, the Raman type tran-

sitions are less probable to occur for very high quantum-dot-laser detuning values compared to

the mechanical vibration frequency, leading to a less prominent cooling effect. As the cooling ef-

fect weakens, the mechanic resonator rests in quasi-equilibrium state with the thermal bath, i.e.,

⟨n⟩ ≃ n̄ and g(2)(0) ≃ 2, for ∆ ≫ ωph.

Within the strong coupling regime, the model beyond the secular approximation expressed via

continuous lines, predicts an enhanced maximum cooling effect if comparing to the secular approx-

imation treatment expressed via dashed lines. Although being small, the main contribution of the

fast-rotating terms becomes significant in the region where the mean phonon number is decreased

as well. The predicted mean phonon number is cooled down to the minimum value ⟨n⟩min ≃ 0.12
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Fig. 3.8: The second-order phonon-phonon correlation function g(2)(0) (blue curves 1 and 1’) and
the mechanical resonator mean phonon number ⟨n⟩ (red curves 2 and 2’) as functions of the ratio
of detuning∆ and Rabi frequencyΩ, within the secular approximation (dashed lines 1’ and 2’) and
beyond the secular approximation, i.e., considering the fast rotating terms (continuous lines 1 and
2). The inset represents a close look at the mean phonon number when maximum cooling effect
occurs. The figure is published in [137].

for the beyond the secular approximation case, which is approximatively a twice better result com-

paring to the secular approximation treatment which predicts a minimum of ⟨n⟩min ≃ 0.23.

Another improvement brought by the beyond the secular approximation treatment consists in

the shifting of the predicted detuning position when maximum cooling is achieved and in a wider

range of the possible laser detunings which can be applied for cooling the mechanical resonator in

its ground-state vicinity. Note that the cooling scheme is considered in the good cavity limit of the

phonon fields, i.e., κ ≫ γ. One also requires high damping rates κ comparing to the temperature

of the environmental reservoir, in order to sufficiently reduce the pumping effect of the thermal

bath and, thus, reach the near-ground-state of the mechanical resonator.

As expected, one observes super-Poissonian behaviour of the vibrational quanta during the

cooling effect. This behaviour is also affected in the strong coupling regime and the fast-rotating

terms give a more accurate description of it. An analogy may be made with the phonon laser
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effect, where these terms changes the distribution of the phonon emission from a coherent to a

sub-Poissonian one [151].

The focus of the study of phonon assisted population inversion is made on the statistics of

the created steady-state phonon fields of the quantum mechanical resonator and, furthermore, one

investigates how the created phonon field influences the artificial atom’s state in the steady-state

regime. The entire process is controlled by the laser’s parameters and various acoustic nano-cavities

or nano-beams with different damping rates are considered in order to obtain the weak and strong

damping regimes. The quantum-dot’s behaviour is described by the population inversionW term,

which has negative values when the quantum-dot is more likely to be in the ground state and positive

values for the quantum-dot more probably to be found in the excited state.

The population inversion represents the quantity σz = |e ⟩⟨ e|−|g ⟩⟨ g|which may be expressed

through the atomic operators as σz = 2Sz. Within the dressed-state transformation of eqs.(3.3), Sz
is defined as:

Sz =
cos(2θ)

2
Rz. (3.24)

The statistical average of σz, W = ⟨σz⟩, is deduced by tracing over the quantum-dot-phonon

system states, the quantity Rzρ as discussed in eq.(3.17). Namely:

W = ⟨(|e ⟩⟨ e| − |g ⟩⟨ g|)ρ⟩ = cos(2θ)⟨Rzρ⟩ = cos(2θ)Trphonon[TrQD[Rzρ]]. (3.25)

Within the dressed-state basis, the population inversion may be estimated from the numerical sys-

tem of eqs.(3.16), similarly to the calculus applied with eqs.(3.18-3.21):

W = cos(2θ)Trphonon[TrQD[Rzρ]] = cos(2θ)Trphonon[
∑

i={+,−}

⟨i|Rzρ|i⟩]

= cos(2θ)Trphonon[ρ++ − ρ−−] = cos(2θ)Trphonon[ρ(2)]

= cos(2θ)
∞∑
n=0

⟨
n|ρ(2)|n

⟩
= cos(2θ)

∞∑
n=0

P (2)
n ≃ cos(2θ)

nmax∑
n=0

P (2)
n , (3.26)

where in the first line, one has traced over the atomic dressed-states. In the second line, one has

inserted the quantity ρ(2) defined the eq.(3.15), which have allowed one to introduce the variables

P
(2)
n in the last line of eq.(3.26) after tracing over the phonon infinite Fock states. Within the last

equality, one has truncated the sum of the infinite phonon states at a certain nmax of considered

Fock states as discussed in eq.(3.20).
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Fig. 3.9: The second-order correlation function g(2)(0) (continuous blue curve), the mean phonon
number ⟨n⟩ (dotted red curve) and the quantum-dot’s population inversionW (dashed purple curve)
as functions of the laser’s normalized detuning∆. (a) For a weak damping regimewith κ/γ = 10−3

and (b) for a strong damping regime with κ/γ = 15. .

Two different damping regimes of the studied model are represented in Fig.3.9, corresponding

to low and high damping rates, with κ/γ = 10−3 and κ/γ = 15 respectively. The phonon field

statistics is given by the second-order correlation function represented in blue continuous curves

and the mean phonon number represented in red dotted lines, while the quantum-dot statistics is

given by the population inversionW represented in purple dashed curves. The other model’s pa-

rameters are: n̄ = 0.01 ,Ω/γ = 25 , γc/γ = 0.1, ωph/γ = 35 , g/γ = 25 .

In the first case shown in Fig.3.9(a), for low damping rates of the order of κ/γ ∼ 10−3, the

acoustical field’s statistics are modified to a less prominent sub-Poissonian behaviour but a higher

mean phonon number in the cavity. The population inversion is always negative, so that this regime

is of no interest for monitoring the quantum-dot’s state. However, for the studies of the phonon
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fields’ statistics only, one has previously shown that quite strong fields with quantum statistics

may be obtained in an enough realistic case (see Fig.3.3 and Fig.3.4). Actually in both cases of

Fig.3.9, the phonon field statistics is similar to what has been discussed in the previous section on

the investigation of the phonon generation model.

The second case shown in Fig.3.9(b), corresponding to high damping rates of the order of κ/γ ∼

10, is described for a well-chosen detuning, byweak phonon fields with a prominent sub-Poissonian

distribution. This quantum feature is obtained for similar detuning range as in the weak damping

case. Under the phonon field’s action, the quantum-dot’s population is inverted in the region where

the field is more intense and reaches the maximum level in the region of sub-Poissonian fields.

Thus, an information about the quantum-dot’s state can be obtained by monitoring the phonon

fields’ statistics and vice versa.

3.5 Conclusions of Chapter 3

In this chapter, one has investigated the phonon quantum statistics of a mechanical resonator

strongly coupled to a pumped two-level quantum-dot in the steady-state regime. Various laser-

quantum-dot detunings have been considered in order to reach the phonon generation regime or

the quantum cooling regime. Different damping rates of the mechanical resonator, have been con-

sidered as well.

The particularity of the current model consists in evaluating the contribution of the fast-rotating

terms of the ”dressed” quantum-dot-phonon interaction as a first order perturbation of the sys-

tem dynamics, instead of completely neglecting them. This condition is achieved by considering

stronger qubit-phonon couplings than an usual secular approximation requires, but not very strong

so that the first order perturbation treatment remains valid. One has compared the current model,

which goes beyond the secular approximation treatment to the case when this approximation is ap-

plied. One has shown, that although the contribution is small or completely negligible most of the

time, it may introduce significant correction to the obtained results and interpretation in different

scenarios.

Within the phonon generation regime, i.e., when a blue-detuned laser is applied, the current

model gives a better interpretation of the generation process. One has shown, that the mechanical

resonator possess quantum features as the sub-Poissonian distributed vibrational quanta. Although,
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in any case one observes quasi-coherent generated phonon fields for small phonon damping rates,

only the beyond the secular approximation case shows that this fields has a sub-Poissonian distribu-

tion. Moreover, ignoring the fast-rotation terms contribution would lead to an erroneous estimation

of the phonon field strength, i.e., the mean phonon number of the mechanical resonator. This inves-

tigation predicts that the phonon lasing effect that may be achieved via the current optomechanical

setup, has a quantum feature.

Within the cooling regime,i.e., for a red-detuned laser pumping, a different laser-quantum-dot

detuning for a maximal quantum cooling effect have been estimated when the beyond the secular

approximation treatment had been applied. Also, stronger cooling had been predicted, by obtaining

a twice lower minimum phonon number. In this configuration, the fast terms play an essential role

in the behaviour of the phonon statistics, describing a more prominent super-Poissonian statistics

during the cooling process.

Finally, regimes related to high damping rates, correspond to the case where the quantum-dot’s

population is inverted by the created phonon fields. Moreover, one shows that for this regime the

maximum of the population inversion is located in the region were the phonon field is more intense

and possesses a more prominent sub-Poissonian distributions.
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4 AN ARTIFICIAL ATOM PLACED IN AN OPTICAL RES-
ONATOR

In this chapter, one investigates the case when a three-level equidistant ladder-type quantum-

well is placed in an optical cavity. The quantum-well is pumped via two lasers with different

phases. Each laser is applied resonantly on one of the two quantum-well transitions. Under the laser

driving, the energetic levels of the quantum-well are subject to the dynamical Stark splitting effect,

as shown in Fig.4.1. Various transitions with different transition frequencies appear among the split

energy levels. In the case of driven two-level emitter, one observes three different transitions in the

emitter’s emission spectra called the Mollow triplet. The Mollow triplet is made of a central peak

corresponding to the free emitter transition energy and two sidebands equally shifted on both sides

of the central peak. In the case of a driven three-level emitter even more sidebands appear. In this

research, one has considered an equidistant three-level emitter. As both transitions occur at same

frequency, the emission spectra of the laser driven quantum-well is made of a central peak and two

pairs of sidebands.

As the quantum-well architecture has equidistant energy levels and orthogonal transition dipoles,

the optical cavity couples to both emitter’s transitions in the good cavity limit. As under the laser

pumping the quantum-well is prepared in a superposition of states, the cavity indistinguishably

interacts with the upper and lower transitions. These indistinguishable amplitudes of the cavity

interaction with different quantum-well transitions lead to the interference effect. In order to solve

the system dynamics, one was able to significantly reduce the complexity of the quantum dynamics

without loosing much of generality of the problem by successively tuning the cavity in resonance

with one of the frequencies of the emitter’s spectra.

