MINISTERUL EDUCAȚIEI, CULTURII ȘI CERCETĂRII INSTITUTUL DE FIZICĂ APLICATĂ

Cu titlu de manuscris C.Z.U.: 544.14:[546.30:546.17:546.21/.22](043.2)

VITIU ALIONA

COMPUŞI COORDINATIVI AI UNOR METALE TRANZIŢIONALE CU LIGANZI POLIDENTAȚI CE CONȚIN AZOT, OXIGEN ȘI SULF. SINTEZĂ, ARHITECTURĂ STRUCTURALĂ, PROPRIETĂŢI

141.01. CHIMIE ANORGANICĂ

Teză de doctor în științe chimice

Conducători științifici:

Rung

Autor:

Bouroş Pavlina, doctor în științe chimice, conferențiar cercetător Coropceanu Eduard, doctor în științe chimice, profesor universitar

CHIŞINĂU, 2021

© Vitiu Aliona, 2021

MULŢUMIRI

Aș dori să-mi exprim cuvinte de recunoștință, să spun mulțumiri sincere tuturor acelora, care au contribuit la formarea mea profesională, care s-a desfășurat într-un mediu plăcut, în care m-am putut dezvolta ca specialist și dobândi noi cunoștințe zi de zi.

Cu multă caldură în suflet aduc sincere mulțumiri conducătorilor științifici, dnei dr. *Paulina Bouroș* și dlui dr. *Eduard Coropceanu*, pentru sprijin, îndrumări și încurajări, dar și pentru felul în care m-au motivat, pentru că au crezut în mine și mi-au dat de atâtea ori șansa de a mă afirma. Sincere mulțumiri pentru libertatea pe care mi-au acordat-o ca să explorez noi tărâmuri și să mă desăvârșesc ca personalitate, iar cea mai importantă lecție pe care am învățat-o a fost aceea că perseverența învinge orice obstacol.

Sincere mulțumiri dnei dr. *Lilia Croitor* pentru colaborare și antrenarea mea în proectele pentru tineri cercetatori, fară care realizarea acestei lucrări nu ar fi fost posibilă.

Țin să mulțumesc, de asemenea, colegelor mele, dnei dr. *Diana Chișca*, dnei *Elena Melnic*, pentru ajutorul și susținerea permanetă acordată.

Îmi exprim gratitudine față de colectivul laboratorului Metode Fizice de Studiere a Solidului "T. Malinowski", în care activez și în care s-au efectuat în special toate lucrările de cercetare legate de studiul cu raze X, pentru faptul că pe parcursul anilor de studii a contribuit la formarea și dezvoltarea mea ca specialist. De asemenea, adresez mulțumiri dnei dr. *Marina Fonari*, dnei dr. *Svetlana Baca* și dlui dr. *Victor Kravțov* pentru colaborare și sfaturile competente acordate.

Mulțumirile mele sunt adresate, de asemenea, colectivului Laboratorului Chimie Coordinativă al Institutului de Chimie, în special dlui dr. hab. *Ion Bulhac*, pentru îndrumările și condițiile oferite, atât de necesare realizării lucrărilor de cercetăre experimentale și în primul rând celor legate de sinteza materialelor.

Dedic această teză familiei mele, în special fiului meu, celor care nu numai m-au susținut, dar și mi-au dat timp și puteri să mă realizez în plan profesional.

Sunteți extraordinari și mă simt onorată să vă am alături în călătoria vieții.

	ADNOTARE	6
	АННОТАЦИЯ	7
	ANNOTATION	8
	LISTA TABELELOR	9
	LISTA FIGURILOR	10
	LISTA ABREVIERILOR	15
	INTRODUCERE	17
1.	DESIGNUL, STUDIUL STRUCTURAL ȘI MODUL DE ASAMBLARE A	
	COMPUȘILOR COORDINATIVI CE CONȚIN METALE DE TRANZIȚIE ȘI	
	LIGANZI POLIDENTAȚI CU ATOMI DONORI N, O ȘI S	25
1.1.	Aspecte ale evoluției complecșilor cu liganzi polidentați	25
1.2.	Polimeri coordinativi în baza liganzilor piridinici	30
1.3.	Polimeri coordinativi cu liganzi carboxilici și piridinici	37
1.4.	Polimeri coordinativi în baza liganzilor cu diferite grupări funcționale	44
1.5.	Concluzii la capitolul 1	51
2.	METODE DE SINTEZĂ, ANALIZĂ ȘI CERCETARE	
2.1.	Sinteza compușilor coordinativi ai Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) și	52
	Cd(II)	
2.2.	Metode de analiză și cercetare	68
2.3.	Concluzii la capitolul 2	71
3.	COMPUȘI COORDINATIVI AI UNOR METALE TRANZIȚIONALE ÎN	
	BAZA LIGANZILOR HOMO- ȘI HETEROFUNCȚIONALI. STRUCTURĂ ȘI	
	PROPRIETĂȚI	72
3.1.	Polimeri coordinativi în baza liganzilor bipiridinici	72
3.2.	Polimeri coordinativi cu liganzi carboxilici	81
3.3.	Compuși coordinativi cu liganzi ce conțin atomi donori N,O	90
3.4.	Concluzii la capitolul 3	
4.	COMPUȘI COORDINATIVI AI UNOR METALE TRANZIȚIONALE CU	
	LIGANZI HETETOFUNCȚIONALI. STRUCTURĂ CRISTALINĂ ȘI	
	PROPRIETĂȚI	97
4.1.	Polimeri coordinativi cu liganzi ce posedă atomi donori S,O	97
4.2.	Polimeri coordinativi asamblați în baza liganzilor ce conțin atomi donori N, O, S	109

CUPRINS

4.3.	Proprietăți fizico-chimice ale compușilor în baza liganzilor heterofuncționali	126
4.4.	Concluzii la capitolul 4	131
	CONCLUZII ȘI RECOMANDĂRI	133
	BIBLIOGRAFIE	135
	ANEXE	158
	Anexa 1. Datele cristalografice și parametrii de structură ai compușilor 1-46	159
	Anexa 2. Distanțe interatomice și unghiuri de valență selectate pentru compușii 1-45	167
	Anexa 3. Parametrii legăturilor de hidrogen în compușii 1-45	178
	Anexa 4. Spectrele IR ale unor compuși	183
	Anexa 5. Spectrele RMN ale compusului 43	189
	Anexa 6. Curbele termoanalitice ale compușilor 2, 12, 13, 16, 17 și 22	190
	Anexa 7. Spectrele de luminescență ale compușilor în baza liganzilor $H_2 dt db$, $H_3 saz$,	
	Hpmta și Hrda	192
	Anexa 8. Formulele moleculare ale compușilor descriși în teză și tipul lor (polimeri	
	1D, 2D, 3D, monomeri)	195
	Anexa 9. Brevete de invenție	196
	DECLARAȚIA PRIVIND ASUMAREA RĂSPUNDERII	198
	CURRICULUM VITAE	199

ADNOTARE

Vitiu Aliona, "Compuși coordinativi ai unor metale tranziționale cu liganzi polidentați ce conțin azot, oxigen și sulf. Sinteză, arhitectură structurală, proprietăți", teză de doctor în științe chimice, Chișinău, 2021.

Structura tezei: introducere, 4 capitole, concluzii și recomandări, bibliografie din 223 de titluri, 9 anexe, 118 pagini de text de bază, 62 figuri și 5 tabele. Rezultatele obținute sunt publicate în 29 lucrări științifice.

Cuvinte-cheie: compuși coordinativi, polimeri, liganzi micști, difracția razelor X, luminescență.

Scopul lucrării: obținerea compușilor metalelor de tranziție cu liganzi homo- și heterofuncționali cu structuri de diferită dimensionalitate și identificarea potențialului aplicativ.

Obiectivele cercetării: elaborarea procedeelor de sinteză și stabilizarea designului compușilor coordinativi, inclusiv polimerici, în baza sărurilor metalelor Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) și Cd(II) cu liganzi ce conțin seturi de atomi donori N,N, O,O, N,O, O,S și N,O,S; sinteza compușilor proiectați, determinarea structurii cristaline prin difracția razelor X și caracterizarea proprietăților fizico-chimice și activitații biologice ale unor compuși.

Noutatea și originalitatea științifică constă în optimizarea procedeelor de sinteză a 46 compuși coordinativi, evidențiind corelația date structurale - caracteristici spectrale - proprietăți. Pentru prima dată a fost stabilit un mod nou de coordinare al sulfazalaninei la Cd(II) și investigate proprietățile luminescente ale acestui compus. Au fost scoase în evidență modificările pentru acidul 2,2'-ditiodibenzoic, precum scindarea oxidativă sau extrudarea unui atom de S. A fost elaborată metoda de sinteză a compusului de Zn(II) cu un ligand unicat, rezultat al condensării acidului 2-(4-oxo-2-tioxotiazolidin-3-il)acetic.

Rezultatele obținute care contribuie la soluționarea unei probleme științifice importante țin de *elaborarea procedeelor* optime de sinteză pentru 46 compuși, ce a condus la *crearea* a 38 polimeri coordinativi cu dimensionalitate de la 1D până la 3D, și *investigarea proprietăților luminescente, adsorbante și a activității biologice*.

Semnificația teoretică: a fost evidențiată influența reciprocă a metalului și a unor liganzi în prezența liganzilor bipiridinici asupra modului de coordinare și formare a polimerilor coordinativi.

Valoarea aplicativă: posibilitatea utilizării polimerilor coordinativi poroși pentru înglobarea moleculelor mici.

Implementarea rezultatelor științifice: polimerul coordinativ al Zn(II) cu ligandul unicat cu proprietăți antifungice și antibacteriene bune a fost propus ca inhibitor pentru tulpinile *Escherichia coli, Staphylococcus aureus* și de fungii *Candida albicans*. Polimerul Cd(II) cu mod nou de coordinare a sulfazalaninei a fost propus în calitate de material luminescent. Rezultatele sunt protejate cu brevete de invenție din R. Moldova.

АННОТАЦИЯ

Витиу Алёна, диссертация на соискание ученой степени доктора химических наук "Координационные соединения некоторых переходных металлов с полидентатными лигандами, содержащими азот, кислород и серу. Синтез, структурная архитектура, свойства", Кишинэу, 2021.

Структура диссертации: введение, 4 главы, общие выводы и рекомендации, библиография из 223 наименований, 9 приложений, 118 страниц основного текста, 62 рисунков и 5 таблиц. Результаты опубликованы в 29 научных работах.

Ключевые слова: координационные соединения, координационные полимеры, смешанные лиганды, рентгеноструктурный анализ, люминесценция.

Цель работы: получение координационных соединений переходных металлов различной размерности с гомо- и гетерофункциональными лигандами, выявление их потенциальных свойств.

Задачи исследования: дизайн координационных соединений, в т. ч. полимерного типа, на основе металлов Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) и Cd(II) с N,N, O,O, N,O, O,S и N,O,S-лигандами; синтез новых соединений, определение кристаллической структуры методом PCA, исследование физико-химических и биологических свойств.

Новизна и научная оригинальность: оптимизация методов синтеза для 46 координационных соединений, выявление взаимосвязи структура - спектральные данные - свойства. Впервые установлен новый способ координации сульфазаланина в координационном полимере Cd(II). Разработан метод синтеза координационного полимера Zn(II) с уникальным лигандом – результатом конденсации 2-(4-оксо-2-тиоксотиазолидин-3-ил) уксусной кислоты. Выявлены модификации 2,2'-дитиодибензойной кислоты, связанные с окислительным расщеплением связи или экструзией одного атома S.

Полученные результаты способствуют решению научной проблемы связанной с *разработкой* методов синтеза, что привело к получению 38 полимеров 1D, 2D и 3D размерности, а также исследованием люминесценции, адсорбции и биологической активности.

Теоретическая значимость: взаимное влияние компонентов на способ координации лигандов и образование полимеров.

Практическая значимость: использование координационных полимеров для включения малых молекул.

Внедрение научных результатов: координационный полимер Zn(II) с уникальным лигандом с противогрибковыми и антибактериальными свойствами был предложен как ингибитор штаммов *Escherichia coli*, *Staphylococcus aureus* и *Candida albicans*. В качестве люминесцентного материала был предложен координационный полимер Cd(II) с новым способом координирования сульфазаланина. Результаты защищены патентами Республики Молдова.

7

ANNOTATION

Vitiu Aliona, "Coordination compounds of transition metals with polydentate ligands containing nitrogen, oxygen and sulfur. Synthesis, structural architecture, properties", PhD thesis in chemistry, Chisinau, 2021.

Thesis structure: introduction, 4 chapters, conclusions and recommendations, literature containing 223 references, 9 attachments, 118 pages of basic text, 62 figures and 5 tables. The obtained results are published in 29 scientific publications.

Keywords: coordination compounds, polymer, mixed ligands, X-ray diffraction, luminescence.

The purpose of the thesis: design, synthesis, and structural study of transition metal compounds of different dimensionality with homo- and heterofunctional ligands and identification of their properties for potential application.

Research objectives: design of coordination compounds, including polymers, based on Mn (II), Fe (II), Co (II), Ni (II), Cu (II), Zn (II), and Cd (II) metals with ligands containing N,N, O,O, N,O, O,S and N,O,S donor atoms; synthesis of new designed compounds, determination of their crystal structure by X-ray diffraction and characterization of physico-chemical and biological properties.

Novelty and scientific originality: optimization of the synthesis methods of 46 coordination compounds, the correlation of structural data-spectral characteristics-properties. For the first time, a new way of coordination of sulfazalanine in Cd(II) coordination polymer was established. The synthesis of Zn(II) coordination polymer with unique ligand, resulting from condensation of 2-(4-oxo-2-thioxothiazolidin-3-yl) acetic acid has been elaborated. Modification for 2,2'-dithiodibenzoic acid, such as oxidative cleavage or extrusion of atom S, has been established.

The obtained results that contribute to the solving of an important scientific problem are related to the elaboration of the optimal synthesis for 46 coordination compounds, including 38 coordination polymers with dimensionality from 1D to 3D, and the investigation of luminescent and adsorption properties, and biological activity.

Theoretical significance: the mutual influence of metals and ligands in the presence of bipyridine ligands on the formation of coordination polymers.

Practical importance: the possibility of using coordination polymers with cavities for the incorporation of small molecules.

Implementation of the scientific results: A Zn(II) coordination polymer with new ligand exhibiting excellent antifungal and antibacterial properties has been proposed as an inhibitor in *Escherichia coli*, *Staphylococcus aureus* and *Candida albicans* strains. A Cd(II) coordination polymer with newly coordinated sulfazalanine was suggested as a luminescent material. Results protected by patents of the Republic of Moldova.

LISTA TABELELOR

		Pagina
Tabelul 3.1.	Volumul cavităților calculate pentru unii compuși de Cu(II) cu bpp.	77
Tabelul 3.2.	Volumul cavităților calculate pentru unii compuși de Zn(II) cu	
	dianionul <i>bpdc</i> .	92
Tabelul 4.1.	Date din spectrele IR ale compușilor 12-15 și 18-22, 24, 25	126
Tabelul 4.2.	Concentrația minimă de inhibiție a compusului 43 fața de E. coli, S.	
	aureus și C. albicans.	131
Tabelul 4.3.	CMI a compusului 43 fața de E. coli, S. aureus și C. albicans în	
	comparație cu cea mai apropiată soluție din literatură [205].	131

LISTA FIGURILOR

		Pagina
Figura 1.1.	Forme ale poliedrului de coordinare al atomului de metal tranzițional.	25
Figura 1.2.	Reprezentarea schematică a relației dintre chimia compușilor	
	coordinativi (sus) și a rețelelor coordinative periodice (jos).	27
Figura 1.3.	Arhitecturi supramoleculare anorganice de tip: a) raft R; b) scară L; c)	
	grilă pătrată G; d) grilă chirală; e) grilă dreptunghiulară.	27
Figura 1.4.	Poliedrul de coordinare al Cu(II) în compusul	
	${[Cu(SiF_6)(bpy)_2] \cdot 8H_2O_n; b) Fragment al rețelei 3D [18].$	28
Figura 1.5.	Diverse interacțiuni dintre două centre aromatice.	29
Figura 1.6.	a) Structura unității mononucleare $[Mn(bpy)_2(H_2O)_4]$ și a moleculelor	
	adiacente de bpy din compusul [Mn(bpy) ₂ (H ₂ O) ₄](ClO ₄) ₂ ·4bpy; b)	
	Fragment al structurii 3D cu evidențierea canalelor triunghiulare [22].	30
Figura 1.7.	Reprezentarea schematică a compușilor Zn(II) cu bpe (a și b),	
	transformarea structurală din 3D în 1D, analiza termică pentru	
	compusul <i>b</i> [37].	33
Figura 1.8.	a) Poliedrul de coordinare al Cu(II) (ligandul bpe pentru claritate este	
	prezentat necomplet); b) Fragment al rețelei 2D cu evidențierea stratului	
	kagome de-a lungul axei c [41].	35
Figura 1.9.	a) Cluster pentanuclear de Cd(II), atomii de hidrogen au fost omiși pentru claritate;	
	b) Unități pentanucleare legate prin opt liganzi trans-gauche bpp, și	
	patru <i>trans-trans</i> ;	
	c) Configurații ale ligandului bpp; d) Reprezentarea topologiei grilă	
	conectată prin liganzii <i>bpp</i> în pozitie <i>trans-trans</i> și <i>trans-gauche</i> [45].	37
Figura 1.10.	Reprezentarea schematică a structurilor formate cu ajutorul liganzilor	
	carboxilici.	38
Figura 1.11.	Reprezentarea schematică a celor mai frecvente conformații ale	
	liganzilor care dictează structura unităților secundare de construcție.	45
Figura 1.12.	Modul de coordinare al liganzilor cu atomi donori S sau S=O.	49
Figura 3.1.	a) Poliedrul de coordinare al atomului Fe(1) din lanțul polimeric	
	$[Fe(bpy)(SO_4)_2(H_2O)_2]^{2-n}$ din 1; b) Aranjamentul reciproc al lanțurilor	
	tormate de atomii Fe(1) și Fe(2) (anionii SO_4^{2-} și moleculele de apă	70
	coordinate, atat și atomii de hidrogen au fost omiși pentru claritate).	13

Figura 3.2.	a) Evidențierea straturilor din cristal formate în baza lanțurilor ce conțin	
	doar Fe(1); b) Modul de asamblare a anionilor polimerici ce conțin	
	Fe(1) și Fe(2) prin intermediul moleculelor de apă.	74
Figura 3.3.	Ligandul flexibil bpp și configurațiile sale.	75
Figura 3.4.	a) Structura componentelor din partea asimetrică a celulei elemetare din	
	compusul 2 ; b) Structura lanțului dublu $[Cu(bpp)_2(H_2O)]^{2+}n$ al	
	polimerului coordinativ cationic din 2.	76
Figura 3.5.	Structura polimerului coordinativ cationic 1D și modul de asamblare a	
	componentelor din sfera externă cu acesta în 2.	76
Figura 3.6.	a) Modul de coordinare al liganzilor cu evidențierea clusterului	
	pentanuclear centrosimetric din polimerul coordinativ 3D din 3; b)	
	structura polimerului coordinativ 3D format prin intermediul ligandului	
	bpy (atomii de hidrogen au fost omiși pentru claritate).	79
Figura 3.7.	Posibilități de coordinare a anionului sulfat.	80
Figura 3.8.	Modul de interpenetrare a rețelelor polimerice 3D în 3.	80
Figura 3.9.	Structura unității binucleare din compusul polimeric 4 cu notarea	
	parțială a atomilor.	82
Figura 3.10.	Fragmente din lanțurile polimerice în compusul 4; a) Format prin	
	intermediul ligandului bideprotonat 1,2-bdc; b) Format cu ajutorul unui	
	ligand <i>bpp</i> neutru.	82
Figura 3.11.	a) Fragment al rețelei 3D din 4; b) Distribiuirea golurilor după	
	evacuarea moleculelor de H2O și <i>dmf</i> .	83
Figura 3.12.	a) Modul de coordinare al liganzilor în compusul 5; b) Prezentarea	
	lanțului format de liganzii 1,2-H2bdc care se extinde prin	
	intermediul <i>bpp</i> .	84
Figura 3.13.	a) Modul de coordinare al liganzilor și poliedrul de coordinare al	
	atomului Cd(1) din 6; b) Un fragment din rețeaua coordinativă 2D.	85
Figura 3.14.	a) Structura clusterului de Co(II) din compusul 7; b) Fragment al	
	rețelei 2D.	87
Figura 3.15.	Fragment al împachetării rețelelor cristaline în cristalul compusului 7 cu	
	golurile evidențiate.	88
Figura 3.16.	a) Poliedrul de coordinare al ionului Zn(II) și modul de coordinare a	
	componetelor rețelei polimerice din compusul 8; b) Fragment al lanțului	
	polimeric (atomii de hidrogen au fost omiși pentru claritate).	89

Figura 3.17.	Împachetarea cristalină în compusul 8 cu evidențierea golurilor.			
Figura 3.18.	Moduri de coordinare ale anionului bipiridină-4,4'-dicarboxilat în			
	compușii de Zn(II). Ionii de Zn(II) sunt prezentați în culoarea roz-închis,			
	iar atomii din familia lantanidelor - în verde: în (f) M = Nd, Sm, Eu, Tb,			
	Dy, Er; (g) $M = Gd$, Tb, Dy; (h) $M = Tb$, Eu.	90		
Figura 3.19.	a) Formarea poliedrului de coordinare al metalului în compusul			
	polimeric 9 ; b) Fragment al rețelei coordinative 2D.	91		
Figura 3.20.	a) Structura cationului complex și a anionului din compusul 10 cu			
	notarea parțială a atomilor; b) Stratul din cristal format prin intermediul			
	legăturilor de hidrogen.	93		
Figura 3.21.	a) Structura compusului 11 cu notația parțială a atomilor; b) Stratul 2D			
	format prin intermediul legăturilor de hidrogen fine C-H···Cl; c)			
	Interacțiunile de tip π - π stacking dintre sistemele π -delocalizate din			
	compus.	94		
Figura 4.1.	Transformările ligandului H2dtdb din compuși în funcție de condițiile			
	de reacție.	98		
Figura 4.2.	Structura polimerului coordinativ			
	$\label{eq:main_state} \{ [Mn_2(dtdb)_2(bpe)_2(EtOH)_2(H_2O)_2] \cdot dmf \}_n (\textbf{12}): a) poliedrul de$			
	coordinare al ionului Mn(2), b) un fragment din rețeaua 3D.	99		
Figura 4.3.	Structura polimerilor coordinativi: a) poliedrul de coordinare al			
	metalului în compusul 14 cu modul de coordinare al liganzilor organici;			
	b) Rețea 3D a compusului 14; c) poliedrul de coordinare al metalului în			
	compusul 15; d) Rețea 2D al compusului 15.	101		
Figura 4.4.	Datele experimentale (violet) și simulate în programul Mercury			
	(albastru) a difracției razelor X pe pulbere pentru ligandul H2dtdb.	101		
Figura 4.5.	a) Reprezentarea unității binucleare centrosimetrice [Cu2(tdb)4(dmf)2]			
	în compusul 16 cu notarea parțială a atomilor; b) Fragment al lanțului			
	polimeric.	102		
Figura 4.6.	Suprafața golurilor în cristalul compusului 16 după excluderea			
	moleculelor de cristalizare.	103		
Figura 4.7.	a) Reprezentarea clusterului binuclear centrosimetric			
	[Cu ₂ (tdb) ₂ (sdb) ₂ (dmf)(H ₂ O)] în compusul 17 cu notarea parțială a			
	atomilor; b) Fragment al stratului polimeric.	104		
Figura 4.8.	a) Poliedrul de coordinare al metalului în compusul 18 cu modul de			
	coordinare al liganzilor organici; b) Fragment al rețelei cristaline			

	formate prin intermediul legăturilor de hidrogen N–H…O.	105
Figura 4.9.	a) Poliedrul de coordinare al metalului în anionul polimeric din 19; b)	
	Lanțuri coordinative asamblate în starturi prin intermediul legăturilor de	
	hidrogen $O(w)$ -H···O și N-H···O.	106
Figura 4.10.	a) Poliedrul de coordinare al metalului în compusul 20; b) Fragment al	
	rețelei 2D.	106
Figura 4.11.	a) Poliedrul de coordinare al metalului în compusul [Cd(tdb)(bpe)]n	
	(21); b) Fragment al rețelei 2D.	107
Figura 4.12.	a) Poliedrul de coordinare și modul de coordinare al liganzilor în	
	compusul 22; b) Fragment din rețeaua 3D.	108
Figura 4.13.	Modul de coordinare al $H_{3}saz$ la cationii metalelor (a) M=Mg(II),	
	Ca(II), Sr(II), (b) M=Cd(II), (c) M=Zn(II) și (d) M=Cd(II) și (e)	
	M=Zn(II) (a-c după datele din BDSC).	110
Figura 4.14.	Structura unității de bază a polimerului coordinativ [Cd(Hsaz)(bpe)]n	
	din 26 .	111
Figura 4.15.	Fragment al polimerului coordinativ 2D	
	${[Cd(Hsaz)(dpe)] \cdot 0,5HCOOH}_n.$	111
Figura 4.16.	Modul de împachetare al componentelor în compusul 26.	112
Figura 4.17.	a) Fragment al rețelei 2D din 27; b) Evidențierea poliedrului de	
	coordinare al Zn(II).	112
Figura 4.18.	Poliedrele de coordinare ale metalului în 28 (a) și 29 (b); c) Fragment al	
	rețelei 2D din 28; d) Fragment al structurii supramoleculare din 29	
	formată prin intermediul legăturilor de hidrogen O–H…O.	114
Figura 4.19.	a) Poliedrul de coordinare al atomului de metal în 30; b) Fragment al	
	rețelei supramoleculare formată prin intermediul legăturilor de hidrogen	
	O(w)-H…O cu participarea polimerilor coordinativi cationici 1D și	
	anionilor <i>pmta</i> ⁻ .	115
Figura 4.20.	a) Poliedrul de coordinare al ionului Cd(II) și modul de coordinare al	
	ligandului <i>pmta</i> ⁻ în compusul 33 ; b) Modul de împachetare al	
	componentelor în cristal.	116
Figura 4.21.	a) Poliedrele de coordinare evidențiate ale atomilor $Zn(1)$ și $Zn(2)$ în	
	compusul 34; b) Un fragmnet din structura cristalină ce conține rețele	
	2D și componentele din sfera externă.	117

Figura 4.22.	a) Poliedrul de coordinare al ionului Cd(II) format din setul de atomi	
	donori N_2O_4S în 35 ; b) Rețeaua 2D; c) Poliedrul de coordinare al ionului	
	Cd(II) în compusului 36; d) Un fragment al împachetării lanțurilor	
	polimerice 1D.	119
Figura 4.23.	a) Fragment al rețelelor 1D în compusul 37, unite prin moleculele de	
	apă de cristalizare; b) Poliedrul de coordinare al Zn(II).	120
Figura 4.24.	a) Poliedrul de coordinare al ionului de Cd(II) în compusul 38; b)	
	Fragment al împachetării polimerilor coordinativi 1D.	120
Figura 4.25.	a) Poliedrul de coordinare al Co(II) în 39 ; b) Modul de împachetare al	
	polimerilor coordinativi 1D în cristal.	121
Figura 4.26	a) Poliedrul de coordinare al metalului în compusul 40; b) Modul de	
	împachetare în cristal a compușilor prin intermediul legăturilor de	
	hidrogen O–H····O.	122
Figura 4.27	a) Poliedrul de coordinare al ionului de Zn(II) în 43; b) Fragment al	
	aranjamentului reciproc al lanțurilor 1D din cristal.	123
Figura 4.28	a) Poliedrul de coordinare al ionului de Co(II) în compusul 44; b)	
	Împacetarea lanțurilor polimerice 1D.	124
Figura 4.29	a) Poliedrul de coordinare al ionului de Cd(II) în 45; b) Aranjamentul	
	lanțurilor polimerice 1D.	125

LISTA ABREVIERILOR

PC	polimer coordinativ
RMO	rețele metalo-organice
bpy	4,4'-dipiridil
bpe	1,2-bis(4-piridin)etan
bpp	1,3-bis(4-piridil)propan
bpee	1,2-bis(4-piridil)etenă
phen	1,10-fenantrolină
$1,2-H_2bdc$	acidul 1,2-benzendicarboxilic
H ₃ btc	acidul 1,3,5-benzentricarboxilic
H ₂ bpdc	acid 2,2'-bipiridil-4,4'-dicarboxilic
bzpy	2-benzoilpiridina
H ₂ dtdb	acidul 2,2'-ditiodibenzoic
H ₂ tdb	acidul 2,2'-tiodibenzoic
H ₂ sdb	acidul 2,2'-sulfinatodibenzoic
H ₃ saz	sulfazalanina
Hpmta	acidul 2-pirimidiltioacetic
Hrda	acidul rodanin-3-acetic (acid 2-(4-oxo-2-tioxotiazolidin-3-il)acetic)
dmf	N, N'-dimetilformamidă
DMSO- d_6	N, N'-dimetilsulfoxidă deuterat
μ	coordinare bidentată punte
μ ₃	coordinare tridentată punte
BDSC	Baza de Date Structurale Cambridge
S	slabă
m	medie
p	puternică
0D	zerodimensional
1D	unidimensional
2D	bidimensional
3D	tridimensional
IR	spectroscopia în infraroșu
RMN	spectroscopia de rezonanță magnetică nucleară
TGA	analiza termogravimetrică

DTG	analiza termică derivată
DTA	analiza termică diferențială
λ_{ex}	lungimea de undă de excitare
δ	vibrație de deformație
ν	vibrație de alungire
PI	indicile de împacetare a lui Kitaigorodskii
SAV	gol accesibil pentru solvent
UFC	unități formătoare de colonii

INTRODUCERE

Chimia compuşilor coordinativi cu structură polimerică și supramoleculară este una dintre cele mai evoluate domenii ale chimiei, datorită faptului că se află la interferența a două ramuri importante ale chimiei precum chimia anorganică și cea organică, ce a condus la apariția chimiei coordinative. Ca urmare, un capitol important din chimia anorganică revine chimiei combinațiilor complexe. Interesul față de polimerii coordinativi și rețelele metalorgancice în baza metalalor de tranziție este într-o creștere vertiginoasă datorită aplicațiilor acestora în astfel de domenii cum ar fi cataliza, optica neliniară, fotoluminescența, adsorbția etc.

Actualitatea și importanța temei abordate

Un rol deosebit în chimia combinațiilor complexe îl ocupă liganzii cu mai mulți atomi sau grupări donore de electroni, care pot fi atât homofuncționali cu setul de atomi donori N,N sau O,O, precum și heterofuncționali, cu setul de atomi donori N,O sau chiar N,O,S, fapt ce determină un mod mai diversificat de coordinare al acestora la centrele metalice. O caracteristică a polimerilor coordinativi care conțin liganzi polifuncționali este legată deseori și de transformările variabile din aceștea în funcție de condițiile de reacție. La crearea polimerilor coordinativi un rol important i se atribuie alegerii metodei de sinteză, printre care se pot enumăra: evaporarea lentă [1], metoda solvotermală [2–4] și ultrasonarea [5, 6]. În prezent, una dintre cele mai frecvent utilizate metode de sinteză la obținerea polimerilor coordinativi este metoda solvotermală, iar metodele tradiționale sunt o alternativă a acesteia. Astfel, prin modificarea raportului stoichiometric dintre ionii de metal, ligandul și solventul ori amestecul de solvenți utilizați, prin schimbarea temperaturi și presiunii, valoarii pH-ului, pot fi obținuți diverși polimerii coordinativi planificați.

Un rol important la obținerea polimerilor coordinativi cu realizarea unei anumite arhitecturi moleculare dorite îl joacă de la bun început alegerea ligandului/liganzilor polifuncționali care ar genera diverse structuri în corelație cu ionii metalici *d* în funcție de geometria poliedrului de coordinare și numărul de coordinare ale acestora, starea de oxidare și spinul ionului metalic. Alegerea liganzilor organici cu proprietăți selective de coordinare pentru formarea unor compuși metal-organici reprezintă o direcție relativ nouă de cercetare în chimia anorganică. Cu atât mai mult, combinarea unor liganzi organici, adică utilizarea liganzilor micști, ce au ca punct de plecare formarea scheletului rețelei structurale a polimerilor coordinativi sau supramoleculari sunt de mare interes atât în diverse studii la nivel fundamental, deoarece acestea țin de înțelegerea și explicarea proceselor similare cu cele din organismele vii, cât și pentru eventuale aplicații ale materialelor noi în biologie, adsorbție și optică. Compușii metalelor de tranziție obținuți prin combinarea cu diverși liganzi polifuncționli, inclusiv cu atomi donori N,O,S, oferă posibilitatea obținerii unei

game variate de arhitecturi moleculare. În plus, setul larg de atomi donori de electroni disponibil la combinare cu un număr variat de metale tranziționale permite autoasamblarea dirijată de legitățile fizico-chimice, care pot genera carcase moleculare originale în dependență de flexibilitatea ligandului organic și topologia grupărilor funcționale. În structura unui sistem chimic de o anumită dimensionalitate, pe de o parte, nodurile rețelei cristaline sunt ocupate de ionul metalic sau de un bloc de construcție stabil, în timp ce liganzii sunt cei care leagă aceste noduri pentru a forma acel schelet al rețelei coordinative. În final, faptul care prezintă o importanță majoră în relația sinteză-structură-proprietate este legat de structura cristalină supramoleculară ce posedă o stereochimie bine definită și care trebuie numaidecât luată în considerație. Activitatea de cercetare în chimia supramoleculară modernă nu ține doar de studiul sistemelor moleculare, de determinarea structurii moleculare, dar și de cel al așa numitelor procese de autoasamblare care au condus la dezvoltarea unui număr mare de sisteme chimice diversificate obținute atât preprogramat, cât și întâmplător. Astfel, autoasamblarea este asocierea spontană și reversibilă a moleculelor sau ionilor în scopul obținerii unor rețele mai voluminoase și unui număr mare de tipuri de arhitecturi metalo-supramoleculare având formă diferită: rafturi, scări, grile, cutii, elice, și care au deschis calea spre obținerea de noi materiale cu proprietăți interesante.

Lucrarea a fost efectuată în Laboratorul *Metode Fizice de Studiere a Solidului* "*T. Malinowski*" al Institutului de Fizică Aplicată în cadrul proiectului instituțional 15.817.02.06F "Materialele multifuncționale oxicalcogenice și metalo-organice cu proprietăți magnetice de adsorbție și luminescente avansate: sintetizare, studiu experimental, modelare și aplicații" (2015 – 2019), proiectului 16.00353.50.05A "Designul și dirijarea arhitecturii materialelor metalo-organice funcționale prin aplicarea ingineriei cristalelor" (2016 – 2017) din cadrul programei de stat, precum și în cadrul proiectelor pentru tineri cercetători 15.819.02.03F "Elaborarea designului și fabricarea compușilor coordinativi în baza metalelor 3d și liganzilor polidentați cu diverse seturi de atomi donori" (2015 – 2016), 16.80012.02.05F "Designul, prepararea și studiul materialelor metalo-organice în baza metalelor de tranziție și liganzilor micști și polidentați cu proprietăți utile" (2017 – 2018), precum și în cadrul proiectului 15.817.02.18A "Asamblarea și studiul complecșilor metalelor tranziționale în baza liganzilor polifuncționali și macrociclici utili pentru agricultură, industria alimentară și biotehnologii avansate" de la Institutul de Chimie (2015-2018+2019).

Scopul lucrării

Scopul acestei lucrări ține de elaborarea designului, obținerea și studiul structural al seriilor de compuși ai metalelor de tranziție cu un tip de liganzi ori cu liganzi micști cu structuri de diferită dimensionalitate (0D, 1D, 2D, 3D), caracterizarea lor prin diverse metode fizico-chimice suplimentare și identificarea potențialului aplicativ al acestora.

Obiectivele cercetării

Realizarea scopului lucrării de cercetare necesită următoarele:

- Ia crearea materialelor noi se va ține cont de geometria poliedrului de coordinare al ionului de metal (Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) și Cd(II)), de stoechiometria metal:ligand, modul de coordinare al ligandului cu atomi donori N,N, O,O, N,O, O,S și N,O,S, cât și de preferința stereochimică a cationului asamblator de arhitecturi noi;
- utilizarea liganzilor cu grupări funcționale atractive pentru centrul metalic utilizat, cât și având funcție punte – liganzi potențiali pentru formarea polimerilor coordinativi. Nu se va ignora prezența unor molecule organice oaspete sau a unor molecule template, în special diferite molecule de solvent organic sau molecule de apă;
- > optimizarea metodelor de obținere a polimerilor coordinativi cu diferită dimensionalitate de la 1D până la 3D;
- > evidențierea interacțiunilor non-covalente (legături de hidrogen, interacțiuni de tip π-π) care contribuie la lărgirea dimensionalității structurale;
- > caracterizarea compușilor coordinativi prin utilizarea diferitor metode fizico-chimice;
- identificarea potențialelor proprietăți, inclusiv cu utilitate practică în diferite domenii, ale compuşilor coordinativi sintetizați.

Ipoteza de cercetare

- Cu ajutorul variației reactanților, și anume, a ionilor metalici ce se disting după configurațiile electronice și razele ionice, ale anionilor diferiți după sarcină și capacitatea de coordinare, precum și a modului de coordinare al liganzilor cu diferite seturi de atomi donori, atât homo, cât și heterofuncționali, au fost obținuți 46 de compuși coordinativi. S-a evidențiat, că natura solventului, temperatura, pH-ul, constituie factori importanți la obținerea acestor compuși.
- Compuşii de Mn(II), Co(II), Cu(II) şi Zn(II) au fost supuşi analizei termice pentru a determina domeniul de stabilitate termică a acestora şi temperatura la care poate fi eliminat solventul din structura compusului.
- > Pentru un șir de compuși au fost studiate proprietățile luminescente, precum și cele biologice.

Sinteza metodologiei de cercetare și justificarea metodelor de cercetare alese

Design-ul dirijat, sinteza și studiul complex al compușilor coordinativi în baza metalelor de tranziție constituie o direcție modernă în chimia coordinativă. Mai mult decât atât, investigațiile compușilor în fază cristalină devin tot mai ușor de realizat datorită progresului tehnologic din domeniul studiului cu raze X.

Activitatea de cercetare a fost orientată spre proiectarea și obținerea dirijată a polimerilor coordinativi, în special a materialelor metalo-organice cu liganzi micști, în care se vor evidenția blocuri de construcție formate din ionii de metal cu liganzi ce posedă atomi donori O,O, N,O sau N,O,S și O,S precum și combinarea acestora cu liganzi din clasa bipiridinelor. Polimerii coordinativi sunt sisteme infinite alcătuite din ioni de metal în cazul cel mai simplu și liganzi organici polidentați antrenați ca liganzi cu funcție punte ca unități elementare principale unite prin intermediul legăturilor coordinative și ale altor legături chimice mai slabe. Încorporarea ionilor metalici în rețelele supramoleculare permite acel control asupra pozițiilor atomilor din materialul final și adaugă proprietăți materialului, care nu sunt cauzate doar de ionii metalici, dar și de interacțiunile acestora cu liganzii. Astfel, important în această lucrare de cercetare a fost stabilirea condițiilor optime de sinteză a compușilor și posibilul control asupra obținerii atât a unei anumite topologii a combinaților complexe, cât și a unui anumit tip de arhitectură moleculară și cristalină, sau a unor noi proprietăți fizico-chimice, având la bază combinarea metalelor de tranziție cu diferite geometrii ale poliedrului de coordinare și liganzi cu diverse grupări funcționale.

Deoarece lucrarea de cercetare prezintă rezultatele desingului molecular, sintezei dirijate și a determinarii structurii cristaline a compușilor obținuți, inițial a fost efectuată o analiză a literaturii de specialitate și un studiu al rezultatelor incluse în Baza de Date Structurale Cambridge (BDSC) [7].

Studiul cu raze X efectuat pentru toți compușii a confirmat și stabilit univoc compoziția și structura acestor compuși noi, evidențiind corelația dintre rezulatetle stucturale cu cele obținute din analiza elementală, spectroscopia IR și RMN, analiza termică combinată, difracția razelor X pe pulbere, ultima fiind îndeplinită la caz. Analiza structurală a scos în evidență prezența legăturilor fine de tipul legăturilor de hidrogen intra- și intermoleculare $C - H \cdots Y$, a interacțiunilor de tip π - π , stabilite între inelele aromatice din liganziii polifuncționali și cele ale coliganzilor. În general, chimia supramoleculară cuprinde o varietate de tipuri de legături și interacțiuni de natură non-covalentă așa cum sunt cele metal-ligand, legături de hidrogen, *van der Waals*. Comparativ cu aceste interacțiuni non-covalente, care stabilizează compusul în cristal, legăturile coordinative mai puternice și direcționate sunt cele ce stau la baza formării compusului coordinativ.

În ceea ce privește sistemele heterometalice, obținerea lor a cunoscut o amplă dezvoltare datorita aplicațiilor în domeniul chimiei supramoleculare, fapt explicat prin controlul oferit asupra dimensionalității rețelelor, prin stabilitatea sporită a materialelor, fapt ce le face atractive și la utilizarea lor în știința materialelor. Domeniul de cercetare al polimerilor coordinativi a devenit atât de vast, dezvoltându-se și complectându-se permanent cu nenumărate proprietăți ale acestora ce ar conduce la rândul său la diverse aplicații. Studiul proprietăților luminescente ale PC

constituie un domeniu de interes sporit datorită aplicațiilor lor posibile în dispozitive optoelectronice sau ca senzori fluorescenți. PC sunt adesea cu mult mai stabili decât unele materiale organice, iar emisiile fluorescente ale liganzilor necoordinați, liberi, adeseori sunt mai slabe decât cele stabilite pentru PC. Ca urmare, astfel de materiale metalo-organice de tip PC pot fi utilizate ca materiale potențiale în proiectarea dispozitivelor emițătoare de lumină de tip diodă.

Un număr semnificativ de compuși care conțin în componență chinolină ori derivați ai ei au fost studiați și evidențiați în literatura de specialitate ca materiale cu o varietate bogată de activități biologice, inclusiv antimicrobiene, antituberculoză [8] și a tratamentul infecțiilor bacteriene capabile să provoace boli grave rămâne și astăzi important la nivel mondial din cauza apariției unor noi boli infecțioase și a numărului înalt de agenți patogeni sau microorganisme care dezvoltă rezistență la medicamentele existente. Menționând rolul unor ioni ai metalelor ca Co(II), Zn(II) și Cu(II), care participă la diferite procese biologice [9], putem explica studiul activității biologice.

Rezultatele principale ale tezei au fost prezentate în 21 rezumate ale comunicărilor însoțite de postere sau comunicări orale la:

- 8th International Conference on Material Science and Condensed Matter Physics (Chişinău, Moldova, 2016);
- The XXXIV-th Romanian Chemistry Conference (Călimănești-Căciulata, Vâlcea România, 2016);
- The 6th International Conference "Ecological & Environmental Chemistry" (Chişinău, Moldova, 2017);
- New trend and strategies in the chimistry of advanced materials with relevance in biological systems, techique and enveronmental protection 10th Edition (Timişoara, România, 2017);
- The "4th Central and Eastern European Conference on Thermal Analysis and Calorimetry" (CEEC-TAC4) (Chişinău, Moldova, 2017);
- 9th International Conference on materials science and condesed matter physics (Chişinău, Moldova, 2018)The "12th European Symposium on Thermal Analysis and Calorimetry" (ESTAC-12) (Braşov, România 2018);
- The XXXV-th Romanian Chemistry Conference (Călimăneşti-Căciulata, Vâlcea, România, 2018);
- New trends and strategies in the chemistry of advanced materials with relevance in biological systems technigue and environmental protection (Timişoara, România, 2019);
- 5th Central and Eastern European Conference on Thermal Analysis and Calorimetry & 14th Mediterranean Conference on Calorimetry and Thermal Analysis (Roma, Italy, 2019);

- > 21st Romanian International Conference on Chemistry and Chemical Engineering (Constanța-Mamaia, România, 2019);
- International Conference Achievements and Perspectives of Modern Chemistry dedicated to the 60th anniversary from the foundation of the Institute of Chemistry (Chişinău, Moldova, 2019);

Principalele rezultate ale tezei au fost publicate în următoarele articole:

- Vitiu, A., Coropceanu, E., Bourosh, P. Synthesis and Structure of New Zn(II) and Co(II) Coordination Polymers with 1,3,5-Benzenetricarboxylic Acid. In: *Russian Journal of Coordination Chemistry*, 2017, vol. 43(11), pp. 745-752.
- Gorobet, A., Vitiu, A., Petuhov, O., Croitor, L. Sulfur extrusion and sulfur oxidation of 2,2'dithiodibenzoic acid in combination with Cu(II) ion and in the absence of co-ligands: Structural, spectroscopic and thermogravimetric evidence. In: *Polyhedron*, 2018, vol. 151, pp. 51-57.
- Vitiu, A., Croitor, L., Siminel, A., Coropceanu, E., Bourosh, P. A novel 2D Zinc(II) coordination polymer based on 2,2'-bipyridine-4,4'-dicarboxylic acid: synthesis, crystal structure and photoluminescence property. In: *Chemistry Journal of Moldova*, 2018, vol. 13(1), pp. 30-35.
- Vitiu, A., Coropceanu, E., Bourosh, P. New Cu(II) and Co(II) Complexes with 2-Benzoylpyridine: Syntheses and Crystal Structures. In: *Russian Journal of Coordination Chemistry*, 2019, vol. 45(11), pp. 804-808.
- Vitiu, A., Coropceanu, E., Bourosh, P. New Zn(II) and Cd(II) Coordination Polymers with 1,2-Benzenedicarboxylic Acid: Synthesis and Structures. In: *Russian Journal of Coordination Chemistry*, 2019, vol. 45(2), pp. 81-91.
- Vitiu, A. Novel iron(II) and copper(II) polymeric coordination compounds with N,N'bipyridine-type ligands: synthesis and characterization. In: *Chemistry Journal of Moldova*, 2019, vol. 14(1), pp. 120-127.
- Vitiu, A. Sinteza şi studiul cu raze X a unui nou compus al Cu(II) cu 1,3-bis(4-piridil)propan. În: Învațământul superior: Tradiții, Valori, Perspective, 2018, vol. 1, pp. 186-190.
- Vitiu, A., Chişca, D., Gorincioi, E., Coropceanu, E., Bourosh, P. Synthesis and Biological Properties of the Novel Coordination Compound with Rhodanine-3-Acetic Acid. În: *IFMBE Proceedings*, *Springer*, 2020, vol. 77, pp. 713-717.

Rezultatele cercetărilor prezentate în lucrare au constituit obiectul a 29 publicații științifice, inclusiv 8 articole, dintre care 4 în revistă cu factor de impact, 2 brevete de invenție și 21 rezumate la conferințe naționale și internaționale de profil. În 2018, invențiile au fost apreciate cu 2 medalii de aur și argint la Salonul European de Inventică "Euroinvent" (Iași, România) și Salonul Internațional de Invenții și Inovații "Traian Vuia" (Timișoara, România).

Sumarul capitolelor tezei

Teza constă din: introducere, patru capitole, concluzii generale și recomandări, bibliografie din 223 de titluri, 9 anexe, 118 de pagini de text de bază, 62 de figuri și 5 tabele, volumul total al tezei fiind de 200 de pagini.

În *Introducere* este descrisă actualitatea temei de cercetare, obiectivele cercetărilor, ipoteza de cercetare, scopul, noutatea științifică a rezultatelor obținute, importanța teoretică și valoarea aplicativă a lucrării.

Capitolul 1, "Designul, studiul structural și modul de asamblare a compușilor coordinativi ce conțin metale de tranziție și liganzi polidentați cu atomi donori N, O și S", este compus din cinci subcapitole, în care este analizat studiul actual al dezvoltării în domeniul polimerilor coordinativi. Capitolul începe cu detalii despre studiul unor metale de tranziție aflate în diferite stări de oxidare care pot conduce la formarea rețelelor coordinative cu dimensionalitate diferită cu topologii și arhitecturi interesante. Astfel, toate metodele de obținere cunoscute din literatură printre care se pot menționa sinteza solvotermală, evaporarea lentă, ultrasonare, iradierea cu microunde, metoda electrochimică, sinteza reticulară au la bază variația solventului, naturii ionului de metal, cât și a liganzilor utilizați. Capitolul se încheie cu principalele domenii de aplicare a polimerilor coordinativi cu liganzi ce au atomii donori N, O, S prin combinarea cu liganzi bipiridinici și concluzii.