As the interaction amplitudes may be influenced by laser intensities and phases, one is able to

achieve strong destructive quantum interferences. Therefore, the cavity field may be emptied for a

well-chosen laser phase difference as the laser phases are transferred to the interactional amplitudes.

In this case, the pumped quantum-well spontaneously decays in all directions except the cavity.

Furthermore, this behaviour of the interfering the quantum-well-cavity system is associated with a

quantum switch, where the income laser signals may switch the cavity field on and off by varying

their phase difference and intensity.
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Fig. 4.1: Schematic of the model. A three-level atom, placed in a leaking optical cavity, interacts
with external coherent fields with Ω2,1 being the corresponding Rabi frequencies. γ32 and γ21 are
the respective spontaneous emission decay rates. The full arrows depict the dressed-state transitions
in resonance with the cavity mode frequency leading to cavity quantum interference phenomena.

4.1 The model

The quantum-well is described by its bare-states |i⟩, {i = 1, 2, 3} and their corresponding ener-

gies }ωi. The quantum-well free Hamiltonian is expressed from the eq.(2.3). The only difference

with the two-level case, is that this time summation is performed over all the three atomic eigenen-

ergies. The atomic operators of the three-level emitter are defined as Sij = |i⟩⟨j|, {i, j = 1, 2, 3}

and obey the commutation rule:

[Sα,β, Sβ′,α′ ] = δβ,β′Sα,α′ − δα′,αSβ′,β. (4.1)

The most energetic level |3⟩may spontaneously decay to the intermediate level |2⟩with a emission

rate γ32, while the last one decays to the ground level |1⟩ with a rate γ21.

The laser pumping of the quantum-well is obtained by applying different lasers for each atomic

transition. The laser driving the lower transition is described by its frequency ωL1 and phase ϕ1,

while the laser applied on the upper transition is given by ωL2 and ϕ2. The quantum-well pumping

is described via semi-classical interactions given by the Rabi frequencies Ω1 and Ω2 for the lower

and upper transitions, respectively. The corresponding interaction Hamiltonian is given by two

separate terms defined in eq.(2.10), adapted for each of the atomic transition.
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The cavity-quantum-well interaction is also expressed via two separate Hamiltonian terms, one

for each of the transitions. The two corresponding terms are given by the interaction part of the

Jaynes-Cummings model of eq.(2.24) and are described by the coupling constants g1 and g2. The

first coupling constant represents the quantum interaction of the optical resonator with the lower

transition, while the second one - with the upper transition.

The quantized cavity field is defined by its frequency ωc and the bosonic creation operator a†

and annihilation operator a, defined in eq.(2.12). The bosonic operators commute as [a, a†] = 1.

The optical cavity is dumped by an environmental electromagnetic vacuum reservoir at a leaking

rate κ.

The system Hamiltonian, in its general form, is defined as:

H = }ωca†a+ }
3∑
i=1

ωiSii + i}g1(a†S12 − S21a) + i}g2(a†S23 − S32a)

+ }Ω1(S21e
−i(ωL1t+ϕ1) + S12e

i(ωL1t+ϕ1))

+ }Ω2(S32e
−i(ωL2t+ϕ2) + S23e

i(ωL2t+ϕ2)), (4.2)

where the first two terms in Eq. (4.2) describe the single mode free cavity field and the quantum-

well free Hamiltonians. As mentioned previously, the external laser fields and the cavity field

interact with both transitions of the quantum-well and every interaction is defined via separate

terms according to each transition. Thus, the next two terms of the Hamiltonian represent the

interaction of the quantized cavity with the atom whereas the last two terms describe the laser-

atom semi-classical interaction.

The system’s quantum dynamics is given by the master equation for the density operator ρ as:

∂ρ

∂t
= − i

}
[H, ρ] +

κ

2
L(a) + γ32

2
L(S23) +

γ21
2
L(S12), (4.3)

where, on the right-hand side of the equation, the first term represents the coherent part based on the

von-Neumann equation of eq.(2.47), while the other terms describe the damping phenomena. The

second term of the equation represents the cavity photon leaking term of eq.(2.62), which appears

due to the interaction of the optical resonator with the environmental electromagnetic vacuum.

The last two terms represent the spontaneous emission of the two excited states, with two different

rates corresponding to each of the quantum-well’s transitions. In the case of a multi-level atomic

structure, as in our case, the reservoir theorymay be applied to each transition separately. Therefore,

the spontaneous decay dynamics will be defined by separate damping terms of eq.(2.64) adapted

for each of the possible decay transitions. The damping effects are expressed by the Liouville
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superoperator L, which acts on a given operator O as: L(O) = 2OρO† −O†Oρ− ρO†O.

Note that the thermal cavity pumping term is not introduced in the master equation of eq.(4.3).

This term vanishes when one considers the electromagnetic vacuum as environmental reservoir.

This condition is equivalent to the case of an empty thermal reservoir treated in Chapter 2, i.e.,

when the mean photon number of the thermal reservoir becomes n̄ = 0. This condition is valid as

long as one operates the cavity at optical or higher frequencies. For frequencies such as THz or

microwave, the thermal cavity pumping effect should be considered for the current model, espe-

cially in scenarios where the cavity field vanishes and there are no photons emitted in the cavity.

In such cases, the cavity mean photon number should equilibrate with the mean photon number of

the thermal reservoir due to the pumping effect.

As in the previous chapter, a direct implementation of system Hamiltonian of eq.(4.2) into

the master equation of eq.(4.3) does not allow one to accurately solve it without adopting drastic

approximation to the system dynamics. In this paragraph, a set of various transformations shall be

applied to the system dynamics in order to obtain a solvable master equation, without loosing much

of the generality of the problem.

A first step consists in setting the pumping laser frequencies in resonance with the two tran-

sitions of the equidistant three-level emitter, i.e., ωL1 = ω2 − ω1 and ωL2 = ω3 − ω2. As the

transition frequencies of the quantum-well are equal, i.e., ω3 − ω2 = ω2 − ω1, one may further

note ωL = ωL1 = ωL2. This allows the free quantum-well Hamiltonian term to vanish when one

goes in the frame rotating with ωL, via the unitary transformation U(t) = exp(−iH1t/}) with

H1 = }ωLSz and Sz = S++ − S−− = |+⟩⟨+| − |−⟩⟨−|. In this frame, one obtains the following

system Hamiltonian:

H = }ωca†a+ i}g1(a†S12e
−iωLt − eiωLtS21a) + i}g2(a†S23e

−iωLt − eiωLtS32a)

+ }Ω1(S21e
−iϕ1 + S12e

iϕ1) + }Ω2(S32e
−iϕ2 + S23e

iϕ2), (4.4)

Next, one transfers the phase term from the laser-quantum-well interaction terms to the cavity-

quantum-well interaction terms, by applying the following transformation to the atomic operators:

S12e
iϕ1 → S12,

S21e
−iϕ1 → S12,

S23e
iϕ2 → S23,

S32e
−iϕ1 → S32, (4.5)
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which leads to the system Hamiltonian:

H = }ωca†a+ i}g1(a†S12e
−i(ωLt+ϕ1) − ei(ωLt+ϕ1)S21a)

+ i}g2(a†S23e
−i(ωLt+ϕ2) − ei(ωL2t+ϕ2)S32a)

+ }Ω1(S21 + S12) + }Ω2(S32 + S23). (4.6)

The Hamiltonian is brought to an easy diagonalizable form of the quantum-well-lasers sub-

system terms. But before diagonalising it, one goes in a frame rotating with the frequency ωL by

applying the unitary transformation U(t) = exp(−iH2t/}) withH2 = }ωLa†a. Within this frame,

the cavity-quantum-well interaction terms do not rotate any longer and the system Hamiltonian is

expressed as:

H = }(ωc − ωL)a
†a+ }Ω1(S21 + S12) + }Ω2(S32 + S23)

+ i}g1(a†S12e
−iϕ1 − eiϕ1S21a) + i}g2(a†S23e

−iϕ2 − eiϕ2S32a). (4.7)

Within this form, one adopts the semi-classical dressed-state transformation according to the dy-

namical Stark splitting effect of the quantum-well under the laser pumping [100]. The new Her-

mitian base is defined considering the pumped quantum-well subsystem eigenfunctions. The new

atomic wave function basis vectors, i.e., the dressed-states, are defined as [102]:

|1⟩ = − 1√
2
cos θ |−⟩ − sin θ |0⟩+ 1√

2
cos θ |+⟩,

|2⟩ =
1√
2
|−⟩+ 1√

2
|+⟩,

|3⟩ = − 1√
2
sin θ |−⟩+ cos θ |0⟩+ 1√

2
sin θ |+⟩, (4.8)

where θ = tan−1(Ω2/Ω1) and Ω =
√
Ω2

1 + Ω2
2. Similarly to the bare-state operators, the new

atomic operators are defined as Rij = |i⟩⟨j|, {i, j = −, 0,+} and Rz = R++−R−−, and obey the

same commutation rules of eq.(4.1).

The system Hamiltonian in the dressed-state picture is expressed as:

H = }(ωc − ωL)a
†a+ }ΩRz +

{
i

2
(g1e

−iϕ1 cos θ + g2e
−iϕ2 sin θ)a†Rz

+
i

2
(g1e

−iϕ1 cos θ − g2e
−iϕ2 sin θ)a†

(
R+− −R−+

)
− i√

2
g1e

−iϕ1 sin θ a†
(
R0− +R0+

)
+

i√
2
g2e

−iϕ2 cos θ a†
(
R−0 +R+0

)
+ H.c.

}
. (4.9)
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Fig. 4.2: The dynamic Stark splitting of the quantum-well energy levels under the laser pumping
effect. Various transition among the ”dressed” atomic level are represented in different colours.
The external sidebands are shown in purple bold arrows, the internal sidebands in red bold arrows
and the central frequency in green bold arrows.

Finally, one goes in the interaction picture of the ”dressed” system Hamiltonian by performing

the unitary transformation: U(t) = exp{itH3/}} where H3 = }(ωc − ωL)a
†a + }ΩRz. In this

picture, the system Hamiltonian becomes:

H =
i

2
(g1e

−iϕ1 cos θ − g2e
−iϕ2 sin θ)a†ei(ωc−ωL)t

(
R+−e

2iΩt −R−+e
−2iΩt

)
− i√

2
g1e

−iϕ1 sin θ a†ei(ωc−ωL)t

(
R0−e

iΩt +R0+e
−iΩt

)
+

i√
2
g2e

−iϕ2 cos θ a†ei(ωc−ωL)t

(
R−0e

−iΩt +R+0e
iΩt

)
+

i

2
(g1e

−iϕ1 cos θ + g2e
−iϕ2 sin θ)a†ei(ωc−ωL)tRz + H.c.. (4.10)

Within the interaction picture, the Hamiltonian terms oscillates at five distinct frequencies ωc−

ωL±Ω, ωc−ωL±2Ω andωc−ωL. This terms corresponds to the interaction of the optical cavity with

the sidebands and the central frequency of the quantum-well which appear under the laser pumping

effect. The dynamical Stark splitting effect which appear due to the laser-quantum-well interactions

leads to five transition frequencies among the split atomic states as shown in Fig.4.2. The quantum-

well resonance fluorescence spectra of each transition is formed of degenerate sidebands centred

at ωL ± Ω and ωL ± 2Ω as well as a central peak around ωL.

The system Hamiltonian of eq.(4.10) may be significantly simplified if tuning the optical cavity

in resonance with one of the possible transitions of the pumped quantum-well. The resonance

case would allow one to keep only the resonant interaction term and neglect other interactions
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via a secular approximation. The simplified Hamiltonian shall accurately describe the quantum

dynamics within the adopted approximations as long as g1,2/Ω ≪ 1. In what follows one will

study separately each of the possible resonant cases.

In the next paragraph 4.2, one shall first discuss the case of the cavity tuned in resonance with

one of the external sidebands represented in purple bold arrows in Fig.4.2. Here, the dynamics and

the results are similar when the cavity is tuned with either the most or the less energetic external

sideband, i.e., when ωc = ωL + 2Ω or ωc = ωL − 2Ω, respectively. When tuning the cavity as

ωc = ωL + 2Ω, the dressed-state Hamiltonian is reduced to:

H = i|g|
(
a†R−+e

iψ − e−iψR+−a

)
, (4.11)

where

g =
1

2
(g2e

−iϕ2 sin θ − g1e
−iϕ1 cos θ) (4.12)

and ψ = arg(g). The obtained Hamiltonian has a similar form to the Hamiltonian of a two-level

atom interacting with a cavity with an effective coupling g. This effective coupling originates

from the quantum interference of the two dressed-state transition amplitudes, contributing to the

quantum-well pumping of the cavity mode. As it will be shown later, it is possible to configure the

two Rabi frequencies in order to effectively decouple the atom from the cavity, i.e., the effective

coupling g vanishes when g1/g2 = Ω2/Ω1 and the lasers are in-phase. This point corresponds to

the case where the interfering interaction amplitudes of the upper and lower transitions become

equal.

In the last study of the paragraph 4.2, the investigation is focused on the system dynamics when

the cavity is tuned in resonance with one of the internal sidebands, i.e., when ωc = ωL±Ω. All the

possible transitions that may occur at this frequencies are represented in red bold arrays in Fig.4.2.

Again, the system dynamics shows a similar behaviour when the cavity is tuned either to the most

or less energetic internal sideband, i.e., when ωc = ωL+Ω or ωc = ωL−Ω, respectively. Therefore,

the further study is considering only the case when ωc = ωL + Ω. The resonant Hamiltonian is

expressed for this case as:

H = iḡ2

(
a†R−0e

−iϕ2 − eiϕ2R0−a

)
− iḡ1

(
a†R0+e

−iϕ1 − eiϕ1R+0a

)
, (4.13)

where

ḡ1 =
g1 sin θ√

2
and ḡ2 =

g2 cos θ√
2

. (4.14)

96



Within this case, one does not observe any analytic expression of an effective coupling as in the

previous case and the coupling of the optical resonator with the artificial atom is expressed via two

separate terms.

In the paragraph 4.3, the last studied configuration corresponds to the case when the cavity

is tuned with the central peak of the pumped quantum-well, i.e., when ωc = ωL. In Fig.4.2 the

corresponding transitions are represented in green bold arrows. Note that although one sets here

the cavity in resonance with the free quantum-well transition, the model still requires the laser

pumping to be applied. For this case, the resonant Hamiltonian is obtained after neglecting the

fast-terms as:

H = i|g|
(
a†eiψ − e−iψa

)
Rz, (4.15)

where

g =
1

2
(g1e

−iϕ1 cos θ + g2e
−iϕ2 sin θ) (4.16)

andψ = arg(g). As in the case of eq.(4.12), an effective coupling constant appears in the term of the

resonant Hamiltonian and the nature of the interference phenomena can be interpreted analytically.

The difference with the previous case is that the laser phases have to be offset by π in order to obtain

destructive interference phenomena. However, the system dynamics should be solved in order to

estimate if these interferences can be quantitatively observed.

As in the previous chapter, all transformations applied to the system Hamiltonian have to be

applied to the entire master equation of eq.(4.3). Within the dressed-state basis defined in eqs.(4.8)

and within the ”dressed” interaction picture applied to the Hamiltonian of eq.(4.10), the system’s

dynamics is described by the following dressed-state master equation:

∂ρ

∂t
= − i

}
[H, ρ] +

κ

2
L(a) + γ32 cos2 θ

4

(
L(R−0) + L(R+0)

)
+

γ32 sin2 θ + γ21 cos2 θ
8

(
L(Rz) + L(R+−) + L(R−+)

)
+

γ21 sin2 θ
4

(
L(R0−) + L(R0+)

)
. (4.17)

Here, the secular approximation was performed in the spontaneous emission terms by neglecting

the time-dependent rapidly oscillating terms - an approximation valid as long as γ32(21)/Ω ≪ 1.

The dressed-state atomic operators Rij = |i⟩⟨j|, {i, j} ∈ {−, 0,+}, and Rz = R++ − R−−, obey

the same commutation relations of eq.(4.1) as the operators expressed in the bare-state basis.

97



4.2 The cavity in resonance with sidebands

The master equation (4.17), with the Hamiltonian (4.11), is solved by projecting it into the

system’s states basis [191]. The solving technique is similar to the method applied in paragraph

3.2 of the previous chapter. The Hamiltonian (4.11) is similar to the case of a two-level emitter

of the Jaynes-Cummings model and involves only the states |+⟩ and |−⟩. However, the sponta-

neous emission terms of the master equation (4.17) involves all of the quantum-well dressed-states.

Therefore, the method [191] requires to define some additional variables to the system in order to

adapt it to the case of a three-level emitter. As previously, the master equation is first projected

into the atomic basis and, after some rearrangements of the elements of the reduced density matrix,

their equation of motion are projected into the field basis. One defines the following Hermitian

quantities as variables for the system:

ρ(0) = ρ−− + ρ00 + ρ++,

ρ(1) = ρ++ + ρ−−,

ρ(2) = ρ++ − ρ−−,

ρ(3) = (a†ρ+− + ρ−+a)/2,

ρ(4) = (ρ+−a
† + aρ−+)/2, (4.18)

where the elements of the reduced density matrix are defined as ρij = ⟨i|ρ|j⟩, {i, j ∈ −, 0,+}.

The projection into the quantum-well dressed-state basis leads to a set of five linearly coupled

differential equations. The obtained system of equations of motion is expressed as:

ρ̇(0) = −2|g|
(
ρ(4) − ρ(3)

)
+
κ

2
L0(a),

ρ̇(1) = −2|g|
(
ρ(4) − ρ(3)

)
+
κ

2
L1(a)−

α

2
ρ(1) + γ32 cos2 θρ(0),

ρ̇(2) = −2|g|
(
ρ(4) + ρ(3)

)
+
κ

2
L2(a)−

β

2
ρ(2),

ρ̇(3) =
|g|
4

(
2a†(ρ(2) + ρ(1))a+ a†a(ρ(2) − ρ(1)) + (ρ(2) − ρ(1))a†a

)
− ζρ(3)

+
κ

2
(L3(a) + ρ(3) − 2ρ(4)),

ρ̇(4) =
|g|
4

(
2a(ρ(2) − ρ(1))a† + aa†(ρ(2) + ρ(1)) + (ρ(2) + ρ(1))aa†

)
− ζρ(4)

+
κ

2
(L4(a)− ρ(4)). (4.19)
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Here α = γ21 sin2 θ + 2γ32 cos2 θ, β = γ21 + γ32 sin2 θ and ζ = (γ21(2 + cos2 θ) + 3γ32 sin2 θ)/4.

The next projection in the field’s basis leads to a set of infinite equations corresponding to the

infinite Fock states {|n⟩, n ∈ N}, that is,

Ṗ (0)
n = −2|g|

(
P (4)
n − P (3)

n

)
+ κ(n+ 1)P

(0)
n+1 − κnP (0)

n ,

Ṗ (1)
n = −2|g|

(
P (4)
n − P (3)

n

)
+ κ(n+ 1)P

(1)
n+1 − (κn+ α/2)P (1)

n + γ32 cos2 θP (0)
n ,

Ṗ (2)
n = −2|g|

(
P (4)
n + P (3)

n

)
+ κ(n+ 1)P

(2)
n+1 − (κn+ β/2)P (2)

n ,

Ṗ (3)
n = |g|n

(
P

(1)
n−1 − P (1)

n + P
(2)
n−1 + P (2)

n

)
/2− κP (4)

n

+κ(n+ 1)P
(3)
n+1 − (κ(n− 1/2) + ζ)P (3)

n ,

Ṗ (4)
n = |g|(n+ 1)

(
P

(2)
n+1 + P (2)

n − P
(1)
n+1 + P (1)

n

)
/2

+κ(n+ 1)P
(4)
n+1 − (κ(n+ 1/2) + ζ)P (4)

n , (4.20)

where P (i)
n = ⟨n|ρ(i)|n⟩. Interestingly, P (0)

n are the diagonal elements of the field’s reduced density

matrix, i.e., it contains the trace over the atom’s dressed-states: P (0)
n = ⟨n|Tratom[ρ]|n⟩. Hence, it

is possible to deduce the cavity field’s mean photon number ⟨n⟩ by tracing over the field’s states

as discussed in eqs.(3.18-3.20):

⟨n⟩ = ⟨a†a⟩ =
∞∑
n=0

nP (0)
n . (4.21)

Similarly to the calculus of eq.(3.21), the second order photon-photon correlation function

g(2)(0) is given by:

g(2)(0) =
⟨a†a†aa⟩
⟨n⟩2

=

∑∞
n=0 n(n− 1)P

(0)
n

⟨n⟩2
. (4.22)

Finally, in order to solve the infinite system of eqs. (4.20), we truncate it at a certain maximum

value n = Nmax of considered Fock states. The photon distribution of the field converges to zero

for largerNmax, and thus,Nmax is selected such that a further increase of its value does not modify

the obtained results.