Capitolul 2, "*Metode de sinteză, analiză și cercetare*" este structurat în trei subcapitole, în care sunt prezentate metodele de sinteză, cât și rezultatele analizei elementale, analizei spectrelor IR, analiza termică, studiului cu raze X, utilizate la stabilirea compoziției, structurii, precum și descrierea informativă a utilajului și concluzii.

Capitolul 3, "*Compuși coordinativi ai unor metale tranziționale în baza liganzilor homoși heterofuncționali. Structură și proprietăți*", conține patru subcapitole și include rezultatele studiului cu ajutorul difracției razelor X pe monocristal, investigațiilor spectrale IR, ale analizei termice pentru **11** complecși. Compușii obținuți sunt investigați prin diverse metode de sinteză în baza cărora se poate conclude referitor la influența naturii metalului și a ligandului asupra structurii lor. Acești compuși conțin ca liganzi bipiridine, diferiți carboxilați în prezența sau în lipsa liganzilor bipiridinici și liganzi cu setul de atomi donori N,O. Este important de a menționa, că liganzii carboxilat sunt antrenați în compuși nu numai în stare complet sau parțial deprotonată, dar și în forma sa alchilată. Analiza spectrelor de luminescență au evidențiat că emisiile stabilite pentru ligandul liber sunt de două ori mai slabe decât cele ale compusului polimeric, ca urmare emisiile pot fi atribuite interacțiunilor ligand-metal. Distanțarea moleculelor de cristalizare din compuși polimerici au generat cavități esențiale din volumul total al celulei elementare pentru unii compuși, fapt ce relevă proprietăți de adsorbție. Concluziile încheie capitolul dat.

Capitolul 4, "Compuși coordinativi ai unor metale tranziționale cu liganzi heterofuncționali. Structură cristalină și proprietăți", conține patru subcapitole și include sinteza și studiul a 35 de compuși în baza liganzilor H₂dtdb, Hsaz, Hpmta, Hrda inclusiv prin combinarea acestora cu liganzi bipiridinici. Se menționează descrierea compușilor coordinativi ce conțin ligandul *H*₂*dtdb*, care coordinează la centrele metalice, antrenând cei patru atomi de oxigen ai celor două grupări carboxilice și chiar atomul de sulf în diferite moduri: de la bidentat-chelat la un atom de metal până la tetradentat la patru atomi de metal, tetradentat-bis-chelat la doi atomi de metal, tetradentat chelat la trei atomi de metal, bidentat la doi atomi de metal, evidențiind scindarea sau exturdarea legăturii S-S, cât și oxidarea unui atom de S cu formarea S=O, cât și oxidarea ligandului până la anionul SO_4^{2-} . Pentru ligandul *Hsaz*, cu toate că poate prezenta o diversitate atât în modul de coordinare la atomul de metal, cât și în ceea ce ține de gradul de deprotonare în rezultatul reacților de complexare, a fost evidențiat un nou mod de coordinare tetradentat-chelat coordinând la un atom de metal prin gruparea carboxilică deprotonată COO⁻, iar la celălalt – prin gruparea terminală NCN implicând atomul de azot piridinic. În baza ligandului Hpmta s-au obținut 12 compusi în trei din care ligandul *Hpmta* participă ca anion în sfera externă a cationului complex, în ceilalți - coordinează la centrele metalice în mod diferit: monodentat, tetradentat chelat, bidentat-chelat, bidentat punte prin cei doi atomi de oxigen ai grupării carboxilice la atomi de metal. Este important de menționat că la formarea celor 11 polimeri coordinativi un rol important i se atribuie pH-lui soluției. Anevoios s-a reușit crearea compușilor cu ligandul Hrda. Ca urmare, cu o serie de metale au fost obținuți trei compuși monomerici, iar formarea polimerilor coordinativi 1D într-un caz este cauzată de condensarea ligandului *rda*⁻ fapt ce i-a permis acestuia să activeze ca ligand punte, iar în doi compuși rolul de ligand punte a fost asumat liganzilor bipiridinici, ligandul *rda*⁻ coordinând într-un compus la atomul de metal monodentat printr-un atom de oxigen din gruparea carboxilică sau în celălalt compus pentru acești liganzi a fost stabilit un mod de coordinare diferit: tridentat chelat punte la doi atomi de metal prin atomii de oxigen ai grupării carboxilice sau bidentat chelat, la un atom de metal. Rezultatele investigațiilor spectrale IR, a difracției razelor X pe monocristal, termogravimetrice pentru acești compuși au adus un aport la corelația sinteza-structura-proprietăți, evidențiind posibilitatea de utilizare a combinațiilor complexe obținute în calitate de materiale luminescente, iar studiul testărilor microbiologice pentru un compus au permis de a conclude o posibilă utilizare a compusului în calitate de preparat cu proprietăți antimicrobiene și antifungice.

În anexe sunt prezentate unele informații necesare pentru precizarea, înțelegerea și completarea materialului.

1. DESIGNUL, STUDIUL STRUCTURAL ȘI MODUL DE ASAMBLARE A COMPUȘILOR COORDINATIVI CE CONȚIN METALE DE TRANZIȚIE ȘI LIGANZI POLIDENTAȚI CU ATOMI DONORI N, O ȘI S

1.1. Aspecte ale evoluției complecșilor cu liganzi polidentați

Chimia supramoleculară și ingineria cristalelor constituie domenii de interes major atât datorită posibilităților de obținere a compușilor având structuri cu diverse topologii, cât și de aplicare a acestora în așa domenii ca microelectronica, cataliza, optica neliniară, schimbul de ioni ș.a. [10]. Așa cum un rol important în chimia supramoleculară le revine ionilor metalelor, varietatea macromoleculelor care conțin elemente metalice extrem de mare este cauzată nu numai de numărul mare al ultimelor, dar și de stările lor de oxidare. Nu mai puțin importantă la crearea compusilor este diversitatea liganzilor ce pot coordina la metal. Combinarea liganzilor, care se pot deosebi și prin seturile de atomi donori, și după numărul acestora, cu metalele de tranziție aflate în diferite stări de oxidare pot conduce la formarea retelelor coordinative cu dimensionalitate diferită cu topologii și arhitecturi interesante, dar și la crearea compusilor cu proprietăți utile magnetice sau redox. Printre metalele de tranziție cel mai frecvent întâlnite în polimerii coordinativi se pot mentiona manganul, fierul, cobaltul, nichelul, cuprul, zincul, paladiul, argintul, cadmiul, aurul și mercurul [11]. Unii ioni din această serie pot exista în compuși de tip polimeri coordinativi în mai multe stări de oxidare: $Mn^{+2/+3}$, $Fe^{+2/+3}$, $Co^{+2/+3}$ și $Cu^{+1/+2}$, fapt ce conduce în primul rând la obținerea diferitor geometrii ale poliedrului de coordinare al metalului. În funcție de metalul tranzițional utilizat și starea de oxidare a acestuia se pot forma poliedre de coordinare regulate ori distorsionate liniare, trigonale, în formă de T, plan-pătratice, tetraedrice, trigonalbipiramidale, tetragonal-piramidale și bipiramidale, pentagonal-bipiramidale, octaedrice, s.a. (Figura 1.1).

Fig.1.1. Forme ale poliedrului de coordinare al atomului de metal tranzițional [11]

Ca exemplu, ionul Cu(I) cu configurația electronică d^{10} , în funcție de condițiile de sinteză, poate forma poliedre de coordinare tetraedrice sau trigonale, pe când ionul Cu(II), datorită efectului Jahn-Teller, poate avea geometrie octaedrică, mai rar plan-pătrată sau tetragonalpiramidală; ionul Ni(II) cu configurația d^8 , fiind tetracoordinat poate avea poliedrul de coordinare de formă plan-pătrată sau octaedrică atunci când este hexacoordinat, iar ionul Co(II) poate avea geometrie octaedrică. Ca urmare metalele de tranziție pot forma un număr mare de compuși, inclusiv polimeri coordinativi, cu diverse forme ale poliedrului de coordinare.

Ingineria cristalului presupune o înțelegere și utilizare a principiilor de interacțiune intermoleculară în contextul asamblării componentelor în cristal și utilizarea acestora la designul solidelor cu proprietăți fizice și chimice dorite. Acest domeniu s-a dezvoltat în ultimii 50 de ani ca un rezultat firesc al interacțiunii dintre cristalografie și chimie, unde chimia ține de molecule, de legarea atomilor în molecule, în timp ce cristalografia ține de cristale, formate din ansambluri ordonate de molecule. Astfel, interacțiunea dintre chimie și cristalografie este nu altceva decât corelația dintre structura și proprietățile atât a moleculelor mici, cât și a macromoleculelor.

Această corelație dintre molecule și cristale a fost abordată mai întâi de către Bragg W.H. în 1921, care a recunoscut că anumite unități structurale, cum ar fi inelele benzenice, au o anumită dimensiune și formă, care ar putea fi menținute aproape fără nici o schimbare la trecerea de la structura unui cristal la altul [12]. Astăzi ingineria cristalului poate fi evidențiată ca domeniu de cercetare aparte în chimia modernă, practicată de oameni de știință cu interese în modelarea, designul, sinteza și aplicațiile solidelor cristaline cu asamblarea predeterminată și dorită a unităților structurale, inclusiv a moleculelor și ionilor.

Construirea materialelor funcționale din molecule sau ioni este astăzi acea bază a ingineriei moderne, cristalelor ideea cristalelor principală fiind obtinerea cu anumite proprietăți, aici fiind importantă selectarea adecvată atât a blocurilor de construcție, cât și a metodelor de obtinere și creștere a structurilor cristaline. Foarte des diversitatea lanțurilor 1D este în general favorizată de prezența în sfera de coordinare a ionului metalic a unor liganzi cu funcție punte, în timp ce structurile 2D sau 3D pot fi obținute folosind ca substanțe inițiale cationi hidratați, ce ușor pot fi substituiți prin liganzi de tip punte. Majoritatea structurilor 2D și 3D se obțin datorită posibilităților de coordinare diferite ale liganzilor la centrul metalic și utilizarea liganzilor micști, cu toate că topologia rețelei este direct influențată de geometria ionilor metalici [13]. De exemplu, pentru obținerea compușilor coordinativi 0D este suficeint de utilizat liganzi, inclusiv polidentati, pe când pentru extinderea structurilor până la rețele coordinative mono-, bi- sau tridimensionale (1D–3D) este necesară utilizarea liganzilor polidentați cu funcție punte (Figura 1.2) [14].

Fig. 1.2. Reprezentarea schematică a relației dintre chimia compușilor coordinativi (sus) și a rețelelor coordinative periodice (jos) [14]

Astfel, structura unui compus coordinativ polimeric cu o anumită dimensionalitate include pe de o parte ionul metalic, care ocupă nodurile rețelei cristaline, în timp ce liganzii organici, care coordinează la centrele metalice, formează scheletul rețelei coordinative. Ca rezultat al combinării blocurilor metalo-organice a fost obținută o gamă variată de arhitecturi supramoleculare. La obținerea ultimilor este necesar utilizarea liganzilor polidentați cu doi sau mai mulți atomi donori. Liganzii de dimensiuni mici ca pirazina, 4,4-dipiridil, fiind în calitate de punte ce leagă ioni de metal, formează structuri de tip lanțuri (1D) [15] raft R, scară L (2D) [16, 17] și respectiv grilă G(3D) (Figura 1.3.). Rețelele cristaline ce formează grilă pătrată sunt cele mai simple exemple de polimeri bidimensionali.

Fig. 1.3. Arhitecturi supramoleculare anorganice de tip: a) raft R, b) scară L, c) grilă pătrată G, d) grilă chirală, e) grilă dreptunghiulară [17]

De exemplu, în compusul polimeric $\{[Cu(SiF_6)(bpy)_2] \cdot 8H_2O\}_n$ [18], obținut prin difuzie lentă într-o soluție de apă-etilenglicol la interacțiunea amestecului Cu(BF₄)₂·6H₂O și (NH₄)₂SiF₆ cu ligandul punte *bpy*, la metal coordinează în cele patru poziții ecuatoriale cu geometrie planpătrată ligandul organic, iar în poziții axiale coordinează ligandul anorganic, ca urmare fiecare ion Cu(II) adoptă o geometrie tetragonal-bipiramidală. În acest compus ionii de metal Cu(II) uniți prin *bpy* în rețea bidimensională și anoinii SiF₆²⁻ servesc ca blocuri de construcție a rețelei coordinative 3D. Aici se pot menționa inelele piridinice distorsionate în două poziții ale ligandului *bpy*, patru atomi de azot piridinici aparținând la patru liganzi *bpy* coordinați la centrul metalic și cei doi atomi de F ai celor doi anioni SiF₆²⁻ ce asigură formarea poliedrului de coordinare prin setul de atomi donori N₄F₂. Ionii Cu(II) cu configurația *d*⁹ prezintă o distorsiune Jahn-Teller ce face posibilă formarea legăturilor coordinative mai slabe în pozițiile axiale. Prin urmare, anionul SiF₆²⁻ poate lega ionii de Cu(II) din cele mai apropiate straturi grilă-pătrat, rețeaua 3D formată devine stabilă și canalele pot fi ocupate de molecule de solvent necoordinate. Studiul cu raze X a evidențiat în cristal rețeaua 2D de tip grila-pătrată formată din ionii de [Cu(bpy)₂]²⁺ și anionii SiF₆²⁻, care extind structura formând o rețea 3D fără a fi înterpătrunsă (Figura 1.4).

Fig. 1.4. a) Poliedrul de coordinare al Cu(II) în compusul {[Cu(SiF₆)(bpy)₂]·8(H₂O)}_n; b) Fragment al rețelei 3D [18]

Rețelele metal-oraginice supramoleculare ale compușilor coordinativi se extind atât datorită legăturii metal-ligand, cât și datorită forțelor de interacțiune non-covalente, cum ar fi legăturile de hidrogen, interacțiunele de tip π - π și interacțiunele de tip van der Walls [19]. Legăturile de hidrogen au un rol important în obținerea rețelelor cristaline metalo-organice. Datorită trăiniciei relativ ridicate și direcționalității sale, legătura de hidrogen are un rol important în ingineria cristalelor, luând în considerație astăzi nu numai legăturile de hidrogen puternice de tipul: O–H…O, O–H…N, N–H…O și O–H…S, dar și cele fine de tipul C–H…O, C–H…N și C–H…S, acestea având un caracter electrostatic. Alte forțe necovalente cu un rol important în autoasamblarea complecșilor și descifrarea structurii moleculare sunt interacțiunile între fragmentele aromatice, interacțiunile de tipul π - π stacking [20, 21], cu toate că acestea sunt slab

direcționate și mai slabe decât legăturile de hidrogen: calculele evidențiează circa 10 kJ mol⁻¹ pentru interacțiunile de tipul centru aromatic-centru aromatic, în comparație cu 15-40 kJ mol⁻¹ pentru legăturile de hidrogen fine. La nivel supramolecular inelele aromatice pot interacționa în diferite moduri: aranjament față-în-față prin aliniere perfectă, alunecare paralelă prin deplasare, și în formă de T (C–H··· π) (Figura 1.5). Aranjamentele faciale sunt în special importante în cazul utilizării liganzilor ce conțin fragmente piridil.

Fig. 1.5. Diverse interacțiuni dintre două centre aromatice [21]

Tong M.-L. s.a. în 1999 [22] au descris compusul { $[Mn(bpy)_2(H_2O)_4][ClO_4]_2 \cdot 4bpy$ }_n, obținut prin adăugarea cantităților mici de soluție alcoolică a ligandului bpy la soluția apoasă de Mn(ClO₄)₂·6H₂O și agitarea ulterioară timp de 15 minute. Compusul nou format reprezintă o rețea 3D, autoasamblată simultan prin legături de hidrogen și interacțiuni de tip π - π . Studiul cu raze X pe monocristal a stabilit că compusul dat este format din cationi mononucleari $[Mn(bpy)_2(H_2O)_4]^{2+}$, anioni ClO₄⁻ și molecule de cristalizare *bpy*. Înconjurarea ionului Mn(II) adoptă configurație octaedrică formată de setul de atomi N2O4, doi atomi de azot aparțin celor doi liganzi bpy și patru atomi de oxigen – la patru molecule de apă (Figura 1.6a). Cationii complecși bivalenți și moleculele necoordinate de bpy formează rețele tridimensionale cu subunități triunghiulare, prin intermediul legăturilor de hidrogen și a interacțiunlelor de tip π - π dintre molecuele de solvatare de bpy și liganzii bpy coordinați (Figura 1.6b). Fiecare subunitate include trei cationi complecsi și patru molecule de bpy necoordinate, fiecare aflându-se în punctele de legătură și de aceiași parte a subunității triunghiulare, cu distanțele Mn…Mn de 14,306 ×14,919 × 15,448 Å. Fiecare moleculă de apă formează două legături de hidrogen cu două molecule diferite de bpy (distanțele O···N fiind în intervalul 2,843(4) – 2,885(4) Å, iar unghiurile N···O···N = 118,88–130,43°). Extremitățile necoordinate ale ligandului bpy din doi cationi mononucleari diferiți sunt aranjate în straturi față-în-față, distanța fiind de cca. 3,55 Å, indicând interacțiuni

semnificative de tip π - π . În cristal, interiorul canalelor triunghiulare este ocupat de anionii ClO₄, aceștea unindu-se cu moleculele adiacente de *bpy* prin legături de hidrogen fine C–H···O.

Fig. 1.6. a) Structura unității mononucleare [Mn(bpy)₂(H₂O)₄] și a moleculelor adiacente de *bpy* din compusul {[Mn(bpy)₂(H₂O)₄][ClO₄]₂·4bpy}_n; b) Fragment al structurii 3D cu evidențierea canalelor triunghiulare [22]

Ca urmare, interesul pentru designul și sinteza compușilor coordinativi, precum și a rețelelor coordinative de tip lanțuri și scări unidimensionale, grile bidimensionale, rețele tridimensionale, rețele interpenetrate și rețele elicoidale, rămâne și este determinat de posibilitatea utilizării compușilor ca materiale funcționale potențial aplicabile în dispozitive magnetice, adsorbție moleculară, dispozitive optoelectronice, ca senzori, materiale luminescente și în cataliză.

1.2. Polimeri coordinativi în baza liganzilor piridinici

Atât în domeniul chimiei coordinative, cât și a ingineriei cristalelor, în ultimul timp se observă o tendință de a crea și obține rețele metalo-organice alcătuite din ionii metalelor de tranziție și liganzi flexibili din clasa *bis*-piridinelor. Aceasta poate fi explicată în deosebi prin proprietățile favorabile ale grupărilor funcționale, cât și prin structurile atractive ale compușilor. La designul și construcția rețelelor coordinative, în special liganzii organici flexibili joacă roluri cruciale, deoarece chiar și mici schimbări în flexibilitatea, lungimea, conformația sau simetria liganzilor pot conduce la o diversificare remarcabilă de structuri și funcții structurale. Astfel, perspectiva obținerii rețelelor coordinative prin schimbarea distanțierului din liganzii flexibili oferă un impuls cercetărilor ulterioare. Până în prezent se cunoaște deja un șir de compuși coordinativi ai metalelor de tranziție cu utilizarea liganzilor flexibili *bis*-piridinici având diferiți distanțieri. Drept exemplu se pot menționa doi compuși coordinativi ai Cu(I):

 $\{[Cu(bpy)]_{2}[H_{2}SiW_{12}O_{40}] \cdot 2H_{2}O\}_{n}$ si $\{[Cu(bpp)]_{2}[H_{2}PW_{12}O_{40}] \cdot 2H_{2}O\}_{n}$ [23], obținuți prin metoda hidrotermală, analiza structurală a cărora ne demonstrează că rigiditatea și flexibilitatea liganzilor joacă un rol cheie în formarea structurilor finale. Atomii de cupru în ambii compuși au gradul de oxidare +1, fapt confirmat prin poliedrul de coordinare al metalui și culoarea cristalelor (maro). Motivul principal al schimbării stării de oxidare a metalului ține de liganzii piridinici bpy și bpp, care acționează în condiții hidrotermale nu numai ca liganzi, dar și ca reducători. Fiecare ion Cu(I) cristalografic independent în compusul polimeric $\{[Cu(bpy)]_2[H_2SiW_{12}O_{40}] \cdot 2H_2O\}_n$ adoptă o geometrie "instabilă" formată din doi atomi de azot din două molecule de bpy și doi atomi de oxigen ce aparțin unui cluster ce are la bază fragmentul SiW₁₂. Fiecare ligand rigid bpy unește doi ioni de metal simetrici într-un lanț coordinativ polimeric [Cu(bpy)]⁺_n cu distanțele Cu-N fiind 1,875 și 1,888 Å. Din datele structurale referitor la celălalt compus cu formula $\{[Cu(bpp)]_2[H_2PW_{12}O_{40}] \cdot 2H_2O\}_n$ s-a constatat că el este de asemenea un compus ionic ce contine anioni [PW12O40]³⁻ (PW12), cationi simetrici de tip polimer formați de ionii de cupru la care coordinează doi liganzi bpp și molecule de apă de cristalizare. Ionii de cupru sunt uniți prin ligandul flexibil *bpp* stabilizat în conformația TT (T-*trans*) cu formarea fragmentului [Cu(bpp)]₂⁺ de tip "S"; iar două fragmente de tip "S" sunt unite prin legături de hidrogen la care sunt antrenate două molecule de apă formând o rețea cristalină de tip pseudo grilă-pătrată.

Un alt exemplu de compus de tip polimer cu antrenarea ligandului *bpp* este polimerul coordinativ 2D { $[Cu(bpp)]_2[Cu_2(bpp)_3][SiW_{12}O_{40}]_n$ [24], în care ionii de metal Cu(I) prezintă diferite moduri de coordinare, fapt cauzat de versatilitatea și flexibilitatea ligandului *bpp*, care este format din două inele piridinice unite prin distațierul –(CH₂)₃– ce influiențează procesul de asamblare a componentelor în cristal. În compușii de Cu(II) { $[Cu(bpy)(ClO_4)_2(H_2O)_2]$ ·7bpy}_n [25] sau { $[Mn(bpe)(NCS)_2(CH_3OH)_2]$ _n [26] deja la ionii de metal coordinează atât liganzii de tip punte *bpy* și *bpe* în poziții *trans*, cât și doi anioni anorganici și două molecule de solvent (apă și metanol). Deci, atât liganzii de tip punte rigizi, cât și liganzii flexibili, pot forma lanțuri liniare.

Yaghi O. și Li G. în 1995, iar mai târziu, Noro S. ș.a. și Inman J. ș.a. în 2002, folosind ligandul liniar bifuncțional *bpy*, au contribiut la obținerea pe scară largă a materialelor microporoase [27]. Compusul cu formula { $[Cu_2(bpy)_3](ClO_4)_2 \cdot 2H_2O]_n$ [28], reprezintă un polimer tridimensional, în care poliedrul de coordinare al fiecărui ion de metal Cu(I) este format din setul de atomi donori NNN cu o aranjare trigonală ușor distorsionată. Cu toate acestea, studiul cu raze X pe monocristal relevă faptul că acesta formează rețele de tip *fagure de miere*, fapt cauzat atât de natura ionului de metal, cât și de ligandul liniar *bpy*, componente ce pot fi utilizate la obținerea carcaselor supramoleculare cu incluziune ce conțin moleculele oaspete. În compusul polimeric 2D {[Cu(bpy)(pyz)(H₂O)₂](PF₆)₂}_n [29], înconjurarea fiecărui ion Cu(II) prezintă o geometrie octaedrică, poliedrul de coordinare fiind format de patru atomi de N ai celor patru liganzi cu funcție punte (doi fiind *bpy*, iar doi *pyz*), situați în plan ecuatorial, iar doi atomi de oxigen aparținând moleculelor de apă fiind în poziții axiale. În straturile planardreptunghiulare ale structurii, inelele piridinice ale fiecărui ligand sunt răsucite la 66,5(1)°. Ca rezultat, în cristale se formează canale hidrofobe cu dimensiunile 6,83×11,15 Å, iar straturile adiacente împart golurile în canale dreptunghiulare mai mici (aproximativ 5,6 × 6,8 Å). Anionii PF₆⁻ sunt localizați în aceste canale, iar fiecare anion PF₆⁻ formează două legături de hidrogen cu moleculele de apă coordinate, atomii de fluor fiind acceptori, unind două straturi adiacente, distanța donor…acceptor O…F este egală cu 2,848(4) Å. Structura compusului dat este remarcabilă prin faptul că rețelele bidimensionale sunt formate prin antrenarea a două tipuri de liganzi liniari diferiți ce conțin ca atomi donori atomii de azot.

Abu-Shandi K. ş.a. în 2005 [30] au prezentat doi compuși cu formulele { $[Fe^{III}(NO_3)_2(\mu-bpy)(H_2O)_2]OH \cdot H_2O_n$ și { $[Fe^{II}(H_2PO_4)_2(\mu-bpy)(H_2O)] \cdot bpy \cdot H_2O_n$, obținuți prin sinteza solvotermală. Primul compus al Fe(III) reprezintă o rețea deschisă ce conține un canal construit prin aranjamentul încrucișat al lanțirilor 1D Fe-*bpy* unite prin legături de hidrogen (μ -*bpy* –ligand punte, ce coordinează monodentat la doi atomi de metal). În al doilea compus al Fe(II), lanțurile 1D Fe-*bpy* sunt orientate paralel și la fel unite prin intermediul legăturilor de hidrogen. Moleculele de *bpy* de cristalizare sunt reținute în cristal prin legături de hidrogen fine formate cu fragmentele $H_2PO_4^-$ coordinate la centrele metalice vecine de-a lungul lanțului și concomitent formând interacțiuni de tip π - π cu ligandul *bpy* coordinat.

O caracteristică comună se poate depista în construcția rețelelor de tip adamantoid sau super-diamondoid și a unor rețele infinite tridimensionale ce au la bază adesea liganzi liniari cu funcție punte cum ar fi, de exemplu, ligandul 1,2-bis(4-piridil)etenă (*bpee*), ce unește ionii metalici de Cu(I) [31] și Fe(II) [32]. Compusul {[Cu(bpee)₂](BF₄)·0,5CH₂Cl₂₁ [31] reprezintă un polimer coordinativ 3D, în care fiecare centru metalic Cu(I) are geometrie tertaedrică formată de patru liganzi coordinați *bpee* (Cu–N 2,003(5)–2,084(6) Å), care la rândul lor sunt legați cu alte patru centre metalice, astfel formând o rețea independentă de tip adamantoid. Această creștere a lungimii rețelei a fost realizată datorită ligandului bipiridil de legătură mai lung, astfel în cristal evidențiindu-se canale pentru includerea moleculelor de solvent. La interacțiunea sulfatului de cupru cu ligandul *bpe* s-a obținut o structură tridimensională în care rețelele cationice [Cu(bpe)₂]²⁺ sunt interpenetrate de anionii [Cu(bpe)(H₂O)₂(SO₄)₂]²⁻, formând goluri între lanțurile rețelei cristaline. În cazul utilizării sării Cd(NO₃)₂·4H₂O în condiții similare se formează un lanț ce indică o scară construită din trei liganzi *trans-bpe* coordinați la centrul metalic, formând o geometrie în formă de T [33].

La interacțiunea $Co(NO_3)_2$ cu *bpe* au fost obținuți doi compuși diferiți, fiind de tip polimeric { $[Co_2(NO_3)_4(bpe)_3] \cdot 6CHCl_3\}_n$, iar celălat – monomeric unul $[Co(H_2O)_4(bpe)_2](NO_3)_2 \cdot 8/3H_2O \cdot 2/3bpe$. În primul compus lanturile polimerice sunt formate de ionii Co(II) heptacoordinați prin patru atomi de oxigen ce aparțin la doi anoini NO₃⁻ coordinați în mod diferit și trei atomi de azot aparținând liganzilor bpe. Acești liganzi organici unesc doi atomi de metal, asigurând un aranjament în formă de T în jurul atomului central. În compusul monomeric poliedrul de coordinare este deja octaedric, format de doi atomi de azot aparținând la doi liganzi *bpe*, iar patru atomi de oxigen – celor patru molecule de apă coordinate. În ambii compuși structurile cristaline au evidentiat o dependentă evidentă de moleculele de cristalizare antrenate [34]. Ingineria rețelelor determinate de anioni a fost prezentată în baza studiului unor polimeri coordinativi 1D ce are la bază sarea de Co(II) și ligandul bpy studiați de Lu J. ș.a. în 1998 [35]. Dacă în structura compușilor ce conțin ca anioni SO42- ori Cl- se evidențiază lanțuri liniare Cobpy-Co, iar în primul aceste lanțuri sunt conectate printr-o rețea de legături de hidrogen, atunci în compusul ce conține CH₃COO⁻ au fost depistate lanțuri liniare de Co-bpy-Co dublate prin intermediul grupărilor de acetat. Utilizarea diferitor anioni a evidențiat și o variație în dimensiunile porilor și a carcaselor polimerice.

Structura polimerică unidimensională de fomă *zig-zag* a compusului [NiCl₂(bpe)₂]_n [36] este determinată de molecule *bpe* coordinate la ionii Ni(II). Studiul cu raze X a evidențiat pentru atomul de metal central un poliedrul de coordinare tetraedric distorsionat format de cei doi atomi de Cl coordinați și de doi atomi de azot ai liganzilor flexibili *bpe*, antrenați ca liganzi cu funcție punte ce unesc doi atomi de metal într-un lanț elicoidal unidimensional (Figura 1.7).

Fig. 1.7. Reprezentarea schematică a compușilor Zn(II) cu *bpe* (*a* și *b*), transformarea structurală din 3D în 1D, analiza termică pentru compusul *b* [37]

Compuşii $\{[M(bpe)_2(N(CN)_2)]N(CN)_2 \cdot xH_2O\}_n$ M=Zn(II)/Co(II) [37], izostructurali cu compusul $\{[Ni(bpe)_2(N(CN)_2)]N(CN)_2 \cdot 6H_2O\}_n$ [38], au fost obținuți prin introducerea unor componente funcționale în materiale cu rețea deschisă având ca scop reglarea dimensiunii porilor și activitatea poroasă pentru a stabili noi căi în ingineria rețelelor și în fabricarea de noi materiale.

O îmbunătățire a rețelelor poroase poate sta la baza proprietăților de adsorbție a gazului. În structurile supramoleculare ale compuşilor coordinativi bazați pe liganzii N-donori neutri se regăsesc molecule oaspete necoordinate sau slab coordinate la centrele metalice. Astfel de legături fine din interiorul rețelei pot fi cauza unor modificări esențiale în structura lor și deci, datorită prezenței legăturilor coordinative relativ mai slabe M–N, dar și a diferitor stimuli exogeni (chimici și fizici), care influențează flexibilitatea RMO, compușii suferă modificări structurale. S-a constatat că așa stimuli chimici ca contraionul, moleculele oaspete libere ori coordinate, oaspeții gazoși ș.a. au un rol profund în flexibilitatea generală a RMO [39].

Polimerii cu canale microporoase flexibile sau rigide prezintă un interes deosebit indiferent de metalul utilizat. Studiul cu raze X al monocristalelor compusului format la interacțiunea sării Co(NO₃)₂ cu bpe a condus la formarea unui polimer coordinativ unidimensional cu formula { $[Co(bpe)_2(H_2O)_2](ClO_4)_2 \cdot 2H_2O]_n$ [40], în care centrele metalice sunt unite prin punți duble prin intermediul liganzilor bpe care crează canale cationice cu dimensiunile 9,29 – 9,94 Å, distanțate prin atomii Co-Co*. În polimerul coordinativ bpe coordinează 1D ligandul-punte versatil la centrele metalice adoptând configurația sin. La fiecare ion Co(II) coordinează patru atomii de azot aparținând la patru liganzi bidentați bpe. În cristal se evidențiează cicluri din 22 atomi, iar centrele metalice adiacente legate prin liganzii bpe sunt la distanța 9,293 Å. Poliedrul de coordinare al metalului este completat până la octaedric de doi atomi de oxigen ce aparțin moleculelor de apă.

Compusul polimeric 3D { $[Cu_3(CO_3)_2(bpe)_3](ClO_4)_2\}_n$ [41] se formează prin fixarea CO₂ din atmosferă, cu evidențierea straturilor *kagome* ce au la bază fragmentul CuCO₃ în care fiecare anion coordinează la trei atomi de metal, formând cicluri în care șase atomi de metal se unesc prin intermediul atomilor de oxigen din anioni (Figura 1.8).

Straturile în cristal sunt legate prin ligandul punte *bpe* ca piloni. Poliedrul de coordinare al metalului este format de setul de atomi donori N_2O_4 . Acest compus prezintă o interacțiune antiferomagnetică slabă în stratul *kagomé* și cuplaj feromagnetic intermediar la temperatură scăzută.

34

Fig. 1.8. a) Poliedrul de coordinare al Cu(II) (ligandul *bpe* pentru claritate este prezentat necomplet); b) Fragment al rețelei 2D cu evidențierea stratului *kagome* de-a lungul axei c [41]

Un alt compus coordinativ polimeric 3D ce conține *bpe*, interesant din punct de vedere al aranjamentului supramolecular îl reprezintă { $[Co_5(bpe)_9(H_2O)_8(SO_4)_4](SO_4) \cdot 14H_2O_n$ [42]. Un aspect important al acestui compus este formarea unei arhitecturi supramoleculare ce are la bază un pentacluster dezvoltat în rețea polimerică tridimensională în care se pot evidenția cinci nivele, unite atât prin lanțuri chirale, în care sunt antrenați liganzii *bpe*, cât și prin punți în formă de lanțuri liniare, întrucât catenarea rețelelor polimerice poate conduce la o anumită flexibilitate a întregii arhitecturi, deci poate favoriza procesele de schimb de solvenți. Acest compus servește ca model al rețelelor nanoporoase nonrigide și chiralice. Între catenele polimerice ale compusului sunt situate goluri ce ocupă 19,6% din volumul celulei elementare (volum calculat prin neglijarea moleculelor de H₂O și a anionului de sulfat necoordinați). Aceste goluri includ cavități de trei tipuri cu volum aproximativ de 450 Å³ care conțin molecule de apă ce pot fi îndepărtate prin încălzire.

Carlucci L ș.a. în 2000 [43], prezintă de asemenea un compus cu o arhitectură tridimensională unică remarcabilă prin policatenarea a două tipuri diferite de polimeri coordinativi unidimensionali de tip panglică formați din inele și straturi bidimensionale cu topologia (4,4). Acest compus prezintă un comportament nanoporos interesant datorită prezenței unor cavități mari în care sunt încorporate molecule oaspete de solvent, care pot fi îndepărtate complet ultimile la tratarea termică, iar într-un proces reversibil pot fi restabilite. fapt ce se explică prin flexibilitatea vădită a rețelei. Compusul dat cu formula $\{[Cu_5(bpp)_8(EtOH)(H_2O)_5(SO_4)_4](SO_4) \cdot EtOH \cdot 25, 5H_2O\}_n$ a fost obtinut la interactiunea ligandului *bpp* cu sulfatul de cupru(II) în soluție de etanol, raportul molar metal:ligand fiind 1:1 și

1:4. Cu ajutorul studiului cu raze X pe monocristal, cât și prin utilizarea difracției razelor X pe pulbere, s-a demonstrat analogic cu acest compus pot fi obținuți compuși din diferiți solvenți (acetonă, acetat de etil, tetrahidrofuran). În cristalele tuturor acestor compuși au fost evidențiate câte două rețele cristalografice independente. Rețelele de tip panglică inelară formate din cicluri din 48 de atomi includ patru atomi de cupru și patru liganzi bpp. Lanțurile de tip panglică sunt clar ondulate, iar atomii de metal sunt localizați în vârful canalelor rombice, diatanța Cu…Cu fiind în intervalul 11,80-13,53 Å. În acest compus atomii Cu(2) sunt uniți prin patru liganzi bpp, iar atomi Cu(1) și Cu(3) - uniți prin doi liganzi *bpp*. Atomii de metal au poliedrul de coordinare octaedric completat de atomii de oxigen ai anionilor de sulfat și ai moleculelor de solvent. Cealaltă rețea bidimensională din cristal cu topologia (4,4) este formată de alți atomi de cupru, Cu(4) și Cu(5) și patru liganzi *bpp*. În aceste straturi, atomii de cupru sunt localizați în nodurile unei grile pătrate cu dimensiunea de 11,93-12,49 Å. Ambii atomi de cupru din această rețea sunt conectați prin patru inele piridil localizate în poziție ecuatorială și un atom de oxigen al anionului sulfat în poziție axială, completând poliedrul de coordinare până la tetragonal-piramidal. Anionii de sulfat sunt implicați la interacțiunile axiale cu atomii Cu(2) din rețeaua de tip panglică și sunt singura punte între cele două tipuri de rețele. Astfel, fiecare inel al lanțurilor de tip panglică intersectează două straturi adiacente, iar cavitațile straturilor sunt intersectate de două lanțuri inelare diferite.

Compuşii polimerici 1D ai Zn(II) cu acest ligand *bpp* $[Zn(NCS)_2(bpp)]_n$ şi $[Zn(ClO_4)_2(bpp)_2]_n$ [44] au fost obținuți la interacțiunea saruriilor Zn(NO₃)₂·6H₂O, NH₄SCN şi Zn(ClO₄)₂·6H₂O cu ligandul *bpp*. Se cunoaște că ligandul *bpp* poate adopta diverse configurații: *anti-anti* (TT), *anti-gauche* (TG) și *gauche-gauche* (GG) care pot fi determinate prin unghiurile diedre formate de planele ciclurilor aromatice. În ambii compuşi ligandul *bpp* adoptă o conformație *anti-anti* cu unghiul diedru egal cu -169,7 şi -162,8°, respectiv, iar distanța dintre atomii de azot din inelele piridinice este 9,427 Å. Ca urmare, interacțiunea sărurilor de Zn(II) cu liganzii flexibili bipiridinici este utilizată la construcția noilor rețele interpenetrate, în care o deosebită importanță la formarea structurilor supramoleculare ale atomilor de Zn(II) cu ligandul *bpp* o au anionii utilizați, deoarece ultimii adoptă diferite moduri de coordinare.

Yang E.-C. ş.a. în 2010 [45], a descris structura a doi polimeri coordinativi obținuți prin combinarea anionului azidic cu volum mic și a ligandului *bpp* ce a dus la formarea unei rețele 3D având la bază un cluster pentanuclear neutru cu proprietăți luminescente și a unei rețele 2D interpenetrate nonluminescente. Acești compuși cu formulele $[Cd_5(bpp)_6(\mu_{1,1}-N_3)_6(\mu_2-Cl)_2Cl_2]_n$ și $\{[Ni_2(bpp)_4(N_3)_4]\cdot 0,5H_2O\}_n$ au fost obținuți prin sinteza solvotermală în aceleași condiții în raport molar de 2:1:4 (M(II) : *bpp* : N₃⁻). Important este că în ambii compuși acești liganzi activează în caliate de liganzi punte, deși razele ionice ale celor două metale sunt diferite. Sarcina pozitivă a
ionilor de Cd(II) din cluster este compensată de cea a liganzilor de azidă și clorură, ca urmare în cristal se formează clusteri neutri coplanari pentanucleari care sunt separați prin intermediul punților μ_2 -Cl și $\mu_{1,1}$ -N₃ (Figura 1.9a).

Clusterii neutri pentanucleari de Cd(II) sunt extinși prin opt conectori, fapt întâlnit foarte rar în RMO-urile 3D cu liganzii flexibili *bpp* (Figura 1.9b). Evident, ligandul flexibil *bpp* adoptă două configurații diferite *trans-trans* și *trans-gauche* (Figura 1.9c). Clusterul pentanuclear $[Cd_5(\mu_{1,1}-N_3)_6(\mu_2-Cl)_2Cl_2]$ este definit ca nod, ligandul *bpp* ca conector, iar forma rețelei cu opt conectori ca urmare are topologia $4^{24}6^4$ (Figura 1.9d). În compusul de Ni(II) $\{[Ni_2(bpp)_4(N_3)_4]\cdot 0,5H_2O\}_n$ anionii de azidă cu funcție punte și liganzii *bpp exo*-bidentați determină formarea straturilor de tip grilă 2D dublu interpenetrate.

Fig. 1.9. a) Cluster pentanuclear de Cd(II), atomi de hidrogen au fost omiși pentru claritate; b) Unități pentanucleare legate prin opt liganzi *trans-gauche bpp*, și patru *trans-trans*; c) Configurații ale ligandului *bpp*; d) Reprezentarea topologiei grilă conectată prin liganzii *bpp* în pozitie *trans-trans* și *trans-gauche* [45]

1.3. Polimeri coordinativi cu liganzi carboxilici și piridinici

Chimia compuşilor cu structuri extinse reprezintă astăzi un domeniu de mare interes, datorită multitudinii materialelor cu structuri și proprietăți foarte variate. Dacă moleculele se consideră arhitecturi ale atomilor, atunci ingineria cristalină are la bază construcții din molecule. Ca prototipi ai ingineriei cristalelor, polimerii coordinativi (PC) descriși des ca rețele metaloorganice (RMO) [46] s-au dovedit a fi o clasă de materiale hibride, care se extind ca lanțuri infinite cristaline prin modificarea celor două componente: *noduri* și *conectori*, formând structuri unidimensionale, bidimensionale sau tridimensionale. În ultimul timp, studiul cu raze X al materialelor cristaline aduce un aport din ce în ce mai mare în stabilirea corelației structură-proprietăți. Mai există încă obstacole în elaborarea designului și modului de asamblare a componentelor în cristal, deoarece acestea mai sunt funcție de așa factori ca legăturile de hidrogen, anumiți factori fizici sau chimici externi, ca temperatura, presiunea, natura solventul utilizat și pH-ul soluției. Sinteza solvotermală poate duce la o diversificare a rețelelor metalo-organice cu diferite moduri de împachetare a acestora, deoarece în această metodă un rol important se atribuie presiunii și temperaturii, care este mai mare decât punctul de fierbere al solventului [38]. Cercetările din domeniul polimerilor coordinativi au progresat în ultimul timp și datorită liganzilor cu funcție punte selectați, ce se utilizează la conectarea ionilor de metal, iar printre ei se evidențiează liganzii carboxilici, inclusiv polidentați. Liganzii carboxilici, în special benzenpolicarboxilici sunt utilizați pe scară largă la formarea rețelelor metalo-organice datorită distanțelor diferite dintre grupările carboxilice [47–49] (Figura 1.10).

Fig. 1.10. Reprezentarea schematică a structurilor formate cu ajutorul liganzilor carboxilici [47]

Acidul 1,4-benzendicarboxilic (*1*,*4*-*H*₂*bdc*) cu unghiul de 180 ° între cele două grupări carboxilice în calitate de ligand poate forma punți scurte [50, 51], sau lungi prin intermediul inelelor benzenice ceea ce duce la o mare varietate de structuri [52, 53]. De asemenea, și acidul 1,3-benzendicarboxilic (*1*,*3*-*H*₂*bdc*) cu cele două grupări carboxilice rigide dispuse la 120 ° este un bun ligand având atomii săi de oxigen pentru construirea rețelelor metalo-organice. Acidul 1,3,5-benzentricarboxilic (*H*₃*btc*) este o moleculă rigidă, planară și se folosește pe larg sub forma a celor trei anioni de 1,3,5-benzentricarboxilat H₃btc ⁽³⁻ⁿ⁾ (n = 0, 1, 2) ca un ligand punte la sinteza RMO polidimensionale. Ca exemplu se poate evidenția un șir de compuși ai metalelor de tranziție în care ultimul este antrenat ca ligand punte: $btcH_2^{-}$ în Mn-µ₂ [54], $btcH^{2-}$ în Mn-µ₂ [55], Mn-µ₃ [55, 56] Co- μ_2 [57, 59], Ni- μ_3 [58], Cu- μ_2 [59], Zn- μ_2 [60], Zn- μ_3 şi - μ_4 [59], Cd- μ_3 [61], iar btc³⁻ în Fe- $\mu_{2,3}$ [62], Co- μ_2 [63], Co- μ_3 [64], Ni- μ_2 [63–65], Ni- μ_3 [64, 66], Cu- $\mu_{2,3}$ [67], Cu- μ_3 [68], Zn- μ_3 [69].

Compușii ce conțin policarboxilați polidentați sunt cunoscuți și prin modul chelat de coordinare la ionii de metal, blocând poziția în clusteri M-O-C, astfel, oferind stabilitate și rigiditate structurii denumite unitate secundară de constructie (USC) [70]. Designul carcaselor rigide bazate pe astfel de USC-uri a fost demonstrat cu succes pentru prima dată pentru RMO-2 [71, 72], iar mai târziu pentru RMO-5 [73, 74]. RMO au devenit populare datorită primului studiu al porozității acestor materiale și anume prin determinarea volumului porilor. Pentru materialul RMO-2 cu formula $[Zn(bdc)(H_2O)]_n$ $(1,4-H_2bdc = acidul 1,4-benzendicarboxilic) a fost$ demonstrat că în goluri pot fi încorporate molecule de apă și dmf. Important că liganzii de carboxilat sunt des antrenați ca liganzi anionici atât la formarea poliedrului de coordinare al metalului, precum și la extinderea rețelelor, inclusiv supramoleculare. În cazul utilizării în calitate de solvent dmf, obtinerea complexului RMO-5. formula a s-a reusit cu $\{[Zn_4O(bdc)_3] \cdot 8dmf \cdot C_6H_5Cl\}_n$, care contine în fragmentele de bază un atom de oxigen ce legă patru atomi de Zn, iar fiecare tetraedru Zn₄O este dezvoltat de grupările carboxilice –COOH, deci în compus se evidențiează un cluster stabilit de liganzii H_2bdc cu funcție punte. Important e că o încălzire a acestor compuși până la temperatura de 300 °C timp de 24 de ore duce la eliminarea moleculelor oaspete, evidențiind stabilitatea carcaselor la aer. Studiul difracției cu raze X pe monocristal efectuat pentru ultimii nu a stabilit schimbări în morfologia cristalină, parametrii celulei elementare rămânând nemodificați, ilustrând rigiditatea și stabilitatea carcaselor în absența moleculelor oaspete.

Asamblarea compușilor prin utilizarea liganzilor micști carboxilat-piridină oferă posibilitatea de a spori stabilitatea rețelelor coordinative, accentul fiind pus pe efectul distanțierului flexibil important la obținerea PC. În această direcție, abordarea cea mai eficientă pentru construcția rețelelor metalo-organice cu liganzii micști este legată de antrenarea combinată a unor liganzi cu proprietăți acide și bazice asamblați în aceiași arhitectură supramoleculară. Ca urmare, la obținerea compușilor carboxilici cu structuri noi un factor important îl constituie introducerea unui ligand din clasa piridinelor. Motivul principal al utilizării liganzilor micști ține de efectul de distanțiere sau izomerizare a fiecărui tip de ligand organic, ținând cont însă și de alți factori, cum ar fi solventul utilizat sau pH-ul soluției, natura ionului metalic sau metoda de sinteză. Acestea pot sta la baza metodologiei designului și construirii raționale a polimerilor coordinativi doriți cu proprietăți aplicative. Având la bază ca prototipi liganzii carboxilici și piridinici neutre prin combinarea lor cu diferiți ioni metalici se pot crea RMO atât neutre, cât și ionice.

Combinarea liganzilor carboxilat și piridinic contribuie la formarea diferitor arhitecturi în procesul de autoasamblare. De exemplu, în compusul cu fragmentul de bază $[Ni_6(btc)_4(bpy)_6]$ ligandul H_3btc cu unghiul de 120 ° între grupările carboxilate duce la formarea rețelei de tip fagure, iar liganzii *bpy* sunt localizați perpendicular pe stratul hexagonal infinit. Ligandul *bpy* este un conector liniar însă la asamblarea cu fragmentele Ni₆(btc)₄ acesta duce la o extindere a structurii în rețeaua tridimensională. În lanțuri se evidențiează marcocicluri din 48 de atomi la formarea cărora sunt implicați șase cationi Ni(II) și șase anioni *btc*³⁻. La fiecare ion Ni(II) coordinează liganzii *bpy* care ocupă pozițiile axiale perpendiculare pe lanțurile adiacente, formând o legătură încrucișată între ele. În acest compus stratificat utilizarea ligandului *bpy* duce la formarea porilor, volumul cărora este circa 74% din volumul total al celulei elementare [75].