A first investigation is performed when the two lasers are set in-phase, i.e., ϕ1 = ϕ2 = 0. For

this case, the effective coupling of the atom vanishes. This is achieved by varying the ratio of the

Rabi frequencies of the two lasers Ω2/Ω1. The variation of Ω2/Ω1 changes the meanings of sin θ

and cos θ within the expression of the cavity-quantum-well interaction amplitudes of eq.(4.12).

99



Fig. 4.3: The steady-state cavity mean photon number ⟨n⟩ (solid curve) and the second-order
photon-photon correlation function g(2)(0) (dashed line) as a function of the ratio of the two Rabi
frequencies Ω2/Ω1. The figure is published in [102].

The steady-state behaviour of the mean cavity photon number as well as their quantum statis-

tics are shown in Fig.4.3, for a system defined by γ32 = γ21 ≡ γ, g1/γ = 5.001, g2/γ = 5 and

κ/γ = 10−3. A dip in the photon number is clearly visible when g1/g2 = Ω2/Ω1. It is due to quan-

tum interference effects having a destructive nature on the cavity field photons. The interference

occurs because both dressed-state transitions of the atom are coupled to the cavity mode leading

to indistinguishable interaction amplitudes. When the interaction amplitudes of this two couplings

become equal, the cavity field completely vanishes. Respectively, the atom decouples from the

cavity field in this particular case as discussed in eqs.(4.11-4.12). Thus, the zero cavity photon de-

tection in this scheme is directly related to quantum interference phenomena. Although, the atom

is pumped and spontaneously emits photons in all other directions, there is no photon emission on

the axis of the optical cavity.

A second investigation consists in observing the effect of the laser phases on the system dy-

namics. The cavity field behaviour shows a good evidence of quantum interferences, as presented

in Fig.4.4. One has fixed the phase of the laser pumping the lower frequency at ϕ1 = π/4 and

have varied the phase of the laser pumping the upper transition ϕ2. The other system parameters

are g1/γ1 = 6, g2/γ1 = 4, γ2/γ1 = 2 and κ/γ = 10−3. One observes that for a certain config-

uration of laser phases and Rabi frequencies ratio, the mean photon number is strongly decreased
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Fig. 4.4: The cavity mean photon number ⟨n⟩ as function of Rabi frequencies ratio Ω2/Ω1 and the
laser phase ϕ2 whereas the other laser frequency is fixed at ϕ1 = π/4. The figure is published in
[103].

down to the zero value. As mentioned previously, this minimum describes a complete cancellation

of the cavity field and corresponds to the case when the two indistinguishable amplitudes of the

quantum-well-cavity interaction are equal and in-phase.

The phase difference of the input lasers plays a crucial role in the control of the quantum in-

terference. The interaction amplitudes phases are related to the laser phases as suggested by the

expression of the coupling constant g of the Hamiltonian form of equation (4.11) at cavity-quantum-

well resonance and within the secular approximation. Therefore, a destructive superposition is ob-

tained when the interaction amplitudes are in-phase, i.e., ϕ2 = ϕ1 + 2πm,m ∈ Z , as shown in

Fig.4.4. Under this condition, the system behaves similarly to the case when no laser phase was

considered in Fig.4.3, where the field cancels simply for g1/g2 = Ω2/Ω1.
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The system of equation of motions of eqs.(4.20) carries not only the information on the field

dynamics, but also the information on the dynamics of the quantum-well. Therefore, another inves-

tigation has been carried on the dynamics of the atomic population of the quantum-well. Namely,

one shall further discuss the behaviour of the population of the most excited energetic level ⟨S33⟩.

From the definition of the dressed-state basis of eq.(4.8), the bare state operator S33 may be defined

as:

S33 = |3⟩⟨3| =
(
− 1√

2
sin θ |−⟩+ cos θ |0⟩+ 1√

2
sin θ|−⟩

)
×
(
− 1√

2
sin θ ⟨−|+ cos θ ⟨0|+ 1√

2
sin θ⟨+|

)
=

1

2
sin2 θ

(
R++ +R−−

)
+ cos2 θR00 −

1

2
sin2 θ

(
R+− +R−+

)
+

1√
2
sin2 θ

(
R0+ +R+0 −R−0 −R0−

)
. (4.23)

When going into the interaction picture as discussed in eq.(4.10), the expression of S33 becomes:

S33 =
1

2
sin2 θ

(
R++ +R−−

)
+ cos2 θR00 −

1

2
sin2 θ

(
R+−e

2iΩt +R−+e
−2iΩt

)
+

1√
2
sin2 θ

(
R0+e

−iΩt +R+0e
iΩt −R−0e

−iΩt −R0−e
iΩt

)
. (4.24)

Here, a secular approximation is performed by neglecting the rotating terms. This terms are ne-

glected by assuming the condition Ω ≫ 1, where one has used the trigonometric relations

sin θ, cos θ < 1. The simplified expression of S33 is obtained as:

S33 = cos2 θ +
1

2
(1− 3 cos2 θ)

(
R++ +R−−

)
, (4.25)

where one has applied the identity operator 1 = R++ +R00 +R−−.

The calculus of the upper bare-state population of the quantum-well ⟨S33⟩ is related to the

quantity ⟨R++ +R−−⟩. The average value of a system operatorO had been discussed in eq.(3.17)

and is given as:

⟨O⟩ = Trphonon[TrQD[ρO]] = Trphonon[
∑

i={+,0,−}

⟨i|ρO|i⟩], (4.26)

where, this time, one traces first over the elements of the quantum-well reduced density matrix.

Inserting the quantity R++ + R−− into this expression, allows one to implement the variables of
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the solved system of equations (4.20) as follows:

⟨R++ +R−−⟩ = Trph

[ ∑
i={+,0,−}

⟨i|ρ
(
R++ +R−−)|i⟩

]
= Trph

[
ρ++ + ρ−−

]

= Trph[ρ
(1)] =

∞∑
n=0

⟨n|ρ(1)|n⟩ =
∞∑
n=0

P (1)
n . (4.27)

Finally, the population of the upper bare state of eq.(4.25) is calculated as:

⟨S33⟩ = cos2 θ + (1− 3 cos2 θ)
∞∑
n=0

P (1)
n /2. (4.28)

As a concrete atomic system, for this particular configuration, one may consider He atoms,

{31S, 21P1, 1
1S0} [192]. The spontaneous decay rates ratio is approximately γ32/γ21 ≈ 10−2. The

corresponding transition wavelengths are λ32 = 728.3nm and λ21 = 58.4nm. This atomic system

differs from what was considered previously, however the current analytical model fits well the

case when the optical cavity couples only with the upper transition and thus g1 = 0. Instead of a

continuous wave laser on the high-frequency transition one may consider a long pulse laser wave.

Potential applications here may be related to entangled photon pair emissions [179] in optical and

EUV (or even higher) frequency ranges.

Fig. 4.5: The steady-state evolution of the cavity mean photon number ⟨n⟩ (solid line) and the
upper bare-state population ⟨S33⟩ (dashed curve) as a function of Ω2/Ω1. The figure is published
in [102].
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Fig.4.5 shows the bare-state population of the upper state |3⟩ as well as the cavity mean-photon

number when γ32 ≪ γ21 while ω32 = ωL2 and ω21 = ωL1 with ωL1 ̸= ωL2. The other system

parameters are γ32/γ21 = 10−2, g2/γ21 = 5, κ/γ21 = 10−3. The cavity mode resonantly couples

with the upper atomic transition |3⟩ ↔ |2⟩ only, i.e. g1 = 0. This situation is described as well by

the analytical formalism developed here via setting g1 = 0 in Eqs. (4.20). Reasonable population

inversion is achieved. We have found that the inversion is a signature of the coherent population

trapping phenomenon [193], i.e., the atom is trapped in the dressed-state |0⟩ = cos θ|3⟩ − sin θ|1⟩.

Then with a suitable chose of the ratio Ω2/Ω1 one can transfer the populations among the state

|3⟩ ↔ |1⟩. Furthermore, the cavity field does not affect the bare-state population dynamics in the

adopted approximations.

A less fruitful investigation have been performed to the case when the optical cavity is tuned

in resonance with one of the internal sidebands, namely when ωc = ωL + Ω. For this case, the

system dynamics is expressed via the Hamiltonian term of eq.(4.13). As mentioned previously,

there is no analytical effective coupling term which would indicate to a interference case. Instead,

the coupling of the cavity with the quantum-well is expressed via two separate Hamiltonian terms,

one for each atomic transition.

As in the previous case when the cavity is tuned with the external sidebands, the numerical

method [191] used to solve the system dynamics shall be adapted to the particular case of Hamil-

tonian of eq.(4.13). In order to solve the corresponding master equation, a new set of variables is

defined as:

ρ(0) = ρ−− + ρ00 + ρ++,

ρ(1) = ρ++ + ρ−−,

ρ(2) = ρ++ − ρ−−,

ρ(3) = a†ρ0− + ρ−0a,

ρ(4) = ρ0−a
† + aρ−0,

ρ(5) = a†ρ+0 + ρ0+a,

ρ(6) = ρ+0a
† + aρ0+,

ρ(7) = a†ρ+−a
† + aρ−+a,

ρ(8) = a†a†ρ+− + ρ−+aa,

ρ(9) = ρ+−a
†a† + aaρ−+, (4.29)

where ρij = ⟨i|ρ|j⟩, {i, j ∈ −, 0,+}, are the elements of the quantum-well reduced density matrix.
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The next projection in the field’s basis leads to a set of infinite equations corresponding to the

infinite Fock states {|n⟩, n ∈ N}, that is,

Ṗ (0)
n = ḡ1(P

(6)
n − P (5)

n ) + ḡ2(P
(3)
n − P (4)

n ) + κ(n+ 1)P
(0)
n+1 − κnP (0)

n ,

Ṗ (1)
n = ḡ1P

(6)
n + ḡ2P

(3)
n + κ(n+ 1)P

(1)
n+1 − (κn+ α/2)P (1)

n + γ32 cos2 θP (0)
n ,

Ṗ (2)
n = ḡ1P

(6)
n − ḡ2P

(3)
n + κ(n+ 1)P

(2)
n+1 − (κn+ β/2)P (2)

n ,

Ṗ (3)
n = −ḡ1P (8)

n + ḡ2n

(
2P

(0)
n−1 − 2P

(1)
n−1 + P (2)

n − P (1)
n

)
− κP (4)

n

+κ(n+ 1)P
(3)
n+1 −

(
κ(n− 1/2) + β/4

)
P (3)
n ,

Ṗ (4)
n = −ḡ1P (7)

n + ḡ2(n+ 1)

(
2P (0)

n − 2P (1)
n + P

(2)
n+1 − P

(1)
n+1

)
+κ(n+ 1)P

(4)
n+1 −

(
κ(n+ 1/2) + β/4

)
P (4)
n ,

Ṗ (5)
n = −ḡ2P (7)

n + ḡ1n

(
2P (0)

n − 2P (1)
n − P

(2)
n−1 − P

(1)
n−1

)
− κP (6)

n

+κ(n+ 1)P
(5)
n+1 −

(
κ(n− 1/2) + β/4

)
P (5)
n ,

Ṗ (6)
n = −ḡ2P (9)

n + ḡ1(n+ 1)

(
2P

(0)
n+1 − 2P

(1)
n+1 − P (2)

n − P (1)
n

)
+κ(n+ 1)P

(6)
n+1 −

(
κ(n+ 1/2) + β/4

)
P (6)
n ,

Ṗ (7)
n = ḡ1

(
(n+ 1)P

(3)
n+1 − P (4)

n

)
+ ḡ2

(
nP

(6)
n−1 + P (5)

n

)
− κP (9)

n

+κ(n+ 1)P
(7)
n+1 − (κn+ ζ)P (7)

n ,

Ṗ (8)
n = ḡ2nP

(5)
n−1 + ḡ1

(
(2n− 1)P (3)

n − nP
(4)
n−1

)
− 2κP (7)

n

+κ(n+ 1)P
(8)
n+1 −

(
κ(n− 1) + ζ

)
P (8)
n ,

Ṗ (9)
n = ḡ1(n+ 1)P

(4)
n+1 + ḡ2

(
(2n+ 3)P (6)

n − (n+ 1)P
(5)
n+1

)
+κ(n+ 1)P

(9)
n+1 −

(
κ(n+ 1) + ζ

)
P (9)
n . (4.30)

Here α = γ21 sin2 θ + 2γ32 cos2 θ, β = γ21 + γ32 sin2 θ and ζ = (γ21(2 + cos2 θ) + 3γ32 sin2 θ)/4.

The field quantum statistics are evaluated from eq.(4.21). Their steady-state behaviour is rep-

resented in Fig.4.6, where one has evaluated the cavity mean phonon number ⟨n⟩ as a function of

the Rabi frequencies ratio and cavity-quantum-well cavity coupling with the upper transition g2/γ

normalized by the spontaneous rate γ, while keeping the value of the cavity-quantum-well coupling

with the lower transition fixed at g1/γ = 5. For the sake of simplicity, one has considered the two
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Fig. 4.6: The cavity mean photon number ⟨n⟩ as function of the Rabi frequencies ratio Ω2/Ω1 and
cavity-quantum-well cavity coupling g2/γ, for a fixed value of g1/γ = 5.

spontaneous emission rates being equal, i.e., γ32 = γ21 = γ. The cavity damping rate have been

set as κ/γ = 10−3.

One observes a maximum of photons in the cavity when the coupling with the lower transition

is dominant, i.e., g1 ≫ g2, and most of the pumping is on the lower transition as well. By increasing

g2, one increases the amplitude of the cavity coupling with the upper transition and the maximum

value of the mean photon number in the cavity decreases. While the two amplitudes cancels each

other, one cannot determine an analytical or numerical point when a complete destructive quantum

interference effect occurs.
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4.3 The cavity in resonance with the central frequency

In this paragraph one investigates the system dynamics of the case when the optical cavity is

tuned in resonancewith the quantum-well central transition frequency, i.e.,ωc = ωL. The numerical

method applied in paragraph 4.2 is no longer usable in this case due to the form of the resonant

Hamiltonian term of eq.(4.15). When projecting the master equation of eq.(4.3) into the dressed-

state basis, one cannot close the system and, therefore, the numerical method [191] cannot be

accurately applied.

Instead, one is able to solve the system dynamics by building the equation of motion of the

quantities of interest, namely the mean cavity photon number ⟨n⟩ and the second-order correlation

function g(2)(0). This is done by using the relation for a system operator Q:

∂⟨Q⟩
∂t

= Tr[ρ
∂Q

∂t
] = Tr[Q

∂ρ

∂t
] (4.31)

into the system master equation. This allows one to define the general form of the equation of

motion for a system operator as:

∂⟨Q⟩
∂t

=
i

}
⟨[H,Q]⟩ − κ

2

{
⟨a†[a,Q]⟩+ ⟨[Q, a†]a⟩

}
− γc

2

{
⟨R0−[R−0, Q]⟩+ ⟨[Q,R0−]R−0⟩+ ⟨R0+[R+0, Q]⟩+ ⟨[Q,R0+]R+0⟩

}
− γd

2

{
⟨R−0[R0−, Q]⟩+ ⟨[Q,R−0]R0−⟩+ ⟨R+0[R0+, Q]⟩+ ⟨[Q,R+0]R0+⟩

}
− γa

2

{
⟨R+−[R−+, Q]⟩+ ⟨[Q,R+−]R−+⟩+ ⟨R−+[R+−, Q]⟩+ ⟨[Q,R−+]R+−⟩

+⟨Rz[Rz, Q]⟩+ ⟨[Q,Rz]Rz⟩
}
. (4.32)

The system of equations of motion required to define the dynamics of the field statistics is

made of a closed system of first-order linear coupled differential equations deduced from eq.(4.32).

Namely, the full system is defined as:

∂⟨Rz⟩
∂t

= −(2γa + γb)⟨Rz⟩,

∂⟨a†a⟩
∂t

= |g|
(
⟨a†Rz⟩+ ⟨aRz⟩

)
− κ⟨a†a⟩,

∂⟨a†Rz⟩
∂t

= |g|⟨R2
z⟩ − (

κ

2
+ 2γa + γd)⟨a†Rz⟩,

∂⟨R2
z⟩

∂t
= −(2γc + γd)⟨R2

z⟩+ 2γc,
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∂⟨a†a†aa⟩
∂t

= 2|g|
(
⟨a†a†aRz⟩+ ⟨Rza

†aa⟩
)
− 2κ⟨a†a†aa⟩,

∂⟨a†a†aRz⟩
∂t

= |g|
(
⟨a†a†R2

z⟩+ 2⟨a†aR2
z⟩
)
− (

3κ

2
+ 2γa + γd)⟨a†a†aRz⟩,

∂⟨a†aR2
z⟩

∂t
= |g|

(
⟨a†Rz⟩+ ⟨Rza⟩

)
− (κ+ 2γc + γd)⟨a†aR2

z⟩+ 2γc⟨a†a⟩,

∂⟨a†a†R2
z⟩

∂t
= 2|g|⟨a†Rz⟩ − (κ+ 2γc + γd)⟨a†a†R2

z⟩+ 2γc⟨a†a†⟩,

∂⟨a†a†⟩
∂t

= 2|g|⟨a†Rz⟩ − κ⟨a†a†⟩, (4.33)

together with the conjugates equations, which allows one to define the analytical solution of the

parameters describing the cavity field dynamics. Here γa = (γ32 sin2 θ + γ21 cos2 θ)/4, γb =

(γ21 + γ32 − 3γ32 cos2 θ)/4, γc = γ32 cos2 θ/2 and γd = γ21 sin2 θ/2.. Within the steady-state

regime the previous system of equations leads to the expressions:

⟨n⟩ = ⟨a†a⟩ = 4|g|2γc
κ(κ/2 + 2γa + γd)(2γc + γd)

(4.34)

and

g(2)(0) =
⟨a†a†aa⟩
⟨a†a⟩2

=
3(κ+ 2γc)(κ/2 + 2γa + γd)(2γc + γd)

2γc(3κ/2 + 2γa + γd)(κ+ 2γc + γd)
. (4.35)

Notice, that the second-order correlation function is unaffected by the effective coupling constant

g and, therefore, by laser phases.

Similarly to the case when the cavity is set in resonancewith the external sidebands of paragraph

4.2, an effective coupling among the quantum-well and the cavity appears for the current case. The

destructive nature of these interferences is expressed in the analytical form of the effective coupling

constant g = (g1e
−iϕ1 cos θ+g2e−iϕ2 sin θ)/2 of eq.(4.35), when one interaction amplitude cancels

the other. This condition is achieved when the amplitudes are equal, i.e., g1/g2 = Ω2/Ω1, and in-

terfere destructively, i.e., ϕ2 = ϕ1+(2m+1)π,m ∈ Z . This condition is verified in Fig.4.7, where

one shows the cavity mean photon number ⟨n⟩ as function of the Rabi frequencies ratio Ω2/Ω1 and

laser phase ϕ2, while keeping the phase of the laser pumping the lower transition at a fixed value

of ϕ1 = 0. The other system parameters are γ32 = γ21 = γ, g1/γ = 4, g2/γ = 2 and κ/γ = 10−3.

The two deeps in the surface of ⟨n⟩ corresponds well to the previously mentioned interference con-

dition with g1/g2 = Ω2/Ω1 = 2 and ϕ2 = ϕ1 + π or ϕ2 = ϕ1 + 3π. In these particular points,

similarly to the deep of Fig.4.4, one observes an effective decoupling of the quantum-well from the

optical cavity. The cavity is empty, although the atom is pumped and spontaneously emits photons

in all other directions except the cavity.

108



Fig. 4.7: The cavity mean photon number ⟨n⟩ as function of Rabi frequencies ratioΩ2/Ω1 and laser
phase ϕ2, for a fixed value of ϕ1 = 0. The figure is published in [194].

4.4 Conclusions to Chapter 4

The model of a pumped equidistant three-level ladder-type quantum-well placed in an optical

cavity had been investigated in the good cavity limit. The emitter has perpendicular transition

dipoles and the cavity couples to both of the quantum-well transitions. Two intense lasers with

different phases are used to resonantly drive the emitter and each laser couples semi-classically to

a different transition. It has been shown that the laser phases are transferred to the quantum-well-

cavity interaction amplitudes. Therefore, the superposition of the indistinguishable amplitudes is

phase dependent, so that the resulting destructive quantum interferences effect on the cavity field

becomes sensitive to the phase difference of the input lasers.
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In order to solve the system dynamics, one has tuned the cavity resonantly with the differ-

ent transition frequencies which appear as a consequence of the dynamical Stark splitting of the

quantum-well energetic levels. Each of the resonant case have been treated separately via different

solving approaches. One has identified quantum interference effect in situations where the optical

resonator is tuned in resonance either with one of the external sideband or with the central peak fre-

quency. All of these interference cases have been interpreted via an effective coupling among the

quantum-well and the cavity composed from the superposition of different interaction amplitudes.