Studiul cu raze X al compușilor ce conțin ligandul *bdc* și ca liganzi auxiliari bis(imidazol) modulați în lungime cu formulele { $[Co(bdc)(bib)(H_2O)] \cdot H_2O\}_n$ și { $[Co(bdc)(bibp)]\}_n$ (*bib* = 1,4bis(1-imidazolil)benzen, și *bibp* = 4,4'-bis(imidazolil)bifenil [76] a demonstrat formarea în fiecare dintre ei a trei rețele metalo-organice 3D interpenetrate. Ca exemplu, în primul compus poliedrul de coordinare al atomului de metal este un octaedru. La fiecare ion Co(II) coordinează trei atomi de oxigen de la doi liganzi *bdc* diferiți, doi atomi de azot aparținând la doi liganzi *bib* diferiți și o moleculă de apă. Liganzii *bdc* adoptă două moduri de coordinare, unul fiind antrenat ca bidentatchelat, iar celălalt coordinează la ionii de Co(II) ca ligand punte determinând formarea lanțurilor, iar lanțurile adiacente sunt conectate prin liganzi *bib*, generând o structură de tip 2D grilă hexagonală, care se dezvoltă în 3D prin alți liganzi *bib*. Straturile 2D formate de ligandul *bib* formează cavități mari cilindrice care permit încorporarea altor rețele identice astfel, în cristal cele trei carcase 3D se interpenetrează reducând semnificativ din spațiile cavităților. Compusul ce conține ligandul *bibp* dispune de arhitectură tridimensională interpenetrantă 3D, iar liganzii *bdc* și *bibp* adoptă modul de coordinare bidentat-punte, în cristal evidențiind lanțuri elicoidale de dreapta și de stânga, care în rezultatul asamblării duc la formarea rețelelor 3D.

Liganzii carboxilici, în special cei aromatici di- și tricarboxilici, sunt recunoscuți ca liganzi utilizați la construirea rețelelor robuste cu structură poroasă, ce manifestă proprietăți de adsorbție. Studiul cristalografic a stabilit că la interacțiunea sărurilor de Co(II) și Cu(II) cu acidul 1,2-benzendicarboxilic (1,2- H_2bdc) și 2-aminopirazina (L) s-au format doi polimeri coordinativi noi 1D cu formulele [Co(H-1,2-bdc)₂(μ -L)(H₂O)₂]_n și {[Cu(H-1,2-bdc)₂(μ -L)H₂O]·H₂O}_n [77]. În acești polimeri coordinativi ligandul carboxilat acționează ca un ligand monodentat, iar ligandul de aminopirazină este responsabil pentru formarea structurii unidimensionale infinite. În acești compuși ionii centrali Co(II) și Cu(II) se deosebesc prin forma poliedrului de coordinare, octaedru și piramidă tetragonală, respectiv, dar această deosebire este determinată doar de numărul de molecule de apă coordinate și nu de modul de coordinare al liganzilor organici. În cristal lanțurile se unesc în straturi supramoleculare extinse prin legături de hidrogen O–H···O și legături de hidrogen fine C–H···O, iar acestea sunt asamblate în rețele 3D prin intermediul interacțiunilor de tipul N–H··· π .

Wu L. s.a. în 2017 [78] descriu trei polimeri coordinativi ai Cd(II) cu bpp ce se deosebesc doar prin liganzii carboxilici evidențiind unități secundare de construcție cu nuclearitate diferită: $\{ [Cd(bpp)(oba)(H_2O)] \cdot dmf \cdot H_2O \}_n,$ $\{ [Cd(bpp)(4-Hoip)] \cdot (dmf)_{0.5}(H_2O) \}_n, \}$ $\{ [Cd_6(bpp)(bpdc)_7(dmf)_2] \cdot 2H_3O \cdot 7H_2O \}_n, (H_2oba = acidul 4,4'-oxibis(benzoic), 4-H_3oip = acidul 4,4'-oxibis(benzo$ 4-hidroxi-o-ftalic, $H_{2}bpdc$ = acidul 4,4'-difenildicarboxilic). Aceștea au fost obținuți prin difuzie timp de trei zile la temperatura de 85 °C. Toți trei compuși cristalizează în grupuri spațiale monoclinice. Ca urmare, în unitatea mononucleară a primului compus atomul de metal este hexacoordinat, aici fiind antrenați patru atomi de oxigen ce aparțin liganzilor de carboxilat oba, unul activând ca bidentat-chelat, iar celălați doi - monodentați (Cd-O în intervalul 2,224(3) -2,460(3) Å) și doi atomi donori de azot fiind a doi liganzi bpp (Cd-N 2,289(3) și 2,371(4) Å). În cristal se evidențiează unități mononucleare ale Cd(II) conectate între ele de-a lungul axei cristalografice a de către liganzii carboxilați pentru a forma lanțuri zig-zag 1D. Apoi, lanțurile adiacente sunt legate suplimentar prin liganzii flexibili *bpp* de-a lungul axei cristalografice c, rezultând într-o rețea 2D cu goluri pătrate cu dimensiunile $6,2 \times 10,2$ Å² (dimensiuni bazate pe raza van der Waals a atomului de carbon) pe planul ac. Fiecare strat ondulator interacționează cu unul succesiv pentru a forma plase duble 2D, care se împachetează în modul ABAB de-a lungul axei b. Moleculele dmf oaspete sunt situate statistic în interior între două straturi duble unite prin legături de hidrogen fine (d(H···A) = 2,54 Å, d(D···A) = 3,327(10) Å). Această structură 2D se poate simplifica considerând unitatea mononucleară ca un nod cu 4 conexiuni, iar liganzii servesc ca punte. Spre deosebire de primul, unitatea binucleară din compusul al doilea este formată din doi ioni de Cd(II) hexacoordinati octaedric distorsionat identici. Fiecare poliedrul de coordinare octaedric este completat de patru atomi de oxigen de la trei liganzi 4-Hoip diferiți, unul coordinând bidentat-chelat, iar ceilalți doi fiind bidentați. Distanța Cd-Cd din unitatea binucleară este de 4,01 Å. În cristal se evidențiază lanțuri asemănătoare cu scările 1D conectate suplimentar prin liganzii bpp, rezultând untr-o rețea 3D cu canale 1D. Pentru al treilea compus $\{ [Cd_6(bpp)(bpdc)_7(dmf)_2] \cdot 2H_3O \cdot 7H_2O \}_n$ în cristal se evidențiează unitatea trinucleară de Cd(II), formată din trei atomi de metal cristalografic independenți. Înconjurarea atomului Cd(1) heptacoordinat este realizată de șapte atomi donori de O, care aparțin la patru liganzi de carboxilat bpdc diferiți. Atomul Cd(3) heptacoordinat are aceeași geometrie ca și Cd(1), numai că un atom donor de O este al moleculei de *dmf* coordinate și unul de N al unui ligand *bpp*. Spre deosebire de acești atomi de metal, atomul Cd(2) este hexacoordinat și adoptă cu totul alt mod de coordinare.

Poliedrul de coordinare octaedric al atomului Cd(2) este format de patru atomi donori O de la patru liganzi diferiți de carboxilat situați în planul ecuatorial și doi de la doi liganzi *bpdc*, care ocupă cele două poziții axiale de coordinare. În cristal se formează două rețele 3D interpenetrate neobișnuite cu piloni de tip helix. Important e că acești liganzi de carboxilat coordinează în primul compus bidentat-chelat la un atom de metal, iar prin cealaltă grupare carboxilică – doar monodentat, în al doilea compus – tetradentat, bidentat-chelat la un atom de metal, iar în al treilea compus au fost depistate mai multe moduri de coordinare a carboxilatului cu două grupări carboxilice: tetradentat-chelat la doi atomi de metal, iar în al treilea compus au fost depistate mai multe moduri de coordinare a carboxilatului cu două grupări carboxilice: tetradentat-chelat la doi atomi de metal, și tetradentat – la trei atomi de metal. Spectrele de luminescență ale acestor compuși au demonstrat emisii puternice și ca rezultat pot fi utilizați ca materiale fotocatalitice.

După cum este cunoscut combinarea liganzilor rigizi cu liganzi flexibili poate genera un număr imens de carcase 3D deschise cu pori care prezintă cele mai mari suprafețe ale RMO și rețele interpenetrate prin sinteza hidrotermală din sarea $M(NO_3)_2 \cdot 6H_2O$ (M = Ni și Zn) cu ligandul $H_{3}btc$ și 1,2-bis(1,2,4-triazol-4-il)etan (*btre*) au fost obținuți doi polimeri coordinativi 3D: $\{ [Ni_3(\mu_3-btc)_2(\mu_4-btre)_2(\mu-H_2O)_2] \cdot 22H_2O \}_n \text{ si } \{ [Zn_3(\mu_4-btc)_2(\mu_4-btre)(H_2O)_2] \cdot 2H_2O \}_n [79]. In \}$ compusul { $[Ni_3(\mu_3-btc)_2(\mu_4-btre)_2(\mu-H_2O)_2]$ ·22H₂O}_n o unitate trinucleară simetrică cu doi atomi de nichel cristalografic independenți, în care atomii Ni(1) și Ni(2) sunt uniți prin intermediul a doi liganzi de triazol și o moleculă de apă. Astfel, sfera de coordinare a celor doi atomi de metal marginali este alcătuită din trei atomi de oxigen ai grupelor carboxilice ce aparțin la trei liganzi *btc*, un atom de oxigen ce aparține unei molecule de apă, iar aceasta este completată de doi atomi de azot de la doi liganzi de triazol, pe când cea a atomului de metal central este format din doi atomi de oxigen ce aparțin la două molecule de apă și patru atomi de azot de la patru liganzi de triazol. Ca rezultat, ambele molecule de apă sunt antrenate ca liganzi punte, fiecare ligand btre conectează patru atomi de nichel și fiecare ligand punte btc^{3-} unește trei atomi Ni(1) simetrici. Utilizarea liganzilor micști a dus la formarea unei carcase 3D cu goluri mari în care este localizat un număr mare de molecule de apă de cristalizare. Calculul dimensiunilor cavităților după înlăturarea moleculelor de solvatare a evidențiat un volum de 1621 Å³ sau 52% din volumul total al celulei elementare. Compuslul $\{[Zn_3(\mu_4-btc)_2(\mu_4-btre)(H_2O)_2]\cdot 2H_2O\}_n$ este de asemenea 3D, însă spre deosebire de compusul precedent, aici sunt trei atomi de metal cristalografic independenți, doi atomi alăturați de Zn sunt legați atât prin punți de triazol, cât și prin carboxilat. Poliedrele de coordinare ale atomilor de metal sunt diferite: dacă atomul central Zn(2) are înconjurarea octaedrică formată de setul de atomi N₂O₄, la care participă și doi atomi de oxigen ce aparțin la două molecule de apă coordinate monodentat, atunci la atomul Zn(1) sunt cordinați trei atomii de oxigen ai grupelor carboxilice de la trei liganzi diferiți și un atom de azot de la ligandul de triazol, iar la atomul Zn(3) sunt coordinați patru atomi de oxigen de la trei grupe carboxilice, una coordinând bidentat-chelat, și un atom de azot de la ligandul de triazol. Fiecare ligand *btre* și *btc*³⁻ unește patru atomi de Zn(II). Important e că în baza legăturilor celor doi liganzi diferiți în cristal se evidențiază rețele 3D în cavitățile cărora sunt poziționate molecule de apă. Prin îndepărtarea moleculelor de solvent din această structură de Zn(II) au fost identificate goluri cu volumul de 94 Å³ sau 7% din volumul total al celulei elementare. Astfel, prin combinarea acelorși liganzi micști se pot forma RMO cu pori înguști sau largi, care pot participa la reacții reversibile fără modificarea topologiei carcaselor.

Diversificarea topologiei rețelelor poate fi influențată nu numai de proprietațile diferitor liganzi suplimentari N-donori și de valoarea pH-ului soluției, dar și de către carboxilații utilizați la crearea structurilor elicoidale ale compușilor complecși, cum ar fi de exemplu utilizarea acidului 1,3-adamantandicarboxilic (H_2adc) cu simetrie C_2 [80]. La baza designului a opt compuși diferiți au fost utilizați cinci liganzi punte cu atomi donori N,N, o serie de săruri ale Zn(II)/Co(II) și ligandul H2adc. Acești compuși sintetizați prin difuzie lentă în mediul bazic au formulele $[Zn(phen)(adc)(H_2O)]_2 \cdot CH_3OH,$ $\{[Zn(adc)(bpee)] \cdot H_2O\}_n,$ $\{[Zn(adc)(bpy)]\cdot 2H_2O\}_n,$ $\{[Zn(adc)(bpe)]_2 \cdot 5H_2O\}_n,\$ $\{[Zn(adc)(bpp)]_2 \cdot CH_3OH\}_n,$ $\{[Zn(adc)(bpp)]\}_n,$ ${[Co(adc)(bpp)(CH_3OH)(H_2O)] \cdot CH_3OH \cdot 2H_2O}_n$ și ${[Co(adc)(bpp)]}_n$. Structura binucleară centrosimetrică 0D din primul compus este obținută prin intermediul ligandului carboxilic care adoptă modul de coordinare tridentat, o grupă carboxilică coordinând bidentat-chelat, iar cealaltă monodentat printr-un atom de oxigen, formând unități discrete [Zn(adc)]₂, iar la fiecare atom de metal coordinează bidentat-chelat câte un ligand phen și o moleculă de apă. Utilizarea liganzilor din clasa bipiridinelor a dus la crearea polimerilor coordinativi cu dimensionalități diferite. În compusul doi se formează lanțurile duble în formă de zig-zag [Zn(adc)]n în care se evidențiează doi atomi de metal ce se unesc prin doi liganzi adc cu funcție punte, care se extind în lanțuri prin acești liganzi, iar cealaltă grupă carboxilică se unește la atomul de metal bidentat-chelat. Ca urmare, ligandul dicarboxilic este tetradentat și coordinează concomitent la trei ioni de Zn(II). În rețea planară 2D aceste lanțuri se unesc prin liganzii piridinici. Poliedrul de coordinare al fiecărui atom de metal este format de setul de atomi donori N₂O₄, patru atomi de O fiind de la trei liganzi adc, iar doi atomi de N de la liganzii bpe. Compușii trei și patru sunt isomorfi și se deosebesc puțin între ei, formând în cristal lanțuri polimerice 1D în formă de grilă. În ambii compuși trei și patru poliedrul de coordinare al atomului de metal este tetraedric, acesta fiind format de setul de atomi donori N₂O₂, cei doi atomi de azot aparținând celor doi liganzi piridinici, iar cei doi atomi de oxigen – la doi liganzi dicarboxilici, ce coordinează monodentat la fiecare atom de metal, ligandul

fiind bidentat cu funcție punte. Este interesant faptul că în unii compuși au fost observate rețele hibride organice-anorganice 2D care contin lanturi mezo-elicoidale. Compusul cinci include retele interpenetrate 2D, în care lanțurile elicoidale homochirale de stânga sunt dispuse într-o alternare ABAB paralelă cu planul definit *ac*, iar lanțurile elicoidale de dreaptă sunt aranjate de-a lungul axei a, rezultând o structură mezo-elicoidală. Poliedrul de coordinare al atomilor de metal cristalografic independenți sunt tetraedrice, formate de setul de atomi donori N₂O₂. Compușii șase, sapte și opt cristalizează într-un grup spațial chiral $P2_12_12_1$. Cu toate acestea, compușii șase și opt sunt isostructurali și reprezintă o rețea de diamandoid 3D interpenetrată triplă care conține trei lanțuri elicoidale, în timp ce compusul sapte reprezintă un strat grilă 2D cu un lanț elicoidal de stânga. Important e că în unii compuși s-au depistat lanțuri elicoidale de stanga și de dreapta separate ce rezultă într-o rețea meso-elicoidală 2D hibridă organic-anorganică. Dacă în șase și opt ligandul *adc* coordinează bidentat-chelat similar prin ambele grupe carboxilice, atunci în șapte acest ligand coordinează bidentat punte la doi atomi de metal prin doi atomi de O ce aparțin la două grupe carboxilice diferite. Investigarea influenței mediului pH asupra compusului șapte a dus la formarea unui nou compus opt, în care ionul Zn(II) are poliedrul de coordinare octaedric distorsionat, la care ligandul dicarboxilic coordinează bis(bidentat-chelat). Studiul luminescenței pentru compușii unu - șase au evidențiat benzi de emisie luminescentă în stare solidă, fapt ce lărgește câmpul aplicațiilor lor potențiale.

În consecință, strategia ingineriei cristalelor oferă posibilitatea controlului asupra formării structurilor coordinative polimerice dorite, ceea ce ne poate determina să obținem materiale noi cristaline funcționale prin utilizarea liganzilor policarboxilici antrenând concomitent liganzi auxiliari N-donori.

1.4. Polimeri coordinativi în baza liganzilor cu diferite grupări funcționale

Polimerii coordinativi sunt atractivi prin structurile lor diversificate, determinate de caracteristicile unităților de construcție anorganice - organice și posibilitățile de aplicare ale acestora. În comparație cu unitățile de construcție anorganice cu număr limitat de moduri de coordinare, liganzii organici pot prezenta diferite configurații care contribuie foarte mult la construcția PC cu arhitecturi supramoleculare variate. La crearea și construcția carcaselor metaloorganice (PC, RMO) ar putea aduce beneficii prin înțelegerea și utilizarea rezonabilă a influenței liganzilor versatili cu diversități structurale, cât și metoda de sinteză utilizată. Utilizarea combinată a liganzilor organici flexibili și rigizi prezintă versatilitate datorită capacităților de a conferi stabilitate și rigiditate structurii. Liganzii care conțin așa atomi ca C, O, N și S hibridizați sp^3 și grupările –(CH₂)_n– sunt clasificați ca liganzi flexibili, ce pot fi antrenați la construirea PC, important fiind modul de coordinare al liganzilor versatili și modul de împachetare al PC în cristal. O importanță deosebită se atribuie liganzilor cu gruparea $-(CH_2)_n$ (n=1,2 ...), deoarece aceasta contribuie la formarea polimerilor coordinativi cu o flexibilitate adițională în modul de conectare dintre metal și ligand. În prezent un număr mare de liganzi flexibili cu grupe $-(CH_2)_n$ - au fost aplicați pentru a crea rețele supramoleculare. Diferiți liganzi cu poziții de coordinare de la ditopic până la hexatopic pot forma multiple geometrii cu diferite lungimi [81, 82], datorită îndoirilor si rotirilor flexibile, rezultând astfel moduri distincte de coordinare. Diversificarea liganzilor flexibili poate fi realizată prin cuplarea lanțurilor –(CH₂)_n– cu diferite grupări funcționale, cum ar fi de carboxilat ori N-donore, de obicei, piridină, imidazol, triazol, tetrazol. Rotirea liberă în jurul acestor legături simple conduc la formarea lanțurilor care reprezintă configurații liniare, helix sau în formă de V atunci când coordinează la centrele metalice. Legăturile conformaționale au o influență semnificativă asupra geometriei și dimensiunilor finale ale polimerilor coordinativi. De exemplu, o serie de liganzi flexibili tipici cu lanțuri alcanice variabile (HOOC-(CH₂)_n-COOH) au fost investigate pe scară largă, evidențiind că diferitele conformații ale acestora pot afecta atât unitățile de construcție secundare (USC), cât și geometria rețelelor metalo-organice (Figura 1.11). Structurile distincte ale liganzilor flexibili cu lanțurile -(CH₂)_n- de asemenea contribue la formarea polimerilor coordinativi cu rețele interpenetrate [83].

Fig. 1.11. Reprezentarea schematică a celor mai frecvente conformații ale liganzilor care dictează structura unităților secundare de construcție [83]

Wang S. ş.a. în 2012 [84] au descris cinci polimeri coordinativi cu rețele interpenetrate obținute în baza a doi liganzi H_2pa (acidul pamoic) și bipiridinici: {[Ni(pa)(bpe)(H_2O)_2]·3dmf}_n, {[Zn(pa)(bpe)]·3dmf}_n, {[Zn(pa)(bpe)]·32dmf·3CH₃OH}_n, {[Cd₂(pa)₂(bpe)₂(H₂O)]₃·3,5H₂O}_n, {[Ni₂(pa)₂(bpp)₂(H₂O)₃]·32dmf}_n. În aceste sisteme atât ligandul anionic pa^{2-} , ce conține două grupări carboxilice și două hidroxilice, cât și liganzii bipiridinici acționează ca liganzi punte, conectând centrele metalice în configurații pătrate sau tetraedrice având conexiuni și diferite moduri de interpenetrare. Diversitatea structurilor cât și modul de interpenetrare sunt strâns legate de schimbarea configurației liganzilor flexibili, deoarece ligandul pa2- prezintă conformații simetrice și asimetrice, iar liganzii bpe și bpp prezintă diferite conformații cu distanțe și unghiuri diedre diferite între cele două inele piridinice versatile. Atomul de nichel din primul compus are poliedrul de coordinare octaedric, atomii donori fiind N₂O₄. În planul ecuatorial al poliedrului de coordinare sunt situați doi atomi de oxigen ai grupări de carboxilare ale liganzilor pa^{2-} diferiți și doi atomi de azot de la diferiți liganzi bpe, în timp ce pozițiile apicale sunt ocupate de doi atomi de oxigen ai celor două molecule de apă coordinate. Prin urmare, ambii liganzi acționează ca liganzi punte, dictând formarea în cristal a trei rețele tridimensionale interpenetrate. Calculul cavităților pentru acest compus a evidențiat circa 20% din volumul golurilor după înlăturarea moleculelor de solvent. În următorii compuși acest ligand carboxilic a prezentat și alte moduri de coordinare: tridentat-chelat unindu-se la doi atomi de metal, tetradentat-chelat – la doi atomi de metal coordinând bidentat chelat, de fiecare dată fiind antrenată câte o grupare carboxilică. Ca rezultat, atomul de zinc din compusul doi este pentacoordinat, la formarea poliedrului de coordinare sunt antrenati trei liganzi pa^{2-} cu atomii de O si doi liganzi bpe – fiecare cu un atom de N, iar în compusul de zinc trei atomul de metal central are deja poliedrul de coordinare tetraedric, cei doi liganzi pa^{2-} coordinând monodentat. În acești compuși au fost depistate rețele 3D interpenetrate, deosebindu-se radical însă prin modul de împachetare al acestora: dacă în compusul doi golurile stabilite ocupă circa 20,5%, atunci în ultimul – 38,8% din volumul celulei elementare. Cei doi atomi de cadmiu cristalogaric independenți din compusul patru se deosebesc după forma poliedrului de coordinare: dacă pentru Cd(1) a fost stabilit poliedrul de coordinare pentagonal-bipiramidal format din cinci atomi de oxigen la doi liganzi pa^{2-} și o moleculă de apă, aceștea fiind poziționați în planul ecuatorial, iar în poziții apicale sunt localizați doi atomi de N a doi liganzi bpe, atunci pentru Cd(2) – octaedric, format de patru atomi de oxigen ai doi liganzi pa^{2-} și o moleculă de apă, iar în poziții apicale de asemenea având doi atomi de N ai doi liganzi bpe. În cristalul acestui compus au fost depistate trei rețele 3D interpenetrate. În compusul de Ni(II) cu bpp cei doi atomi de metal cristalografic independenți au poliedre de coordinare similare, formate de setul de atomi donori N2O4, deosebindu-se doar prin liganzii participanți la coordinare. Liganzii piloni cu distanțieri flexibili –(CH2)n– și configurație diferită pot stabili distanța între straturile polimerilor coordinativi. Ca urmare, în acești compuși s-au format trei rețele de tip CdSO4 interpenetrate în primul compus, isomeri pseudosupramoleculari roto-translați [2 + 2] cu rețele de tip diamant interpenetrate (doi și trei), iar interpenetrarea a trei rețele în compusul patru și două rețele interpenetrate, respectiv cinci. Studiul proprietăților acestor compuși a evidențiat proprietăți de adsorbție și luminescențe.

Utilizarea ligandului bpe flexibil la prepararea PC este binevenită, deoarece acesta posedă distanțierele flexibile, însă nu este mai puțin important ligandul al doilea utilizat, ultimul fiind de natură absolut diferită de primul. Ca exemplu, la combinarea ionilor Co(II) cu ligandul bpe și $epdaH_2$ (H_2epda = acidul 5-etil-piridin-2,3-dicarboxilic) se formează polimerul coordinativ 3D cu formula { $[Co_2(epda)_2(bpe)] \cdot 3H_2O_{n}$ [85], un compus unicat în care Co(II) se unește cu trei dianioni de epda. Poliedrtul de coordinare este octaedric format de dianioni, o moleculă de apă și un ligand *bpe*. Modul de coordinare punte al anionilor *epda* este tetradentat, bidentat chelat prin atomii N,O la un atom de metal, iar prin atomii de oxigen din cealaltă grupare carboxilică – la alți doi atomi de metal, conduce la formarea straturilor de Co-carboxilat paralele cu planul bc care conțin unități binucleare de cobalt. Fiecare unitate binucleară este conectată prin intermediul a patru liganzi periferici cu fiecare centru de cobalt chelat coordinat de atomii N,O din anionii epda. Straturile adiacente se unesc prin piloni din liganzii bpe și ca rezultat în cristal se formează o rețea microporoasă cu canale tubulare deschise care se extind de-a lungul axei c. Volumul accesibil pentru solvent al acestui cristal reprezintă 25,2% din volumul totalul al celulei elementare. În compusul asemănător cu $[Zn_3(epda)_2(Hepda)_2(bpe)]_n$ [86] acest volum este de doar 1,6%, fapt cauzat de diferite geometrii de coordinare a liganzilor la centrul metalic. Cu atât mai mult, un compus similar cu acesta a fost obținut și în vid [85], iar studiul structural al ultimului a evidențiat transformările din ligandul flexibil bpe, care au condus la schimbarea volumului cavitătilor din cristal.

Distorsiunile sau răsucirile din liganzii distanțieri cu gupările flexibile -(CH₂)-O- conduc la configurații diferite ale acestora, ceea ce poate asigura diversitatea polimerilor coordinativi. O strategie legată de modul de formare a lanțurilor a fost dezvoltată prin utilizarea liganzilor flexibili și designul, construirea polimerilor coordinativi cu dimensiuni mai mari ce au topologii distinctive, incluzând sql, tbo, sql, kgm, rht, pcu [87, 88]. Eubank, J. ş.a. în 2011 au elaborat o metodă de sinteză pentru a realiza arhitecturi în baza liganzilor auxiliari, inclusiv ale polimerilor coordinativi 3D cu topologie estimată. De exemplu, sunt elaborați și utilizați pentru obținerea RMO tridimensionali liganzii bifuncționali trigonali care conțin acidului isoftalic și fragmente de tip triazolil separate prin lanțuri –CH2–O– [87]. Simetria liganzilor care formează polimeri coordinativi nu totdeauna coincide cu simetria grupului spațial, în care cristalizează compusul final, fapt ce poate fi explicat prin reducerea simetriei datorită rotației în jurul legăturilor simple din lanțul –CH₂–O–, ceea ce beneficiază formarea PC cu suprafețe neliniare și proprietăți optice [89]. Însă mulți dintre ei prezintă structuri cu simetrie superioară determinând carcase centrosimetrice [90, 91]. De asemenea, acești liganzi dispun de patru grupe flexibile C-CH₂-O-R cu unghiuri de valență ajustabile C_R-C_{core}-C_R care pot fi influențate de diverse configurații ale liganzilor. Aici se poate menționa că liganzii flexibili multifuncționali ce conțin lanțuri –CH2–O–

au fost concepuți pentru obținerea PC cu rețele remarcabile ale structurilor cu diferite proprietăți [92].

Atractivi pentru crearea PC au devenit în ultimul timp liganzii flexibil cu distanțieri ce conțin atomi donori N sau lanțuri –(CH₂)–N–, fapt explicabil atât prin configurația și flexibilitatea lor variabilă, cât și prin aplicațiile potențiale ale PC în diferite domenii de cercetare ca adsorbția gazelor, luminescența, chiralitatea etc. Liganzii care conțin atomul donor N pot fi clasificați după grupări: imino-, amido- cu lanțuri alchil/ariil, grupări amidice și acilamidice. Prin introducerea acestora în diferiți liganzi flexibili cu distanțieri mai lungi aceștea devin mai dispuși de a fi antrenați la crearea PC noi [93]. Prin utilizarea liganzilor –(CH₂)–N– cu excepția structurilor elicoidale, pot fi obținute rețele interpenetrate. De exemplu, asamblarea a doi liganzi flexibili de *bis*(piridiluree) cu sulfați ai metalelor de tranziție permite obținerea compușilor coordinativi cu rețele paralele interpenetrate [94].

Cao R. ş.a. în 2014 [95], au elaborat designul, sinteza și aplicațiile RMO bazate pe liganzi flexibili, formarea cărora este cauzată de conformația, modul de coordinare al liganzilor prin setul de atomi donori și natura acestora, pentru a fi utilizați pe scară largă în adsorbția gazelor, cataliză, luminiscență etc. Savanții Dhakshinamoorthy A. și Garcia H. în anul 2014 [96] au studiat utilizarea RMO ca catalizatori solizi. Studiul structural a evidențiat RMO în funcție de tipul heterociclului utilizat conținând atomi de N incluzând pirimidine, biperidine N-substituite, chinoline, indoli, imidazoli N-substituiți, triazoli și amide heterociclice. O atenție deosebită a fost acordată stabilității structurale a RMO în condiții de reacție, evidențiind superioritatea RMO față de alți catalizatori solizi.

În [97] sunt prezentați trei compuși izomerici cu formula { $[AgL_1]ClO_4\}_n$ care au fost obținuți din acetonitril sau amestec de solvenți de diclormetan și metanol, ligandul L_1 este o bază Schiff (L_1 – ligand N,N-donor ce coordinează *bis*(bidentat)), care a fost obținut prin condensarea α,α '-diamino-*p*-xilenei cu piridin-2-carboxaldehida [98, 99]. Ligandul flexibil L₁ adoptă doar o conformație *anti*- într-un compus de Ag(I) și este prezent în două conformații *anti*- și *gaushe* diferite în unitatea structurală repetată a altui, rezultând formarea unor lanțuri polimerice ondulatorii trapezoidale. În lanțul polimeric din compus al treilea, un singur izomer *anti*- al ligandului este prezent, rezultând un lanț ondulatoriu triunghiular. Structura unui izomer este indusă de solvent cu un rol major în asamblarea componentelor în cristal. Polimerii unidimensionali coordinativi din acești trei compuși sunt isomeri supramoleculari conformaționali. În unul dintre compuși sunt observate două lanțuri polimerice independente paralele: un lanț format din ligandul cu conformația *anti*- și celălat, *gauche*. Acesta este un exemplu rar de izomeri supramoleculari a liganzilor prezenți în același cristal. Astfel, șase conformații diferite ale ligandului flexibil sunt observate în cristalele polimerilor coordinativi. Conceptul de izomerism supramolecular poate contribui la formarea structurilor polimerice coordinative 1D, 2D sau 3D. Rezultatele sintezelor direcționate sau a autoasamblării pot fi utilizate la studiul izomerismului supramolecular sau polimorfismului într-un număr limitat de arhitecturi. Astfel, liganzii flexibili pot contribui la schimbări ingenioase în arhitecturile polimerice.

O altă clasa de liganzi flexibili sunt cei ce au atomi donori de S și lanțuri –(CH₂)_n–S– care sunt de asemenea utilizați la designul diferitor structuri supramoleculare. Bu X.-H. ș.a. în 2008 [100] în baza liganzilor flexibili ce conțin ditioeteri și disulfoxid au studiat diverse arhitecturi al polimerilor coordinativi. Acești liganzi nu sunt suficient de simpli și ușor de sintetizat, cu atât mai mult, ei pot fi modificați sistematic prin schimbarea lungimii ligandului și a grupărilor terminale. Blocurile de construcție cu liganzi rigizi își păstrează geometria de coordinare și în baza lor au fost create numeroase arhitecturi supramoleculare, însă compușii cu liganzi flexibili sunt mai sensibili decât cei rigizi, datorită varietăților configurației acestora. Studiul compușilor cu liganzii flexibil din clasa ditioeterilor [101, 102] și a celor ce conțin disulfoxid [103,104] a evidențiat modificări deosebite atât în liganzi, cât și în geometria poliedrului de coordinare al ionilor de metal, aceștea fiind influențați de utilizarea diferitor solvenți, a diferitor rapoarte metal:ligand, care în concluzie conduc la formarea diverselor structuri. În ultimii ani s-au sintetizat multi compusi metalorganici folosind ca ligand flexibil disulfoxidul [105]. Acesti liganzi ditopici punte cu multe caracteristici interesante, cum ar fi natura ditopică bidentată și formele diastereomerice mezo și rac, au condus la formarea polimerilor coordinativi neobișnuiți cu structuri unicale, determinate nu numai de lungimile distanțierilor, cât și de grupările terminale ale liganzilor, contranionii sau solvenții utilizați în sinteză. Modificarea lungimii ligandului și a grupărilor terminale pot împiedica steric formarea compușilor, astfel, grupările aril și alchil legate direct de atomi donori (S sau S=O) pot avea o influență asupra modului de coordinare al unor astfel de liganzi [100] (Figura 1.12).

Fig. 1.12. Modul de coordinare al liganzilor cu atomi donori S sau S=O [100]

Liganzii din clasa ditioeterilor se obțin prin utilizarea unei reacții de substituție, produsul fiind ușor separat și spălat cu apă. Pe lângă aceasta, majoritatea compușilor disulfoxidici pot fi sintetizați și prin oxidarea directă a compușilor ditioeterici. Liganzii ditioeterici cu atomi donori S au afinitate mai mare pentru ionii metalici moi, cum ar fi Ag(I), Pd(II) și Pt(II), iar liganzii disulfoxidici cu atomi donori S și O pot forma polimeri coordinativi atât cu metale de tranziție de tip d, cât și cu lantanide. Ca urmare, prin schimbarea geometriei ionilor de metal a liganzilor sau a contranionilor și solvenților pot fi obținuți o serie de polimeri coordinativi noi. Metodele caracteristice de sinteză pentru acești compuși sunt în special evaporarea lentă a solventului sau difuzia la temperatura camerei.

Motivul principal pentru compușii metalici în baza liganzilor polifuncționali S-donori rigizi constă în abilitatea ligandului de a coordina în mod diferit la metal, precum și efectuarea unui control asupra subunităților și selectarea metodei de sinteză. De exemplu, la interacțiunea ligandului ditioeteric 1,6-bis(feniltio)hexan (L) cu sarurile AgClO₄ și AgNO₃, au fost obșinuți doi compuși absolut diferiți cu formulele [Ag(L)(ClO₄)]₂ și [AgL(NO₃)]_n [106]. Dacă primul compus are dimensionalitatea 0D, deci este un compus dinuclear, atunci celălalt este un compus de tip polimer coordinativ 2D. În primul compus cei doi atomi de metal sunt legați prin două punți anorganice (anionul ClO₄) și două organice – prin doi liganzi L. Ca urmare, fiecare ligand L coordinează bidentat punte la cei doi atomi de metal, iar ligandul anorganic folosește doi atomi de oxigen pentru a coordina la cei doi atomi de metal. În compusul polimeric fiecare anion leagă doi ioni de metal Ag(I) vecini utilizând modul punte µ2-O. Ca rezultat, în cristal se evidențiează cicluri din patru atomi Ag₂O₂, legate prin ligandul L până la un strat 2D, în care se pot evidenția macrocicluri formate de sase atomi de metal și patru liganzi L. Astfel, complecși metalici cu ditioeteri diferite disulfoxid adoptă structuri formând compuși mononucleari sau cât și polimerici coordinativi 3D, în care liganzii prezintă o varietate a modului de coordinare la ionii de metal. Diferența structurilor celor doi compuși poate fi cauzată de modul de coordinare diferit al anionilor anorganici NO_3^- și ClO_4^- , pe când ligandul organic L coordinează prin ambii atomi de S la ionii de Ag(I).

Ca urmare, o influență deosebită asupra structurilor poate fi natura ionilor de metal, cât și a liganzilor flexibili ditioeterici sau disulfoxid. Deoarece liganzii flexibili ce conțin S sau S=O pot adopta moduri diferite de coordinare prin reglarea finală a distanțierilor și grupărilor terminale ale ligandului, cât și prin selectarea ionilor metalici, dar și prin modificarea condițiilor de reacție.

1.5. Concluzii la capitolul 1

- Analiza rezultatelor din literatura de specialitate evidențiează o evoluție revoluționară a compuşilor de la mononucleari şi polinucleari 0D până la polimeri coordinativi cu dimensionalitate diferită. Numărul în creştere a acestora este cauzat nu numai de numărul mare de metale, fiecare cu stările de oxidare disponibile, dar şi de diversitatea liganzilor ce pot coordina la metal, care se pot deosebi atât după numărul atomilor donori, cât şi după compoziția setului de atomi donori. Un element important care dictează geometria rețelelor cristaline este metalul şi starea lui de oxidare, ce poate forma diverse geometrii de coordinare: liniare, trigonal-planare, în formă de T, pătrat-planare, tetraedrice, trigonal- şi tetragonal-piramidale, octaedrice, şi desigur formele lor distorsionate.
- La prepararea compuşilor coordinativi, inclusiv a polimerilor, s-au dovedit a fi extrem de eficiente metodele chimice ce au la bază combinarea metalelor de tranziție aflate în diferite stări de oxidare cu diferiți liganzi polidentați atât oragnici, cât și anorganici. Rezultat aștepatat sunt atât rețelele coordinative ori supramoleculare cu arhitecturi interesante, dar și proprietățile acestor materiale, precum magnetice, adsorbtive, optice.
- Toate metodele de obținere cunoscute din literatură printre care se pot menționa sinteza solvotermală, evaporarea lentă, ultrasonarea, iradierea cu microunde, metoda electrochimică, sinteza reticulară ș.a. au la bază variația naturii ionului de metal, cât și a liganzilor și solvenților utilizați. Însă utilizarea unei combinații a liganzilor, adică utilizarea liganzilor micști, unii fiind cu diferite grupări funcționale, alții din clasa bipiridinelor, contribuie întotdeauna la asamblarea arhitecturilor cu rețele supramoleculare/coordinative având dimensionalitatea 0D (monomeri, inclusiv mono-, bi- și polinucleari), 1D (lanțuri ori rețele unidimensionale), 2D (straturi ori rețele bidimensionale) și 3D (rețele spațiale ori tridimensionale).

2. METODE DE SINTEZĂ, ANALIZĂ ȘI CERCETARE

2.1. Sinteza compuşilor coordinativi ai Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) şi Cd(II) 1. {(bpyH₂)[Fe(bpy)₂(H₂O)₂(SO₄)₂]·2H₂O}_n

Amestecul format din FeSO₄·7H₂O (0,027 g, 1,0 mmol) și 4,4'-bipiridină (0,019 g, 1,0 mmol) a fost dizolvat în amestecul de solvenți constituit din 6 ml metanol și 0,3 ml N,N'dimetilformamidă. Soluția obținută s-a agitat 5 minute la agitator magnetic cu încălzire la temperatura de 60 °C, s-a filtrat pe hârtiea de filtru și apoi s-a răcit încet până la temperatura camerei. Evaporarea lentă a acestei soluții a condus la formarea cristalelor de culoare maro. Randament: ~ 33%.

Analiza elementală (%) pentru C₄₀H₅₂N₈O₂₄S₄Fe₂:

calculat, %: C 42,11; H 4,59; N 9,82; găsit, %: C 41,49; H 4,20; N 9,48.

Spectrul IR (cm⁻¹): 3302 (s), 3202 (s), 1657 (m), 1595 (s), 1530 (m), 1492 (p), 1410 (s), 1324 (p), 1222 (p), 1073 (s), 1044 (m), 993 (m), 809 (m), 737 (m), 675 (m), 460 (s), 410 (s).

2. ${[Cu(bpp)_2(H_2O)](BF_4)_2 \cdot dmf \cdot 0,75H_2O]_n}$

La amestecul format din Cu(BF₄)₂·6H₂O (0,023 g, 1,0 mmol) și 1,3-bis(4-piridil)propan (0,015 g, 1,0 mmol) s-a adăugat amestecul de solvenți constituit din 10 ml metanol și 0,24 ml N,N'-dimetilformamidă. Soluția obținută s-a agitat timp de 5 minute la agitator magnetic cu încălzire la temperatura de 60 °C, s-a filtrat pe hârtia de filtru și apoi s-a răcit încet până la temperatura camerei. La evaporarea lentă a acestei soluții s-au format cristale în formă de plăcuțe de culoare albastru-violet. Randament: ~ 75%.

Analiza elementală (%) pentru C₂₉H_{38.50}B₂F₈N₅O_{2.75}Cu:

calculat, %: C 50,19; H 5,52; N 10,09; găsit, %: C 49,78; H 5,05; N 9,86.

Spectrul IR (cm⁻¹): 3579 (s), 32246 (s), 1655 (m), 1620 (p), 1509 (p), 1433 (m), 1386 (s), 1343 (s), 1231 (m), 1216 (m), 1069 (m), 1027 (m), 992 (m), 822 (m), 806 (m), 758 (m), 665 (s), 569 (m), 441 (m).

3. ${[Cu_5(\mu_3-OH)_2(\mu-OH_2)_4(\mu_3-SO_4)_2(\mu-SO_4)_2(bpy)_4] \cdot 3H_2O_n}$

Amestecul format din CuSO₄·5H₂O (0,025 g, 1,0 mmol), sulfasalazină (0,040 g, 1,0 mmol) și 4,4-bipiridil (0,019 g, 1,0 mmol) a fost dizolvat în amestecul de solvenți constituit din 2 ml apă și 4 ml etanol, apoi amestecul transparent a fost introdus într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare portocaliu în formă de plăcuțe au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 70%.

Analiza elementală (%) pentru C₂₀H₃₀N₄O₂₄S₄Cu₅:

calculat: C 23,36; H 2,94; N 5,45; găsit: C 23,17; H 2,76; N 5,27.

Spectrul IR (cm⁻¹): 3749 (m), 3480 (m), 3143 (s), 2975 (s), 1979 (m), 1845 (m), 1610 (m), 1533 (m), 1223 (m), 1062 (p), 1046 (p), 986 (m), 971 (m), 824 (m), 720 (m).

4. {[Zn₂(1,2-bdc)₂(bpe)₂]·0,25dmf·0,25H₂O}_n

La interacțiunea sării de $Zn(BF_4)_2 \cdot 6H_2O$ (0,023 g, 1,0 mmol) cu acidul 1,2-benzendicarboxilic (0,018 g, 1,0 mmol) și 1,2-bis(4-piridil)etan (0,018 g, 1,0 mmol) a fost obținut un amestec care a fost dizolvat în 3 ml de apă, 3 ml metanol și 0,15 ml N,N'-dimetilformamidă, apoi a fost transferat într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele transparente au fost separate prin filtrare pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 21%.

Analiza elementală (%) pentru C_{40.75}H_{34.25}N_{4.25}O_{8.50}Zn₂:

calculat: C 83,57; H 5,94; N 8,40. găsit: C 84,17; H 6,00; N 8,81.

5. [Zn₂(1,2-bdc)₂(bpp)₂]_n

La amestecul format din $Zn(BF_4)_2 \cdot 6H_2O$ (0,023 g, 1,0 mmol) și acidul 1,2-benzendicarboxilic (0,018 g, 1,0 mmol) s-a adăugat 1,3-bis(4-piridil)propan (0,015 g, 1,0 mmol). Amestecul obținut s-a dizolvat în 3 ml de apă, 3 ml metanol și 0,15 ml N,N'-dimetilformamidă, apoi a fost transferat într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele transparente au fost separate prin filtrare pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 25%.

Analiza elementală (%) pentru $C_{21}H_{18}N_2O_4Zn$:

calculat: C 68,73; H 4,94; N 6,40; găsit: C 69,59; H 5,00; N 6,63.

6. [Cd(1,2-bdc)(bpp)(H₂O)]_n

Amestecul formată din Cd(BF₄)₂·6H₂O (0,024 g, 1,0 mmol), acidul 1,2-benzendicarboxilic (0,018 g, 1,0 mmol) și 1,3-bis(4-piridil)propan (0,015 g, 1,0 mmol), dizolvat în 3 ml de apă, 3 ml metanol și 0,24 ml N,N'-dimetilformamidă a fost transferat într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de

24 ore, apoi răcit până la temperatura camerei. Cristalele transparente au fost separate prin filtrare pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 30%. Analiza elementală (%) pentru $C_{21}H_{20}N_2O_5Cd$: calculat: C 65,73; H 4,83; N 6,92; găsit: C 66,12; H 5,09; N 7,16.

7. ${[Co4(\mu_3-OH)2(btc)2(H_2O)8]\cdot 4H_2O}_n$

Amestecul mecanic format din $Co(BF_4)_2 \cdot 6H_2O$ (0,036 g, 1,0 mmol), acidul 1,3,5benzentricarboxilic (0,021 g, 1,0 mmol) și 1,3-bis(4-piridil)propan (0,015 g, 1,0 mmol), dizolvat în 3 ml de apă, 3 ml metanol și 0,24 ml N,N'-dimetilformamidă a fost transferat într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 48 ore. Cristalele transparente obținute au fost separate prin filtrare pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 19%.

Analiza elementală (%) pentru C₉H₁₆O₁₃Co₂:

calculat: C 23,76; H 3,42; găsit: C 24,02; H 3,58.

Spectrul IR (cm⁻¹): 3116 (p), 2924 (m), 1602 (s), 1568 (s), 1436 (m), 1396 (.s), 1288 (s), 1109 (p), 757 (m), 714 (p).

8. {[Zn4 (Hbtc)₂((Me)btc)(bpp)₄]·((Me)₂Hbtc·2H₂O}_n

Amestecul mecanic format din $Zn(BF_4)_2 \cdot 6H_2O$ (0,023 g, 1,0 mmol), acidul 1,3,5benzentricarboxilic (0,021 g, 1,0 mmol) și 1,3-bis(4-piridil)propan (0,015 g, 1,0 mmol), dizolvat în 3 ml de apă, 3 ml metanol și 0,24 ml N,N'-dimetilformamidă a fost transferate într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 72 ore. Cristalele transparente obținute au fost separate prin filtrare pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 21%.

Analiza elementală (%) pentru C₂₅H_{20.75}N₂O₈Zn:

calculat: C 54,97; H 3,72; N 4,89; găsit: C 55,34; H 3,85; N 5,17.

Spectrul IR (cm⁻¹): 3579 (m), 3195(m), 3116 (m), 2952 (p), 1655(m), 1609 (p), 1555 (p), 1454 (m), 1433(m), 11436 (m), 1370(p), 1288 (p), 1231(p), 1105(p), 1027(s), 992(s), 850(s), 754(s).

9. ${[Zn(bpdc)(H_2O)] \cdot dmf \cdot H_2O}_n$

În urma reacției dintre $Zn(BF_4)_2 \cdot 6H_2O$ (0,023 g, 1,0 mmol), acidul 2,2'-dipirimidil-4,4'dicarboxilic (0,024 g, 1,0 mmol) și 1ml hidroxidul de sodiu (0,01N), dizolvați în amestec de solvenți constituit din 3 ml etanol și 3 ml apă, a fost obținută soluția care a fost transferată într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 100 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele transparente obținute au fost separate prin filtrare pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 5%.

Analiza elementală (%) pentru C₁₅H₁₇N₃O₇Zn:

calculat: C 51,27; H 4,87; N 11.96; găsit: C 51,08; H 4,74; N 11,71.

Spectrul IR (cm⁻¹): 3735 (s), 3225 (s), 1666 (m), 1623 (s), 1556 (s), 1417 (m), 1394 (p), 1369(s), 1291(m), 1237(m), 1104(m), 1069(m), 914 (m), 889(m), 788(m), 777 (m), 726(m) 660 (p) 524 (s).

10. [Co(bzpy)2(H2O)2](BF4)2

Soluția obținută la dizolvarea Co(BF₄)₂·6H₂O (0,036 g, 1,0 mmol) și 2-benzoilpiridină (0,018 g, 1,0 mmol) în 3 ml de apă, 3 ml metanol și 0,15 ml N,N'-dimetilformamidă a fost transferată într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele obținute au fost separate prin filtrare pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 25%.

Analiza elementală (%) pentru $C_{24}H_{22}B_2F_8N_2O_4Co$:

calculat: C 45,40; H 3,49; N 4,41; găsit: C 45,01; H 3,07; N 4,02.

Spectrul IR (cm⁻¹): 3380 (m), 2935 (p), 2924 (m), 1659 (p), 1555 (p), 1448 (m), 1370 (p), 1080 (s), 943 (m), 761 (s), 660 (p) 524 (s).

11. [Cu(bzpy)₂(Cl)₂]

Amestecul format din CuCl₂·2H₂O (0,017 g, 1,0 mmol) și 2-benzoilpiridină (0,018 g, 1,0 mmol), dizolvat în 3 ml de apă, 3 ml metanol și 0,15 ml N,N'-dimetilformamidă a fost transferate într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele au fost separate prin filtrare pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~21%.