One has analytically described the effective coupling constant, what have allowed one to tune the

laser parameters in order to obtain a destructive superposition case. After solving the system dy-

namics, one was able to observe the effect of quantum interferences. As a consequence, the cavity

mean photon number goes to zero. Photon vanishing is due to quantum interference effects in-

volving two possible dressed-state atomic transitions. Particularly, ⟨n⟩ → 0 when Ω2/Ω1 = g1/g2

and the laser phases are tuned destructively. Here, the involved parameters or their ratios can be

determined when the cavity mean photon number vanishes.

The possibility to control and turn-off the cavity field via quantum interferences suggests a po-

tential application of the studied quantum-well-cavity system for quantum network circuits [3, 195],

where tools for controlling the involved processes are highly required. The model is sensitive to

phase and intensity variations of the input lasers and acts as quantum switch, because, the mean-

photon number abruptly changes from zero to a particular value depending on the atom-cavity cou-

pling. Both input parameters are largely confined in experimental conditions. Moreover, artificial-

atom-based systems could be relevant candidates for on-chip quantum circuits [48].
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5 MULTIPLEARTIFICIALATOMSPLACEDONAMECHAN-
ICAL RESONATOR

In this chapter, one considers a setup where collective radiative effects and nanomechanical

motion are brought together. In particular, one envisions a model of a collection of initially excited

two-level quantum-dots which are embedded on a nanomechanical resonator. The quantum-dots

are spatially arranged to allow for a superradiant collective decay. The nanomechanical vibrations

couple to the quantum-dots excited states, leading to a modified phonon dynamics.

The system quantum dynamics is solved by considering a large number of emitters embedded

on the mechanical resonator. This allow one to neglect some statistical fluctuations of high order

correlation in phonon-quantum-dot interactions.

The decay of the excited quantum-dots contribute to phonon emission into the mechanical res-

onator. One of the features of the superradiant behaviour, is the fast dynamics of the emitters’

decay. One shows here that this feature is transferred to the mechanical resonator. Therefore, one

observes that the resulting dynamics of the mechanical resonator has superradiant features in both

the phonon emission time scales and the intensity of the generated phonon field. However, the

intensity of the phonon emission is also subject to damping phenomena which appear due to the

interaction of the resonator with the environmental temperature reservoir. In consequence, the su-

perradiant behaviour of the intensity of the photon emission cannot be equivalenced with its phonon

counterpart.

One also investigates the model of two identical two-level quantum-dots embedded on a quan-

tummechanical resonator, such as a vibrating membrane or a nanomechanical resonator. The artifi-

cial atoms interact with the surrounding electromagnetic field, as well as with the nano-resonator’s

single-mode phonon field. The aim of this study is to explain the mechanics of the phonon field

behaviour within the superradiant regime. This regime is reached when the emitters are spaced

closer to each other comparing to their transition wavelength. Therefore, this two-emitter system

allows an analytical treatment for inside dynamics of the collective interaction within the superra-

diant regime and shows a significant enhancement of the phonon signal of the quantummechanical

resonator.
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Fig. 5.1: Schematic of the model: An initially excited ensemble of two-level quantum-dots (QDs)
are fixed on a vibrating nanomechanical resonator. The linear dimension d of the sample is smaller
than the relevant transition photon wavelength λ, i.e., d < λ.

5.1 The model

One considers a collection of N initially excited two-level quantum-dots fixed on a vibrating

membrane as shown in Fig.5.1. The membrane acts as a quantum harmonic oscillator vibrating

at a frequency ω. It is damped by an environmental thermal reservoir of temperature T . The me-

chanical oscillator couples to each quantum-dot of the sample in an equal manner, with a coupling

constant η. At lower environmental temperatures one can consider the fundamental mechanical

mode only. Therefore, one may treat the oscillator in the single-mode approximation, whereas

other modes at different frequencies contribute weakly to the whole quantum dynamics. This is

the case if the length L of the nanomechanical resonator is considerably bigger than its width l and

thickness a [124], i.e., L ≫ l ≫ a. For L ∼ 103nm, a ∼ 30nm and l ∼ 100nm one can still

have a sufficient number of quantum-dots fixed on the nanomechanical resonator in order to the

superradiance effect to occur, considering that the sizes of quantum-dots are approximately within

few to several nanometres.

The system Hamiltonian is built as:

H = }ωb†b+
N∑
j=1

}ωqdS
(j)
z +

N∑
j=1

}η|e⟩jj⟨e|(b+ b†). (5.1)

The first term ofH is the membrane’s free single-mode Hamiltonian of eq.(2.35), expressed via

the phonon annihilation and creation operators b and b†, respectively, that obey the usual bosonic

commutation relations [b, b†] = 1 and [b, b] = [b†, b†] = 0.

The second term represents the free Hamiltonian of the quantum-dot sample, given by the

eq.(2.3), where ωqd denotes the quantum-dot’s transition frequency. In the second term, one has
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considered that all the quantum-dots are identical. Which allows one to represent the sum over

all of the free individual quantum-dot Hamiltonian terms via the collective inversion operator of

the quantum-dot sample expressed as Sz =
∑N

j=1 S
(j)
z . Here, the j th quantum-dot is described

by its excited |e⟩j and ground |g⟩j levels. The corresponding single quantum-dot operators are

S+
j = |e⟩jj⟨g|, S−

j = |g⟩jj⟨e| and S(j)
z =

(
|e⟩jj⟨e| − |g⟩jj⟨g|

)
/2.

Finally, the last interactional term in Hamiltonian of eq.(5.1) represents the interaction of the

quantum-dot sample with the phonon field. One has considered that the membrane’s spatial scale

is larger than the extent of the quantum-dot sample. Consequently, the coupling strengths of

each quantum-dot with the vibrational degrees of freedom are identical and have the same mag-

nitude η. This allows one to express the sum of each individual quantum-dot-membrane inter-

action given by eq.(2.46) via the collective operator for the quantum-dots’ upper state defined as

S22 =
∑N

j=1 |e⟩jj⟨e|.

After introducing the atomic collective operators in eq.(5.1), the system Hamiltonian is ex-

pressed as:

H = }ωb†b+ }ωqdSz + }ηS22(b+ b†). (5.2)

The system dynamics is described by the master equation for the density matrix operator ρ.

One is able to introduce the collective operators into the system master equation, as well [76]. The

quantum dynamics equation is defined as:

∂ρ

∂t
= − i

}
[H, ρ] + κn̄L(b†) + κ(1 + n̄)L(b) + γL(S−). (5.3)

As in the previous chapters, the damping terms are expressed by the Liouville superoperator L,

which, for a given operator O, is defined as L(O) = 2OρO† −O†Oρ− ρO†O. Here, as usually,

the first term of the master equation represents the coherent evolution as given by the Liouville-

von Neumann equation of eq.(2.47) and the Hamiltonian of eq.(5.2), whereas the second and the

third terms, respectively, denote the pumping and the damping of the mechanical resonator via

the environmental thermal reservoir expressed by the damping term of eq.(2.61). The reservoir is

described by the mean phonon number:

n̄ = 1/
[
exp (}ω/kBT )− 1

]
(5.4)

and the damping rate κ. Here, kB is the Boltzmann constant and T denotes the reservoir’s temper-

ature.

The last damping term characterizes the collective spontaneous emission from the sample of
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quantum-dots as a result for the interaction of the sample with the environmental electromagnetic

vacuum field modes. This term is characterized by the single-quantum-dot spontaneous decay rate

γ and is expressed via the collective operator S± =
∑N

j=1 S
±
j . By expanding the Liouville super-

operator L(S−) term, one observes that the collective spontaneous emission term does not simply

contain the sum of the separate independent atomic spontaneous emission terms. It also contains

the cross-atomic interactions which occur if one assumes that the spatial separation between dif-

ferent quantum-dots in the sample is much smaller than the quantum-dots’ transition wavelength,

i.e., a small-volume sample.

The system dynamics is solved by using the method applied in the paragraph 4.3 of the previous

chapter. There, one has applied the following property of the system density operator ρ, given for

a system operator Q:

∂⟨Q⟩
∂t

= Tr[ρ
∂Q

∂t
] = Tr[Q

∂ρ

∂t
], (5.5)

which is used to build the equation of motion of the corresponding operator. Therefore, by applying

this property to the master equation of eq.(5.3), the equation of motion of Q is defined as:

∂⟨Q⟩
∂t

= iω⟨[b†b,Q]⟩+ iωqd⟨[Sz, Q]⟩+ iη⟨[S22b
†, Q]⟩+ iη⟨[S22b,Q]⟩

+ κ(1 + n̄)

{
2⟨b†Qb⟩ − ⟨b†bQ⟩ − ⟨Qb†b⟩

}
+ κn̄

{
2⟨bQb†⟩ − ⟨bb†Q⟩ − ⟨Qbb†⟩

}
+ γ

{
2⟨S+QS−⟩ − ⟨S+S−Q⟩ − ⟨QS+S−⟩

}
. (5.6)

The equations of motion of the parameter of interest, i.e., the mean phonon number ⟨b†b⟩ and

the population inversion ⟨Sz⟩, are built from the eq.(5.6). The expressions of the derivatives of

parameters of interest introduce a new set of quantities ⟨Szb†⟩, ⟨Szb⟩, ⟨S2
zb

†⟩, ⟨S2
zb⟩, ⟨b†⟩, ⟨b⟩ and

⟨S2
z ⟩. This results in a system of coupled linear first order differential equation, given as:

∂⟨b†b⟩
∂t

= iη{⟨Szb⟩ − ⟨Szb†⟩+ j⟨b⟩ − j⟨b†⟩} − 2κ⟨b†b⟩+ 2κn̄,

∂⟨Szb⟩
∂t

= −(κ+ 2γ + iω)⟨Szb⟩+ 2γ⟨S2
zb⟩

− iη{⟨S2
z ⟩+ j⟨Sz⟩} − 2γj(j + 1)⟨b⟩,

∂⟨Szb†⟩
∂t

= −(κ+ 2γ − iω)⟨Szb†⟩+ 2γ⟨S2
zb

†⟩

+ iη{⟨S2
z ⟩+ j⟨Sz⟩} − 2γj(j + 1)⟨b†⟩,

∂⟨b⟩
∂t

= −(κ+ iω)⟨b⟩ − iη{⟨Sz⟩+ j},
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∂⟨b†⟩
∂t

= −(κ− iω)⟨b†⟩+ iη{⟨Sz⟩+ j},

∂⟨Sz⟩
∂t

= −2γ{⟨Sz⟩ − ⟨S2
z ⟩+ j(j + 1)}. (5.7)

In deriving these equations, one has used j ≡ N/2 and the relations

Sz = S22 − j,

S2
z + (S+S− + S−S+)/2 = j(j + 1), (5.8)

as well as the commutation relations of collective operators:

[
S+, S−] = 2Sz,[
Sz, S

±] = ±S±. (5.9)

The system of equations ofmotions of eqs.(5.7) has not been closed, because a further derivation

of the S2
z dependent correlations will introduce higher order correlations. If continuing building

the equations of motion for those higher order correlations, new even higher order correlation will

appear and so on. Therefore, the current system is an infinite system and cannot be closed by

further building the equations of the new appearing quantities. Instead, one is able to close this

system for some particular situations. Either one may consider a small amount of quantum-dots

and explicitly develop S2
z as shown in the next paragraph 5.2 or one may consider a large amount

of quantum-dots placed on the sample and therefore neglect some of the fluctuations of the higher

order correlations as presented in paragraph 5.3.
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5.2 Small number of quantum-dots

For only a few quantum-dots, it is possible to solve the system by using the explicit expression

of the S2
z depending terms, i.e., by considering the equations of motion of every S

(i)
z S

(j)
z term. Here,

one will consider the simplest cases of a single quantum-dot, i.e., N = 1 and the case of a pair of

collectively interacting quantum-dots placed on the membrane, i.e., N = 2. In the first case when

N = 1, S2
z = 1/4 and, hence, the system is closed and analytically solvable. Considering that the

quantum-dot is initially excited while the membrane is in thermal equilibrium with the reservoir,

the temporal behaviour of the mean phonon number is given by

⟨b†b⟩ = n̄+ āe−2γt − (ā+ b̄c̄)e−2κt + b̄e−(2γ+κ)t
(
c̄ cosωt− d̄ sinωt

)
, (5.10)

where the equation coefficients are defined as:

ā = κη2/
[
(κ− ω)(κ2 + ω2)

]
,

b̄ = 2η2/(c̄2 + d̄2),

c̄ = 2γκ− κ2 − ω2,

d̄ = 2γω. (5.11)

Likewise, the temporal evolution of the quantum-dot population inversion reads [76]:

⟨Sz(t)⟩ = −1/2 + e−2γt. (5.12)

For initially excitedN = 2 collectively interacting qubits, one solves the system of equations which

is given for a pair of collectively interacting quantum-dots, q1 and q2 as:

∂⟨Sz⟩
∂t

= −2γ⟨S+S−⟩,

∂⟨S+S−⟩
∂t

= 8γ{1 + ⟨Sz⟩ − ⟨S+S−⟩},

∂⟨b†b⟩
∂t

= iη{⟨Szb⟩ − ⟨Szb†⟩+ ⟨b⟩ − ⟨b†⟩} − 2κ⟨b†b⟩+ 2κn̄,

∂⟨Szb⟩
∂t

= −(κ+ iω)⟨Szb⟩ − 2γ⟨S+S−b⟩ − iη{2 + 2⟨Sz⟩ − ⟨S+S−⟩},

∂⟨S+S−b⟩
∂t

= −(κ+ 8γ + iω)⟨S+S−b⟩ − 2iη{1 + ⟨Sz⟩}+ 8γ{⟨b⟩+ ⟨Szb⟩},

∂⟨b⟩
∂t

= −(κ+ iω)⟨b⟩ − iη{1 + ⟨Sz⟩}, (5.13)

where Sz = S
(q1)
z + S

(q2)
z and S± = S±

q1 + S±
q2. The missing equations of motion can be obtained
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via Hermitian conjugation of the last three equations in (5.13). This system of equations is solved

numerically and the results are shown in Fig.5.2. One can observe that the vibrational mean phonon

number is increased in comparison to single-qubit case. The initial condition for the involved

variables are:

⟨Sz⟩t=0 = 1,

⟨S+S−⟩t=0 = 2,

⟨Szb⟩t=0 = ⟨Szb†⟩t=0 = ⟨S+S− b⟩t=0 = ⟨S+S− b†⟩t=0 = ⟨b⟩t=0 = ⟨b†⟩t=0 = 0,

⟨b†b⟩t=0 = n̄. (5.14)

Fig. 5.2: Temporal evolution of the mean phonon number ⟨n⟩ and the population inversion ⟨Sz⟩
for a single-quantum-dot sample (solid and long-dashed lines, respectively) as well as for N = 2
(dotted and short-dashed curves, respectively). The inset shows the mean phonon number forN =
1 and N = 2 at the beginning of the time-evolution. The figure is published in [175].

In Fig.5.2, the dynamics of ⟨b†b⟩ and ⟨Sz⟩ is depicted for the casewhen a single quantum-dot or a

pair of collectively interacting quantum-dots are placed on the membrane. The system parameters

are defined as: ω/γ = 15, η/γ = 5, κ/γ = 0.5 and n̄ = 10. One sees that the mean phonon

number first slightly increases and oscillates as a result of the interaction between the quantum-dot

sample and the mechanical vibrations. However, for N = 2 the mean vibrational phonon number
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is enhanced in comparison to single-qubit case although the dynamics is not faster (i.e., one needs

larger ensembles to see a rapid evolution) in spite of the fact that the inversion decays faster for

N = 2.

The increase in the decay dynamics is better represented in Fig.5.3, where one has used logarith-

mic coordinates for the same model as in Fig.5.2, in order to represent the expectational behaviour

of the population decay dynamics. Here, one has represented in red dashed lines the single qubit

case and in continuous blue line the two-qubit case. In the last case, a quasi-linear behaviour in

logarithmic scale with a considerably increased slope, i.e., increased exponential damping rate, is

observed in the decay dynamics.

After the quantum-dot’s decay, the membrane returns back to thermal equilibrium since in the

Hamiltonian (5.1) phonons only couple to the quantum-dots’ excited states. Consequently, once

the quantum-dot reaches its ground state, the phonon field is subject to damping due to the thermal

reservoir. Another intrinsic property of the model is that the behaviour of the quantum-dot popula-

tion decay and its fluorescence dynamics is not affected by the phonon activity in this model. This

property is observed in the analytic expression of ⟨Sz⟩ and it is also valid for the following results

obtained for a more numerous quantum-dot collection. This is the case if the preparation time,∆t,

of the initial excited state is fast, i.e., it takes place on a time-scale shorter than η−1.

Fig. 5.3: The temporal evolution of the collective excited state population S22 in logarithmic scale
for a single-quantum-dot case represented in red dashed line and N = 2 case represented in blue
continuous line.
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5.3 Large number of quantum-dots

For samples of N ≫ 1 quantum-dots, the system of equations (5.7) can be closed by a factor-

ization of the correlations ⟨S2
z ⟩, ⟨S2

zb
†⟩, and ⟨S2

zb⟩ according to [168].

One starts with ⟨S2
z ⟩ ≃ ⟨Sz⟩2, which is equivalent to neglecting the fluctuations of the collective

population inversion of the quantum-dot sample, reasonable as long as N ≫ 1. This assumption

does not break the symmetry of the system as there are no new variables introduced. In this context,

the collective inversion operator ⟨Sz(t)⟩ simply becomes [168]:

⟨Sz(t)⟩ = −N
2
tanh

[ 1

2τR
(t− t0)

]
, (5.15)

where τR = 1/(2γN) and t0 = τR log(N).

For higher order correlations, the symmetry of the system of equations is also maintained and

one can choose either ⟨S2
zb⟩ ≃ ⟨Sz⟩⟨Szb⟩ or ⟨S2

zb⟩ ≃ ⟨Sz⟩2⟨b⟩ for the decoupling scheme. Sim-

ilarly, one proceeds with the ⟨S2
zb

†⟩ term. Note that these two schemes are justified for larger

quantum-dot ensembles and for larger phonon numbers. Under this conditions, one verifies that

both of the decoupling schemes lead to a similar result in the system quantum dynamics.

Fig. 5.4: Temporal evolution of the collective population inversion ⟨Sz(t)⟩/j (dashed line) and the
collective fluorescence intensity I/j2 (solid line) for a sample of N = 200 quantum-dots. The
figure is published in [175].
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Using the numerical solution of the system of equations (5.7), one depicts in Fig.5.4 the dy-

namics of the collective population inversion of the quantum-dot sample ⟨Sz(t)⟩/j represented in

dashed red line and the corresponding fluorescence intensity I(t) in blue continuous line. The

fluorescence intensity expression is given as:

I(t) ∝ −∂⟨Sz⟩/∂t, (5.16)

for which one has chosen the following initial conditions:

⟨Sz⟩t=0 = j,

⟨Szb⟩t=0 = ⟨Szb†⟩t=0 = ⟨b⟩t=0 = ⟨b†⟩t=0 = 0,

⟨b†b⟩t=0 = n̄. (5.17)

Note that the two-level quantum-dot sample can be excited initially with a short laser pulse of

duration∆t < 1/η in order to avoid the influence of vibrational phonons on the preparation stage.

Similar to the single-quantum-dot case, the vibrations of the membrane do not affect the behaviour

of ⟨Sz(t)⟩ and ∂⟨Sz(t)⟩/∂t, resembling the classical superradiance effect of a small volume sample.

Indeed, one obtains a decrease of the quantum-dots’ lifetime which is inversely proportional toN ,

whereas the intensity increases proportional toN2. Evidently, the maximum fluorescence intensity

is reached for an equal number of quantum-dots in the excited and ground states, respectively (see

Fig.5.4).

With an increased number of quantum-dots, the condition of having quasi-identical emitters

becomes more difficult to achieve. This condition is validated as long as the variations in the

frequencies of the quantum-dots do not exceed the bandwidth of the collective state of the quantum-

dots Nγ. More precisely, the resemblance of the ensemble of emitters is treated statistically by

considering the frequency distribution of the quantum-dots. For a frequency distribution centred at

ωph and a width ∆ωph, ∆ωph should not exceed the bandwidth of the collective state Nγ, in order

to consider the emitters quasi-identical, i.e., ∆ωph < Nγ.