Analiza elementală (%) pentru C₂₄H₁₈Cl₂N₂O₂Cu:

calculat: C 57,55; H 3,63; N 5,59; găsit: C 56,48; H 3,02; N 4,98.

Spectrul IR (cm⁻¹): 3274 (m), 3061 (p), 2988 (m), 1659 (p), 1580 (p), 1445 (m), 1316 (p), 1175 (s), 946 (m), 823 (p), 780 (p), 758 (p), 656 (m).

12. ${[Mn_2(dtdb)_2(bpe)_2(EtOH)_2(H_2O)_2] \cdot dmf}_n$

La amestecul format din $MnF_2 \cdot 4H_2O$ (0,022 g, 2,0 mmol) și acidul 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) s-a adăugat 1,2-bis(4-piridil)etan (0,018 g, 1,0 mmol). Amestecul obținut s-a

dizolvat în amestec de solvenți constituit din 3 ml N,N'-dimetilformamidă și 3 ml etanol, apoi a fost transferată într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 100 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare portocalie în formă de plăcuțe au fost separate prin filtrare pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 70%.

Analiza elementală (%) pentru C₅₉H₆₃N₅O₁₃S₄Mn₂:

calculat: C 55,01; H 4,93; N 5,44; găsit: C 54,83; H 4,75; N 5,26.

Spectrul IR (cm⁻¹): 3752 (s), 3649 (m), 2975 (m), 2642 (m), 1666 (p), 1609 (m), 1588 (p), 1575 (p), 1544 (m), 1432 (m), 1374 (p), 1280 (m), 1227 (s), 1154 (s), 1089 (m), 1053 (m), 1015(m), 910(s), 881(m), 832 (p), 758 (p), 734 (m), 692 (s), 653 (m).

13. ${[Co_2(dtdb)_2(bpe)_2(EtOH)_2(H_2O)_2] \cdot dmf}_n$

Soluția formată din Co(BF₄)₂·6H₂O (0,036 g, 1,0 mmol), acidul 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) și 1,2-bis(4-piridil)etanul (0,018 g, 1,0 mmol) în amestec de solvenți constituit din 3 ml N,N'-dimetilformamidă și 3 ml etanol, a fost transferată într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare roz în formă de plăcuțe au fost separate prin filtrare pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~70%.

Analiza elementală (%) pentru C₅₉H₆₃N₅O₁₃S₄Co₂:

calculat, %: C 60,13; H 5,38; N 5,94; găsit, %: C 59,95; H 5,2; N 5,65.

Spectrul IR (cm⁻¹): 3555 (m), 2868 (s), 2323 (s), 1966 (m), 1947 (m), 1662 (s), 1608 (m), 1592 (p), 1567 (s), 1551 (s), 1455 (m), 1395 (p), 1379 (p), 1354 (m), 1228 (m), 1158 (m), 1069 (s), 1035 (p), 1022 (m), 824 (p), 779 (m), 743 (p), 691 (m).

14. [Co₃(dtdb)₂(bpe)(HCOO)₂(H₂O)₂]_n

La amestecul format din Co(BF₄)₂·6H₂O (0,036 g, 1,0 mmol) și acidul 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) s-a adăugat 1,2-bis(4-piridil)etan (0,018 g, 1,0 mmol), apoi aceștea au fost dizolvați în amestec de solvenți constituit din 3 ml N,N'-dimetilformamidă, 3 ml etanol și 0,14 ml acid tetrafloroboric, după care a fost introdus într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare roz în formă de plăcuțe au fost separate prin filtrare pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 18%. Analiza elementală (%) pentru C₄₂H₃₄N₂O₁₄S₄Co₃: calculat, %: C 52,13; H 3,54; N 2,89; găsit, %: C 51,95; H 3,36; N 2,71.

Spectrul IR (cm⁻¹): 3656 (m), 2975 (p), 2900 (m), 1700 (s), 1665 (p), 1610 (m), 1588 (m), 1575 (p), 1543 (p), 1452 (m), 1431 (m), 1388 (p), 1374 (p), 1280 (m), 1228 (s), 1155 (s), 1088 (m), 1054 (p), 1018 (m), 971 (s), 886 (s), 833 (p), 815 (m), 778 (s), 757 (p), 744 (m), 703 (p), 692 (m).

15. [Co4(Htb)4(tb)2(bpe)(H2O)]·2dmf·9H2O}n

La interacțiunea sării de Co(BF₄)₂·6H₂O (0,036 g, 1,0 mmol) cu acidul 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) și 1,2-bis(4-piridil)etanul (0,018 g, 1,0 mmol) amestecul a fost dizolvat în amestec de solvenți constituit din 3 ml N,N'-dimetilformamidă, 3 ml etanol și 1ml soluție hidoxid de sodiu (0,01N), apoi a fost transferată într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare negru în formă de plăcuțe au fost separate prin filtrare și spălate cu eter dietilec pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 70%.

Analiza elementală (%) pentru C₃₀H₃₄N₂O_{11.50}S₃Co₂:

calculat: C 50,28; H 4,78; N 3,91; găsit: C 50,10; H 4,61; N 3,72.

Spectrul IR (cm⁻¹): 3255 (s), 2809 (m), 1657 (m), 1615 (s), 1568 (p), 1529 (p), 1425 (m), 1366 (p), 1281 (p), 1248 (m), 1161 (s), 1146 (m), 1070 (s), 1058 (m), 1024 (m), 998 (s), 921 (s), 871 (m), 838 (p), 807 (s), 787 (s), 753 (p), 730 (m), 691 (m), 662 (s).

16. ${[Cu(tdb)(dmf)] \cdot dmf}_n$

La dizolvarea Cu(BF₄)₂·6H₂O (0,024 g, 1,0 mmol) și acidului 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) în amestecul de solvenți constituit din 8 ml N,N'-dimetilformamidă și etanol (5:3) a fost obținută o soluție verzuie, care a fost introdusă în baia cu ultrasunet timp de 30 minute la temperatura camerei. Soluția transparentă de culoare galbenă rezultată a fost filtrată, iar cristalele de culoare verde în formă de prisme au fost obținute la evaporare lentă. Randament: ~ 60%.

Analiza elementală (%) pentru C₂₀H₂₂N₂O₆SCu:

calculat, %: C 53,38; H 4,92; N 6,22; găsit, %: C 53,21; H 4,74; N 6,04.

Spectrul IR (cm⁻¹): 3662 (m), 3415 (s), 2972 (p), 2479 (m), 2330 (s), 1657 (m), 1608 (p), 1471 (s), 1433 (m), 1394 (p), 1381 (m), 1250 (m), 1154 (s), 1065 (m), 1056 (p), 854 (m), 748 (m).

17. ${[Cu_2(tdb)(sdb)(dmf)(H_2O)] \cdot 2dmf}_n$

La soluția sării Cu(BF₄)₂·6H₂O (0,024 g, 1,0 mmol) dizolvate în 6 ml metanol și agitată la temperatura camerei până la dizolvarea completă a fost adăugat acidul 2,2'-ditiodibenzoic

(0,036 g, 1,0 mmol) dizolvat separat în 2 ml N,N'-dimetilformamidă și agitat până la dizolvarea completă timp de 10 minute la temperatura camerei. Din soluția transparentă verde-galbuie s-au obținut cristale verzi în formă de ace după două luni. Randament: ~ 65%.

Analiza elementală (%) pentru C₃₇H₃₉N₃O₁₄S₂Cu₂:

calculat, %: C 50,69; H 4,48; N 4,79; găsit, %: C 50,51; H 4,31; N 4,62.

Spectrul IR (cm⁻¹): 3441 (m), 2970 (m), 2506 (s), 1655 (p), 1617 (m), 1568 (s), 1495 (m), 1405 (m), 1388 (p), 1321 (m), 1255 (m), 1155 (m), 1089 (p), 1055 (m), 846 (m), 785 (m), 750 (p).

18. [Cu(Htdb)₂(dpe)₂]

Amestecul mecanic format din CuF₂·2H₂O (0,013 g, 1,0 mmol), acidul 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) și 1,2-bis(4-piridil)etan (0,018 g, 1,0 mmol) a fost dizolvat în amestecul de solvenți constituit din 3 ml N,N'-dimetilformamidă și 3 ml etanol, apoi a fost transferat într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele în formă de ace de culoare albastru au fost obținute timp de o lună care s-au separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 21%.

Analiza elementală (%) pentru C₅₂H₄₂N₄O₈S₂Cu:

calculat, %: C 86,39; H 5,85; N 7,75; găsit, %: C 86,21; H 5,67; N 7,55.

Spectrul IR (cm⁻¹): 3374 (m), 3071(s), 2797 (m), 1689 (m), 1618 (s), 1603 (p), 1505 (s), 1470 (m), 1359 (m), 1251 (m), 1054 (m), 975 (m), 835 (p), 758 (m), 736 (p), 714 (s), 689 (m).

19. {(bpeH₂)[Cu(bpe)(SO₄)₂(H₂O)]·3H₂O}_n

Din filtratul rămas după separarea compusului [Cu(Htdb)₂(dpe)₂] au fost obținute cristale verzi care s-au separat prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 21%.

Analiza elementală (%) pentru C₂₄H₃₄N₄O₁₂S₂Cu:

calculat, %: C 45,45; H 5,40; N 8,83; găsit, %: C 45,27; H 5,21; N 8,65.

Spectrul IR (cm⁻¹): 3393 (m), 2923 (m), 2450 (s), 1634 (p), 1619 (p), 1457 (s), 1436 (m), 1389 (s), 1228 (m), 1147 (p), 1059 (s), 1034 (p), 964 (p), 835 (p), 720 (p), 683 (m).

20. $\{[Cu(bpe)_2]F \cdot 0, 5H_2O\}_n$

Din filtratul rămas după separarea compusului $\{[Cu(dpe)(SO_4)_2(H_2O)]\cdot 3H_2O\}_n$ au fost obținute cristale de culoare brun care s-au separat prin filtrare pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 25%.

Analiza elementală (%) pentru C₁₂H₁₃FN₂O_{0.50}Cu:

calculat, %: C 58,81; H 4,89; N 10,46; găsit, %: C 58,63; H 4,72; N 10,28.

Spectrul IR (cm⁻¹): 3379 (s), 3078 (m), 2925 (m), 2855 (s), 1656 (s), 1611 (p), 1593 (m), 1563 (s), 1523 (m), 1456 (m), 1428 (p), 1399 (p), 1279 (m), 1228 (p), 1211 (s), 1114 (s), 1079 (p), 1033 (m), 869 (s), 827 (m), 743 (m), 727 (m), 695 (s).

21. [Cd(tdb)(bpe)]_n

Amestecul format din Cd(BF₄)₂·6H₂O (0,039 g, 1,0 mmol), acidul 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) și 1,2-bis(4-piridil)etan (0,018 g, 1,0 mmol) a fost dizolvat în amestecul de solvenți constituit din 3 ml N,N'-dimetilformamidă și 3 ml etanol, apoi a fost introdus într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare galbenă în formă de plăcuțe au fost separate prin filtrare și spălate cu eter dietilic. Randament: ~ 27%.

Analiza elementală (%) pentru $C_{26}H_{20}N_2O_4SCd$:

calculat, %: C 58,16; H 3,75; N 5,21; găsit, %: C 57,98; H 3,57; N 4,98.

22. $[Zn(dtdb)(bpp)]_n$

În urma reacției dintre Zn(BF₄)₂·6H₂O (0,034 g, 1,0 mmol), acidul 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) și 1,3-bis(4-piridil)propanul (0,015 g, 1,0 mmol) într-un amestec de solvenți constituit din 3 ml N,N'-dimetilformamidă și 3 ml etanol, a fost obținută soluția care a fost transferată într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare roz în formă de ace au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 70%.

Analiza elementală (%) pentru C₂₇H₂₂N₂O₄S₂Zn:

calculat, %: C 64,51; H 4,41; N 5,57; găsit, %: C 64,33; H 4,23; N 5,40.

Spectrul IR (cm⁻¹): 3520 (s), 3063 (m), 2939 (m), 1646 (p), 1600 (p), 1579 (m), 1457 (p), 1364 (p), 1225 (p), 1155 (m), 1071 (p), 1052 (m), 1035 (p), 1026 (p), 848 (p), 747 (p), 690 (m).

23. [Cd(dtdb)(bpp)]_n

La amestecul format din Cd(BF₄)₂·6H₂O (0,024 g, 1,0 mmol), acidul 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) și 1,3-bis(4-piridil)propan (0,015 g, 1,0 mmol) s-a adăugat un amestec de solvenți constituit din 3 ml N,N'-dimetilformamidă și 3 ml etanol. Soluția obținută a fost transferată

într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare galben în formă de ace au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 70%.

Analiza elementală (%) pentru C₂₇H₂₂N₂O₄S₂Cd:

calculat, %: C 64,51; H 4,41; N 5,57; găsit, %: C 64,35; H 4,27; N 5,39.

Spectrul IR (cm⁻¹): 3520 (s), 3353 (m), 3063 (m), 1595 (m), 2939 (m), 1646 (p), 1600 (p), 1579 (m), 1555 (m), 1457 (p), 1364 (p), 1281 (m), 1251 (s), 1225 (p), 1155 (m), 1071 (p), 1052 (m), 1035 (p), 1026 (p), 848 (p), 825 (s), 801(m), 747 (p), 713 (m), 690 (m), 654 (m).

24. [ZnCd(dtdb)(bpp)]_n

Amestecul format din Zn(BF₄)₂·6H₂O (0,023 g, 1,0 mmol), Cd(BF₄)₂·6H₂O (0,024 g, 1,0 mmol), acidul 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) şi 1,3-bis(4-piridil)propan (0,015 g, 1,0 mmol) a fost dizolvat în amestec de solvenți constituit din 3 ml N,N'-dimetilformamidă şi 3 ml etanol, apoi a fost transferate într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal şi încălzit la 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare roz în formă de ace au fost separate prin filtrare şi spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~70%.

Analiza elementală (%) pentru C₂₇H₂₂N₂O₄S₂Cd_{0.50}Zn_{0.50}:

calculat, %: C 64,51; H 4,41; N 5,57; găsit, %: C 64,35; H 4,27; N 5,40.

Spectrul IR (cm⁻¹): 3064 (m), 2924 (m), 1644 (m), 1612 (s), 1587 (m), 1575 (p), 1536 (p), 1504 (m), 1457 (m), 1431 (p), 1398 (p), 1376 (p), 1280 (m), 1249 (m), 1226 (p), 1155 (m), 1071 (m), 1052 (m), 1035 (p), 1025 (p), 989 (m), 897 (s), 857 (p), 801 (p), 746 (p), 712 (m), 653 (m), 632 (m), 584 (m), 486 (p), 482 (p), 429 (s), 408 (m).

25. [CoZn(dtdb)(bpp)]n

Amestecul format din Co(BF₄)₂·6H₂O (0,036 g, 1,0 mmol), Zn(BF₄)₂·6H₂O (0,023 g, 1,0 mmol), 2,2'-ditiodibenzoic (0,036 g, 1,0 mmol) și 1,3-bis(4-piridil)propan (0,015 g, 1,0 mmol) a fost dizolvat în amestec de solvenți constituit din 3 ml N,N'-dimetilformamidă și 3 ml etanol, apoi a fost transferat într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare violet în formă de ace au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 70%.

Analiza elementală (%) pentru $C_{27}H_{22}N_2O_4S_2Co_{0.50}Zn_{0.50}$:

calculat, %: C 64,51; H 4,41; N 5,57; găsit, %: C 64,41; H 4,28; N 5,41.

Spectrul IR (cm⁻¹): 3065 (m), 2922 (m), 1647 (m), 1613 (s), 1591 (m), 1577 (p), 1536 (p), 1545 (m), 1458 (m), 1430 (p), 1386 (p), 1368 (p), 1281 (m), 1251 (m), 1224 (p), 1156 (m), 1070 (m), 1053 (m), 1035 (p), 1024 (p), 988 (m), 897 (s), 850 (p), 801 (p), 746 (p), 713 (m), 652 (m), 632 (m), 584 (m), 499 (p), 482 (p), 408 (m).

26. {[Cd(Hsaz)(bpe)]·0,5HCOOH}n

Sarea de Cd(BF₄)₂·6H₂O (0,024 g, 1,0 mmol), sulfasalazina (0,039 g, 1,0 mmol) și 1,2bis(4-piridil)etanul (0,018 g, 1,0 mmol) au fost dizolvate într-un amestec de solvenți constituit din 2 ml apă și 4 ml etanol, apoi soluția obținută a fost transferată într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la temperatură de 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare portocaliu în formă de plăcuțe au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 70%.

Analiza elementală (%) pentru $C_{62}H_{52}N_{12}O_{14}S_2Cd_2$:

calculat, %: C 52,66; H 3,71; N 11,89; găsit, %: C 52,01; H 3,58; N 11,81.

Spectrul IR (cm⁻¹): 3749(m), 3610(s), 2751(s), 1610(p), 1591(p), 1563(m), 1481(s), 1462(p), 1435(p), 1355(m), 1298(p), 1175(m), 1135(p), 1117(p), 1087(p), 974(m), 813(p), 783(m).

27. {[Zn(Hsaz)(bpe)] ·0,5dmf}n

 $Zn(BF_4)_2 \cdot 6H_2O$ (0,023 g, 1,0 mmol), sulfasalazina (0,039 g, 1,0 mmol) și 1,2-bis(4-piridil)etan (0,018 g, 1,0 mmol) dizolvate într-un amestec de solvenți constituit din 2 ml apă și 4 ml etanol, au fost transferate într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la temperatură de 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare portocaliu în formă de prisme au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 40%.

Analiza elementală (%) pentru C₆₉H₆₁N₁₄O₁₁S₂Zn₂:

calculat, %: C 56,87; H 4,22; N 13,46; găsit, %: C 56,65; H 4,40; N 11,69.

Spectrul IR (cm⁻¹): 3068(m), 2938(m), 2772(s), 1711(s), 1671(p), 1618(m), 1602(m), 1557(m), 1468(p), 1355(m), 1435(p), 1386(m), 1294(m), 1256(p), 1228(s), 1173(s), 1131(p), 1085(p), 1024(m), 979(m), 835(m), 806(p), 774(m), 675(s).

28. [Mn(pmta)₂(H₂O)₂]_n

La amestecul mecanic format din $Mn(piv)_2$ (0,05 g, 1,0 mmol) și acidul 2-pirimidiltioacetic (0,03 g, 1,0 mmol) dizolvat în 6 ml etanol s-au adăugat 0,123 ml soluție amoniacală (0,01N) (aici un factor important al sintezei este solventul adaugat). Soluția rezultantă, a fost pusă la baia cu ultrasunet timp de 30 minute după care soluția de culoare maro a fost filtrată și plasată într-un recipient acoperit cu un capac. Evaporarea lentă a acestei soluții a condus la formarea monocristalelor de culoare maro transparente care au fost separate prin filtrare și uscate la temperatura camerei. Randament: ~ 17%.

Analiza elementală (%) pentru $C_6H_7N_2O_3SMn$:

calculat, %: C 46,44; H 4,54; N 18,06; găsit, %: C 46,27; H 4,37; N 17,94.

29. [Mn(pmta)₂(H₂O)₄]

Reacția dintre sarea Mn(piv)₂ (0,05 g, 1,0 mmol) și acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) s-a efectuat în 6 ml acetonă, la care s-au adăugat 0,0123 ml soluție amoniacală (0,01N) (ca și în cazul compusului precedent). Soluția rezultată a fost pusă în baia cu ultrasunet timp de 30 minute după care soluția de culoare maro a fost filtrată și plasată într-un recipient acoperit cu un capac. Evaporarea lentă a acestei soluții a condus la formarea monocristalelor care au fost separate prin filtrare și uscate la temperatura camerei.

Analiza elementală (%) pentru $C_{12}H_{18}N_4O_8S_2Mn$:

calculat, %: C 35,11; H 4,42; N 13,65; găsit, %: C 34,99; H 4,3; N 13,53.

30. {[Mn(bpy)(H₂O)₄](pmta)₂}_n

Amestecul format din $MnF_2 \cdot 4H_2O(0,022 \text{ g}, 2,0 \text{ mmol})$, acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) și 4,4'-bipiridină (0,019 g, 1,0 mmol) a fost dizolvat în amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N), apoi a fost introdus într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la 100 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare galben au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 35%.

Analiza elementală (%) pentru C₂₂H₂₆N₆O₈S₂Mn:

calculat, %: C 42,51; H 4,22; N 13,52; găsit, %: C 42,33; H 4,04; N 13,34.

Spectrul IR (cm⁻¹): 37568 (m), 3241(s), 3121(s), 1644 (m), 1608 (p), 1564 (p), 1535 (s), 1492 (m), 1415 (p), 1379 (p), 1324 (m), 1268 (s), 1224 (p), 1199 (m), 1174 (m), 1117 (p), 1071 (p), 1047 (p), 1010 (m), 910 (m), 865 (m), 810 (p), 771(m), 748 (s), 683 (s).

31. ${[Co(bpy)(H_2O)_4](pmta)_2}_n$

Sarea Co(BF₄)₂·6H₂O (0,036 g, 1,0 mmol), acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) și 4,4'-bipiridina (0,019 g, 1,0 mmol) dizolvate în amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N) au fost introduse într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la temperatura de 80 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare roz au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 55%.

Analiza elementală (%) pentru C₂₂H₂₆N₆O₈S₂Co:

calculat, %: C 42,24; H 4,19; N13,43; găsit, %: C 42,07; H 3,98; N 13,26.

Spectrul IR (cm⁻¹): 3768 (m), 3241(s), 3121(s), 1644 (m), 1608 (p), 1564 (p), 1535 (s), 1492 (m), 1415 (p), 1379 (p), 1324 (m), 1268 (s), 1224 (p), 1199 (m), 1174 (m), 1117 (p), 1071 (p), 1047 (p), 1010 (m), 910 (m), 865 (m), 810 (p), 771(m), 748 (s), 683 (s).

32. {[Zn(bpy)(H₂O)₄](pmta)₂}_n

Soluția formată din Zn(BF₄)₂·6H₂O (0,023 g, 1,0 mmol), acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) și 4,4'-bipiridină (0,019 g, 1,0 mmol) în amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N), a fost introdusă într-un vas de teflon cu capacitatea de 8 ml, care a fost plasat într-un reactor chimic ermetic din metal și încălzit la 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare galben, transparente, în formă de plăcuțe au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 35%.

Analiza elementală (%) pentru C₂₂H₂₆N₆O₈S₂Zn:

calculat, %: C 46,63; H 4,62; N 14,83; găsit, %: C 46,51; H 4,5; N 14,71.

Spectrul IR (cm⁻¹): 3456 (m), 3361 (s), 2940 (s), 1617 (p), 1554 (p), 1510 (m), 1436 (m), 1379 (p), 1350 (p), 1224 (m), 1200 (p), 1184 (s), 1176 (s), 1071 (m), 1033 (p), 991 (m), 930 (p), 896 (p), 817 (p), 774 (m), 746 (m), 697 (m).

33. {[Cd(pmta)(bpy)(H₂O)](BF₄)·2H₂O}_n

La amestecul format din Cd(BF₄)₂·6H₂O (0,024 g, 1,0 mmol), acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) și 4,4'-bipiridină (0,019 g, 1,0 mmol) s-a adăugat amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N) ce a fost introdus într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la o temperatură de 100 °C timp de 48 ore, apoi răcit până la temperatura camerei.

Cristalele obținute au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 40%. Analiza elementală (%) pentru $C_{16}H_{19}BF_4N_4O_5SCd$: calculat, %: C 44,26; H 4,41; N 12,90; găsit, %: C 44,04; H 4,23; N 12,74.

34. $\{[Zn_2(pmta)_3(bpe)_2(H_2O)_2](BF_4) \cdot 0, 25H_2O\}_n$

La amestecul format din Zn(BF₄)₂·6H₂O (0,023 g, 1,0 mmol), acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) și 1,2-bis(4-piridil)etan (0,018 g, 1,0 mmol), a fost dizolvat în amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N), apoi a fost transferate într-un vas de teflon cu capacitatea de 8 ml. Vasul a fost plasat într-un reactor chimic ermetic din metal și încălzit la temperatură de 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare galben în formă de plăcuțe au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 20%. Analiza elementală (%) pentru C₄₂H_{43.5}BF₄N₁₀O_{8.25}S₃Zn₂:

calculat, %: C 55,88; H 4,80; N 15,52; găsit, %: C 55,74; H 4,62; N 15,36.

Spectrul IR (cm⁻¹): 3546 (m), 3125 (s), 2917 (m), 1646 (m), 1563 (p), 1506 (s), 1421 (m), 1377 (p), 1259 (m), 1183 (m), 1073 (p), 1057 (p), 1017 (p), 832 (p), 814 (p), 772 (m), 712 (m).

35. {[Cd(pmta)(bpe)(H₂O)](BF₄)·0,25H₂O}_n

La interacțiunea sării Cd(BF₄)₂·6H₂O (0,024 g, 1,0 mmol) cu acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) și 1,2-bis(4-piridil)etanul (0,018 g, 1,0 mmol) în amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N) a fost obținută soluția, care a fost transferată într-un vas din teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic metalic și încălzit la temperatură de 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute au fost separate prin filtrare pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 21%.

Analiza elementală (%) pentru C_{9.5}H_{11.5}B_{0.25}F₁N₃O_{3.5}S₁Cd:

calculat, %: C 59,98; H 6,15; N 23,3; găsit, %: C 59,91; H 6,8; N 22,95.

Spectrul IR (cm⁻¹): 3318 (m), 3110 (s), 2987 (s), 2455 (s), 1637 (m), 1610 (m), 1567 (s), 1506 (m), 1424 (m), 1400 (p), 1290 (s), 1205 (m), 1014 (p), 881 (m), 831 (p), 728 (m), 710 (s).

36. [Cd(pmta)₂(bpe)]_n

Amestecul format din Cd(BF₄)₂·6H₂O (0,024 g, 1,0 mmol), acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) și 1,2-bis(4-piridil)etanul (0,018 g, 1,0 mmol) a fost dizolvat în amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N), apoi a fost

transferate într-un vas din teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la temperatura de 120 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele obținute au fost separate prin filtrare pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 25%.

Analiza elementală (%) pentru C₂₄H₂₂N₆O₄S₂Cd:

calculat, %: C 55,15; H 4,24; N 16,08; găsit, %: C 55,8; H 4,18; N 15,95.

37. {[Zn(pmta)₂(bpp)]·2H₂O}_n

Sarea Zn(BF₄)₂·6H₂O (0,023 g, 1,0 mmol), acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) și 1,3-bis(4-piridil)propanul (0,015 g, 1,0 mmol) au fost dizolvate într-un amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N), apoi soluția obținută a fost transferat într-un vas de teflon. Acest vas a fost plasat într-un reactor chimic ermetic metalic și încălzit la temparatura de 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare galben-pal în formă de plăcuțe au fost separate prin filtrare și spălate cu eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 35%. Analiza elementală (%) pentru C₂₅H₂₈N₆O₆S₂Zn:

calculat, %: C 52,42; H 4,92; N 14,67; găsit, %: C 52,25; H 4,74; N 14,50.

38. [Cd(pmta)₂(bpp)(H₂O)]_n

Amestecul format din Cd(BF₄)₂·6H₂O (0,024 g, 1,0 mmol), acidul 2-pirimidiltioacetic (0,036 g, 1,0 mmol) și 1,3-bis(4-piridil)propan (0,015 g, 1,0 mmol) a fost dizolvat în amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N), apoi a fost transferat într-un vas din teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la temperatură de 120 °C timp de 72 ore, apoi răcit până la temperatura camerei. Cristalele obținute au fost separate prin filtrare pe hârtie de filtru, apoi uscate la aer la temperatura camerei. Randament: ~ 35%.

Analiza elementală (%) pentru C₂₅H₂₆N₆O₅S₂Cd:

calculat, %: C 54,13; H 4,72; N 15,15; găsit, %: C 53,95; H 4,56; N 14,98.

39. [Co(pmta)₂(bpe)(H₂O)₂]_n

Amestecul format din Co(BF₄)₂·6H₂O (0,036 g, 1,0 mmol), acidul 2-pirimidiltioacetic (0,019 g, 1,0 mmol) și 1,2-bis(4-piridil)etan (0,018 g, 1,0 mmol) a fost dizolvat în amestec de solvenți constituit din 4 ml apă, 2 ml etanol și 0,123 ml soluție amoniacală (0,01N), apoi a fost transferat într-un vas de teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic

ermetic metalic și încălzit la temperatura de 80 °C timp de 48 ore, apoi răcit până la temperatura camerei. Cristalele obținute de culoare roz în formă de plăcuțe au fost separate prin filtrare și spălate în eter dietilic pe hârtie de filtru, apoi uscate la temperatura camerei. Randament: ~ 45%. Analiza elementală (%) pentru $C_{24}H_{26}N_6O_6S_2C_0$:

calculat, %: C 46,68; H 4,24; N13,61; găsit, %: C 46,52; H 4,02; N 13,43.

40. [Co(rda)₂(H₂O)₄]

Sarea Co(BF₄)₂·6H₂O (0,036 g 1,0 mmol) și acidul rodanin-3-acetic (0,039 g, 1,0 mmol) au fost dizolvați în amestec de solvenți constituit din 4 ml apă, 2 ml metanol și 0,24 ml N,N'dimetilformamidă. Soluția rezultantă a fost agitată timp de 10 minute la temperatura camerei (25 °C). Soluția de culoare gălbue a fost filtrată și plasată într-un recipient acoperit cu un capac. Evaporarea lentă a acestei soluții a condus la formarea monocristalelor care au fost separate prin filtrare și uscate la temperatura camerei. Randament: ~ 20%.

Analiza elementală (%) pentru C₁₀H₁₆N₂O₁₀S₄Co:

calculat, %: C 26,53; H 3,56; N 6,19; găsit, %: C 26,36; H 4,40; N 5,98.

41. [Ni(rda)₂(H₂O)₄]

Amestecul format din NiCl₂·6H₂O (0,013 g, 1,0 mmol) și acidul rodanin-3-acetic (0,039 g, 1,0 mmol) a fost dizolvat în amestec de solvenți constituit din 4 ml apă, 2 ml metanol și 0,24 ml N,N'-dimetilformamidă. Soluția de culoare gălbue, rezultantă după agitare la temperatura camerei (25 °C), a fost filtrată și plasată într-un recipient acoperit cu un capac. Evaporarea lentă a acestei soluții a condus la formarea monocristalelor care au fost separate prin filtrare și uscate la aer la temperatura camerei. Randament: ~ 25%.

Analiza elementală (%) pentru $C_{10}H_{16}N_2O_{10}S_4Ni$:

calculat, %: C 26,59; H 3,56; N 6,19; găsit, %: C 26,37; H 4,42; N 5,98.

42. [Zn(rda)₂(H₂O)₄]

Sarea Zn(BF₄)₂·6H₂O (0,023 g, 1,0 mmol) și acidul rodanin-3-acetic (0,039 g, 1,0 mmol) au fost dizolvați în amestec de solvenți constituit din 4 ml apă, 2 ml metanol și 0,24 ml N,N'dimetilformamidă. Soluția de culoare gălbenă rezultată după agitare la temperatura camerei (25 °C) a fost filtrată și plasată într-un recipient acoperit cu un capac. Evaporarea lentă a acestei soluții a dus la formarea monocristalelor de culoare maro care au fost separate prin filtrare și uscate la temperatura camerei. Randament: ~ 40%.

Analiza elementală (%) pentru $C_{10}H_{16}N_2O_{10}S_4Zn$:

calculat, %: C 26,59; H 3,56; N 6,19; găsit, %: C 26,37; H 4,42; N 5,98.

43. [Zn(5,5'-rda-rda)(dmf)₂(H₂O)₂]_n

Amestecul format din Zn(BF₄)₂·6H₂O (0,023 g, 1,0 mmol) și acidul rodanin-3-acetic (0,078 g, 2,0 mmol) a fost dizolvat în amestec de solvenți constituit din 4 ml apă, 2 ml metanol și 0,24 ml N,N'-dimetilformamidă. Soluția de culoare gălben rezultată după agitare la temperatura camerei (25 °C), a fost filtrată și plasată într-un recipient acoperit cu un capac. Evaporarea lentă a acestei soluții a condus la formarea monocristalelor aciforme de culoare brun care au fost separate prin filtrare, spălate cu eter dietilic și uscate la aer la temperatura camerei. Randament: ~ 70%.

Analiza elementală (%) pentru C₁₆H₂₂N₄O₁₀S₄Zn:

calculat, %: C 30,80; H 3,55; N 8,98; găsit, %: C 30,62; H 3,35; N 8,82.

Spectrul IR (cm⁻¹): 3854(m), 3671(s), 2988(m), 2908(m), 2552(s), 1794(s.), 1724(m) 1427(p), 1396(m), 1313(p), 1218(p), 1190(p), 1036(m), 979(s), 856(s), 776(m.), 718(s).

Rezonanță magnetică nucleară ¹H (400,13 MHz, DMSO-*d*₆, δ, ppm): 7,95 (s, dmf), 2,89 (s, dmf), 2,73 (s, dmf), 2,40 (2H, s, HC-CH), 2,53 (s, 4H, N-CH₂).

Rezonanță magnetică nucleară ¹³C (100,61 MHz, DMSO- d_6 , δ , ppm): 174,63 (C=O), 163,30 (dmf), 35,70 (dmf), 34,91 (N-CH₂), 31,30 (dmf), 29,38 (HC-CH) (atomii din grupările C=S și COO nu au fost detectați).

44. [Co(rda)₂(bpy)(H₂O)₂]_n

În urma reacției dintre Co(BF₄)₂·6H₂O (0,036 g, 1,0 mmol), acidul rodanin-3-acetic (0,039 g, 1,0 mmol) și 4,4'-bipiridina (0,019 g, 1,0 mmol) dizolvați în amestec de solvenți constituit din 4 ml apă, 2 ml metanol și 0,24 ml N,N'-dimetilformamidă a fost obținută o soluție de culoare gălben, care a fost agitată la temperatura camerei (25 °C), apoi filtrată și plasată într-un recipient acoperit cu un capac. Evaporarea lentă a acestei soluții a condus la creșterea monocristalelor de culoare maro care au fost separate prin filtrare și uscate la temperatura camerei. Randament: ~35%. Analiza elementală (%) pentru C₂₀H₂₀N₄O₈S₄Co:

calculat, %: C 41,94; H 3,51; N 9,78; găsit, %: C 41,76; H 3,34; N 9,69.

Spectrul IR (cm⁻¹): 3409 (p), 2981(m), 2552(s), 1723 (f.p), 1607 (m) 1536 (m), 1410 (p), 1392 (p), 1358 (p), 1334 (m), 1195 (p), 1122 (m), 1083 (p), 979 (m), 818 (p), 779 (m), 726 (p), 664 (m).

45. [Cd(rda)₂(bpe)]_n

Amestecul format din Cd(BF₄)₂·6H₂O (0,024 g, 1,0 mmol), acidul rodanin-3-acetic (0,039 g, 1,0 mmol) și 1,2-bis(4-piridil)etan (0,018 g, 1,0 mmol) a fost dizolvat în amestec de solvenți constituit din 4 ml apă, 2 ml metanol și 0,24 ml N,N'-dimetilformamidă. Soluția de culoare gălben rezultată după agitare la temperatura camerei (25 °C) a fost filtrată și plasată într-un recipient acoperit cu un capac. Evaporarea lentă a acestei soluții a condus la creșterea

monocristalelor aciforme de culoare orange, care au fost separate prin filtrare, spălate cu eter dietilic și uscate la temperatura camerei. Randament: ~ 30%.

Analiza elementală (%) pentru C₂₂H₂₀N₄O₆S₄Cd:

calculat, %: C 46,79; H 3,59; N 9,92; găsit, %: C 46,62; H 3,42; N 9,75.

46. [Co(gly)3]·H2O]

Sarea Co(BF₄)₂·6H₂O (0,036g, 1,0 mmol), acidul rodanin-3-acetic (0,039 g, 1,0 mmol) și 1,2-bis(4-piridil)etanul (0,018 g, 1,0 mmol) au fost dizolvați în amestec de solvenți constituit din 4 ml apă, 2 ml metanol și 0,24 ml N,N'-dimetilformamidă, apoi a fost transferate într-un vas din teflon cu capacitatea de 8 ml. Acest vas a fost plasat într-un reactor chimic ermetic din metal și încălzit la temperatura de 100 °C timp de 48 ore, apoi răcit până la temperatura camerei. Soluția rezultată, de culoare gălbenă, a fost filtrată și plasată într-un recipient acoperit cu un capac. Evaporarea lentă a acestei soluții a condus la creșterea monocristalelor aciforme de culoare maro, care au fost separate prin filtrare, spălate cu eter dietilic și uscate la aer la temperatura camerei.

2.2. Metode de analiză și cercetare

Anliza elementală pentru C, H și N în compușii studiați a fost efectuată cu ajutorul analizatorului elemental Elementar Analysensysteme GmbH Vario El III, în Laboratorul Chimie Cuantică, Cataliză și Metode Fizice al Institutului de Chimie.

Spectrele IR în intervalul 400-4000 cm⁻¹ ale compușilor studiați au fost înregistrate la spectrometrul FT-IR Spectrum-100 Perkin-Elmer cu utilizarea probelor ATR și suspensiilor în ulei de vaselină, în Laboratorul Chimie Cuantică, Cataliză și Metode Fizice al Institutului de Chimie. Valoarea spectrelor IR ale substanțelor cercetate constă în aceea ca sunt specifice și pot servi ca dovadă a prezenței unei sau altei grupări, izomerilor și a structurilor geometrice diferite. Analizând benzile spectrale ale compușilor studiați s-a observat că prezența benzilor la 3120–2600 cm⁻¹ se datorează vibrațiilor de valență ale grupării OH a moleculei de apă. Benzile 1600–1500 cm⁻¹ demonstrează prezența inelului benzenic, iar banda la 1570 cm⁻¹ este caracteristică pentru vibrațile inelului benzenic în sistemele conjugate. De aici putem concluziona că gruparea COOH este conjugată cu inelul benzenic. Rezultatul analizei spectrelor IR conclude referitor la structura posibilă a substanței studiate.

Spectrele RMN au fost înregistrate la spectrometrul Brucker Avance 400, din cadrul Laboratorului Metode Fizico-Chimice de Cercetare și Analiză al Institutului de Chimie. RMN a fost cea mai indicată metodă în cazul probei **42**, pentru care s-au realizat teste microbiologice și era necesar de cunoscut stabilitatea în soluție. În calitate de solvent deuterat s-a utilizat DMSO-d₆.

Analiza termogravimetrică (TGA-DTA) a fost efectuată la derivatograful Q-1500 în intervalul de temperaturi 25-1100 °C în aer, viteza de încălzire a probei fiind de 10 °C/min, din cadrul Laboratorul de Chimie Ecologică al Institutului de Chimie.

Difracția razelor X pe pulbere a fost efectuată la temperatura camerei la difractometrul DRON-UM-1, cu sursa de radiație Fe-K α cu λ =1,93604 Å, în Laboratorul Metode Fizice de Studiere a Solidului "T.I. Malinowski" al Institutului de Fizică Aplicată.

Difracția razelor X pe monocristalele tuturor compușilor coordinativi obținuți a fost efectuată cu ajutorul difractometrului Xcalibur E echipat cu detector CCD și monocromator de grafit cu sursă de radiație MoKα, în Laboratorul Metode Fizice de Studiere a Solidului "T.I. Malinowski" al Institutului de Fizică Aplicată. Determinarea parametrilor celulelor elementare și prelucrarea datelor experimentale s-au efectuat cu ajutorul programei CrysAlis Oxford Diffraction Ltd.. Determinarea structurilor cristaline a fost efectuată în majoritatea cazurilor utilizând metodele directe, în unele cazuri – metoda Patterson în cadrul complexului de program SHELXS97, iar precizarea coordonatelor atomilor și stabilirea parametrilor geometrici pentru toți compușii au fost efectuate în cadrul complexului de program SHELXL97 [107]. Pozițiile atomilor de H au fost determinate din sintezele Fourier, ceilalți atomi de H au fost calculați din considerente geometrice. Desenele au fost efectuate folosind programul Mercury [108]. Golurile accesibile pentru solvent au fost calculate cu ajutorul programului PLATON [109].

Spectrele de luminescență ale monocristalelor compușilor **12**, **22**, **23**, **26**, **33-35**, **42** și **45** au fost înregistrate la temperatura camerei la instalația Exitation YAG dotată cu laser de Nd³⁺, $\lambda = 355$ nm, durata = 10 ns, timpul de repetare = 10 Hz, în Laboratorul Fizica Compușilor Ternari și Multinari al Institutului de Fizică Aplicată.

Testările microbiologice pentru proba **42** au fost efectuate în cadrul Centrului Național de Sănătate Publică. A fost studiată acțiunea antifungică și antibacteriană a probei folosind metoda concentrațiilor minime inhibitorii (CMI). În soluții cu diluții crescânde ale compusului [Zn(5,5'-Rda-Rda)(dmf)₂(H₂O)₂]_n (**43**), cu concentrația inițială de 2,00 mmol/l, au fost însămânțate cantități egale din cultura cercetată. Indicele de activitate se stabilește după o incubare la 37 °C timp de 24 ore.

Metodele de obținere a cristalelor

Calitatea cristalului din care se obțin date în urma realizării studiului difracției razelor X reprezintă principalul determinant al clarității structurii acestuia. În sinteza și purificarea compușilor scopul este de a maximaliza puritatea și randamentul, deși acestea se pot exclude reciproc. Astfel, cristalele trebuie crescute, începând de la minute și ajungând până la luni, în

dependență de sistem. Utilizarea diferitor solvenți permite creșterea cristalelor separat unele față de altele. Informația despre solvenți, cât și procesul de sinteză și purificare a unui compus permite selectarea condițiilor optimale de sinteză. Amestecarea solvenților permite manipularea cu solubilitatea substanțelor dizolvate, atât anorganice, cât și organice: un amestec de solvent A (în care un compus este prea solubil) și un anti-solvent B (în care nu este suficient de solubil) poate fi mai util decât fiecare dintre acești solvenți în parte. Metodele obținerii produșilor finali din soluție pot fi extrem de flexibile: un număr de cristalizări care diferă în dependență de proporțiile solvenților A și B, poate fi setat pentru a se realiza în paralel. Dacă un anumit interval de proporții pare a avea mai mult succes în producerea cristalelor, acesta se poate cerceta mai îndeaproape prin reducerea diferenței dintre amestecurile succesive ale A și B.

Metodele cunoscute în literatură pentru prepararea compușilor coordinativi cu liganzii ce conțin atomi donori N, O, S sunt limitate. Formarea compușilor poate fi controlată prin posibilele legături metal-ligand, influențate puternic și prin selectarea corectă a tipului și concentrației solventului.

Obținerea polimerilor coordinativi din lucrarea dată a fost posibilă utilizând urmatoarele metode de sinteză:

- metoda solvotermală;
- iradierea cu ultrasunet;
- agitarea la temperatura camerei.

Metoda solvotermală. Sinteza solvotermală constă într-o reacție chimică heterogenă în prezența unui solvent (apos sau non apos) sau a unui amestec de solvenți într-un sistem închis, la temperatură mai mare decât temperatura ambiantă și la o presiune mai mare de 1 atm. Are loc creșterea cristalelor noilor compuși coordinativi din soluții la temperaturi între 100-200 °C și presiuni superioare presiunii atmosferice (1-5 atm), în dispozitive speciale numite autoclave. Trebuie de menționat că temperatura se poate ridica pâna la 370 °C. Creșterea temperaturi determină creșterea vitezei de hidroliză și a celei de condensare și deshidratare a produșilor de hidroliză cu generarerea de structuri cristaline. La valori ale temperaturi și presiunii situate deasupra punctului critic solventul își modifică proprietățile (densitatea, viscozitatea) cu implicații majore asupra mecanismului și asupra proprietăților produsului de sinteză.

Baia cu ultrasunet. Ultrasunetele sunt oscilații mecanice cu o frecvență mai mare decât cea sonoră (între 20 KHz și 10 MHz). Sunetele sunt unde de compresie și expansiune într-un fluid sau solid. Viteza lor de propagare în lichide este de cca. 1.500 m/s. În cazul dat a fost utilizat ultrasunetul cu frecvența de 42 Hz. Efectele chimice ale ultrasunetului nu rezultă dintr-o

interacțiune directă a undelor cu moleculele, ci printr-o serie de mecanisme fizice în funcție de natura sistemului. Aplicarea undelor ultrasonice în sinteza chimică (sinteza sonochimică) este bine cunoscută pentru efectele sale benefice: dispersarea materiei, uniformizarea mediului de reacție, activizarea particulelor etc..

2.3. Concluzii la capitolul 2

- A fost realizată sinteza orientată prin diferite metode (difuzia solventului, solvetermală, sonochimică etc.) a 45 compuşi coordinativi noi şi a unui compus cunoscut, însă obținut întrun mod neobișnuit.
- Complecșii homo- și heterometalici sintetizați au fost obținuți utilizând drept precursori sărurile metalelor de tranziție Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) și Cd(II), iar ca liganzi – compuși organici având un set diferit al atomilor donori: O, N și S, care manifestă capacitate diferită de coordinare la ionii metalici.
- Obținerea compușilor descriși necesită folosirea unor strategii de sinteză care să permită controlul condițiilor de reacție, precum raportul produselor reactante, ajustarea pH-ului și a timpului de reacție, cât și consecutivitatea operațiilor.
- Compoziția și structura compleșilor sintetizați a fost stabilită în baza metodelor moderne de cercetare (analiza elementală, spectroscopia în IR, RMN ¹H și ¹²C, analiza termogravimetrică, difracția razelor X pe monocristal și pulbere etc.).
- Un rol important la crearea compuşilor îl au liganzii utilizați, întrucât aceştia pot modula atât arhitectura generală a sistemelor obținute, cât și proprietățile complecşilor asamblați.
- Variația condiților de reacție, cât și a metodelor de sinteză a permis obținerea compușilor cu diferite topologii de la 0D până la 3D.

3. COMPUȘI COORDINATIVI AI UNOR METALE TRANZIȚIONALE ÎN BAZA LIGANZILOR HOMO - ȘI HETEROFUNCȚIONALI. STRUCTURĂ ȘI PROPRIETĂȚI

3.1. Polimeri coordinativi în baza liganzilor bipiridinici

Crearea rețelelor metalo-organice poroase rămâne în viziunea cercetătorilor un domeniu de perspectivă, fapt legat nu numai de obținerea unei varietăți de structuri estetic interesante, cât și de posibilitățile aplicative ale acestor materiale [110]. Un rol important în construcția noilor rețele metalo-organice (RMO) îl joacă liganzii organici, ce sunt antrenați pentru a uni mai multe centre metalice, iar acest lucru se realizează, de obicei, utilizând liganzi polidentați ce pot conține atât atomi donori de același tip, cât și atomi diferiți. În acest compartiment vor fi examinați compușii obținuți ce conțin ca liganzi organici doar din clasa bipiridinelor.

Ca urmare, a fost sintetizat un compus nou al Fe(II), obținut ca rezultat al interacțiunii FeSO₄·7H₂O având ca ligand bipiridinic bpy cu funcție punte, în mediul CH₃OH:dmf prin agitare la încălzire a substantelor reactante timp de 5-10 min. Monocristalele obtinute de culaore maro, după evaporarea lentă la temperatura camerei au fost filtrate și spălate cu (C₂H₅)₂O. Structura difinitivă a compusului a fost stabilită cu ajutorul difracției razelor X pe monocristal. Compusul 1 cristalizează în grupul spațial C2/c al singoniei monoclinice (Tabelul A 1.1). Formula finală a acestui compus este { $(bpyH_2)$ [Fe(bpy)₂(SO₄)₂(H₂O)₂]·2H₂O}_n [111], deci compusul este unul ionic, format din anioni polimerici 1D [Fe(bpy)₂(SO₄)₂(H₂O)₂]²⁻n, sarcina cărora este compensată de cationii organici $bpyH_2^{2+}$ conținând ca molecule de cristalizare molecule de apă. În cristal au fost depistați doi atomi de metal cristalografic independenți, având înconjurare similară. Poliedrul de coordinare al atomilor Fe(1) și Fe(2) are geometrie octaedrică, format de setul de atomi donori N₂O₄, cei doi atomi de azot fiind puși la dispoziție de către doi liganzi neutri *bpy*, iar patru atomi de oxigen aparținând celor doi anioni SO4²⁻ și celor două molecule de apă. Atât anionii anorganici, cât și moleculele de apă, coordinează monodentat (Figura 3.1a). Distanțele interatomice din poliedrele de coordinare ale atomilor de metal Fe(1) și Fe(2) sunt: Fe-N(bpy) 2,222(3) și 2,194(5) Å, Fe–O(SO₄²⁻) 2,103(3) și 2,112(3) Å, iar Fe–(Ow) 2,158(3) și 2,152(3) Å (Anexa 2). Atomii donori situați în poziții trans primesc valorile unghiurilor de valență N-Fe-N și O-Fe-O apropiate de 180°, iar ungiurile formate de atomii în poziții cis N-Fe-O și O-Fe-O deviază ușor de la 90°. Cei doi liganzi bpy coordinați similar exo-bidentat punte cristalografic independenți coordinați la Fe(1) și Fe(2), respectiv, sunt simetrici prin inversiune ori rotație. Extinderea structurii în cristal are loc prin intermediul liganzilor bpy, ce coordinează la doi atomi de metal
prin cei doi atomi de N. În cristal se evidențiază alternarea lanțurilor anionice infinite 1D cu simetrie diferită – C_i și C_2 , formate de fragmentele [Fe(bpy)₂(SO₄)₂(H₂O)₂]²⁻ având la bază atomii Fe(1) și Fe(2) (Figura 3.1b).