On the other hand, the phonon dynamics is affected by the collective effect within the quantum-

dot sample as shown in Fig. 5.5. For this plot, the system is defined via the parameters ω/γ = 50,

η/γ = 5, and n̄ = 10. Here, a superradiant behaviour is observed in both: a reduced lifetime and

an enhanced mean phonon number. This can be explained as follows. The membrane’s vibrations

interact with the quantum-dots’ excited states and, therefore, the time scale for when phonons are

created is related to the decay rate of the atomic sample. Then, in analogy to the single-quantum-dot

case, when the quantum-dot sample approaches its collective ground state, the phonon dynamics
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becomes dominated by damping phenomena due to the environmental reservoir. Hence, the mean

phonon number decreases to its initial value n̄, characterizing equilibrium with the thermal reser-

voir. Further, the superradiance effect exhibits a bell-like behaviour for the collective intensity.

One can identify this behaviour in Fig. 5.5 together with faster dynamics in comparison to the

single-qubit case. However, the intensity does not simply scale as N2 although one has a clear

enhancing of phonon emission.

Fig. 5.5: Temporal evolution of the mechanical resonator’s mean phonon number ⟨n⟩. Here, a col-
lection of N = 200 quantum-dots is excited initially. The results are shown for different damping
rates κ, i.e., for κ/γ = 1 (dotted curve), κ/γ = 5 (dashed curve), and κ/γ = 20 (solid curve). The
figure is published in [175].

In the absence of collective effects, one would have similar behaviours as shown in Fig. 5.2 for

N = 1, i.e. no fast dynamics, however the phonon number will be enhanced as well because the

coupling of qubits to phonons increases due to many independent emitters. A simplistic represen-

tation of this case is to consider a giant emitter with an effective couplingN times stronger than the

individual couplings of independent emitters. In this case the phonon dynamics will be described

via the eq.(5.10) given for a single quantum-dot sample, but with an effective coupling given by

η → Nη. All the terms of eq.(5.10) are proportional to η2 as given in eq.(5.11). Therefore, an

increase in the coupling constant by N would lead to an increase in the resonator mean phonon
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number by N2. Hence, the N2 increase in the phonon number is not a feature of phonon superra-

diance, but an intrinsic property resulting from the nature of the phonon-quantum-dot coupling.

Note that although the phonon superradiance is interconnected to the collective effects within

the quantum-dot sample and, therefore, to the number N of quantum-dots, the maximum mean

phonon number is also determined by the damping rate κ. This can be seen in Fig. 5.5 as the su-

perradiant phonon emission increases in width and maximum for weaker damping, i.e., for smaller

κ, resembling a good or bad cavity limit, respectively.
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5.4 Conclusions to Chapter 5

In conclusion, one has investigated the quantum dynamics of a coupled system composed of

an ensemble of two-level quantum-dots that are fixed on a vibrating, nano-mechanical membrane.

One has discussed the temporal evolution and the underlying equations of motion in detail, as well

as their solving techniques. Two separate approaches have been used, in order to solve the system

quantum dynamics. Considering small quantum-dot samples one was able to solve the dynam-

ics without any approximations and, therefore, investigate the nature of the phonon-quantum-dot

coupling. Considering large quantum-dot collections, one was able to neglect the fluctuations of

high order correlations and, therefore, observe the collective dynamics influence on the mechanical

resonator.

Two distinct features of the superradiant behaviour have been discussed. Namely, the faster

phonon dynamics and the stronger intensity of emission. The fast phonon dynamics appears from

the fast decaying mechanics of the collective quantum-dot sample. As the phonons couple only

to the sample collective excited state, the faster decay of this state leads to shorter time of phonon

generation. However, the phonon pulse width is not only dependent of the sample decaymechanics,

but also of the rate of the damping phenomena of phonon leaking into its surroundings. A similar

dependency has been observed for the phonon peak maximum, where stronger damping lead to

lower peaks and vice-versa.

As the main result, it have been found that the quantum-dot sample exhibits superradiance fea-

tures which are transferred to the vibrational degrees of freedom of the nanomechanical resonator,

leading to phonon superradiance in a nanomechanical setup. Furthermore, the detection of pho-

ton superradiance ensures the existence of phonon superradiance. Thus, our scheme may serve as

a vibrational phonon detector in case of superradiance effects. Therefore, phonon superradiance

effect may improve the optical mass sensing scheme described in [196] or to enhance ultra-weak

signal detections [197]. Notice that phonon superradiance phenomenon in a different context was

investigated in [174, 176] and [198, 199], for instance.
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CONCLUSIONS AND RECOMMENDATIONS

The objectives of the thesis have been fulfilled and various quantum effects had been identi-

fied when studying the scientific problem of artificial atoms interacting with optical or mechanical

resonators. Following the objectives, three distinct models had been proposed and investigated,

each requiring a separate solving approach in order to accurately estimate the quantum dynam-

ics. Namely, the investigation of different emitter-resonator coupling schemes had allowed the

identification of two distinct cases. In the first case, a special treatment for moderately strong

optomechanical couplings has allowed to identify quantum distributed quanta in the vibrational

motion of the mechanical resonator. In the second case, considering a three-level quantum-well

where both transitions couple to an optical resonator, has allowed to identify a quantum interfer-

ence phenomenon. The investigation of collective phenomena of a closely spaced ensemble of

artificial atoms coupled to a nanomechanical resonator, has allowed to identify a superradiant-like

behaviour of the mechanical motion.

The main scientific results presented in this thesis are summarized as follows:

1) The novel treatment applied to the model of a quantum-dot embedded on a quantum me-

chanical resonator has contributed to an improved description of the system quantum dynamics

for strong optomechanical coupling regimes. For characteristic couplings strength of same order

of magnitude as the mechanical frequency, a perturbation treatment introduces new fast-rotating

terms into the Hamiltonian describing the system coherent dynamics. The observation of quantum

features as sub-Poissonian distribution of the mechanical vibration quanta, becomes possible only

when considering the new terms. Moreover, a different mean phonon number had been estimated

comparing to the case when a secular approximation is applied in order to neglect the fast-rotating

terms. The corresponding study is published in [151].

2)Themodel adapted for moderately strong optomechanical couplings, has been investigated in

other possible scenarios such as quantum cooling regime and strong damping regimes. A stronger

cooling effect has been predicted via the novel approach for strong coupling regimes. For strong

damping regimes, phonon assisted population inversion has been observed as expected. The study

on the quantum cooling effect is published in [137].

3) The investigation of the quantum dynamics of a three-level ladder-type quantum-well inter-

actingwith an optical resonator has beenmade possible by adapting the numerical solving technique

to the case of a three-level emitter. The quantum interferences among different atomic transitions

which appear from the splitting of the energetic levels of the quantum-well under the laser pumping
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have been investigated. Different interference schemes have been identified. The laser phase and

intensity are used in order to tune the system to a completely destructive interference which leads

to the cancellation of the cavity field. The first study on this model is published in [102], while the

phase-dependence was lately described in [103].

4)Although the described quantum interference effect requires the implementation of an equidis-

tant three-level emitter, the solved model may also be applied for emitters with different transition

energies, e.g., He atoms with the upper transition in visible range and the lower one in extreme

ultraviolet. In this case, the solved model has predicted a coherent population trapping where the

emitter had been prepared in a dark state by well choosing the suitable intensities ratio of the pump-

ing lasers.

5) Fast phonon dynamics was observed when a collection of quantum-dots embedded on a

vibrating membrane had been considered. When the closely-spaced quantum-dots reach the super-

radiant condition, the collective behaviour of faster decay dynamics is transferred to the dynamics

of the mechanical resonator. A superradiant characteristic of N times faster dynamics has been

observed in the phonon emission dynamics of a sample ofN quantum-dots. The system dynamics

has been solved assuming a large number of emitters and a large number of vibrational quanta,

which have allowed to split the high order correlations and define a closed system of equations

of motion. The presented results are published in [175] and have been one of the firsts reports on

the effect of phonon superradiance. These results have been cited since in remarkable reports on

optomechanical superradiant effect [198, 199] and collective quantum cooling effect [200].

Considering the conclusions above, one would highlight the following recommendations:

1) The method applied to the theoretical treatment of the model of a quantum-dot placed on

a mechanical resonator, has significantly improved the estimation of the quantum statistics of the

mechanical resonator for specific optomechanical coupling strengths. Therefore, one would rec-

ommend further investigation of the validity of the secular approximation in other models based on

optomechanical devices possessing quantum-dots in order to identify the cases where treatments

beyond the secular approximation could improve the accuracy of the estimated results.

2)A strong destructive quantum interference phenomenon predicted in the model of a quantum-

well placed in an optical resonator leads to a complete cancellation of the cavity field for a specific

ration of laser intensities. This model can be implemented for measuring the coupling constants

of the emitter, as their ratio is proportional to the ratio of laser intensities when the cavity field is

completely cancelled. This case can be experimentally detected with ease.
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3) A quantum switch where the cavity field is turned on and off via the input laser parameters

is recommended as an application for the model of a quantum-well placed in an optical resonator.

Moreover, a potential inclusion of other effects which could influence the interfering interaction

amplitudes would suggest an application for sensing techniques. One would recommend the inclu-

sion of optomechanical couplings to the current model which will affect only the excited states of

the emitter.

4) The study of the collective phenomena of an ensemble of quantum-dots placed on a mechani-

cal resonator has revealed a superradiant-like behaviour of fast phonon dynamics. One recommends

the implementation of this effect to phonon based sensing techniques where short enhanced phonon

pulses may be required.

5) One would also recommend a further investigation of the influence of phonon superradiant

features on other optomechanical effects. For example, the increase of the decay dynamics due

to the superradiant phenomenon could affect the dynamics of phonon cooling and generation pro-

cesses described in Chapter 3, for a single emitter. One has predicted that the phonon lasing and

quantum cooling effects via a detuned laser pumping are dependent of the spontaneous emission

effect. Therefore, one would recommend the implementation of collective dynamics into these

models due to the enhancement of the collective decay rate which occurs for superradiant con-

ditions. For instance, the collective dynamics of the quantum cooling effect have been recently

investigated in [200].

The limitation of presented results is related to the theoretic models disclosed in the previous

chapters. In Chapter 2, one has presented the theoretical framework related to each element of the

dynamics, where a series of assumptions has been applied in order to define the Hamiltonians de-

scribing various interactions aswell as the damping phenomena. All these assumptionswere strictly

respected when solving the models. Moreover, further theoretical treatment presented in chapters

3, 4 and 5, has required the application of several approximations, e.g., the rotating wave approx-

imation, the secular approximation. The validity of these approximations has been discussed and

further respected when plotting the results. The numerical solving techniques applied in chapters 3

and 4, have required another series of approximations due to the infinite number of quantum states

of the optical or mechanical resonator. These assumptions and approximations do not affect the

generality of the studied problems and have been experimentally approved in different scenarios.
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