Fig. 3.1. a) Poliedrul de coordinare al atomului Fe(1) din lanțul polimeric [Fe(bpy)(SO4)2(H2O)2]²⁻n din 1; b) Aranjamentul reciproc al lanțurilor formate de atomii Fe(1) și Fe(2) (anionii SO4²⁻ și moleculele de apă coordinate, atât și atomii de hidrogen au fost omisi pentru claritate)

Extinderea structurii în cristal are loc prin intermediul liganzilor *bpy*, ce coordinează la doi atomi de metal prin cei doi atomi de N. În cristal se evidențiază alternarea lanțurilor anionice infinite 1D cu simetrie diferită – C_i și C_2 , formate de fragmentele [Fe(bpy)₂(SO₄)₂(H₂O)₂]²⁻ având la bază atomii Fe(1) și Fe(2) (Figura 3.1b). Distanța Fe(1)…Fe(1) din unul din lanțuri este egală cu 11,545 Å, iar Fe(2)…Fe(2) din celălalt este 11,545 Å, pe când Fe(1)…Fe(2) între lanțurile vecine sunt egale cu 10,186 și 9,304 Å. O analiză a rezultatelor din Baza de Date Structurale Cambridge (BDSC) [7] a evidențiat doi compuși ai Fe(II) cu aceleași componente coordinate – *bpy*, anionul SO₄²⁻ și molecule de apă [112, 113], în care doar în unul avem compoziția cea mai apropiată, cu excepție că anionii anorganici fac punte între lanțurile [Fe(bpy)₂(H₂O)₂]²⁺_n, însă având aceiași cationi organici H_2bpy^{2+} pentru a compensa sarcina anionilor polimerici, iar în celălat compus la atomul de metal coordineaza monodentat un singur anion anorganic și trei molecule de apă.

Regiunile hidrofile ale lanțurilor formate de anionii $SO_4^{2^-}$ și moleculele de apă coordinate sunt antrenate în sistemul legăturilor de hidrogen cu componentele sferei externe ale compusului, atât cu molecule de apă de cristalizare, cât și cu cationii organici obținuți la protonarea moleculelor de *bpy* (Anexa 3). Ca rezultat în cristal se pot evidenția rețele tridimensionale supramoleculare. La împachetarea componentelor ionice în cristal contribuie atât legăturile de hidrogen N–H···O, cât și interacțiuni de tip π – π , ce acționează între sistemele π –delocalizate piridinice (distanța centroid ··· centroid 3,653 Å) (Figura 3.2a). Lanțurile formate de Fe(1) în parte sunt legate în straturi prin intermediul legăturilor de hidrogen, la formarea cărora participă moleculele de apă de solvatare O(4*w*) și H_2bpy^{2+} , însă cele două lanțuri determinate de atomii Fe(1) și Fe(2) sunt legate prin moleculele de apă de cristalizare O(3*w*) (Figura 3.2b). În rezultatul evaluării cavităților dintre rețelele coordinative ale cristalului, utilizând programul PLATON, s-a stabilit, că golurile accesibile după îndepărtarea doar a moleculelor de apă din structura cristalină au dimensiuni mici (3,8%).

Fig. 3.2. a) Evidențierea straturilor din cristal formate în baza lanțurilor ce conțin doar
Fe(1); b) Modul de asamblare a anionilor polimerici ce conțin Fe(1) și Fe(2) prin
intermediul moleculelor de apă

Spectrul IR al compusului **1** prezintă benzi puternice și largi în regiunea 3300–3500 cm⁻¹ atribuite vibrațiilor de întindere v(OH), ce confirmă prezența moleculelor de apă în structură. Banda de absorbție cu maximum 1657 cm⁻¹ poate fi atribuită atât oscilațiilor de valență v(C=C), cât și v(C=N), deci poate fi determinată de prezența heterociclului *bpy* în complex. Semnalul observat în regiunea 1073 cm⁻¹ se atribuie anionului SO₄²⁻. Benzile cu intensitate înaltă din regiunea 410 – 460 cm⁻¹ corespund vibrațiilor v(Fe–O) [114].

Interesul pentru compușii discreți ai Cu(II), ce încorporează liganzi cu diferite seturi de atomi donori, este în creștere deoarece ei rămân atrăgători pentru cercetare datorită proprietăților sale utile și relevante, cum ar fi activitate biologică, proprietățile magnetice, utilizarea în cataliză etc., cât și antrenarea lor pentru diverse studii teoretice [115]. Cunoscut este și ligandul flexibil *bpp* utilizat în construcția de polimeri de coordinare, care pot prezenta o gamă largă de topologii interesante de tip lanțuri, scări, rețele. Cu atât mai mult, utilizarea liganzilor piridinici de tip punte, ce oferă o flexibilitate adițională modului de legătură dintre metal și ligand, conduce la obținerea rețelelor coordinative bine conectate, cu stabilitate sporită, cât și la creșterea porozității acestora [116]. Rezultatele recente au arătat că derivații *bpp*, la care inelele piridinice N-donore sunt

separate prin diferiți distanțieri, contribuie la formarea compușilor noi cu diferite arhitecturi și cu proprietăți fizice utile [117]. Cu atât mai mult, flexibilitatea ligandului *bpp* poate fi realizată în conformații *gauche* sau *trans* prin rotații libere în jurul legăturilor simple din fragmentul central. Ca urmare acest ligand convenabil din punct de vedere energetic poate completa poliedrul de coordinare al ionilor de metal în procesul de asamblare, mai ales că ligandul *bpp* poate coordina în mod mono- sau bidentat la ionul de metal M(II), formând diferite unghiuri N–M–N (Figura 3.3).

Fig. 3.3. Ligandul flexibil bpp și configurațiile sale

În baza acestor considerente a fost sintetizat un compus nou al Cu(II) cu ligndul *bpp*, care în fază monocristalină a fost studiat prin difracția razelor X. Acest compus ionic cu formula $\{[Cu(bpp)_2(H_2O)](BF_4)_2 \cdot dmf \cdot 0,75H_2O\}_n$ (2), format din cationii complecși $[Cu(bpp)_2(H_2O)]^{2+}_n$ și anionii $(BF_4)^-$ [111, 118], a fost obținut în rezultatul interacțiunii sării Cu $(BF_4)_2 \cdot 6H_2O$ cu ligandul piridinic *bpp* în amestec de solvenți H₂O:CH₃OH:*dmf*.

Studiul cu raze X efectuat la temperatura camerei a stabilit că compusul 2 cristalizează în grupul spațial $P2_1$ al singoniei monoclicice (Tabelul A 1.1). În partea asimetrică a celulei elementare au fost depistați un atom de metal în poziție generală, doi liganzi piridinici *bpp* și o moleculă de apă coordinată la metal, iar în sfera externă - doi anioni BF₄⁻, o moleculă *dmf* și două molecule de apă de cristalizare (Figura 3.4a). O analiză a structurii cristaline a depistat că extinderea structurii are loc prin intermediul ligandului *bpp*, care acționează ca ligand cu funcție punte și unește atomii de Cu(II) într-un lanț liniar cationic infinit. Cu atât mai mult, doi atomi de metal sunt uniți în acest lanț prin doi liganzi *bpp*, între ultimii fiind evidențiate interacțiuni fine de tipul π - π stacking în care sunt antrenate inelele aromatice ale acestora (cea mai mică distanță între inelele aromatice este 3,49 Å). Deci, ca urmare liganzii *bpp* unesc ionii de Cu(II) printr-o punte

dublu-catenară, astfel extinzând structura până la o panglică 1D în care se evidențiează macrocicluri metalice formate din 24 atomi (Figura 3.4b). Distanța Cu…Cu în lanțul polimeric aranjat de-a lungul axei b este de 11,473 Å.

Fig. 3.4. a) Structura componentelor din partea asimetrică a celulei elemetare din compusul 2; b) Structura lanțului dublu [Cu(bpp)₂(H₂O)]²⁺_n al polimerului coordinativ cationic din 2

Poliedrul de coordinare al metalului este tetragonal-piramidal format de setul de atomi donori N₄O. Patru atomi de azot din acest set ce formează baza poliedrului aparțin celor patru liganzi *bpp*, iar atomul de oxigen, situat în poziție axiață (în vârful poliedrului) – moleculei de apă. Distanțele Cu–N sunt cuprinse în intervalul 2,024(5) – 2,023(5) Å, distanța Cu–O este egală cu 2,292(6) Å, iar unghiurile O–Cu–N au valori în intervalul 91,4(2) – 94,4(3)° (Anexa 2). În cristal cavitățile dintre lanțuri sunt situați anionii BF₄⁻, moleculele de apă de cristalizare și *dmf* și aceste componente sunt stabilizate printr-un sistem de legături de hidrogen (Figura 3.5, Anexa 3).

Fig. 3.5. Structura polimerului coordinativ cationic 1D și modul de asamblare a componentelor din sfera externă cu acesta în 2

Ca urmare, asamblarea în cristal a componentelor are loc prin intermediul atât a legăturilor de hidrogen O–H···O, cât și O–H···F, unde ca donori de proton sunt antrenate moleculele de apă atât coordinate, cât și de cristalizare, iar ca acceptori – atomii de oxigen ai moleculelor de apă și *dmf* necoordinate, cât și atomii de fluor din anionii BF₄⁻. Utilizarea ligandului *bpp* de obicei asigură cavități esențiale în rețeaua cristalină, care pot fi calculate ca goluri accesibile pentru solvent ori molecule mici (SAV) prin îndepărtarea moleculelor de cristalizare din volumul total al celulelor elementare, fără a îndepărta anionii din sfera externă ce compensează sarcina cationilor. Volumul cavităților din compusul **2** calculat utilizând programul PLATON este de 447,9 Å³ sau 24,7% din volumul total al celulei elementare, indicând astfel la o adsorbție ridicată a solventului. Din Baza de Date Structurale Cambridge (BDSC) [7] au fost selectați trei compuși de Cu(II) apropiați după compoziție [119, 120], pentru care de asemenea s-au calculat volumele acestor cavităților (Tabelul 3.1).

Compusul	GS	Topologia	Volumul cavităților,SAV (%)	Referința, codul referinței în CSD
${[Cu(bpp)_2(H_2O)](BF_4)_2 \cdot dmf \cdot 0,75H_2O]_n}$ (2)	<i>P</i> 2 ₁	1D	447,9 (24,7) ^a	2
${[Cu(bpp)_2(H_2O)_2] \cdot tdc \cdot 5, 5H_2O}_n$	<i>P</i> -1	1D	380, 6 (20,4) ^{<i>a</i>}	[119], QUJHUZ
${[Cu(bpp)_2(H_2O)] \cdot ip \cdot 7H_2O}_n$	<i>P</i> 2 ₁	1D	353,1 (18,6) ^{<i>a</i>}	[120], OTASOS,
${[Cu(bpp)_2(H_2O)_2] \cdot tp \cdot 7H_2O}_n$	$P2_{1}/n$	1D	857,2 (22,5) ^{<i>a</i>}	[120], OTASIM

Tabelul 3.1. Volumul cavităților calculate pentru unii compuși de Cu(II) cu bpp

^{*a*}SAV calculat prin eliminarea moleculelor de cristalizare (H_2O și dmf).

Ca rezultat s-a stabilit că compusul **2** demonstrează cu îndepărtarea moleculelor de solvent cavități puțin mai mari, deci pentru **2** se pot presupune proprietăți de adsorbție mai pronunțate. Cu atât mai mult, cei trei polimeri asemănători cunoscuți deja denotă o influență a ligandul *bpp* împreună cu cea a anionilor din sfera externă asupra diversității în modul de coordinare la atomul de metal a componentelor în rezultatul reacției de complexare: poliedrul de coordinare al atomului de metal poate fi octaedric distorsionat format de setul donor N_4O_2 [119] sau tetragonal-piramidal format din N₄O ca și în cazul [120] și compusului **2**.

Spectrul IR al compusului 2 confirmă prezența ligandului organic utilizat în sinteză prin vibrațiile tipice ale inelului aromatic. Banda largă din regiunea $3300-3500 \text{ cm}^{-1}$ poate fi atribuită vibrației de întindere v(OH), indicând prezența moleculelor de apă din structură în conformitate cu rezultatele studiului cu raze X și a analizei termice. Benzile din intervalul 1657–1595 cm⁻¹ pot fi atribuite modului de întindere a inelelor piridinice v(CC/CN) ale ligandului *bpp*. Benzile din regiunea 2938–2871 cm⁻¹ se datorează absorbției specifice a grupelor v(CH₂) a lanțului din

ligandului *bpp*. Benzile corespunzătoare anionilor BF_4^- sunt observate în regiunea 1067–1027 cm⁻¹, însă benzile din regiunile 441 și 569 cm⁻¹ corespund vibrațiilor de alungire a legăturilor Cu–O și Cu–N, respectiv (Figura A 5.1).

Analiza termică pentru compusul **2** a depistat stabilitate până la 47 °C (Figura A 7.1). După această temperatură se observă prima etapă de degradare termică, care poate fi atribuită eliminării moleculelor de apă de cristalizare. Procesul decurge în intervalul de temperatură 47–89 °C, fiind însoțit de un efect endoterm slab. Pierderea de masă la această etapă constituie 7,26% (7,08% calc.). Încălzirea ulterioară conduce la pierderea unei molecule de *dmf* din sfera externă, pierderea de masă constituind 8,37% (9,59% calc.). Începând cu 150 °C se observă o nouă pierdere de masă de 22,86% (22,86% calc.), care corespunde eliminării a două molecule HBF4. În intervalul 347–680 °C are loc degradarea ligandului *bpp*, procesul fiind puternic exoterm cu un maximum la 522 °C. Partea de masă a reziduului obținut corespunde oxidului de cupru CuO, constituind 10,91% (10,51% calc.).

O înlocuire a ligandului flexibil *bpp* cu *bpy* a condus la formarea unui nou compus (**3**). Acesta a fost obținut prin sinteza solvotermală în reacția dintre $CuSO_4 \cdot 5H_2O$ și ligandul *bpy* în amestic de H₂O:CH₃OH:*dmf* și a fost izolat în formă de cristale de culoare albastru. Cristalele compusului dat sunt stabile în aer.

Spectrul IR al compusului **3** evidențiează benzi de intensitate medie în regiunea 1610–1533 cm⁻¹ ce corespund oscilaților de valență v(C=C) și v(C=N) ale ligandului *bpy* coordinat. Prezența moleculelor de apă și a grupărilor hidroxil în compus este redată prin oscilațile de valență din regiunea 3480–3749 cm⁻¹. Vibrațiile de deformație ale grupărilor δ (OH) se atestă în regiunea 986–971 cm⁻¹. Semnalele puternice și largi observate în regiunea 1062–1046 cm⁻¹ pot fi atribuite anionilor SO4²⁻.

Pentru stabilirea definitivă a structurii compusului **3** a fost utilizată difracția razelor X pe monocristal. Ca urmare a fost stabilit, că compusul cu formula $\{[Cu_5(\mu_3-OH)_2(\mu-OH_2)_4(\mu_3-SO_4)_2(\mu-SO_4)_2(bpy)_4]\cdot 3H_2O\}_n$ cristalizează în grupul spațial $P2_1/c$ al singoniei monoclinice (Tabelul A 1.1). În cristal au fost depistați polimeri coordinativi 3D $[Cu_5(\mu_3-OH)_2(\mu-OH_2)_4(\mu_3-SO_4)_2(\mu-SO_4)_2(bpy)_4]$ și molecule de apă de cristalizare în raport stoichiometric 1:3. Polimerul coordinativ dat are la bază un cluster centrosimetric pentanuclear $[Cu_5(\mu_3-OH)_2(\mu_2-OH)_4(\mu_3-OSO_3)_2(\mu_2-OSO_3)_2]$, în care cei cinci atomi de metal sunt uniți prin mai multe punți, la care sunt antrenate atât gupările hidroxil și moleculele de apă, cât și anionii $SO_4^{2^-}$. În cluster cei trei atomi de metal cristalogarfic independenți (Cu(1), Cu(2) și Cu(3)) se unesc între ei prin atomul de oxigen al unei grupări hidroxilice (μ_3 -OH) și printr-un anion $SO_4^{2^-}$, coordinat tridentat. Mai mult, doi atomi de metal marginali (Cu(2) și Cu(3)) și doi atomi de metal – central și unul marginal (Cu(1) și Cu(3)) sunt stabilizați prin punți în care sunt antrenate cele două molecule de apă, în parte la fiecare atom de metal marginal coordinează monodentat printr-un atom de azot o moleculă de *bpy* (la Cu(2) și Cu(3)), iar la un atom de metal marginal (la Cu(2)) printr-un atom de oxigen coordinează anionul SO₄²⁻ (Figura 3.6a). Ultimul având funcția μ_2 -punte și este acea punte ce extinde clusterul anionic într-un lanț orientat de-a lungul axei *c*, iar prin intermediul punților piridinice acest lanț se extinde în polimer coordinativ 3D (Figura 3.6b). Astfel, *bpy* activează ca ligand *exo*-bidentat punte, care unește prin atomi de azot atomii Cu(2) și Cu(3) din clusterii învecinați din rețele tridimensionale. Distanțele interatomice Cu(1)…Cu(2), Cu(1)…Cu(3) și Cu(2)…Cu(3) sunt egale respectiv cu 3,303, 3,301 și 3,254 Å.

Ca urmare, poliedrul de coordinare al atomului central Cu(1) se poate descrie ca o bipiramidă tetragonală cu numarul de coordinare 4+2, al atomului marginal Cu(2) – printr-o piramidă tetragonală și deci prin numărul de coordinare 4+1, iar atomul Cu(3) are o înconjurare ce poate fi descrisă prin numărul de coordinare 4+1+1, deci poliedrul de coordinare al acestuia este o bipiramidă tetragonală distorsionată. Distanțele Cu(1)–O din **3** sunt în intervalul 1,959(2) – 2,394(3) Å, distanțele Cu(2)–O – în intervalul 1,968(3) – 2,341(3) Å, iar Cu(2)–N este egală cu 1,987(3) Å, distanțele Cu(3)–O – în intervalul 2,003(3) – 2,433(3) Å, iar Cu(3)–N este egală cu 1,986(3) Å (Anexa 2).

Fig. 3.6. a) Modul de coordinare al liganzilor cu evidențierea clusterului pentanuclear centrosimetric din polimerul coordinativ 3D din 3; b) structura polimerului coordinativ 3D format prin intermediul ligandului *bpy* (atomii de hidrogen au fost omiși pentru claritate)

Dacă modul de coordinare tridentat al anionilor SO₄²⁻ și al grupării OH⁻ este depistat întrun număr mai mare de compuși (13 compuși din BDSC) cu obținerea atât a compușilor tri- și tetranucleari [121-123], cât și a compușilor polimerici [124-126], însă formarea polimerului coordinativ printr-un alt anion SO_4^{2-} întocmai coordinat nu este depistată. La extinderea structurilor și crearea polimerilor coordinativi prin intermediul reacțiilor de autoasamblare dintre liganzi și atomi de metal un rol importat îl joacă natura anionilor [127, 128]. Anionul sulfat, de exemplu, posedă moduri de coordinare mult mai variate decât anionii de tetrafloroborat, deaceea ei pot contribui la formarea polimerilor coordinativi de diferite dimensionalități. În figura 3.7 sunt prezentate diferite moduri de coordinare a anionului SO_4^{2-} care poate avea un aport considerabil la extinderea structurilor monomerice în polimeri coordinativi, evidențiate în BDSC. În compusul **3** au fost depistate modurile *c* și *e* prezentat în figură 3.7.

Fig. 3.7. Posibilități de coordinare a anionului sulfat

O analiză a împachetării componentelor în cristal a depistat două rețele 3D ce se interpenetrează formând goluri mici ce constituie 14,6% din volumul total al celulei elementare (Figura 3.8). În ultimile sunt localizate moleculele de apă necoordinate. Datorită faptului că compusul obținut conține un număr mare de molecule de apă atât coordinate, cât și necoordinate, în cristal se evidențiază un sistem complicat de legături de hidrogen, care sunt implicate atât la stabilizarea rețelelor coordinative, cât și la asocierea lor. În calitate de atomi donori de protoni se evidențiează nu numai moleculele de apă coordinate și necoordinate, cât și gruparea OH^- , iar în calitate de acceptori sunt antrenați atomii de oxigen din anionii SO_4^{2-} .

Fig. 3.8. Modul de interpenetrare a rețelelor polimerice 3D în 3

3.2. Polimeri coordinativi cu liganzi carboxilici

În ultimele decenii, problema designului și a sintezei raționale a polimerilor coordinativi, bazată pe autoasamblarea ionilor metalici prin antrenarea liganzilor organici, a fost una dintre cele mai populare, inclusiv cea legată de studiul materialelor cu structuri noncentrosimetrice [129, 130]. O analiză a BDSC a stabilit că prin utilizarea în calitate de liganzi a carboxilaților, liganzi foarte des utilizați, în combinare cu liganzi bipiridinici exo-bidentați (bpy, bpe, bpp) este posibilă formarea rețelelor coordinative lipsite de contranioni anorganici coordinați [131-133]. Însă trebuie de ținut cont și de faptul că contribuie la formarea polimerilor coordinativi cu diferite dimensiuni nu numai natura metalelor și liganzii utilizați ca blocuri de construcție, în special combinarea liganzilor de tip bipiridină și diferiți carboxilați, dar și condițiile experimentale de obținere a acestora [134-136].

În rezultatul optimizării condițiilor de sinteză, au fost obținuți compuși coordinativi noi ai Zn(II) și Cd(II) în prezența anionilor BF_4^- prin combinarea liganzilor *bpe* și *bpp* cu ligandul *1,2- H₂bdc*. Studiul cu raze X a stabilit că au fost obținuți trei polimeri coordinativi noi cu dimensionalitate diferită (**4** – **6**), în care s-a reușit antrenarea ambilor liganzi și un compus deja cunoscut [137] în care lipsește ligandul piridinic.

Compusul **4** [138], cristalizează în grupul spațial $P2_1/n$ al singoniei monoclinice (Tabelul A 1.1). Partea asimetrică a celulei elementare conține doi atomi de metal Zn(1) și Zn(2) cristalografic independenți, doi liganzi dublu deprotonați 1,2- bdc^{2^2} , un ligand *bpe* și două jumătăți de ligand *bpe*. Ca urmare, în cristal liganzii *bpe* sunt antrenați ca liganzi neutri, ultimii doi fiind centrosimetrici. Cu ionul de metal, moleculele de cristalizare H₂O și *dmf* depistate în cristal sunt în raport stoichiometric 2:0,25:0,25. Ambii atomi Zn(1) și Zn(2) au poliedrul de coordinare în formă de tetraedru format din setul de atomi donori N₂O₂, alcătuit din doi atomi de oxigen ce aparțin celor doi liganzi diferiți 1,2- bdc^{2^2} și doi atomi de azot ce aparțin la doi liganzi diferiți *bpe* (Figura 3.9). Distanțele interatomice Zn–O din ambele poliedre sunt în intervalul 1,945(4) – 1,969(5) Å, iar distanțele Zn–N 2,017(6) – 2,036(6) Å (Anexa 2), și aceste valori corespund celor stabilite în compușii de Zn(II) ce au poliedrul de coordinare tetraedric [139].

În rezultatul determănării structurii a fost stabilit că cei doi liganzi $1,2-bdc^{2-}$ coordinează la atomii de metal prin modul bidentat-punte, antrenând la coordinare cu doi atomi de metal câte un atom de oxigen din fiecare grupare carboxilică, deși ligandul poate adopta diferite moduri de coordinare: monodentat, bidentat-chelat sau prin diferite tipuri de punte μ_2 , μ_3 , μ_4 [140, 141].

Fig. 3.9. Structura unității binucleare din compusul polimeric 4 cu notarea parțială a atomilor

Deci, în cristal se pot evidenția lanțuri 1D în formă de spirală (Figura 3.10a), situate de-a lungul axei *a* a celulei elementare, distanțele interatomice $Zn(1)\cdots Zn(2)^*$ între atomii de metal legați prin liganzi *1,2-bdc*²⁻ fiind egale cu 6,367 și 6,575 Å. Liganzii *bpe* sunt coordinați la ionii de metal în modul bidentat-punte prin atomii de azot. Aceștea unesc diferiți atomi de metal, cum ar fi Zn(1) cu Zn(2), Zn(1) cu Zn(1)* (* - generat prin element de simetrie) și Zn(2) cu Zn(2)*, iar distanțele interatomice Zn(1)···Zn(2), Zn(1)···Zn(1)* și Zn(2)···Zn(2)* sunt egale cu 13,228, 13,279 și 13,383 Å, respectiv (Figura 3.10b). În cristal conformația liganzilor *bpe* diferă puțin, deoarece ligandul *bpe* nonsimetric are unghiul de torsiune CCH₂CH₂C 176 °, iar unghiul dintre planele ce trec prin inelele aromatice este de 2,8 °, ceilați doi fiind simetrici.

Fig. 3.10. Fragmente din lanțurile polimerice în compusul 4; a) Format prin intermediul ligandului bideprotonat 1,2-bdc; b) Format cu ajutorul unui ligand *bpp* neutru

Extinderea structurii până la 3D are loc prin implicarea ambilor liganzi – 1,2- bdc^{2-} și *bpe*: dacă în cristal evidențiem lanțuri polimerice formate prin intermediul carboxilaților, atunci prin implicarea liganzilor non-centrosimetrici bipiridinici aceste lanțuri se unesc în straturi, care prin *bpe* centrosimetrici se unesc în rețele tridimensionale (Figura 3.11a).

Fig. 3.11. a) Fragment al rețelei 3D din 4; b) Distribiuirea golurilor după evacuarea moleculelor de H₂O și *dmf*

Acest mod de formare a rețelei 3D este depistat în compusul cu implicarea moleculelor *bpp* $[Zn_2(1,2-bdc)_2(bpp)_2]_n$ [142]. În cristal rețeaua tridimensională este stabilizată suplimentar prin legăturile de hidrogen fine C–H···O. În interiorul rețelei sunt localizate moleculele de apă și *dmf*, formând regiuni hidrofile, unite cu rețeaua polimerică prin legături de hidrogen (Anexa 3). Volumul cavităților libere după îndepărtarea moleculelor de cristalizare în **4** este de 1265,1 Å³ (sau 27,7%) din volumul celulei elementare (Figura 3.11b), ceea ce denotă goluri esențiale în cristal.

Compusul 5 [138] prezintă unele caracteristici geometrice asemănătoare celor stabilite pentru compusul 4, cu toate că în baza studiului cu raze X a fost stabilit că compusul 5 cristalizează în grupul spațial necentrosimetric $P6_1$ al singoniei hexagonale (Tabelul A 1.1). Poliedrele de coordonare ale atomilor Zn(1) și Zn(2) cristalografic independenți diferă, așa cum poliedrul de coordinare al atomului Zn(1) este un tetraedru, format de setul de atomi donori N₂O₂, atomii de azot aparținând la doi liganzi *bpp* cristalografic independenți, iar atomii de oxigen – la doi liganzi diferiți 1,2-bdc²⁻, pe când atomul Zn(2) are poliedru de coordinare în formă de piramidă tetragonală puternic distorsionată, formată de setul de atomi donori N_2O_3 , acestea apartinând de asemenea la doi liganzi bipiridinici și doi liganzi de carboxilat. Deoarece indexul τ calculat pentru poliedrului de coordinare al atomului Zn(2) prin formula $\tau = \beta - \alpha/60$ [143], este egal cu 0,135 și valoarea sa este mai apropiată de 0, decât de 1, atunci forma poliedrului este o piramidă tetragonală și nu o bipiramidă trigonală (Figura 3.12a). Distanțele interatomice pentru ionul Zn(1) sunt: Zn–O 1,94(1) si 1,89(2), Zn–N 2,07(1) si 2,03(1), iar pentru ionul de Zn(2): Zn–O 1,95(1), 2,23(3) și 2,46(3), Zn–N 2,055(8) și 2,03(5) Å (Anexa 2). Poliedrul de coordinare al atomului Zn(1) este similar celui din compusul 4 și din compusul de zinc cu aceleași componente prezentat în [144], pe când cel al atomului Zn(2) este similar cu cel stabilit în complexul Zn(II) cu liganzii 1,2-Hbdc⁻ și bpy [145].

Fig. 3.12. a) Modul de coordinare al liganzilor în compusul 5; b) Prezentarea lanțului format de liganzii *1,2-H*₂*bdc* care se extinde prin intermediul *bpp*

Ca urmare, în compusul 5, doi liganzi 1,2-bdc²⁻ cristalografic independenți sunt coordinați la atomii de metal în mod diferit, unul coordinează bidentat-punte prin doi atomi de oxigen ai grupărilor carboxilice diferite la doi atomi de metal, iar celălalt coordinează tridentat-chelat punte, cu atomul Zn(1) fiind legat printr-un atom de oxigen dintr-o grupare carboxilică, iar cu Zn(2) prin ambii atomi de oxigen din a doua grupare carboxilcă, formând un ciclu din 4 atomi. În cristal se formează o rețea coordinativă tridimensională, în care se pot evidenția lanțuri de-a lungul axei b a celulei elementare, la construirea cărora sunt antrenați liganzii 1,2-bdc²⁻ (Figura 3.12b). Distanțele interatomice $Zn(1)\cdots Zn(2)$ și $Zn(1)\cdots Zn(2)^*$ sunt egale cu 6,047 și 6,397 Å. Aceste lanțuri sunt extinse în carcase 3D de către liganzii *bpp* coordinați la ionii de metal bidentat-punte și care în retea unesc atomii de metal Zn(1) între ei și Zn(2) între ei. Distantele interatomice $Zn(1)\cdots Zn(1)^*$ și Zn(2)···Zn(2)* sunt egale respectiv cu 13,287 și 12,199 Å. În ambii liganzi nonsimetrici bpp din cristal fragmentele CCH2-CH2C formează unghiuri de torsiune egale cu 166 °, 171 ° și 166°, 176°. Mai mult decât atât, unghiurile diedre dintre planele inelelor aromatice din acesti liganzi sunt egale cu 109,2 ° și 98,4 °, ceea ce le deosebește de unghiurile respective din compusul 4. În cristal polimerul coordinativ 3D este stabilizat prin legături fine de hidrogen C-H···O (Anexa 3). Volumul cavităților libere calculate pentru acest compus ce nu are nimic cristalizat în sfera externă este de 763,5 Å³ sau 12,0% din volumul celulei elementare.

Compusul **6** [138], un compus al Cd(II) cu aceiași liganzi ca și în cazul compusului **5**, cu formula $[Cd(1,2-bdc)(bpp)(H_2O)]_n$, este deja un compus de tip polimer 2D ce cristalizează în grupul spațial $P2_1/n$ al singoniei monoclinice (Tabelul A 1.1). În partea asimetrică a celulei elementare a fost stabilit doar câte un atom de metal, un ligand carboxilat bideprotonat, un ligand neutru *bpp* și o moleculă de apă. La formarea poliedrului de coordinare al atomului Cd(1) sunt

antrenați atomii donori ai ligandul 1,2- bdc^{2} și ligandului *bpp*. Poliedrul de coordinare al atomului de metal primeste forma unei bipiramide pentagonale formată din setul de atomi donori N_2O_5 (Figura 3.13a). Pozițiile axiale din poliedrul de coordinare ale metalului sunt ocupate de atomii de azot ai ligandul bidentat *bpp*. Ca urmare atomii de azot antrenați aparțin celor doi liganzi *bpp*, iar patru atomi de oxigen – celor doi liganzi $1,2-bdc^{2-}$ și unul – moleculei de apă. Distanțele interatomice Cd-O(bdc) în acest compus primesc valori în intervalul 2.349(3)-2.483(3) Å, Cd–N(*bpp*) sunt egale cu 2,349(3) și 2,369(3) Å, iar Cd–O(*w*) este egală cu 2,463(3) Å (Anexa 2). Poliedrul de coordinare al atomului Cd(1) este similar cu cel găsit pentru ionul de Cd(II) din compusul ce conține doar acest ligand carboxilic, în care acesta coordinează la patru atomii de metal, ligandul fiind hexadentat, însă împreună cu o moleculă de apă completează poliedrul atomului de metal până la o bipiramidă pentagonală [144], dar diferă de cel stabilit în compușii care contin liganzi micsti 1,2-bdc²⁻ sau 1,2-Hbdc⁻ cu bpy [146, 147]. Astfel, în cristal reteaua extinsă 2D este cauzată de modul de coordinare tetradentat-chelat punte a ligandului $1,2-bdc^{2-}$, ce coordinează la fiecare din atomii de metal prin ambii atomi de oxigen ai grupărilor carboxilice, completată de ligandul-punte *bpp* (Figura 3.13b). Ionii Cd(II) uniti doar prin liandul 1,2-bdc²⁻ au distanța interatomică Cd…Cd egală cu 6,577 Å, iar aceste lanțuri se aranjază în celula elementară de-a lungul axei b. Distanța Cd···Cd din lanțul format de moleculele bpp este egală cu 14,627 Å. Însuși ligandul *bpp* adoptă configurația similară celei din 5 și un aranjament al inelelor piridinice ce formează un unghi egal cu 91,5 °. Polimerul coordinativ 2D este stabilizat de un sistem de legături de hidrogen, înclusiv fine, în care sunt implicați ca donori de protoni moleculele de apă coordinate și liganzii *bpp*, iar ca acceptori – atomii de oxigen ai ligandului 1,2-*bdc*²⁻ (Anexa 3). La împachetarea compactă în cristal a rețelelor 2D, deci a straturilor aranjate paralel cu planul ab, un aport îl aduc legăturile de hidrogen O(w)-H···O și C-H···O.

Fig. 3.13. a) Modul de coordinare al liganzilor și poliedrul de coordinare al atomului Cd(1) din 6; b) Un fragment din rețeaua coordinativă 2D

Stimulați de rezultatele obținute în baza utilizării combinației liganzilor dicarboxilici cu piridinici s-a încercat de a obține polimeri coordinativi cu dimensionalitate diferită prin înlocuirea doar a ligandului dicarboxilic cu tricarboxilic. În construcția polimerilor coordinativi nu ultimul este ligandul H_3btc , un ligand rigid și versatil, cele trei grupări carboxilice ale cărui pot uni două sau mai multe centre metalice adoptând diferite moduri de legătură de tip punte ori fiind antrenat la formarea legăturilor de hidrogen, aducând un aport important la finalizarea unei arhitecturi supramoleculare.

Un studiu al Bazei de Date Structurale din Cambridge [7] relevă 1485 exemple de polimeri coordinativi în care ligandul H_3btc coordinează la diferite metale, dintre ei 23 de compuși sunt polimeri ai Cd(II) și Zn(II), unii fiind prezentați în [148–151, 69] și doar unul singur fiind polimer de Ni(II) [152]. În compușii care conțin suplimentar ligandul *bpp*, ligandul H_3btc coordinează bi- sau trideprotonat, variind nu numai modul de coordinare, dar totodată și cu modul de deprotanare. Pe lângă aceasta s-a stabilit că în compușii de Cd(II) și Ni(II) ligandul *bpp* coordinează la atomi de metal bidentat punte, iar în compușii de Zn(II) – ultimul coordinează la atomii de metal monodentat protonat.

Analiza BDSC cu privire la polimerii coordinativi ai metalelor de tranziție cu H_3btc și ligandul bipiridinic bpe a remarcat 8 exemple de polimeri coordinativi ai Cd(II) [153, 154], Co(II) [155, 156] și un polimer coordinativ de Zn(II) [157]. Utilizarea suplimentară a ligandului bpe și varietatea metalelor extinde semnificativ numărul de compuși polimerici până la 33. Cu atât mai mult, din rezultatele incluse în BDSC s-a observat că se pot obține și compuși în care grupările carboxilice în anumite condiții sunt metilate și din 19 compuși în care metilată ligandul H₃btc are 0 singură grupare carboxilcă 16 sunt compuși complecși trinucleari ori polimeri coordinativi ai Cu(II) [158].

Utilizând metoda solvotermală la interacțiunea diferitor săruri metalice $(Zn(BF_4)_2, Cu(BF_4)_2, Cd(NO_3)_2, CoCl_2, Co(NO_3)_2 şi Co(BF_4)_2)$ cu liganzii H_3btc şi *bpp* sau *bpe* s-a încercat obținerea de noi compuși prin blocarea grupărilor carboxilice prin metilarea acestora. Studiul cu raze X a stabilit că din seria de compuși obținuți doar doi compuși sunt noi, unul fiind de Co(II) (7), celălalt de Zn(II) (8) [159], ceilalți compuși obținuți repetă rezultatele cunoscute. Acești compuși noi s-au dovedit a fi polimerii coordinativi, diferiți atât după compoziție, cât și după topologie. Ambii au fost obținuți la interacțiunea sării de tetrafluoroborat de Co(II) sau Zn(II) cu liganzii H_3btc și *bpp*.

Compusul cu formula { $[Co_4(\mu_3-OH)_2(btc)_2(H_2O)_8] \cdot 4H_2O\}_n$ (7) cristalizează în grupul spațial *P*-1 al singoniei tirclinice (Tabelul A 1.2). Celula elementară înclude în partea sa asimetrică doi ioni de metal Co(1) și Co(2), o grupare hidroxilică (O(1)), patru molecule de apă coordinate

(O(1w) - O(4w)), un ligand trideprotonat btc^{3-} și două molecule de apă de cristalizare dezordonate, în compoziția sa lipsă fiind ligandul bipiridinic, cu toate că acesta a fost antrenat în reacție.

Compusul **7** relevă formarea unui cluster tetranuclear centrosimetric (Figura 3.14a), în care patru atomi de metal sunt legați prin două grupări OH⁻ cu funcția μ_3 -punte, care stă la baza unei rețele coordinative 2D (Figura 3.14b). Distanțele interatomice Co(1)…Co(1)*, Co(1)…Co(2), Co(1)…Co(2)* și Co(2)…Co(2)* din cluster sunt egale cu 3,241, 3,646, 3,677 și 6,567 Å, respectiv. Ambii ioni de Co(II) independenți cristalografic au poliedrele de coordinare octaedrice, formate de același set de atomi donori O₆. Dacă însă la ambii atomi de metal cristalografic independenți coordinează câte două molecule de apă, atunci la Co(1) mai coordinează două grupări OH⁻ și doi atomi de oxigen a doi liganzi diferiți *btc*³⁻, iar poliedrul de coordinare al atomului Co(2) este completat de atomii de oxigen ai unei grupări OH⁻ și a trei grupări carboxilice ce aparțin la trei liganzi *btc*³⁻.

Fig. 3.14. a) Structura clusterului de Co(II) din compusul 7; b) Fragment al rețelei 2D

Distanțele interatomice din poliedrele de coordinare sunt: Co(1)-O(1w) 2,072(7), Co(1)-O(2w) 2,151(7), Co(1)-O(1) 2,083(5), $Co(1)-O(1)^*$ 2,084(5), $Co(1)-O(3)^*$ 2,047(6), $Co(1)-O(5)^*$ 2,035(6) Å și Co(2)-O(3w) 2,145(7), Co(2)-O(4w) 2,099(6), Co(2)-O(1) 2,035(5), Co(2)-O(2) 2,033(6), $Co(2)-O(4)^*$ 2,054(6), $Co(2)-O(6)^*$ 2,133(6) Å (Anexa 2). Anionul *btc*³⁻ complet deprotonat coordinează concomitent la cinci atomi de metal – prin două grupări carboxilice utilizând modul bidentat-punte, iar prin ultima – monodentat. Ca rezultat în rețeaua 2D se pot evidenția cicluri metalice formate din 16 atomi de două tipuri. Cele două cicluri se deosebesc prin modul de coordinare a ligandului *btc*³⁻ la ionii de metal.

Un studiu din BDSC relevă un exemplu de polimer coordinativ al Co(II) în care acest ligand btc^{3-} coordinează la atomul de metal similar [160]. În cristal rețeaua coordinativă este stabilizată prin intermediul legăturilor de hidrogen O(1)–H…O(1w), O(1w)–H…O(7)*,

O(1w)–H···O(3w), O(3w)–H···O(2w), iar straturile formate se asociează prin legăturile de hidrogen O(3w)–H···O(7)*, O(4w)–H···O(4)*, O(4w)–H···O(3w). Moleculele de apă de cristalizare se unesc cu rețelele 2D prin legături de hidrogen O(5w)–H···O(6)*, O(5w)–H···O(3)*, O(6w)–H···O(2), O(7w)–H···O(4)*, O(7w)–H···O(6)*, ca acceptori de protoni fiind în toate cazurile atomii de oxigen din grupările de carboxilat (Anexa 3). În cristal rețelele coordinative sunt asamblate compact, astfel încât golurile disponibile moleculelor de cristalizare constituie 49,9 Å³ din volumul celulei elementare, ceea ce alcătuește doar 7,0% (Figura 3.15).

Fig. 3.15. Fragment al împachetării rețelelor cristaline în cristalul compusului 7 cu golurile evidențiate

Compusul 8 cristalizează în grupul spațial *Cmcm* al singoniei ortorombice (Tabelul A 1.2) și prezintă un compus cu formula {[Zn4(bpp)4(Hbtc)3((Me)btc)]·((Me)2Hbtc·2H2O}n. În cristal au fost depistați polimeri coordinativi 1D [Zn4(bpp)4(Hbtc)3((Me)btc)]n, în care ligandul carboxilic se întâlneste în două variante – bideprotonat $Hbtc^{2-}$ și bideprotonat monometilat (Me)btc²⁻, iar ligandul *bpp* actionează ca ligand de tip punte, ultimul având simetria *m*. În sfera externă există atât molecule de apă de cristalizare, cât și acizi carboxilici bimetilați. Ionul de Zn(II) are poliedru de coordinare tetraedric, format de setul de atomi donori N2O2, doi atomi de oxigen aparținând la doi liganzi carboxilici diferiti $Hbtc^{2-}$ si (*Me*) btc^{2-} si doi atomi de azot fiind ai celor doi liganzi *bpp* neutri (Figura 3.16a). Distanțele interatomice din poliedrul de coordinare sunt: Zn(1)-O(1) 1,932(4), Zn(1)-O(4) 1,932(6), Zn(1)-N(1) 2,043(6), Zn(1)-N(2) 2,066(6) Å (Anexa 2). Încompus patru atomi de metal simetrici sunt uniți prin patru liganzi carboxilici formând un ciclu din 32 de atomi cu distanțele interatomice Zn…Zn egale cu 8,305 și 10,584 Å (Figura 3.16a). Aceste cicluri metalice sunt asociate prin intermediul a patru liganzi neutri bpp într-un lanț polimeric având distanța Zn...Zn egală cu 11,674 Å (Figura 3.16b). Acest mod de asociere a componentelor în rețeaua coordinativă este similar cu cel stabilit pentru compusul de Ni(II) cu acești liganzi Hbtc²⁻ și bpp [157]. Aranjamentul reciproc al liganzilor coordinați din lanțul de polimeric prin legăturile de hidrogen fine tipul C−H···O este stabilizat (C···O 3,181 – 3,374 Å). În cristal, lanțurile 1D sunt conectate între ele de asemenea prin legături

de hidrogen intermoleculare fine C–H···O. În cristal moleculele de cristalizare de apă sunt unite cu rețeaua coordinativă prin legături de hidrogen O(1w)–H···O(carb), iar ele între ele se unesc prin O(2w)–H···O(1w) (Anexa 3), pe când moleculele necoordinate (Me)₂btcH sunt conectate prin legături de hidrogen intermoleculare fine C–H···O cu lanțul polimeric.

Fig. 3.16. a) Poliedrul de coordinare al ionului Zn(II) și modul de coordinare a componetelor rețelei polimerice din compusul 8; b) Fragment al lanțului polimeric (atomii de hidrogen au fost omiși pentru claritate)

Pentru compusul **8** se pot presupune proprietăți de adsorbție așa cum spațiul intermolecular în care sunt localizate moleculele de cristalizare acumulate ocupă 3093,0 Å³ sau 29,1% din volumul total al celulei elementare (Figura 3.17). Calculul golurilor accesibile din structură este efectuat în programul PLATON cu îndepărtarea moleculelor de apă de cristalizare și (Me)₂Hbtc din structură.

Fig. 3.17. Împachetarea cristalină în compusul 8 cu evidențierea golurilor

Prezența anionilor de carboxilat în compușii **7** și **8** este demonstrată și de frecvențele caracteristice $v_{as}(COO^{-})$ și $v_s(COO^{-})$ înregistrate în regiunile 1556 și 1371 cm⁻¹ pentru **7**, 1568 și 1396 cm⁻¹ pentru **8**. Benzile de la 1609 cm⁻¹ pentru **7** și 1602 cm⁻¹ pentru **8** corespund vibrațiilor inelelor aromatice. Vibrațiile de deformare caracteristice grupărilor $\delta(C-H)$ se observă în domeniul 1105 și 712 cm⁻¹ pentru **7**, 1109 și 714 cm⁻¹ pentru **8**. Benzile din regiunea 2924, 1436, 757 cm⁻¹ din spectrul compusului **8** pot fi atribuite vibrațiilor grupărilor CH₂ ale ligandului *bpp*.

3.3. Compuși coordinativi cu liganzi ce conțin atomi donori N,O

Metalele de tranziție au capacitatea de a forma legături chimice cu liganzi ce conțin diferiți atomi donori de electroni, rezultând compuși cu diferite unități de construcție structurale (centre metalice, liganzi organici și molecule de cristalizare) și arhitecturi, inclusiv supramoleculare, luând în considerație compatibilitățile acestora. Ionii de Zn(II), Co(II) și Cu(II) pot forma compuși cu diverse geometrii ale poliedrelor de coordinare, cum ar fi tetraedrică și octaedrică (Zn), octaedrică și pentagonal-piramidală (Co) și tetraedrică, plan-pătrată și octaedrică (Cu), care manifestă proprietăți diverse în procesul de coordinare la care sunt antrenați atomii de oxigen și azot ai liganzilor.

Utilizarea în calitate de ligand a acidului 2,2'-bipiridil-4,4'-dicarboxilic (H_2bpdc) având în componența sa atât grupări carboxilice, cât și piridinice, facilitează obținerea polimerilor coordinativi, fapt confirmat prin rezultatele din unele publicații [161–163]. Asamblarea polimerilor coordinativi cu metalele d^{10} , în mod special cu ionul de Zn(II), este cauzată de faptul că la el foarte ușor coordinează atomii de azot și oxigen. Mai ales că în compuși ionul Zn(II) poate forma geometrii foarte diferite: tetraedrice, tetragonal- ori trigonal-bipiramidale și octaedrice [164]. Astfel, studiul rezultatelor din BDSC [7] au remarcat că H_2bpdc poate forma compuși complecși homo- și heterometalici, antrenând ionii Zn(II), în care acest ligand coordinează diferit: (Figura 3.18). Ca rezultat, sunt deja cunoscuți compuși cu diverse structuri, inclusiv mono- [165], pentanucleare [166] și o serie de polimeri coordinativi [161–163, 167].

Fig. 3.18. Moduri de coordinare ale anionului bipiridină-4,4'-dicarboxilat în compuşii de Zn(II). Ionii de Zn(II) sunt prezentați în culoarea roz-închis, iar atomii din familia lantanidelor – în verde: în (f) M = Nd, Sm, Eu, Tb, Dy, Er; (g) M = Gd, Tb, Dy;

(h) M = Tb, Eu

În rezultatul sintezei solvotermale la interacțiunea sării $Zn(BF_4)_2 \cdot 6H_2O$ cu ligandul H_2bpdc a fost obținut un compus nou de tip polimer coordinativ, stabil la aer și solubil în *dmf*. Compusul obținut cu formula {[Zn(bpdc)(H₂O)] · dmf · H₂O}_n (**9**) [168] cristalizează în grupul spațial *Pbca* al singoniei rombice (Tabelul A 1.2) și constă din straturi polimerice 2D cu fragmentul de bază [Zn(bpdc)(H₂O)], molecule de apă și *dmf* (Figura 3.19a).

Fig. 3.19. a) Formarea poliedrului de coordinare al metalului în compusul polimeric 9; b) Fragment al rețelei coordinative 2D

Ionul de Zn(II) are un poliedru de coordinare tetragonal-piramidal format din setul de atomi donori N₂O₃, cei doi atomi de N aparținând unui ligand $bpdc^{2^{-}}$, doi atomi de oxigen fiind ai grupărilor carboxilice ale altor doi liganzi $bpdc^{2^{-}}$, iar unul dintre atomii de oxigen aparținând unei molecule de apă. Distanțele interatomice din poliedrul de coordinare sunt: Zn(1)–O(carb) 1,975(5) și 2,034(5), Zn(1)–O(w) 2,076(5), Zn(1)–N 2,130(5 și 2,133(5) Å (Anexa 2).

Geometria poliedrului de coordinare în formă de piramidă tetragonală a ionului de metal este confirmată prin calcul, utilizând formula $\tau = (\beta - \alpha)/60$, în care α și β , sunt cele mai mari două unghiuri formate de metal cu cei cinci atomi coordinați [169], așa cum valoarea lui τ este egală cu 0,114 (parametrul descriptiv $\tau = 0$ sau 1 pentru piramida pătrată și bipiramidă trigonală, respectiv). Ca urmare, fiecare ligand $bpdc^{2-}$ coordinează cheleat la un ion de Zn(II) prin atomii de azot ai inelelor de piridil, iar printr-un atom de oxigen din fiecare grupare corboxilică se unește cu alți doi ioni Zn(II) adiacenți, fapt ce a condus la formarea unei rețele 2D alcătuită din lanțuri în formă de *zig-zag* (Figura 3.19b). Modul de coordinare bidentat-chelat a ligandului $bpdc^{2-}$ prin fragmentul 2,2'-bipiridinic la ionul de metal cu formarea unui unghi diedru dintre planele ciclurilor aromatice de 9,21 ° stabilizează aranjamentul reciproc planar al inelelor piridinice. Structura polimerului coordinativ din compusul **9** în formă de rețea 2D, aranjată paralel planului *bc*, are topologia (4,4) sau 44 [170], iar distanțele Zn…Zn din rețea de-a lungul axelor *c* și *b* sunt egale cu 8,941 și respectiv, 9,056 Å. Extinderea structuri cristaline în **9** are loc prin intermediul legăturilor de hidrogen în care sunt antrenate moleculele de apă și liganzii *bpdc*²⁻, și ca rezultat în cristal se evidențiează rețele supramoleculare 3D. Moleculele de cristalizare H₂O se unesc prin legături de hidrogen cu rețeaua polimerică 2D, utilizând ca acceptor de protoni atomii de oxigen din grupările carboxilice, în timp ce moleculele *dmf* se unesc prin legături de hidrogen numai cu molecule de apă necoordinate (Anexa 3). Volumul ocupat de moleculele de solvent în **9** este de 1092,6 Å³ (33,2% din volumul total al celulei elementare), indicând astfel o absorbție ridicată a solventului. Studiul cavităților din cristalele unor compuși polimerici homonucleari de Zn(II) similari, incluși în BDSC [7] a aratat că compusul **9** demonstrează proprietăți de adsorbție mai relevante, deoarece cu îndepărtarea moleculelor de solvent evidențiază cavități (goluri) ce ocupă cel mai mare volum (Tabelul 3.2). Cu atât mai mult, din cei trei polimeri cunoscuți investigați în doi dintre aceștea ligandul *bpdc*²⁻ prezintă același mod de coordinare la atomul de metal [170,171] ca și cel satbilit în compusul **9**, din figura 3.18 *d*. În compusul din [172] modul de coordinare corespunde modului *c* din figura 3.18, pe când același tip de poliedru de coordinare tetragonal-piramidal format de setul de atomi donori N₂O₃ stabilit în **9** este doar în compusul din [170], pe cînd în cei din [171,172] poliedrul octaedric este format de atomii N₂O₆.

,		-		• , , ,	-
Compusul	GS	Topologia	PI,(%)	Volumul	Referința,
				cavităților,SAV	codul în
				(%)	BDSC
${[Zn(bpdc)(H_2O)] \cdot dmf \cdot H_2O}_n(9)$	Pbca	2D	74,1	1092,6 (33,2)	9
${[Zn(bpdc)(dmf)] \cdot dmf}_n$	$P2_{1}/n$	3D	71,3	$591,2(29,6)^{a}$	[170],
					COTYER
$[Zn(bpdc)(H_2O)_2]_n$	$P3_{1}2_{1}$	3D	67,7	-	[171], PASGEX
${[Zn(bpdc)(H_2O)_3]\cdot 3H_2O}_n$	$P2_{1}/c$	1D	72,8	$146,9(9,1)^a$	[172],
					SADTEY

Tabelul 3.2. Volumul cavităților calculate pentru unii compuși de Zn(II) cu dianionul bpdc

^{*a*}SAV calculat prin eliminarea moleculelor de cristalizare (H_2O și dmf).

Din compușii reprezentați în tabelul 3.2, se evidențiează că compusul **9** are o împachetare mai compactă cu PI mai mare, dar demonstrează cea mai bună adsorbție a moleculelor de solvent.

În spectrul IR al compusului **9** se observă benzile de vibrație v(OH) în regiunea 3735–3225 cm⁻¹ corespunzătoare moleculelor de apă, inclusiv și celor coordinate. Prezența grupărilor carboxilice ale ligandului $bpdc^{2-}$ în compus este determinată de frecvențele caracteristice (v_{as}COO⁻) și (v_sCOO⁻) înregistrate la 1666–1556 și 1394 cm⁻¹. Aceste benzi se suprapun cu vibrațiile de întindere v(C=N) ale inelelor piridinice. Vibrațilile ciclurilor aromatice v(C=C) se observă în regiunea 1623 cm⁻¹. Vibrațiile de deformație $\delta(OCO)$ se suparpun cu vibrațile de deformație $\delta(C-H)$ înregistrate la 788 și 726 cm⁻¹. Prezența moleculelor *dmf* este demonstrată prin vibrațiile de deformație $\delta(CH_3)$ în regiunea 1417 cm⁻¹, v_{as}(C–N) și v_s(C–N) în regiunea 1266 și 889 cm⁻¹. Luminescența pentru compusul **9** și pentru substanța organică H_2bpdc pură a fost înregistrată în stare solidă la temperatura camerei, lungimea de undă $\lambda_{ex} = 337$ nm în domeniul 350-750 nm. Spectrul de fluorescență al ligandului în parte prezintă o bandă intensivă la 2,97 eV (417 nm). Compusul **9** emite fluorescență albastră cu intensitatea de emisie la 2,01 eV (616 nm), 2,56 eV (483 nm) și 3,37 eV (367 nm). Aceste benzi pot fi observate și în spectrul ligandului H_2bdc însă acestea fiind cu intensitate de 4–5 ori mai mică decât cele obținute pentru compusul complex, în timp ce intensitatea benzii la 2,97 eV evidențiată pentru ligandul necoordinat este de 30 de ori mai mare decât în compusul **9**. În comparație cu substanța organică pură, emisiile stabilite pentru compusul **9** sunt de două ori mai mari și pot fi atribuite interacțiunilor ligand-metal (LMCT) (Figura A 7.1).

Printre liganzii ce conțin setul heteroatomic donor N,O a fost selectată 2-benzoilpiridina (*bzpy*), un ligand alcătuit din două cicluri aromatice, unul fenilic și unul piridinic, unite printr-o grupare carbonilică și cu ea au fost obținuți doi compuși. Compușii coordinativi cu *bzpy* din BDSC [7] demonstrează un singur mod de coordinare – bidentat-chelat, mod ce presupune coordinarea ligandului la atomul de metal prin atomul de azot piridinic și atomul de oxigen cetonic.

Compusul $[Co(bzpy)_2(H_2O)_2](BF_4)_2$ (**10**) [173] cristalizează în grupul spațial $P2_1/n$ al singoniei monoclinice (Tabelul A 1.2). Acesta este un compus ionic, format din cationii centrosimetrici $[Co(bzpy)_2(H_2O)_2]^{2+}$ și anionii BF_4^- (Figura 3.20a). Ionul Co(II) are poliedrul de coordinare octaedric format de setul de atomi donori N₂O₂, ce aparțin la doi liganzi *bzpy* și completat de doi atomi de O din două molecule de apă coordinate în poziții axiale. În rezultatul coordinării ligandului organic la atomul de metal se formează două pentacicluri metalice separate localizate în planul ecuatorial al cationului. Distanțele interatomice din poliedrul de coordinare Co–N 2,072(4), Co–O 2,089(4) și Co–O(*w*) 2,094(4) Å (Anexa 2) sunt ușor diferite față de cele găsite într-un compus similar cu perclorat [174], în care aceste distanțe primesc valorile 2,077, 2,105 și 2,078 Å. În cristal cationii complecși sunt conectați cu anioni BF_4^- din sfera extenă atât prin interacțiuni electrostatice, cât și prin legături de hidrogen intermoleculare.

Fig. 3.20. a) Structura cationului complex și a anionului din compusul 10 cu notarea parțială a atomilor; b) Stratul din cristal format prin intermediul legăturilor de hidrogen

Cationul complex, ce conține molecule de apă coordinate, este unit cu anionii BF_{4}^{-} prin legături de hidrogen intermoleculare, în care ca donori de protoni sunt antrenate aceste molecule de apă, iar în calitate de acceptori sunt atomii de fluor ai anionului BF_{4}^{-} . De aici, în cristal se pot evidenția straturi în baza legăturilor de hidrogen $O(1w)-H\cdots F(3)$ ($O(1w)\cdots F$ 2,692(7)) și $O(1w)-H\cdots F(2)^{*}$ ($O(1w)\cdots F$ 2,687(9)) (Anexa 3), acestea fiind stabilizate prin legăturile de hidrogen fine C-H \cdots F* (C \cdots F 3,408 Å), iar straturile între ele sunt asociate de asemenea doar prin interacțiuni fine C-H \cdots F* (C \cdots F 3,148 Å) (Figura 3.20b).

Însă, la combinarea 2-*bzpy* cu clorura de Cu(II) a fost obținut compusul complex monomeric mononuclear neutru cu formula [Cu(bzpy)₂Cl₂] (**11**) [173]. Studiul cu raze X a stabilit, că acest compus s-a dovedit a fi un polimorf al compusului cu aceiași compoziție din BDSC [175] ce se deosebesc prin singonie, parametrii celulei elementare și prin modul de împachetare.

Compusul **11** cristalizează în grupul spațial *P*-1 al singoniei triclinice: a = 7,3015(7), b = 8,2013(8), c = 10,8395(11) Å, $\alpha = 107,777(9)$, $\beta = 95,380(8)$, $\gamma = 113,191(9)^\circ$, V = 550,91(9) Å³, Z = 1 (Tabelul A 1.2), pe când compusul polimorf cunoscut deja cristalizează în grupul spațial *C*2/*c* a singoniei monoclinice: a = 15,018(1), b = 7,370(1), c = 21,189(1) Å, $\beta = 110,17(1)^\circ$, V = 2201,268 Å³, Z = 4. Astfel, ambii compuși sunt centrosimetrici. Ionul de Cu(II) în ambii compuși adoptă configurația unei bipiramide tetragonale distorsionate, formată de setul de atomi donori N₂O₂Cl₂, generat de către doi atomi de azot și doi atomi de oxigen aparținând celor doi liganzi neutri *bzpy*, coordinați bidenta-chelat, și de doi anioni clorură (Cl⁻) (Figura 3.21a).

Fig. 3.21. a) Structura compusului 11 cu notația parțială a atomilor; b) Stratul 2D format prin intermediul legăturilor de hidrogen fine C–H···Cl; c) Interacțiunile de tip π – π *stacking* dintre sistemele π –delocalizate din compus

Modul de coordinare a liganzilor organici prin atomii N,O cu formarea ciclurilor metalice din cinci atomi CuNCCO este similar celui stabilit în acești doi polimorfi, și în cationul complex din **10**, iar atomii de clor coordinează în ambii polimorfi monodentat și sunt situați în poziții *trans*. Distanțele interatomice din poliedrul de coordinare al atomului de metal sunt: Cu(1)-N(1) 1,977(2) Å, Cu(1)-O(1) 2,457(1) Å, iar Cu(1)-Cl(1) 2,3184(8) Å (Anexa 2). În compusul polimorf din [175] aceste distanțe interatomice primesc respectiv următoarele valori: 2,006, 2,495 și 2,281 Å.

La împachetarea compusului **11** în cristal contribuie legăturile de hidrogen fine C–H···Cl (distanțele donor···acceptor 3,703 și 3,535 Å) ce unesc unitățile monomerice într-un strat 2D (Figura 3.21b), cât și interacțiunile de tip π – π stacking dintre sistemele π –delocalizate piridinice ale *bzpy* cu distanța centroid···centroid 3,734 Å ce conduc la stabilizarea lanțurilor (Figura 3.21c).

Spectrele IR ale compuşilor **10** și **11** sunt asemănătoare și confirmă prezența ligandului organic utilizat în sinteză prin vibrațiile tipice ale inelelor aromatice. Semnalele observate din regiunea $1659 - 1580 \text{ cm}^{-1}$ sunt atribuite grupării carbonil v(C=O) ce indică coordinarea ligandului *bzpy* la ionul de metal prin acest atom de oxigen. Benzile din regiunea 1592–1570 cm⁻¹ și 1285–1287 cm⁻¹ corespund vibrațiilor v_{as}(C=N) și v_s(C=N) ale inelului piridinic care confirmă coordinarea atomului de N al ligandului la ionul de metal. Benzile caracteristice 3274–3380 cm⁻¹ pot fi atribiute vibrațiilor de întindere ale grupării (OH) a moleculelor de apă pentru compusul **10**. În compusul **11** prezența ionilor de BF₄⁻ este determinată de frecvențele caracteristice v_{as}(BF4⁻) și v_s(BF4⁻) în regiunile 1084–761 cm⁻¹ și în regiunea 524 cm⁻¹ ce corespund oscilațiilor de deformare δ (F–B–F).

3.4. Concluzii la capitolul 3

- Diversificarea metodelor de sinteză a condus la formarea a 8 compuşi de tip polimeri coordinativi noi cu liganzi homofuncționali, inclusiv micşti. Prin sinteza convențională au fost obținuți 2 compuşi: unul cu Fe(II), celălat cu Cu(II), iar prin sinteza hidrotermală a fost efectuată sinteza a 6 compuşi ai Cu(II), Co(II), Zn(II) şi Cd(II), aceştea fiind în baza liganzilor carboxilici şi piridinici. Prin schimbarea componentelor de bază, în special a sărurilor de metal şi a liganzilor cu funcție punte, s-a reuşit crearea a doi polimeri coordinativi 2D şi a câte trei polimeri 1D şi 3D.
- Concluzii referitor la influența naturii metalului și a ligandului asupra structurii lor s-au efectuat în baza polimerilor coordinativi ai Zn(II) și Cd(II) cu carboxilați și liganzi punte *bpe/bpp*. Structura cristalină a compuşilor 5 și 6 a evidențiat o diferență atât în forma poliedrului de coordinare (pentru atomii Zn(1) și Zn(2) din 5 avem poliedrele de coordinare

diferite – tetraedru și piramidă tetragonală, iar pentru Cd(1) din 6 poliedrul primește forma unei bipiramide pentagonale), cât și în dimensionalitatea polimerului coordinativ: dacă în 5 avem polimer 3D, atunci în 6 s-a obținut polimer 2D. Cu atât mai mult, în 6 a fost stabilit un alt mod de coordinare al carboxilatului (tridentat) decât cel stabilit în 5 (bidentat).

- Influența ligandului suplimentar a fost evidențiată prin rezultatele studiului structural al compuşilor 4 şi 5, ambii fiind compuşi ai Zn(II) cu 1,2-bdc şi deosebindu-se prin liganzii bipiridinici bpe şi bpp. Influența anionului anorganic a fost evidențiată prin rezultatele studiului structural al compuşilor de Cu(II) şi Co(II) cu bzpy, ce conțin respectiv tetrafluoroborat ori clorură.
- Utilizarea liganzilor heterofuncționali ce conțin setul de atomi donori N,O, fără antrenarea liganzilor bipiridinici, a condus la crearea a 3 compuşi, 2 din care sunt compuşi monomerici, iar 1 – polimer coordinativ 1D.
- Studiul termogravimetric pentru compusul {[Cu(bpp)₂(H₂O)](BF₄)₂·dmf·0,75H₂O}_n (2) a confirmat stabilitatea înaltă a acestui polimer coordinativ 1D. Spectrele de luminescență ale compusului 9 și substanța organică pură în parte au evidențiat emisii de două ori mai puternice pentru compusul polimeric, acestea fiind atribuite interacțiunilor ligand-metal (LMCT).
- Investigarea volumului cavităților după îndepărtarea moleculelor de cristalizare din compuşii polimerici au evidențiat cele mai mari valori pentru compusul 9 (33,2% din volumul total al celulei elementare), iar esențiale pentru compuşii 2, 4 şi 8 (24,7, 27,7 şi 29,1% din volumul total al celulei elementare), fapt ce relevă potențiale proprietăți de adsorbție pentru aceștea.

4. COMPUȘI COORDINATIVI AI UNOR METALE TRANZIȚIONALE CU LIGANZI HETETOFUNCȚIONALI. STRUCTURĂ CRISTALINĂ ȘI PROPRIETĂȚI

4.1. Polimeri coordinativi cu liganzi ce posedă atomi donori S,O

Acizii carboxilici aromatici rămân cei mai utililizați liganzi organici la autoasamblarea PC, deoarece aceștea pot adopta diferite modalități de coordinare la ionul de metal, fapt ce contribuie la extinderea numărului de compuși cu diverse arhitecturi.

Acidul 2,2'-ditiodibenzoic (H_2dtdb) este un ligand multifuncțional, care conține atât grupări carboxilice, cât și *tio*, ceea ce-l face nu numai flexibil, deoarece în ligad pot avea loc rotiri libere în jurul legăturilor simple C–S și S–S cauzate de efectul steric, dar și în același timp rigid, fapt cauzat de modul de coordinare a acestui cu metale. Mai mult decât atât, unghiurile de torsiune C–S–S–C egale cu 20 ° și 90 ° care facilitează formarea PC elicoidali.

O caracteristică a PC care conțin liganzi cu fragmentul -S-S este legată de transformările variabile din ultimul în funcție de condițiile de reacție. Un studiul al BDSC [7] relevă o serie de compuși ai unor metale cu ligandul *H*₂*btdb*, din care se evidențiază formarea compușilor, ce se deosebesc atât după nuclearitate (mono- [176, 177], binucleari [178, 179], polimeri 1D [178,180], 2D [181] și 3D [181,182]), cât și după modul de coordinare (mono- sau bidentat) ori prin scindarea legăturii S-S din ligand.

În acești compuși ligandul H_2btdb se poate regăsi în variante diferite ce țin de modul de coodinare, deprotonare ori scindare: a) ligandul $dtdb^{2-}$ manifestă diferite moduri de coordinare antrenând grupările carboxilice [180,182–186], b) în ligand este extrudat un atom de sulf [178, 180, 187], c) ligandul se divizează în două părți după scindarea legăturii S-S [176], d) în ligand are loc atât scindarea legăturii S-S, cât și oxidarea atomului de S [188], e) în ligand are loc extrudarea și oxidarea unui atom de S, f) oxidarea ligandului până la anionul SO₄²⁻ (Figura 4.1).

Cu toate că în BDSC există un numar impunător de compuși cu acest ligand H_2dtdb , un șir de compuși noi a fost obținut la interacțiunea sărurilor de Mn(II), Co(II), Cu(II), Zn(II) și Cd(II) cu ligandul H_2dtdb și, inclusiv, utilizând concomitent liganzi suplimentari N-donori din clasa bipiridinelor.

Modificările posibile din acest ligand, cum ar fi scindarea oxidativă, extrudarea unui atom de sulf sau introducerea unui atom suplimentar (S, C, N) au condus la formarea atât a compuşilor discreți (0D), cât și a PC cu dimensionalități diferite (1D, 2D și 3D).

Fig. 4.1. Transformările ligandului H2dtdb din compuși în funcție de condițiile de reacție

Studiul Х stabilit 13 cu raze а că compusii 12 si cu formula ${[Mn_2(dtdb)_2(bpe)_2(EtOH)_2(H_2O)_2] \cdot dmf}_n (M = Mn(II) \text{ si } Co(II)) \text{ sunt isostructurali, cu toate că}$ la sinteza solvotermală au fost utilizate săruri diferite (MnF2·4H2O și Co(BF4)2·6H2O). Ambii cristalizează în grupul spațial monoclinic C2/c, (Tabelul A 1.2 și 1.3). Partea asimetrică a celulelor elementare include fragmentul [M2(dtdb)(bpe)2(EtOH)(H2O)], ambii atomi de metal având coeficientul de ocupare 1/2 fiind localizați pe diferite elemente de simetrie, ambii liganzi bpe sunt simetrici, ceilalti fiind în poziții generale, iar molecula de cristalizare dmf are coeficientul de ocupare ¹/₂. În ambele cristale au fost depistate trei rețele interpătrunse ale polimerilor coordinativi 3D [M₂(dtdb)₂(bpe)₂(EtOH)₂(H₂O)₂]_n. Poliedrul de coordinare al fiecărui ion de metal Mn(II)/Co(II) este format de setul de atomi donori N2O4, atomii de azot apartinând la doi liganzi *bpe*, doi atomi de oxigen – la doi liganzi $dtdb^{2}$, pe când ceilalți doi atomi de oxigen ce completează poliedrul de coordinare în pozițiile axiale ale atomului Mn(1)/Co(1) aparțin celor două molecule de etanol, iar la atomul Mn(2)/Co(2) coordinează două molecule de apă. Poliedrele ambilor atomi de metal au geometrie octaedrică (Figura 4.2a). În acești compuși polimerici ligandul H₂dtdb este antrenat ca ligand anionic bideprotonat dtdb2- și coordinează bidentat la doi ioni de metal, la fiecare printr-un atom de oxigen din cele două grupări carboxilice, iar *bpe* – ca ligand *exo*-bidentat neutru. poliedrele de coordinare $Mn(1)/Co(1)-O(dtdb^{2})$ Distanțele interatomice din sunt: $Mn(1)/Co(1)-O(C_2H_5OH) = 2,200(3)/2,120(2)$ Å, 2,111(3)/2,053(3) Å, Mn(1)/Co(1)-N

2,288(6)/2,166(4) și 2,338(5)/2,193(4) Å, $Mn(2)/Co(2)-O(dtdb^{2-})$ 2,139(3)/2,065(3) Å, Mn(2)/Co(2)-O(w) 2,209(3)/2,142(2) Å, Mn(2)/Co(2)-N 2,259(3)/2,156(3) Å (Anexa 2). Distanța dintre atomii de metal ce se unesc în lanț prin ligandul $dtdb^{2-}$ $Mn(1)\cdots Mn(2)/Co(1)\cdots Co(2)$ este egală cu 13,968/13,864 Å, iar $Mn(2)\cdots Mn(2)/Co(1)\cdots Co(1)$ de-a lungul ligandului *bpe* distanța este de 13,706/13,697 Å. În cristal au fost depistate legături de hidrogen ce unesc moleculele de *dmf* cu rețelele polimerice, ca donori de protoni fiind moleculele de apă coordinate, iar celelalte legături de hidrogen la care sunt antrenate molecule de apă și etanol coordinate stabilizează ori leagă rețelele polimerice din cristal (Anexa 3). Ultimele se împachetează compact (Figura 4.2b), iar volumul cavităților libere după îndepărtarea moleculelor de cristalizare în **12/13** este 674,1/633,9 Å³ (11,0/10,7 %) din volumul celulei elementare 6117,1/5912,8 Å³.

Fig. 4.2. Structura polimerului coordinativ {[Mn₂(dtdb)₂(bpe)₂(EtOH)₂(H₂O)₂]·dmf}_n (12): a) poliedrul de coordinare al ionului Mn(2), b) un fragment din rețeaua 3D

Compușii **14** și **15** au fost obținuți la interacțiunea sării de Co(II) în prezența ligandului H_2dtdb și *bpe* prin sinteza solvotermală în aceleași condiții, excepție fiind mediul (acid ori bazic). Ca rezultat s-au obținut doi compuși absolut diferiți cu formulele $[Co_3(dtdb)_2(bpe)(HCOO)_2(H_2O)_2]_n$ și $[Co_4(Htb)_4(tb)_2(bpe)(H_2O)] \cdot 2dmf \cdot 9H_2O_n$ (**14** și **15**, respectiv). Ambii compușii cristalizează în singonia triclinică, grupul spațial *P*-1 (Tabelul A 1.3).

Compusul 14 obținut în mediu acid este un polimer 3D în care se poate evidenția un lanț centrosimetric polimeric anorganic de Co(II) $[Co_3(HCOO)_2]_n$, în care fiecare ligand monodeprotonat HCOO⁻ coordinează tridentat: monodentat printr-un atom de oxigen la atomul Co(2) și bidentat-punte prin celălalt atom de oxigen la atomii Co(1) și Co(2)* în $[Co_3(dtdb)_2(bpe)_2(HCOO)_2(H_2O)_2]$ (Figura 4.3a). Rețeaua polimerică este extinsă în cristal într-o singură rețea tridimensională (Figura 4.3b) cu ajutorul ligandului carboxilic coordinat în forma sa bideprotonată $dtdb^{2-}$ tetradentat la patru atomi de metal prin cei patru atomi de oxigen ce aparțin celor două grupări carboxilice și prin ligandul auxiliar *bpe* neutru, coordinat *exo*-bidentat. Ca rezultat poliedrele de coordinare ale celor doi atomi de metal cristalografic independenți primesc forma unui octaedru, însă sunt formate de seturi diferite de atomi donori. Dacă încojurarea donoră a atomului Co(1) este formată doar de atomi de oxigen, ce aparțin la patru liganzi $dtdb^{2-}$ și doi liganzi HCOO⁻, atunci cea a atomului Co(2) este formată de setul de atomi donori NO₅, atomul de azot aparținând ligandului *bpe*, iar atomii de oxigen la câte doi liganzi de $dtdb^{2-}$ și HCOO⁻, iar un atom de oxigen este antrenat de la o moleculă de apă coordinată. Distanțele interatomice Co–O($dtdb^{2-}$) din poliedrele de coordinare sunt în intervalul 2,023(2) – 2,071(2) Å, Co(1)–O(*CHOO*) 2,138(2) – 2,194(2) Å, iar Co–O(*w*) și Co–N sunt egale cu 2,191(2) și 2,129(3) Å (Anexa 2) și sunt comparabile cu cele stabilite în **13** și compușii din BDSC [7] cu acești liganzi. În cristal au fost depistate legături de hidrogen mai puternice, dar cele cu implicarea moleculelor de apă coordinate (Anexa 3).

Compoziția compusului 15, obținut în mediul bazic, poate fi redată prin formula $[Co_4(Htb)_4(tb)_2(bpe)(H_2O)] \cdot 2dmf \cdot 9H_2O_n$ (Figura 4.3c). Studiul cu raze X a depistat în cristal formarea polimerului coordinativ 2D (Figura 4.3d), care are la bază trei atomi de metal cristalografic independenți, din care doar unul este în poziție generală, având în sfera externă molecule de cristalizare de *dmf* și apă. Toți trei atomi de metal au poliedre de coordinare octaedrice distorsionate, fapt cauzat de setul diferit de atomi donori care participă la formarea lor. Dacă pentru Co(1) este înconjurarea donoră din setul de atomi S₆, pentru $Co(2) - O_3S_3$, iar pentru $Co(3) - N_2O_4$ (Anexa 2). Aici se poate menționa, că la formarea poliedrelor de coordinare ale celor trei atomi de metal participă atomii de sulf și atomii de oxigen de la liganzii tiosalicilici, obținuți la scindarea ligandului $H_2 dt db$, atomii de oxigen – de la moleculele de apă, iar atomii de azot – de la ligandul punte bpe (Anexa 2). Liganzii H₂dtdb în rezultatul reacției suferă schimbări radicale, scindând în jumătate cu formarea acizilor tiosalicilici (H_2tb) , care în compus sunt antrenați atât în forma sa monodeprotonată (Htb), cât și bideprotonată (tb). Cu atât mai mult, din cei trei liganzi tiosalicilici cristalografic independenți, ligandul bideprotonat coordinează tetradentat la trei atomi de metal: printr-un atom de sulf la doi atomi de metal, iar prin cei doi atomi de oxigen din gruparea carboxilică – la doi atomi de metal, respectiv, la un atom de metal acest ligand coordinează bidentat-chelat, cu formarea unui metalo-ciclu din șase Spre deosebire de liganzii bideprotonați tb, liganzii monoprotonați Htb atomi. coordinează tridentat: la un atom de metal bidentat-chelat cu antrenarea atomului de sulf și a unui atom de oxigen din gruparea carboxilică cu formarea hexametalociclului, iar prin acest atom de sulf – la un alt atom de metal. În cristal au fost depistate două rețele polimerice diferite ce nu se interpenetrează, cu care se unesc moleculele de cristalizare de dmf și apă, formând un sistem complicat de legături de hidrogen, la care ca donori de proton mai sunt implicați și liganzii monodeprotonați tiosalicilici și moleculele de apă coordinate (Anexa 3). În rețelele polimerice distanțele interatomice dintre atomii de metal cei mai apropiați sunt Co(1)…Co(2) și Co(1)…Co(2)* egale cu 2,9327(5) și 2,9327(5) Å.

Fig. 4.3. Structura polimerilor coordinativi: a) poliedrul de coordinare al metalului în compusul 14 cu modul de coordinare al liganzilor organici; b) Rețea 3D a compusului 14; c) poliedrul de coordinare al metalului în compusul 15; d) Rețea 2D al compusului 15

Dacă calculul volumului cavităților libere în **14** nu a evidențiat goluri, atunci după îndepărtarea moleculelor de cristalizare în **15** volumul acestor cavități ocupă 30% din volumul celulei elementare, ceea ce constituie 517,9 Å³ din volumul celulei elementare 1725,7 Å³, ceea ce relevă un material cu probabile proprietăți de adsorbție.

Aici, fiind puși în gardă de rezultatele neașteptate obținute în compușii **14** și **15** și pentru a confirma puritatea ligandului H_2dtdb , a fost efectuată o comparație a difractogramei experimentale cu raze X pe pulbere cu cea simulată teoretic, având la bază structura moleculei libere. Așa cum acestea s-au dovedit a fi identice s-a tras concluzia că s-a lucrat cu ligandul H_2dtdb (Figura 4.4).

Fig. 4.4. Datele experimentale (violet) și simulate în programul Mercury (albastru) a difracției razelor X pe pulbere pentru ligandul *H*₂*dtdb*

Interacțiunea Cu(BF₄)₂·6H₂O doar cu ligandul organic *H*₂*dtdb*, fără a implica bipiridine, în amestec de CH₃OH:*dmf*, a condus la obținerea a doi polimeri coordinativi diferiți atât după dimensionalitate, cât și după compoziție: 1D (**16**) și 2D (**17**) [189]. Compusul **16** cristalizează în grupul spațial triclinic centrosimetric *P*-1 (Tabelul A 1.3), având în unitatea asimetrică a celulei elementare în poziții generale un ion Cu(II), un anion *tdb*²⁻ și două molecule de *dmf*. În polimerul 1D se evidențiează clusterul metalic binuclear centrosimetric [Cu₂(tdb)₄(dmf)₂]⁴⁻ ca unitate de construcție principală cu distanța Cu…Cu 2,6365(13) Å (Figura 4.5a) și molecule de *dmf* de cristalizare. Fiecare poliedru al atomului de metal are o geometrie tetragonal-piramidală, formată de setul de atomi donori O₅, patru atomi de oxigen aparținând la patru liganzi *tdb*²⁻, iar a cincea poziție, cea axială din poliedrul de coordinare este ocupată de O din molecula de *dmf*. Distanța interatomică Cu–O(*dmf*) este egală cu 2,133(4) Å, iar distanțele bazale Cu–O(*carb*) variază de la 1,949(3) până la 1,970(4) Å (Anexa 2).

Fig. 4.5. a) Reprezentarea unității binucleare centrosimetrice [Cu₂(tdb)₄(dmf)₂] în compusul 16 cu notarea parțială a atomilor; b) Fragment al lanțului polimeric

A fost stabilit că în ligandul de bază sunt schimbări, legate de extrudarea unui atom de sulf. În ligandul tdb^{2-} cele două cicluri aromatice unite printr-un atom de S sunt practic perpendiculare, unghiul diedru între ele fiind 87,63 °, o grupare carboxilică este practic paralelă cu ciclul său aromatic, în timp ce cealaltă este perpendiculară. Anionii tdb^{2-} unesc atomii de Cu(II) într-un mod dublu catenar, extinzând astfel structura în benzi (lanțuri duble) 1D ce includ cicluri metalice formate din 20 atomi, distanța Cu···Cu în lanț fiind de 7,574 Å (Figura 4.5b). Două lanțuri adiacente sunt unite prin interacțiunile π - π de-a lungul axei cristalografice *a*, formând un strat supramolecular. Împachetarea în cristal relevă faptul că moleculele hidrofile de *dmf* din sfera externă sunt interconectate prin legături de hidrogen intermoleculare C–H···O cu lanțul polimeric C···O* cu lungimea 3,428(8) Å. Cristalul conține goluri (SAV) neglijabile (1,3 %), calculate cu prezența solventului *dmf*. Golurile calculate pentru rețeaua supramoleculară simulată fără moleculele de cristalizare dau o valoare de 271,6 Å³ (~ 25,2% din volumul celulei elemantare), indicând astfel o adsorbție ridicată a solventului (Figura 4.6).

Fig.4.6. Suprafața golurilor în cristalul compusului 16 după excluderea moleculelor de cristalizare

Compusul **17** cristalizează în grupul spațial centrosimetric $P_{21/n}$ al singoniei monoclinice, (Tabelul A 1.3). În cristal au fost depistați polimeri coordinativi 2D, care au la baza clusterul metalic binuclear centrosimetric $[Cu_2(tdb)_2(sdb)_2]^{4-}$ în calitate de unitate de construcție, completat cu moleculele de *dmf* și apă (Figura 4.7a). Ultima conține doi cationi de Cu(II) cristalografic independenți, pentru ambii a fost stabilită forma poliedrului de coordinare tetragonal-piramidală formată de setul de atomi donori O₅. Acest mod de formare a poliedrelor de coordinare este similar celui stabilit în **16**, numai că poliedrele de coordinare sunt completate prin doi atomi de oxigen diferiți – unul fiind al *dmf*, altul – al moleculei de apă, distanțele respective fiind Cu(1)–O(11) 2,138(5) Å, iar Cu(2)–O(1*w*) este 2,105(5) Å (Anexa 2). La ambii atomi de metal coordinează patru atomi de oxigen, care aparțin la patru liganzi de carboxilat, distanțele Cu–O(*carb*) fiind în intervalul 1,949(3)–2,133(4) Å. În compusul **17** ligandul *H*₂*btdb* se regăsește atât ca ligandul *tdb* primit prin extrudarea unui atom de sulf, cât și ca *sdb*, primit prin oxidarea ultimului până la crearea fragmentului = SO₂, ambii fiind antrenați în compuși ca dianioni ce coordinează tetradentat la patru atomi de metal.

Anionii tdb^{2-} și sdb^{2-} sunt responsabili de conexiunea clusterilor binucleari într-un strat coordinativ 2D cu dimensiunile diagonale între unitățile de construcție de 13,662 x 14,357 Å (Figura 4.7b). Molecule de cristalizare *dmf* sunt unite de rețeaua polimerică prin legături de hidrogen O–H…O, moleculele de apă coordinate fiind antrenate ca donori de proton (Anexa 3). Calculul golurilor (SAVs) din această structură după îndepărtarea moleculelor de cristalizare *dmf* a arătat un volum de 1138,8 Å³ sau 27,8% din volumul total al celulei elementare, volum esențial ocupat de ultimele în cristal, fapt ce denotă proprietăți de adsorbție esențiale.

Fig. 4.7. a) Reprezentarea clusterului binuclear centrosimetric [Cu2(tdb)2(sdb)2(dmf)(H2O)] în compusul 17 cu notarea parțială a atomilor; b) Fragment al stratului polimeric

Compușii **18–20** au fost obținuți concomitent la interacțiunea sării $CuF_2 \cdot 2H_2O$ cu ligandul *H₂dtdb* în prezența ligandul auxiliar *bpe* prin sinteza solvotermală. Ca rezultat acești trei compuși sunt diferiți: un compus este de tip monomer, iar ceilalți doi – polimeri cu dimensionalitate diferită.

Studiul cu raze X pentru compusul 18 a stabilit că cristalele de culoare albastră având formă de placute, stabile la aer și solubile în apă, metanol și *dmf*, cristalizează în grupul spațial P-1 al singoniei triclinice (Tabelul A 1.3). În partea asimetrică a celulei elementare se conține un atom de metal în centrul de simetrie, ligandul monodeprotonat *Htdb*⁻ ce conține un singur atom de sulf și un ligand *bpe*. Deci, în ligandul $H_2 dt db$ din compusul **18** se observă aceiași scindare a legăturii S-S cu formarea monoanionului Htdb⁻. Ca urmare, formula acestui compus centrosimetric este [Cu(Htdb)₂(dpe)₂]. Fiecare ion Cu(II) are poliedrul de coordinare octaedric distorsionat alcătuit din setul de atomi donori N₂O₄ (Figura 4.8a), atomii de oxigen revenind de la doi anioni Htdb⁻ coordinați bidentat-chelat, localizați în planul ecuatorial al poliedrului de coordinare și doi atomi de azot aparținând la doi liganzi neutri bpe coordinați monodentat la acest atom de metal, situați în pozitii axiale. Distantele din planul ecuatorial ale poliedrului de coordinare Cu-O sunt în intervalul 1,923(3)–2,748(5) Å, Cu–N este egală cu 2,049(3) Å (Anexa 2). Extinderea structurii în acest cristal are loc doar prin intermediul legăturilor de hidrogen intramoleculare O-H···N, care unesc acești compuși complecși în lanțuri duble 1D, implicând grupările OH din fragmentele carboxilice nedeprotonate ale ligandului Htdb ca donori de proton, iar atomii de N piridinci necoordinați din compușii complecși vecini ca acceptori (Figura 4.8b, Anexa 3). Acest lanț în cristal este stabilizat de interacțiuni fine de tipul O···S···O.

Fig. 4.8. a) Poliedrul de coordinare al metalului în compusul 18 cu modul de coordinare al liganzilor organici; b) Fragment al rețelei cristaline formate prin intermediul legăturilor de hidrogen N–H…O

Din filtratul rămas după spălarea compusului 18 a fost obținut și compusul 19, studiul cu raze X al căruia a stabilit formarea unui polimer coordinativ 1D. Cristale acestui compus sunt de culoare verde în formă de plăcute neuniforme, stabile la aer și solublile în apă și metanol. Acest compus cristalizează în sistemul triclinic, grupul spațial P-1 (Tabelul A 1.4). În cristal au fost evidențiate lanțuri polimerice anionice [Cu(bpe)(SO₄)₂(H₂O)]²⁻n, sarcina cărora este compensată de cea a cationilor organici $H_2 b p e^{2+}$, având în componenta sa molecule de apă de cristalizare. În acest compus pentru ligandul H₂dtdb a fost stabilită scindarea și oxidarea acestui ligand până la anionul SO₄²⁻. Fiecare ion de Cu(II) din anionul polimeric coordinativ 1D are poliedrul de coordinare tetragonal-piramidal, format de atomii donori N2O3, atomii de N aparținând la doi liganzii *bpe*, doi atomi de O – la doi anioni SO_4^{2-} coordinati monodentat si un atom de oxigen – moleculei de apă (Figura 4.9a). Anionii anorganici și molecule de apă coordinate monodentat devin părți componente ale lanțului polimeric. Distanțele interatomice Cu–O(SO₄²⁻) sunt egale cu 1,967(3) și 1,970(3) Å, iar Cu–O(w) este 2,388(4) Å (Anexa 2). Cei doi liganzi bpe cristalografic independenti sunt simetrici prin inversiune și rotație, respectiv. Extinderea structurii în cristal are loc prin intermediul liganzilor bpe, ce coordinează la doi atomi de metal exo-bidentat prin cei doi atomi de N, distantele Cu–N fiind egale cu 1,999(4) și 2,003(4) Å. Sistemul de legături de hidrogen intermoleculare evidențiază că lanțurile polimerice sunt unite în straturi prin intermediul legăturilor de hidrogen, la formarea cărora participă moleculele de apă de cristalizareare O(w) și cationii organici $H_2 b p e^{2+}$ (Figura 4.9b, Anexa 3). O analiză mai profundă a stabilit că la împachetarea componentelor în cristal contribuie nu doar legăturile de hidrogen $N-H\cdots O$, O(w)–H···O și O(w)-H···O(w), cât interacțiunile si de tip $\pi - \pi$, ce acționează între sistemele π -delocalizate piridinice.

Fig. 4.9. a) Poliedrul de coordinare al metalului în anionul polimeric din 19; b) Lanțuri coordinative asamblate în starturi prin intermediul legăturilor de hidrogen O(w)–H…O și N–H…O

Compusul **20** la rândul său a fost obținut din filtratul rămas după spălare compusului **19**. Cristalele de culoare maro sunt stabile la aer și solubile în apă și metanol. Compusul cristalizează în grupul spațial $I4_1/a$ al singoniei tetragonale (Tabelul A 1.4). Studiul cu raze X a stabilit că în acest compus din liganzii utilizați au fost antrenați doar *bpe*. În cristal au fost stabilite straturi polimerice având la bază cationii [Cu(bpe)₂]⁺, anioni de F⁻ și molecule de apă necoordinate. În polimerului 2D înconjurarea tetraedrică a ionului Cu(I), obținut la reducerea Cu(II), este formată de patru atomi de N ce aparțin celor patru liganzi punte *bpe*. Polimerii coordinativi 2D din **20** au topologia diamandoidei (Figura 4.10a). Distanța interatomică Cu–N este egală 1,968 Å (Anexa 2), atomul de metal fiind așezat în poziție specială pe axa de simetrie de ordinul 4 de inversiune, iar ligandul *bpe* este centrosimetric. Cei patru liganzi *bpe* coordinanează similar *exo*-bidentat punte (Figura 4.10b). În regiunile hidrofile dintre starturile polimerice sunt localizați anionii F⁻ și moleculele de apă de cristalizare, uniți prin legături de hidrogen fine de tipul C–H···O și C–H···F, iar între ei - prin O(w)–H···F (Anexa 3).

Fig. 4.10. a) Poliedrul de coordinare al metalului în compusul 20; b) Fragment al rețelei 2D

Prin sinteza solvotermală la interacțiunea sării Cd(BF₄)₂·6H₂O cu liganzii H_2dtdb și *bpe* a fost obținut polimerul coordinativ 2D [Cd(tdb)(bpe)]_n (**21**), un compus în care sunt implicați ambii liganzi organici. Compusul **21** cristalizează în grupul spațial centrosimetric $P_{21/n}$ al singoniei monoclinice (Tabelul A 1.4). În partea asimetrică a celulei elementare există un cation Cd(II) și doi liganzi organici. Studiul cu raze X a stabilit ca și în unele cazuri precedente, scindarea legăturii S–S în ligandul H_2dtdb . Ligandul *bpe* coordinează *exo*-bidentat unind doi ioni de Cd(II), în timp ce ligandul tdb^{2^-} coordinează tetradentat-chelat punte, prin doi atomi de oxigen ce aparțin unei grupări carboxilice la un atom de metal, iar prin cei doi atomi de oxigen din cealaltă grupare carboxilică – la doi atomi de metal (Figura 4.11a). Fiecare ion Cd(II) are poliedrul de coordinare octaedric distorsionat alcătuit din doi atomi de N ce aparțin celor doi liganzi *bpe* neutri și patru atomi de oxigen – de la trei anioni tdb^{2^-} . Distanțele interatomice din poliedrul de coordinare sunt: Cd–N 2,291(3) și 2,290(3) Å, Cd–O 2,264(2)–2,417(3) Å (Anexa 2). Ambii liganzi sunt antrenați la extinderea compusului complex în rețele polimerice 2D. Golurile calculate pentru rețeaua cristalină au dat o valoare de 91,7 Å³ din 2295,2 Å³, ceea ce constituie 4,0% din volumul celulei elementare, indicând astfel împachetare compactă a retelelor (Figura 4.11b).

Fig. 4.11. a) Poliedrul de coordinare al metalului în compusul [Cd(tdb)(bpe)]_n (21); b) Fragment al rețelei 2D

h

Compuşii $[Zn(dtdb)(bpp)]_n$ (22) și $[Cd(dtdb)(bpp)]_n$ (23) au fost obținuți prin reacția dintre sărurile $Zn(BF_4)_2 \cdot 6H_2O$ sau $Cd(BF_4)_2 \cdot 6H_2O$ cu liganzii H_2dtdb și *bpp* în amestic C_2H_5OH : *dmf* și izolate în formă de monocristale de culoare galben. Cristale compuşilor sunt stabile în aer. Ambii compuşi, 22 și 23, cristalizează în singonia trigonală în grupurile spațiale $P3_12_1$ și $P3_2$ (Tabelul A 1.4). Cu toate că în celulele elementare ale ambelor structuri a fost depistată o localizare diferită a componentelor cristalografic independente (în 22 – un singur atom de metal pe axă de ordinul 2 și ambii liganzi simetrici prin axa de ordinul 2, deci cu simetria C_2 ,

iar în 23 – trei atomi de metal cristalografic independenți cu cei trei liganzi $H_2 dt db$ și bpp de fiecare în poziții generale), în structurile acestora s-a stabilit același mod de coordinare a ligandului H2dtdb ce nu a suferit schimbări, acționând bideprotonat. În ambii compuși liganzii neutri bpp adoptă comformația TT, distanțele N...N de-a lungul ligandului bpp fiind cuprinse în intervalul 10,174–10,273 Å. Poliedrele de coordinare ale atomilor centrali de metal din 22 și 23 sunt formate de același set de atomi donori N₂O₄, doi atomi de N fiind ai celor doi liganzi *bpp*, iar patru atomi de O – ai celor doi liganzi $dtdb^{2}$ (Figura 4.12a). Astfel, fiecare ligand $dtdb^{2}$ coordinează la doi ioni de metal tetradentat-chelat, deci prin ambii atomi de oxigen ai fiecărei grupări carboxilice la câte un ion de metal, distanțele interatomice Zn-O și Cd-O fiind respectiv în intervalele 1,961(6)-2,533(5) Å si 2,273(1)-2,399(11) Å (Figura 4.12b). Distantele interatomice Zn-N si Cd-N din poliedrele de coordinare ale acestor compuși sunt respectiv 2,090(8) Å și 2,255(11) – 2,353(12) Å (Anexa 2). Ambii compuși sunt polimeri coordinativi 3D isomorfi cu compoziție similară, excepție fiind doar atomul de metal. Extinderea structurilor cristaline pentru ei are loc prin intermediul ambilor liganzi ce acționează ca liganzi punte. De-a lungul liganzilor $dtdb^{2-}$ și bpp care unesc doi atomi de metal distanțele interatomice Zn...Zn sunt 12,345 și 14,259 Å, iar Cd…Cd fiind în intervalele 11,927–11,935 și 14,428–14,34 Å. În ambele structuri au fost evidențiate câte trei rețele polimerice 3D. Calculul cavităților a demostart existența neglijabilă a acestora (0,4%).

Fig. 4.12. a) Poliedrul de coordinare și modul de coordinare al liganzilor în compusul 22; b) Fragment din rețeaua 3D

Similar cu compușii 22 și 23 au fost obținuți compușii heterometalici ce conțin Zn(II)/Cd(II) 24 și Co(II)/Zn(II) 25. Studiul cu raze X a stabilit că compușii 24 și 25 sunt izostructurali cu compusul 22 și cristalizează în grupul spațial $P3_12_1$ al singoniei
triclinice (Tabelul A 1.4 și 1.5). Stuctura cristalină a compușilor **24** și **25** este similară celei stabilite în **22** și **23**. Ca urmare, poliedrele de coordinare ale metalelor sunt octaedrice distorsionate formate de seturile de atomi donori N₂O₄, ce aprțin liganzilor $dtdb^{2-}$ și *bpp*. Ligandul $dtdb^{2-}$ bideprotonat coordinează la doi ioni de metal tetradentat-chelat, deci prin ambii atomi de oxigen ai fiecărei grupare carboxilică la câte un ion de metal. Extinderea structurilor de asemenea are loc prin intermediul ligandului *bpp*, care acționează ca ligand punte *exo*-bidentat. Existența ambelor metale în acești compuși heterometalici a fost confirmată prin analiza elementelor la analizatorul cu raze X Xcalibur.

4.2. Polimeri coordinativi asamblați în baza liganzilor ce conțin atomi donori N, O, S

Așa cum diversificarea compușilor coordinativi și a structurilor asamblate poate fi realizată prin schimbarea ionului de metal sau a ligandului coordinat s-a încercat de a obține o clasă de compuși coordinativi utilizând liganzi organici cu atomi donori N,O,S, menținând liganzii din clasa bipiridinelor. Unul dintre acești liganzi de bază selectat este sulfazalanina ($H_{3}saz$), un antibiotic ce conține sulf, cunoscut ca medicament sub diferite denumiri (azulfidină, salazosulfapiridină, salicilazosulfapiridină și sulfazalazină), care este un agent în tratamentul bolilor inflamatorii intestinale precum artrita reumatoidă [190].

În special, o clasă de medicamente utilizată pe scară largă în medicină atât pentru ființele umane, cât și pentru animale, este cea legată de compușii formați de diverse antibiotice cu ionii metalici [190, 191]. Cu toate că aceste medicamente ce conțin sulf au fost investigate pe larg atât în stare solidă, cât și în soluție, relativ puțin se cunoaște despre compușii coordinativi cu ele, deși în literatura de specialitate este prezentată sinteza unui șir de compuși ai Fe(II), Co(II), Ni(II), Cu(II), Cd(II), Cd(II), Ce(IV) și Th(IV) cu astfel de liganzi [191, 192].

O analiză a informației din BDSC [7] referitor la compușii sulfazalaninei cu diverse metale în ciuda datelor structurale disponibile limitate [193-195], relevă că sulfazalanina poate prezenta o diversitate atât în modul său de coordinare la atomul/atomii de metal, cât și în gradul diferit al deprotonării în rezultatul reacției de la complexare (Figura 4.13), fapt ce poate conduce crearea structurilor mononucleare și polinucleare, inclusiv polimerice, ce pot influența proprietățile biologice, luminescente, etc. ale compușilor finali.

Fig. 4.13. Modul de coordinare al *H₃saz* la cationii metalelor (a) M=Mg(II), Ca(II), Sr(II),
(b) M=Cd(II), (c) M=Zn(II) și (d) M=Cd(II) și (e) M=Zn(II) (a-c după datele din BDSC)

La interacțiunea sărurilor de Cd(II) și Zn(II) cu acest ligand $H_{3}saz$ și *bpe* au fost obținuți doi compuși (**26** și **27**) în fază monocristalină. Studiul structural al compușilor **26** și **27** a stabilt că aceștea cristalizează în grupul spațial triclinic *P*-1 (Tabelul A 1.5).

În partea asimetrică a celulei elementare a compusului **26** au fost depistați doi atomi de metal în poziție generală, doi liganzi bideprotonați de $Hsaz^{2-}$, doi liganzi neutri *bpe* (Figura 4.14) și o moleculă de acid formic poziționată statistic în 2 poziții în raport 1:1. Rezultatele din BDSC [7] au evidențiat noutatea lui, atât prin conținut, cât și prin modul de coordinare al sulfazalaninei (Figura 4.13d), cel mai apropiat compus din BDSC fiind al Cd(II) cu sulfazalanină și piridină [193]. Poliedrul de coordinare al ionului Cd(II) din **26** este octaedric și format de setul de atomi donori N₄O₂, doi atomi de azot aparținând celor doi liganzi neutri *bpe*, iar setul de atomi donori N₂O₂, aparținând celor doi liganzi bideprotonați de *Hsaz*²⁻ (Figura 4.14).

Distanțele interatomice din poliedrul de coordinare al metalului relatează valori puțin mai mici Cd–N(*bpe*) în comparație cu Cd–N(*Hsaz*²⁻), primele având valori în intervalul 2,271(5)–2,316(5) Å, celelalte – în intervalul 2,314(4)–2,397(5) Å, iar Cd–O(*Hsaz*²⁻) având valori în intervalul 2,357(4)–2,434(4) (Anexa 2).

Fig. 4.14. Structura unității de bază a polimerului coordinativ [Cd(Hsaz)(bpe)]n din 26

În polimerul coordinativ 2D $[Cd(Hsaz)(bpe)]_n$ ambii liganzi organici acționează ca liganzi cu funcție punte, fiecare ligand $Hsaz^{2-}$ și *bpe* unind câte doi ioni de Cd(II). Fiecare ligand $Hsaz^{2-}$ coordinează tetradentat-chelat la doi atomi de metal cristalogarfic independenți (Cd(1) și Cd(2)), la un atom de metal prin gruparea carboxilică deprotonată COO⁻, iar la celălalt – prin gruparea terminală NCN⁻. Cei doi ioni de cadmiu, fiind legați prin doi liganzi de $Hsaz^{2-}$, formează cicluri bimetalice din 28 atomi (Figura 4.14). Mai apoi acest fragmentl $[Cd(Hsaz)]_2$ din cristal se extinte în straturi 2D prin intermediul a patru liganzi punte *bpe* (Figura 4.15).

Fig. 4.15. Fragment al polimerului coordinativ 2D {[Cd(Hsaz)(dpe)]·0,5HCOOH}n

O comparație a modului de coordinare al ligandului de sulfazalanină din **26** cu cel stabilit în compusul de Cd(II) cu acest ligand și *bpy* [193] evidențiază, că în ultimul acesta coordinează la metal ca ligand monodeprotonat tridentat implicând doar gruparea carboxilică (Figura 4.13b), pe când în **26** – tetradentat punte, acesta fiind bideprotonat (Figura 4.13d). Cu atât mai mult, în acești compuși se deosebesc și valorile unghiurilor de torsiune CSNC din ligandul de sulfazalanină: dacă în **26** aceste unghiuri sunt egale cu 68,2 și -59,8 °, atunci în compusul descris în [193] – -80,8 °, deci în **26** acest ligand primește o configurație mai avantajoasă pentru modul de coordinare stabilit. Acest ligand monodeprotonat este antrenat ca ligand cu funcție punte în compusul de Zn(II) [191], implicând la coordinare un atom din gruparea carboxilică și atomul de azot din fragmentul piridinic (Figura 4.13c), pe când în compușii monomerici de Mg(II), Ca(II) și Sr(II) [195] acesta coordinează ca ligand monodentat printr-un singur atom de oxigen (Figura 4.13a). În cristal moleculele de acid formic sunt situate în golurile mici ce constituie 14,6% din volumul total al celulei elementare (Figura 4.16) dintre straturile polimerice. În cristal au fost stabilite doar legături de hidrogen intermoleculare de tipul C–H…N și C–H…O, ca acceptori de protoni fiind antrenați atomii din $Hsaz^{2-}$, ultimii fiind stabilizați de legăturile intramoleculare O–H…O (Anexa 3).

Fig. 4.16. Modul de împachetare al componentelor în compusul 26

Compusul { $[Zn(Hsaz)(bpe)] \cdot 0,5dmf_n$ 27 de asemenea este un polimer coordinativ 2D (Figura 4.17a), care după compoziție se deosebește de cel precedent doar prin moleculele de cristalizare, deci 26 și 27 sunt solvatomorfi. Poliedrul de coordinare al fiecărui ion Zn(II) primește forma unei piramide tetragonale și este format din setul de atomi donori N₄O (Figura 4.17b). Doi atomii de N donori aparțin celor doi liganzi *bpe*, iar doi – unui ligand *Hsaz*⁻, pe când unicul atom O aparține celui de-al doilea ligand *Hsaz*⁻. Astfel, cei doi liganzi cristalografic independenți *Hsaz*⁻ adoptă un mod diferit de coordinare în comparație cu cel stabilit în 26, acești liganzi coordinează tridentat prin aceiași doi atomi de N, ca și în 26, însă implicând doar un atom O din gruparea carboxilică (Figura 4.13e).

Fig. 4.17. a) Fragment al rețelei 2D din 27; b) Evidențierea poliedrului de coordinare al Zn(II)

În compus liganzii *bpe exo*-bidentați neutri adoptă două configurații diferite: TT și GG' deoarece distanțele N…N de-a lungul lor sunt cuprinse în intervalul 9,203–9,365 Å și 7,026 Å, respectiv. În poliedrele de coordinare ale atomilor Zn(1) și Zn(2) distanța Zn–O este 1,968(9) și 1,976(8) Å, Zn–N(*Hsaz*²⁻) este în intervalul 1,989(8)–2,568(9) Å, iar Zn–N(*bpe*) 1,991(9)–2,059(9) Å (Anexa 2). În cristal au fost evidențiate legături de hidrogen intramoleculare O–H…O, C–H…O și C–H…N și intermoleculare C–H…O (Anexa 3), care unesc atât moleculele de cristalizare *dmf* cu starturile polimerice, cât și ultimile între ele.

O intensificare a interesului față de designul și constuirea polimerilor coodinativi chirali este cauzată de aplicațiile potențiale în cataliza asimetrică și ca materiale optice neliniare. Polimerii coordinativi chirali pot fi obținuți prin reacția dintre liganzi chirali sau achirali cu diferite săruri metalice, o gamă variată de compuși se poate obține prin utilizarea acidului 2-pirimidiltioacetic (*Hpmta*). Acest ligand ce conține grupe pirimidinice încorporate în ligandul tiocarboxilic cu grupări alchil sau aril poate duce la diversificarea relațiilor structură-activitate [196]. Acești compuși prezintă interes nu doar din punct de vedere teoretic și structural, dar important e că compușii cu ligandul *Hpmta* pot demonstra activitate biologică datorită prezenței atomilor de S și N [197].

Ca rezultat, au fost stabilite condițiile optime de creare a noilor compuși ai metalelor de tranziție cu ligandul *Hpmta*, inclusiv cu diferiți liganzii piridinici ca liganzi auxiliari, pentru a mări probabilitatea de obținere a compușilor de tip polimeri coordinativi. O atenție deosebită a fost acordată studiului modului de coordinare al ligandului *Hpmta*, la care un rol important îl are pH-ul soluției.

Compuşii [Mn(pmta)₂(H₂O)₂]_n (**28**) și [Mn(pmta)₂(H₂O)₄] (**29**) au fost obținuți ca rezultat al interacțiunii sării Mn(piv)₂ cu ligandul *Hpmta*, în medii de alcool amoniacal folosind baia cu ultrasunet timp de 15–30 min. Monocristalele obținute de culoare maro au fost separate prin filtrare și uscate la temperatura camerei. Ambii compuși **28** și **29** cristalizează în grupul spațial $P_{1/c}$ al singoniei monoclinice (Tabelul A 1.5). Primul compus este un polimer coordinativ 2D, iar celălalt este un compus monomeric, în care se evidențiează modul diferit de coordinare al ligandului monodeprotonat *pmta*⁻, într-un caz antrenat în calitate de ligand punte ce coordinează bidentat prin atomii de oxigen din gruparea carboxilică la doi atomi de metal, în celălalt – ca ligand monodentat ce coordinează la un atom de metal. Poliedrele de coordinare simetrice ale ionilor Mn(II) în **28** și **29** sunt alcătuite din setul de atomi O₆ (Figura 4.18a,b). În compusul **28** ionii Mn(II) au înconjurarea formată de patru atomi de O ce aparțin la patru liganzi *pmta*⁻ și doi atomi de O ce aparțin celor două molecule de apă, iar în **29** înconjurarea ionului Mn(II) este formată din doi atomi O din doi liganzi *pmta*⁻ și patru atomi de O ce aparțin la patru molecule de apă. Distanțele interatomice din **28** Mn–O(*pmta*⁻) și Mn–O(*w*) sunt egale cu 2,1702(15) Å și 2,1985(16) Å, iar distanțele din **29** Mn–O(*pmta*⁻) 2,1648(18) Å și Mn–O(*w*) 2,137(2) și 2,2096(2) Å (Anexa 2). Structura polimerului coordinativ 2D din compusul **28** este prezentată în Figura 4.18c. Extinderea stucrurii în **29** are loc prin intermediul legăturilor de hidrogen intermoleculare O(w)–H···O(carb) și O(w)–H···N (Figura 4.18d). În cristalele ambilor compuși au fost depistate legături de hidrogen intra- și intermoleculare O–H···O, O–H···N și C–H···O (Anexa 3).

Fig. 4.18. Poliedrele de coordinare ale metalului în 28 (a) și 29 (b); c) Fragment al rețelei 2D din 28; d) Fragment al structurii supramoleculare din 29 formată prin intermediul legăturilor de hidrogen O–H…O

Compuşii **30–32** au fost obținuți la interacțiunea sărurilor de Mn(II), Co(II) și Zn(II) deja cu utilizarea liganzilor *Hpmta* și *bpy*. Cei trei compuși noi obținuți cristalizează în grupul spațial *P*-1 al singoniei triclinice (Tabelul A 1.6). Acești compuși cu structuri izostructurale au formulele similare {[Mn(bpy)(H₂O)₄](pmta)₂}_n (**30**), {[Co(bpy)(H₂O)₄](pmta)₂}_n (**31**) și {[Zn(bpy)(H₂O)₄](pmta)₂}_n (**32**). Acești compuși ionici includ cationii polimerici 1D [Mn(bpy)(H₂O)₄]²⁺_n, [Co(bpy)(H₂O)₄]²⁺_n și [Zn(bpy)(H₂O)₄]²⁺_n, iar anionii *pmta*⁻ sunt antrenați la formarea sferei externe.

În partea asimetrică a celulelor elementare ale acestor compuși a fost stabilit un atom de metal situat în centrul de simetrie, un ligand simetric *bpy* și două molecule de apă și un anion *pmta*⁻ monodeprotonat. Poliedrele de coordinare ale ionilor Mn(II)/Co(II)/Zn(II) în cationii

centrosimerici polimerici 1D din **30–32** au geometrie octaedrică, formată de setul de atomi donori N₂O₄, cei doi atomi de azot fiind generați de către doi liganzi neutri *bpy*, iar patru atomi de oxigen aparținând celor patru molecule de apă (Figura 4.19a). Distanțele interatomice din poliedrele de coordinare ale atomilor de metal Mn(II)/Co(II)/Zn(II) sunt: Mn(II)/Co(II)/Zn(II)–N 2,270(2)/2,160(2)/2,154(2), Mn(II)/Co(II)/Zn(II)–O(*w*) 2,163(2)/2,153(2)/2,084(2) și 2,220(2)/2,075(2)/2,168(2) Å (Anexa 2). Distanțele dintre atomii de metal din lanțurile polimerice sunt egale cu 11,414, 11,618 și 11,401 Å, respectiv pentru compușii cu Mn(II), Co(II) și Zn(II). În cristalele compușilor **30–32** anionii *pmta*⁻ sunt uniți cu lanțurile polimerice cationice prin legături de hidogen O(*w*)–H···O (Figura 4.19b, Anexa 3), în care ca donori de protoni contribuie moleculele de apă coordinate, iar ca acceptori atomii de oxigen din gruparea carboxilică a anionilor *pmta*⁻ formând rețele supramoleculare.

Fig. 4.19. a) Poliedrul de coordinare al atomului de metal în 30; b) Fragment al rețelei supramoleculare formată prin intermediul legăturilor de hidrogen O(w)–H…O cu participarea polimerilor coordinativi cationici 1D și anionilor *pmta*⁻

Compusul {[Cd(pmta)(bpy)(H₂O)](BF₄)·2H₂O}_n (**33**) a fost obținut prin reacția dintre Cd(BF₄)₂·6H₂O cu ligandul *Hpmta* și *bpy* în amestec soluție de amoniac în etanol și izolat în formă de monocristale de culoare galben. Cristalele compusului dat sunt stabile în aer. Compusul cristalizează în grupul spațial monoclinic $P2_1/c$ (Tabelul A 1.6), partea asimetrică a celulei elementare conținând un atom de metal, ambii liganzi *pmta* și *bpy*, un anion BF₄⁻ și trei molecule de apă. În compusul **33** la atomul Cd(1) coordinează bidentat ligandul *pmta*⁻ monodeprotonat, unindu-se prin doi atomi, unul de oxigen al grupării carboxilice și unul de S, iar la un atom de metal vecin ultimul concomitent coordinează bidentat-chelat prin ambii atomi de oxigen din gruparea carboxilică. Ca urmare, acest ligand coordinează tetradentat chelat punte (Figura 4.20a), formând lanțuri polimerice coordinative cationice unidimensionale, distanța Cd…Cd fiind 4,856 Å. Aceste lanțuri elicoidale sunt dezvoltate de-a lungul axei elicoidale 2₁. Lanțurile elicoidale interacționează prin Cd…O* cu distanța de 2,723 Å și Cd…S* de 2,943 Å. În cristal se

evidențiează însă polimerul coordinativ cationic 2D (Figura 4.20b), acesta fiind cauzat de antrenarea ligandului *bpy*, coordinat *exo*-bidentat punte la doi atomi de metal. Fiecare ligand *bpy* unește doi ioni Cd(II), adoptând o conformație cu unghiul diedru dintre inelele piridinice de 65,3°. Poliedrul de coordinare al atomilor de cadmiu este alcătuit din setul de atomi N₂O₄S (Figura 4.20a), doi atomi de azot derivă de la doi liganzi *bpy*, doi atomi de oxigen – de la gruparea carboxilică a unui ligand *pmta*⁻, un atom de oxigen și unul de sulf de la alt ligand *pmta*⁻, iar un atom de oxigen aparține unei molecule de apă. Astfel, poliedrul de coordinare al metalului în acest compus ia forma unei bipiramide pentagonale, în poziții axiale fiind situați atomii de azot. Distanțele interatomice Cd–O(*pmta*⁻) sunt în intervalul 2,303(4)–2,723(6) Å, Cd–O(*w*) este 2,272(4), Cd–S este 2,945(2), Cd–N 2,305(4) și 2,298(4) Å (Anexa 2). În cristal straturile cationice 2D sunt unite între ele printr-un sistem complicat de legături de hidrogen, la care ca donori de protoni participă toate moleculele de apă, iar ca acceptori – atomii de fluor din anionul BF₄⁻ și moleculele de apă necoordinate (Figura 4.20b, Anexa 3).

Fig. 4.20. a) Poliedrul de coordinare al ionului Cd(II) și modul de coordinare al ligandului *pmta*⁻ în compusul 33; b) Modul de împachetare al componentelor în cristal

Utilizând metoda solvotermală, doar schimbând ionul de metal și ligandul bipiridinic, a fost obținut un compus nou cu o compoziție diferită $\{[Zn_2(pmta)_3(bpe)_2(H_2O)_2](BF_4)\cdot 0,25H_2O\}_n$ (34), ce cristalizează în grupul spațial *P*-1 al singoniei triclinice (Tabelul A 1.6). Îa partea asimetrică a celulei elementare a acestui compus au fost stabiliți doi atomi de metal în poziții generale. Însă ca și în compusul 33 s-a obținut un compus ionic, format din polimeri coordinativi cationici $[Zn_2(pmta)_3(bpe)_2(H_2O)_2]^+_n$, anioni BF_4^- și rest de apă de cristalizare (0,25H_2O).

În acest compus cei doi atomi Zn(1) și Zn(2) cristalogaric independenți au poliedre de coordinare diferite, formate din seturile de atomi donori N₂O₄ și N₂O₃ (Figura 4.21a). La atomul Zn(1) coordinează doi liganzi *pmta*⁻ fiecare printr-un atom de oxigen al grupării carboxilice, doi

atomi de oxigen de la două molecule de apă, acești atomi fiind localizați în planul ecuatorial al poliedrului de coordinare, iar în poziții axiale sunt situați cei doi atomi de azot ce aparțin celor doi liganzi *bpe*. Poliedrul de coordinare al atomului Zn(1) este octaedric, iar distanțele interatomice din el sunt: Zn(1)–O(pmta) 2,079(3) și 2,095(2) Å, Zn(1)–O(w) 2,097(2) și 2,113(2) Å, iar Zn(1)–N 2,136(3) și 2,312(3) Å (Anexa 2). Poliedrul de coordinare al atomului Zn(2) în formă de bipiramidă trigonală este format de trei liganzi *pmta*⁻ care coordinează la atomul de metal identic print-un atom de oxigen al grupării carboxilice și completează în poziții axiale doi atomi de azot ai liganzilor *bpe*. Distanțele interatomice pentru acest compus sunt: Zn(2)–O(pmta) 1,998(3)–2,020(2) Å, iar Zn(2)–N 2,217(3) și 2,133(3) Å.

Fig. 4.21. a) Poliedrele de coordinare evidențiate ale atomilor Zn(1) și Zn(2) în compusul 34; b) Un fragmnet din structura cristalină ce conține rețele 2D și componentele din sfera externă

Ca urmare în acest compus liganzii *pmta*⁻ coordinează în mod monodeprotonat la atomii de metal însă în mod diferit: dacă doi dintre ei implică la coordinare ambii atomi de oxigen din gruparea carboxilică, acționând ca liganzi bidentați-punte, atunci unul dintre ei coordinează monodentat. Spre deosebire de compusul precedent acest ligand în compusul dat nu implică la coordinare atomul de sulf, ci doar cei de oxigen. În polimerul coordinativ cationic 2D distanța dintre doi atomi Zn(1) și Zn(2) uniți prin doi liganzi diferiți *pmta*⁻ ce alternează este 5,267 și 4,790 Å, iar de-a lungul ligandului *bpe* atomi Zn(1)– Zn(1) este de 13,593 și 13,623 Å (Figura 4.21b). Anionii $BF4^-$ și moleculele de apă necoordinate rămase în cristal se unesc la rețelele polimerice cationice prin intermediul legăturilor de hidrogen O(*w*)–H····O și O(*w*)–H····F (Anexa 3).

În reacția dintre Cd(BF₄)₂·6H₂O, *Hpmta* și *bpe* în amestec soluție de amoniac în etanol s-au format cristale de culoare galben în formă diferită – de bloc și piramidă. Studiul cu raze X a stabilit că compoziția acestora se poate reda prin formulele $\{[Cd(pmta)(bpe)(H_2O)](BF_4)\cdot 0,25H_2O\}_n$ (**35**) și $[Cd(pmta)_2(bpe)]_n$ (**36**). Ambii compuși

au fost obținuți din aceiași reacție, pH-ul soluției fiind 9. Acești compuși cristalizează în grupuri spațiale diferite *Pbam* și C2/c ce aparțin singoniilor ortorombice și respectiv monoclinice (Tabelul A 1.7). Cu atât mai mult, acești compuși polimerici coordinativi sunt și de natură diferită: dacă primul este un compus ionic, sarcina cationilor fiind compensată de anionii BF₄, atunci al doilea este un polimer neutru.

Ambii polimeri coordinativi ((**35**) și (**36**)) au la bază ligandul *exo*-bidentat *bpe*, care e cel ce dictează formarea lanțurilor în cristal, însă aceștea mai conțin liganzi monodeprotonați *pmta*⁻ și în număr diferit, deci cauza formării polimerilor cu dimensionalitate diferită este detrminată de ultimii. În compusul **35** modul de coordinare a ligandului *pmta*⁻ este similar ca cel stabilit în compusul **33**, cu implicarea atomilor de sulf la coordinare, pe când în compusul **36** cei doi liganzi *pmta*⁻ coordinează diferit. În compusul **35** polimerul cationic este 2D, iar în celălalt se formează un polimer 1D în care se evidențiează fragmenul binuclear centrosimetric [Cd(pmta)₂]₂.

Poliedrul de coordinare al atomului de metal în compusul **35** este format din setul de atomi donori N₂O₄S (Figura 4.22a), doi atomi de azot fiind generați de doi liganzi *bpe*, doi atomi de oxigen – de la gruparea carboxilică a unui ligand *pmta*⁻, un atom de oxigen și unul de sulf de la alt ligand *pmta*⁻, iar un atom de oxigen aparține unei molecule coordinate de apă. Deci poliedrul de coordinare al metalului ia forma unei bipiramide pentagonale, în poziții axiale fiind situați atomii de azot. Distanțele interatomice Cd–O(*pmta*⁻) sunt în intervalul 2,291(5)–2,352(5) Å, Cd–O(*w*) este 2,309(5), Cd–S este 2,998(2), Cd–N 2,18(1) și 2,30(1) Å (Anexa 2). Modul de coordinare al liganzilor dictează formarea rețelei polimerice cationice 2D (Figura 4.22b) cu distanțele interatomice Cd···Cd uniți prin atomi de oxigen ai grupărilor carboxilice ale liganzilor *pmta*⁻ de 4,826 Å, iar prin *bpe* – 13,790 Å. Anionii BF₄⁻ și moleculele de apă de cristalizare se unesc la rețelele polimerice prin legăturile de hidrogen O(*w*)–H····F (Anexa 3).

În compusul 36 la fiecare dintre cei doi atomi de metal din fragmentul binuclear [Cd(pmta)₂]₂ coordinează trei liganzi pmta⁻ dintre cei patru, deci din ultimii doi liganzi coordinează chelat bidentat, iar doi – tridentat chelat punte (Figura 4.22c). La fiecare atom de metal coordinează cinci atomi de oxigen, iar poliedrul de coordinare este completat de doi atomi de azot aparținând celor doi liganzi bpe, deci setul de atomi donori coordinat este N2O5. Distanțele interatomice Cd–O($pmta^{-}$) sunt în intervalul 2,335(3) – 2,481(3) Å, iar Cd–N – 2,340(3) si 2,342(3) Å (Anexa 2). Capacitatea de coordinare mai mare a ionului Cd(II) în comparatie cu cea a Zn(II) explică formarea poliedrului în formă de bipiramidă pentagonală, atomul cental fiind heptacoordinat. Așa cum extinderea stucturii până la 1D are loc prin intermediul ligandului bpe, care acționează ca unicul ligand punte, iar la bază este fragmentul binuclear $[Cd(pmta)_2]_2$, în cristal se evidențiează benzi (lanturi duble), distanța Cd…Cd în care este egală cu 14,014 Å (Figura 4.22d).

Fig. 4.22. a) Poliedrul de coordinare al ionului Cd(II) format din setul de atomi donori
N₂O₄S în 35; b) Rețeaua 2D; c) Poliedrul de coordinare al ionului de Cd(II) în
compusul 36; d) Un fragment al împachetării lanțurilor polimerice 1D

Utilizarea la sinteză a sării altui metal (Zn(II)) și a unui alt ligand din clasa bipiridinelor cu catenă mai lungă (bpp) a dus la obținerea unui compus nou cu formula $\{[Zn(pmta)_2(bpp)]: 2H_2O\}_n$ (37). Ca urmare a fost obtinut un polimer coordinativ neutru [Zn(pmta)₂(bpp)]_n, ce conține în cristal molecule de apă de cristalizare. Acest compus cristalizează în grupul spațial $P2_1/c$ al singoniei monoclinice (Tabelul A 1.7) și conține în partea asimetrică a celulei elementare un atom de metal în poziție generală, doi liganzi monodeprotonați pmta, un ligand neutru bpp, și doua molecule de apă de cristalizare. Studiul structural a evidențial formarea în cristal a rețelei coordinative 1D (Figura 4.23a), determinată de modul de coordinare punte doar al liganzilor bpp, distanța Zn…Zn din lanțul format este 12,297 Å. În acest polimer ambii liganzi cristalogarfic independenți pmta⁻ coordinează monodentat, fiecare printr-un atom de oxigen al grupărilor carboxilice. Poliedrul de coordinare al ionului de Zn(II) este tetraedric și este format de setul de atomi donori N₂O₂, alcătuit din doi atomi de N ai liganzilor bpp și doi atomi de O din grupările carboxilice ale celor doi liganzi diferiți pmta (Figura 4.23b). Distanțele interatomice din poliedrul de coordinare sunt: Zn–O 1,937(2) și 1,951(2) Å, iar Zn–N 2,022(3) și 2,055(3) Å (Anexa 2). Moleculele de apă de cristalizare unesc aceste lanțuri polimerice prin intermediul legăturilor de hidrogen O(w)–H···O în straturi (Anexa 3).

Fig. 4.23. a) Fragment al rețelelor 1D în compusul 37, unite prin moleculele de apă de cristalizare; b) Poliedrul de coordinare al Zn(II)

Interacțiunea sării de Cd(II) cu acest set de liganzi a condus la formarea unui nou compus cu formula $[Cd(pmta)_2(bpp)_2(H_2O)]_n$ (**38**). Acesta a fost obținut prin metoda solvotermală, pH 8. Compusul cristalizează în sistemul cristalografic ortorombic, grupul spațial $P2_12_12_1$ (Tabelul A 1.7), având în partea asimetrică a celulei elementare un atom de metal în poziție generală, doi liganzi deprotonați *pmta*⁻, un ligand *bpp* și o moleculă de apă. Poliedrul de coordinare al atomului de metal în formă de bipiramidă pentagonală este similar cu cel stabilit pentru Cd(II) în compusul $[Cd(pmta)_2(bpe)]_n$ (**36**) și este format de setul de atomi donori N₂O₅, însă dacă în ultimul la formarea poliedrului este implicat ligandul *pmta*⁻ cu funcție punte și nu este coordinată nici o moleculă de apă, atunci în compusul **38** din cei cinci atomi de O patru aparține moleculei de apă, iar doi atomi de N aparțin la doi liganzi neutri *bpp* (Figura 4.24a). Distanțele interatomice Cd–O(*pmta*⁻) sunt în intervalul 2,368(3) – 2,512(3) Å, Cd–O(*w*) – 2,320(3) Å; iar Cd–N 2,332(3) și 2,346(3) Å (Anexa 2).

Fig. 4.24. a) Poliedrul de coordinare al ionului de Cd(II) în compusul 38;b) Fragment al împachetării polimerilor coordinativi 1D

În cristal au fost depistați polimer coordinativi neutri 1D, cauzați de acțiunea ligandului bipiridinic *bpp* coordinat *exo*-bidentat și cu liganzii *pmta*⁻ în poziție *trans* și moleculele de apă. Distanța Cd···Cd de-a lungul ligandului *bpp* este de 12,003 Å. În compusul **38** liganzii *bpp* adoptă configurația TG, distanța N···N din ei este 8,718 Å. Împachetarea lanțurilor polimerice în cristal are loc prin intermediul legăturilor de hidrogen O(w)–H···O, donori de proton fiind moleculele de apă coordinate, iar acceptori – atomii de oxigen din grupările carboxilice ale liganzilor *pmta*⁻ (Figura 4.24b, Anexa 3).

Compusul **39** este unul obținut la interacțiunea unei sări de Co(II) cu *Hpmta* și *bpe*. A fost stabilit că compusul polimeric cu formula [Co(pmta)₂(bpe)(H₂O)₂]_n cristalizează în grupul spațial $P2_1/c$ al singoniei monoclinice (Tabelul A 1.7). În partea asimetrică a celulei elementare a fost depistat atomul de metal situat în centrul de simetrie, ¹/₂ din ligandul *bpe* simetric, un ligand monodeprotonat *pmta*⁻ și o moleculă de apă. Ionul de cobalt are poliedrul de coordinare octaedric centrosimetric format de setul de atomi donori N₂O₄ (Figura 4.25a), format din doi atomi de N ai liganzilor *bpe*, doi atomi de O ai liganzilor *pmta*⁻ și doi atomi de O aparținând celor două molecule de apă. Distanțele interatomice din poliedrul de coordinare al metalului în **39** relatează valorile Co–N(*bpe*) 2,193(2) Å, Co–O(*pmta*⁻) 2,091(2) Å, iar Co–O(*w*) 2,127(1) Å (Anexa 2).

Ca urmare, doar ligandul *bpe* acționează în calitate de ligand cu funcție punte, cauzând formarea polimerului coordinativ 1D, ceilalți liganzi coordinând monodentat, ligandul *pmta*⁻ – printr-un atom de oxigen al grupării carboxilice (Figura 4.25b). Distanța Co…Co în unitatea polimerică este de 13,651 Å. Moleculele de apă coordinate formează legături de hidrogen intramoleculare O(w)–H…O și O(w)–H…N, acceptori de protoni fiind atomii de oxigen neparticipanți la coordinare din grupările carboxilice ale liganzilor *pmta*⁻ și atomii de azot din liganzii *bpe* (Anexa 3), stabilizând lanțurile și unindu-le în straturi.

Fig. 4.25. a) Poliedrul de coordinare al Co(II) în 39; b) Modul de împachetare al polimerilor coordinativi 1D în cristal

În calitate de ligand ce conține în setul de atomi donori atomii N, O, S s-a utilizat acidul rodanin-3-acetic (*Hrda*). Ca rezultat, antrenând o serie de metale de tranziție prin diverse metode de sinteză s-au obținut patru compuși monomerici (**40–42** și **46**) și trei polimeri coordinativi 1D, **43–45**.

Rodanina reprezintă o clasă importantă de compuși heterociclici datorită gamei largi de proprietăți asociate cu activitatea biologică [199, 200]. Chimia rodaninei și a diferiților derivați a prezentat interes datorită utilizării acestora ca preparate farmaceutice [199, 201–203]. Un șir de compuși din această clasă este considerat util pentru tratamentul și prevenirea complicațiilor legate de diabet [204]. Mai mult, complecșii diferitor metale cu acești liganzi sunt cunoscuți prin activitate biologică, iar efectul medicamentelor este intensificat atunci când sunt introduse sub formă de complecși metalici [205]. În BDSC [7] au fost depistate structurile acidului (2-(4-oxo-2-tioxotiazolidin-3-il)acetic (acidului rodanin-3-acetic (*Hrda*) anhidru și monohidrat [206, 207], precum și a trei compuși de Sn(IV) cu acest ligand [208].

Compușii complecși **40–42** sunt compuși izostructurali și cristalizează în grupurile spațiale monoclinice $P_{21/c}$, $P_{21/n}$ și $P_{21/n}$ (Tabelul A 1.7 și 1.8). În unitatea asimetică a celulelor elementare ale acestor compuși există câte un atom de metal în centru de simetrie, un ligand monodeprotonat rda^{-} și două molecule de apă. Compușiii obținuți sunt mononucleari centosimetrici cu formulele [M(rda)₂(H₂O)₄], în care M este Co(II), Ni(II) și Zn(II). Poliedrele de coordinare octaedrice similare ale acestor metale în acești compuși sunt formate din setul de atomi O₆ (Figura 4.26a), patru dintre ei fiind atomi de O din cele patru moleculele de apă coordinate, iar doi atomi de O aparținând la doi liganzi rda^{-} coordinați mododentat printr-un atom de oxigen al grupării carboxilice. Distanțele interatomice Co–O, Ni–O și Zn–O din poliedrele de coordinare din acești trei compuși sunt în intervalul 2,087(2)–2,141(2) Å, 2,042(5)–2,114(5) Å și 2,057(2)–2,177(2) Å (Anexa 2).

Fig. 4.26. a) Poliedrul de coordinare al metalului în compusul 40; b) Modul de împachetare în cristal al compușilor prin intermediul legăturilor de hidrogen O–H…O

Moleculele de apă coordinate formează legături de hidrogen de tip intra- și intermoleculare, în care ca acceptor de protoni sunt antrenați atomii de oxigen necoordinați ai grupărilor carboxilice din liganzii organici și atomul de oxigen carbonilic de pe lângă pentaciclu. În baza legăturilor de hidrogen intramoleculare O(w)–H···O(*carb*) dintre moleculele de apă și liganzii organici coordinați în jurul atomului de metal se formează două pseudocicluri metalice din șase atomi, care stabilizează structura compusului complex. Prin legăturile de hidrogen intermoleculare O(w)–H···O acești complecși se unesc în starturi 2D, care se extind în structuri supramoleculare 3D prin intermediul interacțiunilor fine S···S (Figura 4.26b, Anexa 3).

Compusul **43** cristalizează în grupul spațial monoclinice $P2_1/c$ [209], (Tabelul A 1.8). În partea asimetrică a celulei elementare există un atom de zinc situat în centru de simetrie, ¹/₂ dintr-un ligand organic nou 5,5'-*rda*-*rda*²⁻, o moleculă de apă și o moleculă de *dmf*. Ca urmare, formula acestui compus este [Zn(5,5'-rda-rda)(dmf)₂(H₂O)₂]_n. Poliedrul de coordinare al atomului de metal central are forma unui octaedru, format din setul de atomi donori O₆, doi atomi de oxigen aparținând celor doi anioni 5,5'-*rda*-*rda*²⁻, iar ceilați patru – celor două molecule de *dmf* și celor două molecule de apă (Figura 4.27a). Distanțele interatomice din poliedrul de coordinare sunt: Zn–O(1) 2,087(3) Å, Zn–O(*dmf*) 2,138(4) Å, Zn–O(*w*) 2,067(3) Å (Anexa 2).

Compusului **43** este un polimer coordinativ centrosimetric 1D, formarea cărui este cauzată de funcția punte a ligandului organic nou bideprotonat 5,5'-*rda*-*rda*²⁻, ce coordinează *exo*-bidentat prin doi atomi de oxigen din grupările carboxilice terminale la doi atomi de metal. Acest ligand 5,5'-*rda*-*rda*²⁻ este obținut la condensarea reactanților *Hrda*, așa efect fiind cunoscut pentru liganzii din această clasă de compuși [210, 211].

Fig. 4.27. a) Poliedrul de coordinare al ionului de Zn(II) în 43; b) Fragment al aranjamentului reciproc al lanțurilor 1D în cristal

Acești polimeri 1D sunt stabilizați de legăturile de hidrogen O(1w)–H···O(1) cu participarea moleculelor de apă, pe când celălalt atom de hidrogen din fiecare moleculele de apă este antrenat la formarea legăturilor de hidrogen intermoleculare O(w)–H···O(2)* (Anexa 3). Prin intermediul legăturilor de hidrogen lanțurile polimerice se unesc în straturi. În cristal se evidențiează interacțiuni de tipul S···S (3,493 Å) ce conduc la asamblarea straturilor într-o rețea tridimensională prin pseudohexaciclurile SCSSCS (Figura 4.27b).

Încercările de a obține polimeri coordinativi cu *Hrda* prin adăugarea ligazilor din clasa bipiridinelor a condus la obținerea a doi polimeri coordinativi 1D cu formulele $[Co(rda)_2(bpy)(H_2O)_2]_n$ (44) și $[Cd(rda)_2(bpe)]_n$ (45), pe când în cazul interacțiunii unei sări de Co(II) cu *Hrda* și *bpe* a fost obținut compusul cu formula $[Co(gly)_3] \cdot (H_2O)$ (46) deja cunoscut [212].

Compusul $[Co(rda)_2(bpy)(H_2O)_2]_n$ (44) cristalizează în grupul spațial monoclinic C2/c (Tabelul A 1.8). În partea asimetrică a celulei elementare au fost stabiliți 1/2 dintr-un atom de metal și 1/2 din ligandul *bpy*, aceștea fiind situați pe axa de ordinul 2, iar în poziție generală fiind un ligand monodeprotonat *rda*⁻ și o moleculă de apă. Înconjurarea ionului Co(II) adoptă configurația octaedrică formată de setul de atomi donori N₂O₄ (Figura 4.28a), atomii de oxigen localizați în poziție ecuatorială aparținând la doi anioni *rda*⁻ și celor două molecule de apă. Distanțele Co–O(*rda*⁻) și Co–O(*w*) sunt egale cu 2,062(3) Å și 2,144(3) Å (Anexa 2).

Fig. 4.28. a) Poliedrul de coordinare al ionului de Co(II) în compusul 44; b) Împachetarea lanțurilor polimerice 1D

Poliedrul de coordinare este completat de doi atomi de azot ce aparțin la doi liganzi *bpy* amplasați în pozițiile axiale, distanța Co–N fiind egală cu 2,158(6) Å. În cristal s-au depistat polimeri coordinativi 1D, aceștea fiind cauzați de modul de coordinare *exo*-bidentat doar al ligandului *bpy*. Distanța dintre doi ioni Co(II) uniți prin ligandul-punte *bpy* este egală cu 11,396 Å (Figura 4.28b). Ligandul *rda*⁻ coordinează la atomul de metal monodentat antrenând doar un atom

de oxigen din gruparea carboxilică, ca urmare acești liganzi împreună cu moleculele de apă coordinate, formează lanțurile polimerice coordinative. În schimb aceste componente sunt cele ce stabilizează lanțurile în cristal, ultimele fiind antrenate în legăturile de hidrogen O(w)–H···O (Figura 4.28b, Anexa 3). În cristal lanțurile polimerice se unesc în straturi prin legăturile de hidrogen O(w)–H···O, în care sunt antrenate molecule de apă, iar ca acceptori de protoni – atomii de O carbonilici de pe lângă pentaciclurile liganzilor *rda*⁻. Rețeaua tridimensională din cristal este extinsă prin interacțiunile C–H···S și S···S.

Înlocuind ionul de metal Co(II) prin Cd(II) a fost obținut un alt compus ce cristalizează în grupul spațial triclinic P-1 (Tabelul A 1.8). În celula elementară a compusului polimeric cu formula $[Cd(rda)_2(bpe)]_n$ (45) au fost stabilite ca componente cristalografic independente un atom de metal, doi liganzi monodeprotonați de rda^{2-} și un ligand bpe. În cristal se formează lanțuri polimerice coordinative duble în care se pot evidentia unitățile binucleare $[Cd(rda)_2)]_2$ unite prin liganzii bpe. În aceste unități binucleare cei doi liganzi rda⁻ adoptă un mod diferit de coordinare, moduri stabilite pentru acest ligand în compușii cu Sn(IV) [208]: doi dintre acești liganzi coordinează tridentat chelat punte la doi atomi de metal prin atomii de oxigen ai grupărilor carboxilice formând un ciclu din opt atomi, iar ceilalți doi liganzi coordinează bidentat chelat, fiecare la câte un atom de metal (Figura 4.29a). Ionii Cd(II) sunt heptacoordinați cu poliedrul de coordinare în formă de bipiramidă pentagonală, format din setul de atomi donori N₂O₅. Distanțele interatomice Cd–O sunt în intervalul 2,307(2)–2,660(3) Å, iar Cd–N sunt egale cu 2,300(2) și 2,326(2) Å. (Anexa 2). Distanța interatomică Cd…Cd din unitățile centrosimetrice binucleare este de 3,949 Å. Această unitate este extinsă prin patru liganzii bpe, conducând la formarea unui lanț dublu (Figura 4.29b). Distanța interatomică Cd…Cd de-a lungul ligandului bpe este egală cu 13,919 Å. În cristal au fost depistate doar legături de hidrogen fine de tipul C–H…O.

Fig. 4.29. a) Poliedrul de coordinare al ionului de Cd(II) în 45; b) Aranjamentul lanțurilor polimerice 1D

Încercarea de a utiliza metoda solvotermală la reacția dintre sarea de Co(II) cu *Hrda* și *bpe* a condus la formarea compusului cu glicina cu formula $[Co(gly)_3] \cdot (H_2O)$ (**46**), cunoscut deja, deci în așa condiții ligandul *Hrda* suferă modificări esențiale și această metodă nu poate fi utilizată la crearea compușilor cu *Hrda*.

4.3. Proprietăți fizico-chimice ale compușilor în baza liganzilor heterofuncționali Spectroscopia în domeniul infraroșu (IR)

Spectroscopia în domeniul infraroșu (IR) este cea mai potrivită metodă de identificare a prezenței grupărilor funcționale polare din structura moleculelor compușilor organici și metalorganici ce conțin diferiți liganzi organici.

Spectrele în IR pentru compuşii **16** şi **17** cu benzile la 1608 cm⁻¹ şi 1618 cm⁻¹ indică prezența inelelor fenilice determinate doar de prezența ligandului H_2dtdb . Cu atât mai mult, existența acestui ligand în acești compuşi este confirmată și de vibrațiile asimetrice de întindere ale grupărilor carboxilice v_{as}(COO) observate în regiunea 1657 cm⁻¹ pentru **16** și 1655 cm⁻¹ – pentru **17**, și de benzile v_s(COO) din regiunea 1394 cm⁻¹ (**16**) și 1388 cm⁻¹ (**17**). Benzile de absorbție la 700 și 670 cm⁻¹ aparțin vibrațiilor de întindere v(C–S) determinate de liganzii *tdb* și *sdb* din compuşii **16** și **17**. În spectrul compusului **17** banda v_{as}(S=O) prezentă la 1388 cm⁻¹ se suprapune cu banda v_s(COO), în timp ce banda v_s(S=O) este observată la 1098 cm⁻¹ fapt, care indică și oxidarea ligandului cu formarea grupărilor =SO₂. Benzile de la ~1155 și ~1250 cm⁻¹ aparțin vibrațiilor de întindere v_s(C–N) și v(CH₃) caracteristice moleculelor *dmf* din acești compuși. Prezența moleculelor de apă în compusul **17** este indicată de semnalul v(OH) la ~3414 cm⁻¹.

Spectrele IR ale compușilor 12–15 și 18–22, 24, 25 sunt similare și confirmă prezența ligandului $H_2 dt db$ și a liganzilor piridinici prin vibrațiile tipice ale inelelor aromatice, cât și ale grupărilor carboxilice (Tabelul 4.1).

Compus complex	Benzile caracteritice, v, cm ⁻¹				
	$v_{as}(COO^{-})$	v _s (COO ⁻)	v(C-S)	v(C-N)	v(OH)
${[Mn_2(dtdb)_2(bpe)_2(EtOH)_2(H_2O)_2] \cdot dmf}_n (12)$	1666	1388	702	1154	3752
${[Co_2(dtdb)_2(bpe)_2(EtOH)_2(H_2O)_2] \cdot dmf}_n$ (13)	1608	1395	703	1158	3555
$[Co_2(dtdb)_2(bpe)_2(HCOO)_2(H_2O)_2]_n$ (14)	1665	1374	703	1155	3656
$[Co_4(Htb)_4(tb)_2(bpe)(H_2O)] \cdot 2dmf \cdot 9H_2O_n (15)$	1657	1366	691	1146	3255
$[Cu(Htdb)_2(bpe)_2]$ (18)	1618	1359	689	1228	3374
${[Cu(bpe)(SO_4)_2(H_2O)] \cdot 3H_2O}_n$ (19)	-	-	-	1207	3268
${[Cu(bpe)_2]F \cdot 0,5H_2O_n (20)}$	-	-	-	1211	3379
$[Zn(dtdb)(bpp)]_n$ (22)	1646	1364	690	1155	3520
$[ZnCd(dtdb)(bpp)]_n$ (24)	1644	1376	691	1155	3064
$[CoZn(dtdb)(bpp)]_n(25)$	1647	1368	690	1156	3065

 Tabelul 4.1. Date din spectrele IR ale compuşilor 12-15 şi 18-22, 24, 25

Excepție sunt compușii **19** și **20** în care ligandul H_2dtdb se oxidează până la anionul SO_4^{2-} și în spectru apare semnalul în regiunea 1034 cm⁻¹, iar benzile caracteristice oscilaților inelului aromatic sunt în regiunile 1634 cm⁻¹ (**19**) și 1611 cm⁻¹ (**20**). Semnalele observate în regiunea 1034–1059 cm⁻¹ și 683–610 (**19**), 1033–1079 cm⁻¹ (**20**) sunt atribuite prezenței anionilor SO_4^{2-} și F⁻.

În spectrele IR ale compuşilor **30**, **32**, **34**, **35** (Figura A 4.13 - 4.16) se obsearvă benzile corespunzătoare inelelor aromatice ale ligandului *Hpmta* și a celor bipiridinici *bpy* și *bpe*. Acestea s-au depistat în regiunile 1547–1565 cm⁻¹(**30**), 1545–1554 cm⁻¹ (**32**), 1550–1563 cm⁻¹ (**34**) și 1552–1567 cm⁻¹ (**38**). Vibrațiile cu frecvențele caracteristice (v_{as}COO⁻) și (v_sCOO⁻) ale grupărilor din ligandul *Hpmta* sunt în regiunea 1607–1670 cm⁻¹ și 1368–1392 cm⁻¹ (**30**), 1617 cm⁻¹ și 1350–1379 cm⁻¹ (**32**), 1610–1646 cm⁻¹ și 1357–1377 cm⁻¹(**34**), 1610–1637 cm⁻¹ și 1290 cm⁻¹ (**35**). Benzile de absorbție v(C–S) sunt înregistrate la 678 cm⁻¹ (**30**), 697cm⁻¹ (**32**), 712 cm⁻¹ și 710 cm⁻¹ (**35**). Prezența moleculelor de apă în compuși este indicată de semnalul v(OH) la ~3546 cm⁻¹.

Spectroscopia RMN

Spectroscopia RMN este printre metodele cele mai eficiente și bogate în informații pentru rezolvarea unei game largi de scopuri esențiale pentru sănătatea umană [213-217]. Cu toate acestea, metodă respectivă rămâne în continuare una dintre cele mai importante instrumente analitice disponibile chimistului clasic, deoarece posedă o metodologie unică pentru caracterizarea unor complecși autoasamblați și investigarea comportamentului lor dinamic în soluție [218].

Studiile spectrale ¹H și ¹³C RMN pentru compusul **43** confirmă structura acestuia în solutie de DMSO-d₆. Experiențele RMN 1D (¹H, ¹³C, DEPT) și 2D heteronucleare (¹H/¹³C HSQC și ¹H/¹³C HMBC) au fost înregistrate prin secvențe de puls standard. În spectrul ¹H RMN se găsesc singletele corespunzătoare protonilor grupărilor metinice la δ 2,40 ppm (2H, s, HC-CH), precum si singletele protonilor grupărilor metilenice adiacente heteroatomului de azot la δ 2,53 ppm (s, 4H, N-CH₂). În afară de aceasta, multe semnale sunt prezente în regiunea 2,71–2,93 ppm, care identifică molecule *dmf* coordinate diferit, fiind de asemenea atestat un pic larg al metanolului residual (după cristalizare) la δ 4,03 ppm (Figura A 5.1). Experiența DEPT a permis separarea atomilor cu grad diferit de protonare. Atomul de carbon cuaternar amidic a fost găsit în spectrul ¹³C la δ 174,63 ppm, iar atomii de carbon cu hibridizare *sp*³ metilenici și metinici – la δ 34,91 și 29,38, respectiv, ceea ce este în corespundere cu datele din literatură pentru nuclee de acest tip. Heterocorelările ¹H/¹³C HMBC confirmă atribuirea tuturor semnalelor pentru nucleele de ¹H și ¹³C, de asemenea sprijinind co-existența diferitor specii *dmf*, $(\delta 2,71-2,99/163,3-165,7 \text{ ppm})$ (Figura A 5.2). Nucleele ¹³C ale grupărilor C=S și COO nu au fost depistate în spectrul ¹³C.

*Comportamentul termic al compuşilor în baza ligandului H*₂*dtdb.*

Stabilitatea termică a polimerilor coordinativi obtinuti în baza ligandului $H_2 dt db$ a fost studiată, efectuând analizele termice simultane (TG-DTG-DTA) în intervalul de la 20 °C până la 1050 °C în atmosferă de aer. Compusul 12 pierde din masă îndată ce este supus încălzirii, pe curbele DTG si DTA se observa două minime caracteristice care pot fi atribuite volatilizării a două molecule de apă (Figura A 6.2). Până la 140 °C are loc o pierdere de masă de 2,7% (2,8% calc.). Începând cu 150 °C pe curba DTA se observă un minim endoterm cauzat de volatilizarea dmf și a etanolului, pierderea sumară a masei fiind de 12,9% (12,9% calc.), procesul finisându-se la 202 °C. La 250 °C are loc descompunerea parțială a ligandului *dtdb* prin ruperea a două molecule de acid formic, pierderea de masă fiind de 7,1% (7,1% calc.). La 330 °C se observă începutul unei pierderi de masă însoțită de un efect endoterm, proces atribuit eliminării ligandului bpe, degradarea termică continuând cu procese complexe de pierdere a masei și regrupare cu formarea compușilor intermediari, astfel la 490 °C se observă topirea compusului intermediar format. Degradarea totală a părții organice are loc la 720 °C, odată cu formarea reziduului sub formă de Mn₂O₃, care rămâne stabil până la 1015 °C după ce începe să se descompună. Curba TG primită pentru compusul 13 indica o scădere a masei de 1,4% până la 140 °C, ceea ce corespunde pierderii unei molecule de apă (1,4%) (Figura A 6.3). Începând cu 149 °C se observă o descompunere endotermă cu o pierdere de masă de 17,3% cauzată de eliminarea compușilor ușor volatili (dmf, etanol, apă). Ridicarea temperaturii până la 300 °C conduce la degradarea treptată a liganzilor organici cu formarea compușilor intermediari, la 470 °C pe curba DTA se observă un minim care nu este urmat de pierdere de masă, aceasta fiind caracteristic topirii compusului intermediar format. Descompunerea se finisează la 576 °C cu formarea Co₃O₄, care la 940 °C se descompune în CoO, pe curbele DTA și DTG fixându-se transformarea caracteristică compușilor cobaltului. Partea de masă a reziduului format este de 11,7% (11,8% calc.). Descompunerea termică a compusului 16 începe la 153 °C când are loc pierderea moleculei solvatate de *dmf*, însă până a se încheia procesul are loc eliminarea celei de a doua moleculă de *dmf* concomitent cu decarboxilarea ligandului *tdb*. Pierderea de masă până la 290 °C constituie 41,6 %, ceea ce corespunde pierderii a două molecule de *dmf* și a unei molecule de CO₂ (41,2% calc. teor.) (Figura A 6.4). Până la 342 °C mai are loc o pierdere de 9,5 % cauzată de decarboxilarea celei de-a doua grupă carboxilică (9,1 % calc. teor.). Procesele sunt exoterme, având maximele de descompunere la 277 și 316 °C. În intervalul 342-470 °C are loc degradarea oxidativă a restului organic, procesul fiind puternic exoterm, maximul procesului fiind la 432 °C. Partea de masă a reziduului format la 1000 °C este de 83,5 %, ceea ce corespunde oxidului de Cu(II) (83,5% calc. teor.). Prima pierdere de masă a compusului 17 este observată în intervalul 95–210 °C, 17,40% (17,42% calc. teor.), ceea ce corespunde eliminării a două molecule de *dmf* solvatate și a unei molecule de apă coordinate. Ambele procese sunt endoterme, având maximele la 40 și 143 °C (Figura A 6.5). Începând cu 250 °C, are loc procesul de decarboxilare a liganzilor *tdb* și *sdb* și eliminarea moleculei de *dmf* din sfera internă, procesul este exoterm, probabil datorită restructurării compusului și continuă până la 300 °C. Pe curba DTA se atestă un maxim exoterm comun la 281 °C. Pierderea de masă în acest interval constituie 27,20% (26,5 % calc. teor.). Compusul **22** începe să se descompună la 270 °C (Figura A 6.6) prin fragmentarea ligandului *dtdb*, procesul este endoterm și similar cu cea a ligandului. Degradarea termica decurge în mai multe etape. Datorită complexității liganzilor și a produșilor intermediari formați, procesele se suprapun. Se poate evidenția, ca și pentru compușii **12** si **13** formarea unui compus intermediar cu punctul de topire la 470 °C. Degradarea completă finalizează la 590 °C cu formarea ZnO care ramâne stabil pana la 1000 °C. Partea de masa a reziduului format este de 14,2 % (14,3 % calc.).

Proprietățile luminescente

Obținerea rețelelor metal-organcinice ce sunt asamblate din componente organice și anorganice reprezintă cu siguranță materiale multifuncționale. Luminescența polimerilor coordinativi și a rețelelor metalo-organice în special cu metalele tranziționale d^{10} este atractivă grație aplicațiilor potențiale ale acestor compuși în calitate de materiale fluorescente, așa precum sunt diodele emițătoare de lumină (LED-uri), datorită stabilității lor termice înalte și capacității de afectare a lungimii de undă a emisiei ligandului organic în rezultatul coordinării la ionii de metal. Cercetările efectuate țin de determinarea influenței substituenților atât din inelul fenilenic, cât și a inelului piridinic. Spectrele de luminescență pentru un șir de compuși, cât și pentru liganzii *în parte* au fost înregistrate în stare solidă și în condiții silmilare cu lungimea de undă $\lambda_{ex} = 337$ nm la temperatura camerei.

Spectrele de luminescență pentru compușii **12**, **22** și **23**, cât și pentru ligandul H_2dtdb au evidențiat că maximile benzilor de emisie înregistrate pentru unele combinații se află practic în același interval (450 – 500 nm). Maxima de emisie a ligandului H_2dtdb este la 447 nm (lungimea de undă, $\lambda ex = 391$ nm) și ea poate fi atribuită tranzițiilor $\pi^* \rightarrow \pi$ [219]. O banda de emisie pentru compusul **23** este observată la 465 nm. Deoarece este dificil pentru ionul Cd(II) să se oxideze sau să se reducă datorită configurației d^{10} , ca urmare, emisia compusului **23** poate fi atribuită emisiilor de transfer de sarcină intraligand din *dtdb*, datorită asemănării benzilor de emisie [220]. În comparație cu ligandul H_2dtdb , emisiile pentru compusul **23** înregistrează o ușoară schimbare la 467 nm. Acest lucru poate fi atribuit modului de coordinare chelat al ligandului *dtdb* la ionul metalic, care mărește în mod eficient rigiditatea acestui ligand și reduce pierderea de energie prin descompunerea radiației stării de excitare, ceea ce indică interacțiuni puternice ligand-ligand. În

cazul compușilor de Zn(II) și Mn(II) se observă o intensitate mai mică în spectrul de luminescență cu maximumul în domeniul spectrului vizibil, cu energie de 2,5 sau 2,8 eV (Figura A 7.2).

Dacă spectrul de luminescență al ligandului $H_{3}saz$ demonstrează o bandă slabă la 1,95 eV (630 nm), iar cel al ligandului *bpe* prezintă două benzi intense la 2,84 eV (425 nm) și 3,35 eV (374 nm), prezența cărora poate fi atribuită fragmentelor cromofore ale ligandului respectiv, atunci compusul **26** emite fluorescență violetă cu maximumul caracteristic la 2,87 eV (430 nm), ce poate fi atribuită tranziției $\pi \rightarrow \pi^*$ (Figuga A 8.3). Spectrele de luminiscență înregistrate pentru compușii **33**, **34**, **35** ce au la bază ligandul *Hpmta*, cât și a ligandului în parte, au demonstrat că cea mai intensă bandă corespunde ligandului *Hpmta*, acest lucru fiind depistat prin maximumul de intensitate în domeniul 2,6 eV (467 nm). Compararea proprietăților luminescente a polimerilor coordinativi **33-35** ce conțin ligandul *Hpmta* dezvăluie o reducere a intensității luminescente, astfel spectrul luminescență a compusului **35** și **34** demonstrează benzi în regiunea de 1,9 eV (652 nm) și 3,0 eV (413 nm), ce ar putea fi asociată cu coordinarea la centrul metalic a liganzilor piridinici ce conțin azot și sisteme aromatice conjugate extinse ce pot îmbunătăți proprietățile luminescente (Figura A 7.4).

Compararea proprietăților luminescente ale compușilor **42** și **45** ce conțin ligandul *Hrda* a evidențiat că compusul **42** demonstrează cea mai intensă bandă la 1,9 eV (650 nm) fapt cauzat de natura metalului și a sferei geometrice de coordinare formată de setul de atomi donori O₆. Proprietățile luminescente ale compusului **42** spre deosebire de cele ale compusului **45** evidențiează o scădere a intensității în domeniul 2,15 eV (575 nm), iar spectrul de luminescență înregistrat pentru ligandul *Hrda* demonstrează o bandă slabă la 2,5 eV (495 nm), de unde se poate presupune că luminescența are loc datorită tranzacției π - π * în ligand (Figura A 7.5).

Testările microbiologice ale compusului [Zn(5,5'-rda-rda)(dmf)₂(H₂O)₂]_n

Testările ce țin de activitatea antibacteriană pentru un șir de compuși cu liganzii ce conțin atomi donori N, O și S, ce coordinează ușor la o gamă largă de ioni metalici formând compuși stabili, au evidențiat activități biologice utile [221]. Ionii de metal, precum cobalt, cupru și zinc, pot forma complecși cu masă moleculară mică care s-au dovedit a fi mai benefici pentru mai multe boli [222]. Au fost studiate proprietățile biologice ale compusului **43** pe o serie de tulpini standard de bacterii *Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 6538)* și fungii *Candida albicans (ATCC 10231)*. Evaluarea capacității de inhibare a microorganismelor de către compusul studiat a avut la bază analizei preventive prin metoda diluției [223] care au determinat limita de sensibilitate a tulpinilor de microorganisme *Escherichia coli, Staphylococcus aureus* și *Candida albicans* în raport cu substanța analizată, indicând concentrația necesară pentru inhibare. Studiul activității antibacteriene și antifungice a arătat, că acest compus manifestă activitate antifungică în diapazonul tuturor concentrațiilor studiate CMI fiind 1,2 μ g/mL (diliția 1:1024) și antibacteriană în cazul diluțiilor 1:8 față de *E. coli* și 1:16 față de *S. aureus* (Tabelul 4.2).

Tabelul 4.2. Concentrația minimă de inhibiție a compusului 43 fața de *E. coli*, *S. aureus* și *C. albicans*

Test –	Diluțiile succesive binare									
microorganisme utilizate	1:2	1:4	1:8	1:16	1:32	1:64	1:128	1:256	1:512	1:1024
	$[Zn(5,5'-Rda-Rda)(dmf)_2(H_2O)_2]_n$									
<i>E. coli ATCC 25922</i> (5 x108 UFC/ml)	-	-	-	+	+	+	+	+	+	+
S. aureus ATCC 6538 (5x108UFC/ml)	-	-	-	-	+	+	+	+	+	+
C. albicans ATCC 10231 (3,5 x107UFC/ml)	-	-	-	-	-	-	-	-	-	-

- Manifestă activitate antibacteriană și antifungică

+ Nu manifestă activitate antibacteriană și antifungică.

Valorile concentației minime de inhibare (CMI) pentru compusul studiat față de bacteriile gram-pozitive *S. aureus* sunt cuprinse în intervalul 70–413 μ g/mL, iar față de bacteriile gram-negative *E. coli* – în intervalul 137–413 μ g/mL. În rezultatul testărilor biologice s-a demonstrat, că compusul **43** manifestă proprietăți antifungice și antibacteriene bune la valori mici ale CMI, (μ g/mI), care sunt net superioare celor caracteristice compușilor de referință din literatură [205] (Tabelul 4.3).

Tabelul 4.3. CMI a compusului 43 fața de *E. coli*, *S. aureus* și *C. albicans* în comparație cucea mai apropiată soluție din literatură [205]

Compugul	Concentrație minimă inhibitorie (CMI, µg/mL)						
Compusui	Escherichia coli	Staphylococcus aureus	Candida albicans				
Compus 43	137	70	1,2				
Compusul celei mai apropiate soluții	400	-	200				

4.4. Concluzii la capitolul 4

- A fost elaborate procedee de sinteză și obținuți 35 de compuși în baza liganzilor H₂dtdb, Hsaz, Hpmta, Hrda inclusiv prin combinarea acestora cu liganzi bipiridinici.
- În acești compuși pentru ligandul H₂dtdb au fost stabilite transformări legate de scindarea ligandului, extrudarea legăturii S–S, cât și oxidarea atomului de S cu formarea grupării -SO₂⁻ ori a anionului SO₄²⁻, care au dus la formarea a cinci tipuri de liganzi. Acești liganzi

coordinează la centrele metalice în mod diferit: bidentat-chelat la un atom de metal, tetradentat la patru atomi de metal, tetradentat-bischelat la doi atomi de metal, tetradentat chelat la trei atomi de metal, bidentat la doi atomi de metal, antrenând atât atomii de O din grupările carboxilice, cât și atomul de S. Ca rezultat, inclusiv cu antrenarea liganzilor bipiridinici, au fost obținuți 7 compuși de tip polimeri coordinativi 3D, 4 - 2D, 2 - 1D și un monomer. S-a atabilit faptul că ligandul *Hsaz* în cei 2 compuși obținuți a manifestat două moduri noi de coordinare tri- sau tetradentat-chelat coordinând la un atom de metal prin ambii sau printr-un singur atom de O din gruparea carboxilică deprotonată COO⁻, iar la celălalt – prin gruparea terminală NCN⁻ implicând atomul de azot piridinici.

- S-a stabilit că din 12 compuşi cu *Hpmta*, în trei dintre ei nu este antrenat la formarea complexului, în ceilalți coordinează la centrele metalice în mod diferit: monodentat printr-un atom de oxigen din gruparea carboxilică, tetradentat-chelat, prin doi atomi, unul de oxigen al grupării carboxilice şi unul de S la un atom de metal, iar la un atom de metal vecin prin ambii atomi de oxigen din gruparea carboxilică coordinează bidentat-chelat, bidentat punte prin cei doi atomi de oxigen ai grupării carboxilice la doi atomi de metal, şi bidentat-chelat. La formarea celor 11 polimeri coordinativi (7 1D, 4 2D) un rol important i se atribuie ligandului bipiridinic şi pH- lui soluției.
- A fost stabilit că în compuşii monomerici obținuți prin metoda tradițională de sinteză ligandul rda⁻ coordinează la metale monodentat printr-un atom de oxigen ce aparține grupării carboxilice. Cu toate că formarea polimerilor coordinativi 1D este cauzată de liganzii bipiridinici, într-un caz polimerul 1D este determinat de ligandul nou obșinut la condensarea rda⁻, iar liganzii rda⁻ manifestă într-un compus un mod de coordinare diferit: tridentat chelat punte la doi atomi de metal prin atomii de oxigen ai grupării carboxilice sau bidentat chelat, la un atom de metal. Metoda solvotermală în cazul compusului cu rda⁻ a condus la descompunerea acestui ligand până la glicină.
- Emisiile fluorescente înregistrate pentru compişii de Zn(II) şi Cd(II), cât şi pentru liganzii în parte a permis clasificarea lor drept substanțe cu un potențial de utilitate în domeniul luminescenței.
- Rezultatele studiilor microbiologice pentru compusul de Zn(II) cu ligandul nou în baza *Hrda*, și anume a testărilor pe culturile *E.coli*, *S.aureus* și fungii *C.albicans*, au scos în evidență activitate sporită, ceea ce indică spre o posibilă utilizare a compusului respectiv în calitate de preparat cu proprietăți antifungice.

CONCLUZII ȘI RECOMANDĂRI

Problema științifică soluționată și descrisă în cadrul acestei teze ține de stabilirea condițiilor optime de obținere a compușilor coordinativi cu dimensionalitate diferită, evidențiind corelația sinteza - structura - caracteristici spectrale - proprietăți. Pentru prima dată a fost stabilit un mod nou de coordinare al sulfazalaninei la Cd(II) și Zn(II). Pentru acidul 2,2'-ditiodibenzoic au fost scoase în evidență așa modificări, precum scindarea oxidativă sau extrudarea unui atom de S în procesul de complexare. A fost elaborată metoda de sinteză a compusului de Zn(II) cu un ligand unicat, rezultat al condensării acidului 2-(4-oxo-2-tioxotiazolidin-3-il)acetic. Totodată, pentru un șir de compuși au fost investigate proprietățile luminescente.

Din lucrările efectuate putem concluziona următoarele:

- A fost elaborat designul şi selectate metodele de obţinere şi studiere pentru 46 materiale metalo-organice în baza metalelor de tranziţie Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) şi Cd(II) cu liganzi polidentați, în special micşti, pentru care prin metoda difracției razelor X a fost stabilită structura. S-a stabilit că pentru creşterea monocristalelor sunt favorabile atât agitarea componenților cu/fără încălzire, evaporarea lentă, cât şi baia cu ultrasunet şi metoda solvotermală. (*capitolul 2, pp. 52 – 71*)
- 2. Stabilirea compoziției și structurii compușilor sintetizați a fost efectuată prin antrenarea mai multor metode moderne de cercetare (analiza elementală, spectroscopia în IR, RMN ¹H și ¹²C, analiza termogravimetrică, difracția razelor X pe monocristal). *(capitolul 4, subcapitolul 4.3, pp. 126 130)*
- 3. Blocarea grupărilor carboxilice prin metilare a condus la obținerea a doi compuşi noi prin metoda solvotermală ca rezultat al interacțiunii sărurilor Co(BF₄)₂ şi (Zn(BF₄)₂ cu ligandul *H₃btc* şi *bpe/bpp*. Aceşti compuşi noi s-au dovedit a fi polimerii coordinativi, diferiți atât după compoziție, cât şi după topologie. (*capitolul 3, subcapitolul 3.2, pp. 86 89*)
- 4. Utilizarea în calitate de ligand a acidului $bpdcH_2$ cu grupări carboxilice, cât și piridinice în componența sa a condus la obținerea unui nou polimer coordinativ. Spectrele de luminescență înregistrate pentru {[Zn(bpdc)(H₂O)]·dmf·H₂O}_n și ligandul liber în parte au evidențiat emisii pentru complexul polimeric de două ori mai puternice decât în cazul ligandului necoordinat, fenomenul fiind atribuite interacțiunilor ligand-metal (LMCT). *(capitolul 3, subcapitolul 3.3, pp. 90 93)*
- 5. S-a constatat valoare mai ridicată a volumului cavităților în rețelele cristaline ale compuşilor polimerici 9 (33,2% din volumul total al celulei elementare) şi 15 (30% din volumul celulei), fapt ce relevă posibile proprietăți de adsorbție esențiale. *(capitolul 3, subcapitolul 3.3, 4.1, p. 93, p.101)*

- 6. În compuşii obținuți la interacțiunea sărurilor de Mn(II), Co(II), Cu(II), Zn(II) şi Cd(II) cu ligandul *H₂dtdb* au fost stabilite un şir de modificări pentru acest ligand, legate de scindarea oxidativă, extrudarea unui atom de sulf, ce a condus la antrenarea în coordinarea acestui a atomului de S, rezultând atât compuşi discreți (0D), cât şi a PC cu dimensionalități diferite (1D 3D). (*capitolul 4, subcapitolul 4.1, pp. 97 109*)
- 7. S-au evidenţiăt moduri noi de coordinare pentru sulfazalanina, ligand organic cu atomi donori N, O şi S, din polimerii coordinativi 2D ai Zn(II) şi Cd(II). Măsurătorile emisiei luminescente efectuate pentru compusul de Cd(II) 26, cât şi pentru liganzii în parte H₃saz şi bpe au permis concluzia că emiterea fluorescentă violetă cu maximumul caracteristic la 2,87 eV (430 nm) pentru compusul metalic să fie atribuită tranziţiei π→π*. (capitolul 4, subcapitolul 4.2, 4.3, pp. 109 113, 130)
- 8. Evaluarea capacității de inhibare a microorganismelor prin metoda diluției pentru o serie de tulpini standarde de bacterii *Escherichia coli (ATCC 25922)*, *Staphylococcus aureus (ATCC 6538)* și fungii *Candida albicans (ATCC 10231)* pentru compusul de Zn(II) cu ligandul nou obținut în baza condensării acidului rodanin-3-acetic (43) a stabilit proprietăți antifungice și antibacteriene bune. (capitolul 4, subcapitolul 4.2, 4.3, pp. 123 124, 130-131)

RECOMANDĂRI

Pentru obținerea compușilor coordinativi ai metalelor de tranziție cu structuri de diferită dimensionalitate (0D - 3D) în baza liganzilor micști se recomandă utilizarea atât a metodei evaporarea lentă, cât și a metodei solvotermală și ultrasonarea, acestea asigurând un randament mai mare în timp mai scurt.

Pentru obținerea polimerilor coordinativi cu dimensiuni controlate prin parametrii de reacție (tipul și concentrația reactanților, temperatura de reacție, pH-ul soluției) se recomandă metoda solvotermală care asigură reproducerea lor pe scară mai largă.

Proprietățile luminescente ale materialelor metalo-organice polimer de tip materiale coordinativ promit utilizarea acestora ca potentiale proiectarea la dispozitivelor emitătoare de lumină de tip diodă.

Se recomandă de a investiga în calitate de preparate antimicrobiene/antifungice, a compușilor care conțin în componență chinolină ori derivații ei, datorită activității sporite ai acestora.

BIBLIOGRAFIE

- HUANG, L. Synthesis, morphology control, and properties of porous metal–organic coordination polymers. In: *Microporous and Mesoporous Materials*, 2003, vol. 58(2), pp. 105–114. DOI:10.1016/s1387-1811(02)00609-1
- 2 PACHFULE, P., et. al. Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link. In: *Crystal Growth & Design*, 2011, vol. 11(4), pp. 1215–1222. DOI:10.1021/cg101414x
- HU, Y. W., MA, Y. M. Solvothermal Synthesis and Characterization of Two Iron Complexes. In: *Key Engineering Materials*, 2011, vol. 492, pp. 324–327. DOI:10.4028/www.scientific.net/kem.492.324
- JIN, Y.-X., et. al. A two-dimensional Cd(II) coordination polymer with 2,2'-(disulfanediyl)dibenzoate and 1,10-phenanthroline ligands. In: *Acta Crystallographica Section C Structural Chemistry*, 2014, vol. 70(5), pp. 517–521. DOI:10.1107/s2053229614009036
- 5. LI, Z.-Q., et. al. Ultrasonic synthesis of the microporous metal-organic framework $Cu_3(BTC)_2$ at ambient temperature and efficient pressure: An and environmentally friendly method. In: **Materials** 2009, vol.63(1), Letters, pp. 78-80. DOI:10.1016/j.matlet.2008.09.010
- LI, Z.-Q., et.al. Fabrication of nanosheets of a fluorescent metal–organic framework [Zn(BDC)(H₂O)]n (BDC=1,4-benzenedicarboxylate): Ultrasonic synthesis and sensing of ethylamine. In: *Inorganic Chemistry Communications*, 2008, vol. 11(11), pp. 1375–1377. DOI:10.1016/j.inoche.2008.09.010
- ALLEN F.H., et al. Applications of the Cambridge Structural Database in chemical education. In: *Journal of Applied Crystallography*, 2010, vol. 43. pp. 1208–1223. DOI: 10.1107/S0021889810024155
- XU, L.-L., et. al. Synthesis of novel 1,3-diaryl pyrazole derivatives bearing rhodanine-3fatty acid moieties as potential antibacterial agents. In: *European Journal of Medicinal Chemistry*, 2012, vol. 48, pp. 174–178. DOI:10.1016/j.ejmech.2011.12.011
- LUMB, I., et. al. Coordination chemistry of Cu(II), Co(II), Zn(II) and Ag(I) complexes of isomeric pyridine 2- and 4-carboxamides and their biological activity evaluation. In: *Polyhedron*, 2017, vol. 127, pp. 153–166. DOI:10.1016/j.poly.2017.01.063
- FU, Z.-Y., et al. Interpenetration in [Cd(isonicotinate)₂(1,2-bis(4-pyridyl)ethane)_{0.5}(H₂O)]_n, a novel octahedral polymer containing an unusual two-dimensional bilayer motif generated by self-assembly of rectangle building blocks. In: *Chemical Communications*, 2001, vol., pp. 1856–1857. DOI: 10.1039/b105237n

- 11. BATTEN, S., NEVILLE, S., TURNER, D. Coordination Polymers. Design Analysis and Application. 2009, nr. 207890, pp. 144 146. ISBN: 978-0-85404-837-3.
- DESIRAJU, G. Crystal Engineering: From Molecule to Crystal. In: *American Chemical Society*, 2013, vol. 135, pp. 9952–9967. DOI: 10.1021/ja403264c
- FROMM, K., SAGUE', J., MIROLO, L. Coordination Polymer Networks: An Alternative to Classical Polymers? *In: Macromolecular Symposia*, 2010, vol. 291, pp. 75-83. DOI: 10.1002/masy.201050509
- BRAGA, D., GREPIONI, F. Making crystals from crystals: a green route to crystal engineering and polymorphism. In: *Chemical Communications*, 2005, vol. 3635, pp. 3635–3645. DOI: 10.1039/b504668h
- KONDO, M., et. al. Microporous Materials Constructed from the Interpenetrated Coordination Networks. Structures and Methane Adsorption Properties. In: *Chemistry of Materials*, 2000, vol. 12, pp. 1288-1299. DOI: 10.1021/cm990612m
- 16. ZHENG, L-M., YIN, P., XIN, X.-Q. Novel coordination polymer containing a mixed valence copper(I,II) phosphonate unit: Cu^I₂Cu^{II}(hedpH₂)₂(4,4'-bpy)₂·2H₂O (hedp = 1-hydroxyethylidenediphosphonate). In: *Inorganic Chemistry*, 2002, vol. 41, pp. 4084-4086. DOI: 10.1021/ic0156310
- 17. ANDRUH, M. Racks, Ladders, and Grids. In: *Encycloprdia of Supramolecular Chemistry*, 2004, vol. 1, pp. 1186-1193. DOI: 10.1081/E-ESMC12001981
- NORO, S., et. al. A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF₆(4,4'-bipyridine)₂}_n] In: *Angewandte Chemie International Edition*, 2000, vol. 39, pp. 2081-2084. DOI: 10.1002/1521-3773(20000616)39:12<2081::AID-ANIE2081>3.0.CO;2-A
- MACDONALD, J. C., & WHITESIDES, G. M. Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides. In: *Chemical Reviews*, 1994, vol. 94(8), pp. 2383–2420. DOI:10.1021/cr00032a007
- 20. AAKERÖY, C. B., SEDDON, K. R. The hydrogen bond and crystal engineering. In: *Chemical Society Reviews*, 1993, vol. 22(6), pp. 397–407. DOI:10.1039/cs9932200397
- JANIAK, CH. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. In: *Journal of the Chemical Society, Dalton Transactions*, 2000, pp. 3885–3896. DOI: 10.1039/b003010o
- 22. TONG, M.-L. et. Al. A novel three-dimensional triangular organic–inorganic hybrid network self-assembled by mononuclear $[Mn(4,4'-bipyridine)_2 \cdot (H_2O)4]^{2+}$ cations and rich solvate 4,4'-bipyridine molecules through hydrogen-bonding and $\pi-\pi$ interactions.

In: Journal of the Chemical Society, Dalton Transactions, 1999, pp. 3657–3659. DOI: 10.1039/A907111C

- PANG, H., et. al. Syntheses of two new hybrid compounds based on Keggin polyoxotungstates: The use of rigid and flexible ligands. In: *Journal of Molecular Structure*, 2009, vol. 922 pp. 88–92. DOI: 10.1016/j.molstruc.2009.01.026
- HAN, Z., et. al. Molecular Assemblies Based on Polytungstate Clusters and the Flexible Organic Ligand 1,3-Bis(4-pyridyl)propane. In: *European Journal of Inorganic Chemistry*, 2011, pp. 3082-3090. DOI: 10.1002/ejic.201100051
- CHEN, X.-M. et. al. Inclusion of 4,4'-Bipyridine (γbpy) in its Copper(II) Aqua Perchlorato Complex. Crystal Structure of [Cu(γbpy) (H₂O)₂(ClO₄)₂]_n·(γbpy)_n. In: *Australian Journal of Chemistry*, 1996, vol. 49, pp. 835-838. DOI: 10.1071/CH9960835
- DE MUNNO, G., et. al. Novel sheet-like manganese(II) networks. Synthesis and structure of [Mn(bpe)(NCS)₂(CH₃OH)₂] and [Mn(bpe)(NCS)₂(CH₃OH)₂]·bpe [bpe = trans-1,2-bis(4-pyridyl)ethene]. In: *Journal of the Chemical Society, Dalton Transactions*, 1999, pp. 1813-1817. DOI: 10.1039/a900569b
- YAGHI, O., Li, G., Li, H. Selective binding and removal of guests in a microporous metal-organic framework. In: *Nature*, 1995, vol. 378, pp. 703-706. DOI: 10.1038/378703a0
- ZHANG, J., et. al. Poly[[dicopper(I)-tri-μ-4,4'-bipyridyl] diperchlorate dihydrate]. In: *Acta Crystallographica*, 2004, vol. 60, pp. 504-505. DOI: 10.1107/S160053680400546X
- 29. TONG, M.-L., et. al. A novel two-dimensional rectangular network. Synthesis and structure of $\{[Cu(4,4'-bpy)(pyz)(H_2O)_2][PF_6]_2\}_n$ (4,4'-bpy = 4,4'-bipyridine, pyz = pyrazine). In: *Journal of the Chemical Society, Dalton Transactions*, 1998, pp. 5-6. DOI: 10.1039/a706363f
- ABU-SHANDIA, K., et. al. Channel-Containing Criss-Crossed and Hydrogen-Bonded One-Dimensional Coordination Polymers of Iron(III) and (II) with 4,4'-Bipyridine: Hydrothermal Syntheses, Structures, Absorption and Mössbauer Studies Showing Spin Crossover for the Iron(III) Polymer. In: *Zeitschrift für Anorganische und Allgemeine Chemie*, 2005, vol. 631, pp. 2705-2714. DOI: 10.1002/zaac.200500112
- BLAKE, A. et. al. Control of interpenetrating copper(I) adamantoid networks: synthesis and structure of {[Cu(bpe)₂]BF₄}_n. In: *Chemical Communications*, 1997, pp. 1005-1006. DOI: 10.1039/A700866J
- REA, J. A., et. al. Spin Crossover in a Catenane Supramolecular System. In: *Science*, 1995, vol 268, pp. 265-267. DOI: 10.1126/science.268.5208.265

- DONG, Y.-B. et. al. Syntheses and Characterizations of One-Dimensional Coordination Polymers Generated from Cadmium Nitrate and Bipyridine Ligands. In: *Inorganic Chemistry*, 1999, vol. 38, pp. 3056-3060. DOI: 10.1021/ic9814569
- JUNG, O.-S. et. al. Solvent-Dependent Structures of Co(NO₃)₂ with 1,2-Bis(4-pyridyl)ethylene. Interconversion of Molecular Ladders versus Mononuclear Complexes. In: *Inorganic Chemistry*, 1998, vol. 37, pp. 5781-5785. DOI: 10.1021/ic980278g
- LU, J., et. al. One-Dimensional Coordination Polymers of Cobalt with 4,4'-Bipyridine: Syntheses and Structures. In: *Inorganic Chemistry*, 1998, vol. 37, pp. 4637-4640. DOI: 10.1021/ic971614g
- ZHANG, L., YU. J. *Catena*-Poly[[dichloridonickel(II)]-μ-1,2-di-4-pyridylethanek²N:N']. In: *Acta Crystallographica*, 2007, vol. 63, pp. 1759. DOI:10.1107/S1600536807024324
- HALDARA, R., MAJI, T. Selective carbon dioxide uptake and crystal-to-crystal transformation: porous 3D framework to 1D chain triggered by conformational change of the spacer. In: *CrystEngComm*, 2012, vol. 14, pp. 684–690. DOI: 10.1039/c1ce05847a
- MAJI, T., MATSUDA, R., KITAGAWA, A. A flexible interpenetrating coordination framework with a bimodal porous functionality. In: *Nature*, 2007, vol. 6, pp. 142-148. DOI:10.1038/nmat1827
- WALTON, R. Subcritical solvothermal synthesis of condensed inorganic materials. In: *Royal Society of Chemistry*, 2002, vol. 31, pp. 230–238. DOI: 10.1039/b105762f
- 40. SURESH, E., BHADBHAD, M. M. Metal-organic supramolecular architecture containing cationic cavities: synthesis and single crystal investigation of {[Co(bpe)₂(H₂O)₂](ClO₄)₂·(H₂O)₂}_n. In: *CrystEngComm*, 2001, vol. 13, pp. 1-3. DOI: 10.1039/b009706n
- KANOO, P., et. al. A planar Cu²⁺ (S=1/2) kagom'e network pillared by 1,2-bis(4-pyridyl) ethane with interesting magnetic properties. In: *Journal of the Chemical Society, Dalton Transactions*, 2009, pp. 5062–5064. DOI: 10.1039/b905229a
- 42. CARLUCCI, L. et. al. Chiral packing of chiral quintuple layers polycatenated to give a three-dimensional network in the coordination polymer [Co₅(bpe)₉(H₂O)₈(SO₄)₄](SO₄)·14H₂O [bpe = 1,2-bis(4-pyridyl)ethane. In: *Chemical Communications*, 2000, 1319–1320. DOI: 10.1039/b0020210
- CARLUCCI, L. et. al. Polymeric Layers Catenated by Ribbons of Rings in a Three-Dimensional Self-Assembled Arhitecture: A Nanoporous Network with Spongelike Behavior. In: *Angewandte Chemie International Edition*, 2000, vol. 39, pp. 1506-1510. DOI: 10.1002/(sici)1521-3773(20000417)39:8<1506::aid-anie1506>3.0.co;2-u

- SUEN, M.-C., TSAI, H.-A., WANG, J.-C. Synthesis and Structures of Infinite Coordination Polymers from 1,3-Bis(4-pyridyl)propane Ligand and Zinc Salts. In: *Journal of the Chinese Chemical Society*, 2006, vol. 53, pp. 305-312. DOI: 10.1002/jccs.200600038
- 45. YANG, E.-C., et. al. A cadmium(II)- and a nickel(II)-polymer with azide and 1,3-bis(4-pyridyl)propane ligands showing neutral pentanuclear cluster-based 3D MOF and selfinterpenetrated 2D undulated layer. In: *Inorganic Chemistry Communications*, 2010, vol. 13, pp. 733–736. DOI: 10.1016/j.inoche.2010.03.033
- BATTEN, S. et. al. Coordination polymers, metal–organic frameworks and the need for terminology guidelines. In: *CrystEngComm*, 2012, vol. 14, pp. 3001–3004. DOI: 10.1039/c2ce06488j
- JANIAK, CH. Engineering coordination polymers towards applications. In: *Journal of the Chemical Society, Dalton Transactions*, 2003, pp. 2781-2804. DOI:10.1039/B305705B
- WISSER, B., et. al. A chiral C₃-symmetric hexanuclear triangular-prismatic copper(II) cluster derived from a highly modular dipeptidic N,N'-terephthaloyl-bis(S-aminocarboxylato) ligand. In: CrystEngComm, 2008, vol. 10, pp. 461–464. DOI: 10.1039/b717207a
- 49. SENKOVSKA, I., KASKEL, S. Solvent-Induced Pore-Size Adjustment in the Metal-Organic Framework [Mg₃(ndc)₃(dmf)₄] (ndc = naphthalenedicarboxylate). In: *European Journal of Inorganic Chemistry*, 2006, pp. 4564–4569. DOI: 10.1002/ejic.200600635
- ZHANG, H.-X. et. al. Supramolecular architectures from the self-assembly of transoxamidato-bridged dicopper(II) building blocks and phenyldicarboxylates. In: Journal of the Chemical Society, Dalton Transactions, 2001, pp. 2559–2566. DOI: 10.1039/b102570h
- HONG, CH. S., DO, Y. Hydrogen- and Covalent-Bond-Linked 3D Manganese Array. In: Inorganic Chemistry, 1998, vol. 37, pp. 4470-4472. DOI: 10.1021/ic9715254
- 52. FUN, H.-K. et. al. The first structurally characterized 3,4'-bipyridine copper(I) coordination polymer with an approximately rectangular molecular box. In: *Journal of the Chemical Society, Dalton Transactions*, 1999, pp.1711–1712. DOI: 10.1039/A902054C
- 53. CANO, J, et. al. Ability of terephthalate (ta) to mediate exchange coupling in ta-bridged copper(II), nickel(II), cobalt(II) and manganese(II) dinuclear complexes. In: *Journal of the Chemical Society, Dalton Transactions*, 1997, pp. 1915-1923. DOI: 10.1039/A700323D

- MAJUMDER, A., et. al. Synthesis, structure and fluorescence of two novel manganese (II) and zinc (II)-1,3,5-benzene tricarboxylate coordination polymers: Extended 3D supramolecular architectures 140 tabilized by hydrogen bonding. In: *Inorganica Chimica Acta*, 2005, vol. 358 pp. 3855–3864. DOI: 10.1016/j.ica.2005.07.002
- 55. PLATER, J., et. al. Crystallisation of H_3BTC , H_3TPO or H_2SDA with M^{II} (M = Co, Mn or Zn) and 2,2'-bipyridyl: design and control of co-ordination architecture, and magnetic properties (H₃BTC = benzene-1,3,5- tricarboxylic acid, H₃TPO = tris(4- carboxylphenyl)phosphine oxide, H_2SDA = cis-stilbene-4,4'-dicarboxylic acid). In: *Journal of the Chemical Society, Dalton Transactions*, 1999, pp. 4209–4216. DOI: 10.1039/A905332H
- 56. HABIB, H., SANCHIZ, J., JANIAK, CH. [Cu₂(μ₅-btb)(μ-OH)(μ-H₂O)]: a two-dimensional coordination polymer built from ferromagnetically coupled Cu₂ units (btb = benzene-1,2,3- tricarboxylate). In: *Journal of the Chemical Society, Dalton Transactions*, 2008, pp. 4877-4884. DOI: 10.1039/b803813a
- DU, M., JIANG, X.-J., ZHAO, X.-J. Controllable Assembly of Metal-Directed Coordination Polymers under Diverse Conditions: A Case Study of the M^{II}–H₃tma/Bpt Mixed-Ligand System. In: *Inorganic Chemistry*, 2006, vol. 45, pp. 3998-4006. DOI: 10.1021/ic060001d
- PRIOR, T., ROSSEINSKY, M. A porous one-dimensional coordination polymer composed of edge-shared hexagonal supramolecular units. In: *CrystEngComm*, 2000, pp. 24. DOI: 10.1039/b0052361
- WANG, P., et. al. Helical and polymeric nanostructures assembled from benzene tri- and tetracarboxylic acids associated with terpyridine copper(II) complexes. In: *Chemical Communications*, 2005, pp. 465–467. DOI: 10.1039/b412055h
- 60. YOTNOIA, B., RUJIWATRA, A. *catena*-Poly[[bis(pyridine-kN)zinc]-μ-5-carboxybenzene-1,3-dicarboxylato-k²O¹:O³]. In: *Acta Crystallographica*, 2013, vol. 69, pp. 345. DOI: 10.1107/S1600536813014347
- 61. DAI, J.-C., et. al. Synthesis, Structure, and Fluorescence of the Novel Cadmium(II)-Trimesate Coordination Polymers with Different Coordination 41, 1391-1396. Architectures. In: Inorganic Chemistry, 2002, vol. pp. DOI: 10.1021/ic010794y
- 62. CHENG, L., et. al. *Catena*-Poly[bis[(1,10-phenanthroline)iron(II)]-bis(μ-5-carboxybenzene-1,3dicarboxylato)]. In: *Acta Crystallographica*, 2009, vol. 65, pp. 14. DOI: 10.1107/S160053680804018X

- DING, B.-B., et. al. Pillared-Layer Microporous Metal–Organic Frameworks Constructed by Robust Hydrogen Bonds. Synthesis, Characterization, and Magnetic and Adsorption Properties of 2,2'-Biimidazole and Carboxylate Complexes. In: *Inorganic Chemistry*, 2005, vol. 44, pp. 8836–8845. DOI: 10.1021/ic051195k
- YAGHI, O., LI, H., GROY, T. Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid. In: *Journal of the American Chemical Society*, 1996, vol. 118, pp. 9096-9101. DOI: 10.1021/ja960746q
- HENNINGER, S., HABIB, H., JANIAK, CH. MOFs as Adsorbents for Low Temperature Heating and Cooling Applications. In: *Journal of the American Chemical Society*, 2009, vol. 131, pp. 2776-2777. DOI: 10.1021/ja808444z
- ZHAO, X., et. al. Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks. In: *Science*, 2004, vol. 306, pp. 1012-1015. DOI: 10.1126/science.1101982
- HOLMES, K., KELLY, P., ELSEGOOD, M. Honeycombs, herringbones and brickwalls; three-fold guest- dependent variation in copper trimesate complexes bearing sulfimide ligands. In: *Journal of the Chemical Society, Dalton Transactions*, 2004, pp. 3488-3494. DOI: 10.1039/B409201P
- OSHIO, H., ICHIDA, H. Control of Intramolecular Magnetic Interaction by the Spin Polarization of d, Spin to plC Orbital of an Organic Bridging Ligand. In: *Journal of Physical Chemistry*, 1995, vol. 99, pp. 3294-3302. DOI: 10.1021/j100010a046
- ZHANG, J., et al. A Polar Luminescent Zn Polymer Containing an Unusual Noninterpenetrated utp Net. In: *Inorganic Chemistry*, 2006, vol. 45, pp. 3161–3163. DOI: 10.1021/ic060276t
- KIM, J., et. al. Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures. In: *Journal of the American Chemical Society*, 2001, vol. 123, pp. 8239-8247. DOI: 10.1021/ja0108250
- LI, H., et. al. Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC) 1,4-Benzenedicarboxylate). In: *Journal of the American Chemical Society*, 1998, vol. 120, pp. 8571-8572. DOI: 10.1021/ja981669x
- XING, J., et. al. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. In: *Nature Communications*, 2019, vol. 10, pp. 1-9. DOI:10.1038/s41467-019-11564-4

- EDDAOUDI, M., et. al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. In: *Science*, 2002, vol. 295, pp. 469-472. DOI: 10.1126/science.1067208
- 74. LI, H., et. al. Design and synthesis of an exceptionally stable and highly porous metalorganic framework. In: *Nature*, 1999, vol. 402, pp. 276–279. DOI: 10.1038/46248
- 75. PRIOR, T., et. al. Designed layer assembly: a three-dimensional framework with 74% extra-framework volume by connection of infinite two-dimensional sheets. In: *Chemical Communications*, 2003, pp. 500–501. DOI: 10.1039/b211124c
- 76. WANG, K., GAO, E. Synthesis, crystal structure, and characterization of two three-fold interpenetrating Co(II) coordination polymers based on 1,4-benzenedicarboxylic acid and length modulated bisimidazole ligands. In: *Journal of Coordination Chemistry*, 2014, vol. 67, pp. 563–571. DOI: 10.1080/00958972.2014.895822
- HOSSAIN, A., et. al. Coordination Polymers Based on Phthalic Acid and Aminopyrazine Ligands: On the Importance of N–H···π Interactions. In: *Polymers*, 2018, vol. 10, pp. 182. DOI: 10.3390/polym10020182
- 78. WU, L., et. al. Metal organic frameworks with uni-, di-, and trinuclear Cd(II) SBU prepared from 1,3-bis(4-pyridyl)propane and different dicarboxylate ligands:syntheses, structures and luminescent properties. In: *Royal Society of Chemistry*, 2017, vol. 7, pp. 5541–5548. DOI: 10.1039/c6ra26855b
- HABIB, H., SANCHIZB, J., JANIAK, CH. Mixed-ligand coordination polymers from 1,2-bis(1,2,4-triazol-4-yl)ethane and benzene-1,3,5-tricarboxylate: Trinuclear nickel or zinc secondary building units for three-dimensional networks with crystal-to-crystal transformation upon dehydration. In: *Journal of the Chemical Society, Dalton Transactions,* 2008, pp. 1734–1744. DOI: 10.1039/b715812b
- JIN, J.-CH., et. al. Syntheses and Crystal Structures of a Series of Coordination Polymers Constructed From C₂-Symmetric Ligand 1,3-Adamantanedicarboxylic Acid. In: *Chemistry An Asian Journal*, 2010, vol. 5, pp. 1611–1619. DOI: 10.1002/asia.200900751
- DU, J.-L., et. al. Tuning silver(I) coordination architectures by ligands design: from dinuclear, trinuclear, to 1D and 3D frameworks. In: *CrystEngComm*, 2008, vol. 10, pp. 1866–1874. DOI: 10.1039/b810773d
- KIM,T., et. al. Metal–organic frameworks constructed from flexible ditopic ligands: conformational diversity of an aliphatic ligand. In: *New Journal of Chemistry*, 2013, vol. 37, pp. 4130-4139. DOI: 10.1039/c3nj00812f

- Li, N., et.al. Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. In: *Coordination Chemistry*, 2018, *Reviews*, pp. 1-29. DOI:10.1016/j.ccr.2018.05.016
- WANG, S., et. al. A Series of Four-Connected Entangled Metal-Organic Frameworks Assembled from Pamoic Acid and Pyridine-Containing Ligands: Interpenetrating, Self-Penetrating, and Supramolecular Isomerism. In: *Crystal Growth & Design*, 2012, vol. 12, pp. 79–92. DOI: 10.1021/cg2008057
- LI, X.-L., et. al. A novel metal–organic framework displaying reversibly shrinking and expanding pore modulation. In: *CrystEngComm*, 2012, vol. 14, pp. 5757–5760. DOI: 10.1039/ c2ce25715g
- LI, X.-L., et.al. Three Zn(ii) metal–organic frameworks assembled from a versatile tecton 5-ethyl-pyridine-2,3-dicarboxylate and dipyridyl-type coligand. In: *CrystEngComm*, 2012, vol. 14(5), pp. 1729–1736. DOI:10.1039/c1ce06050c
- EUBANK, J., et. al. The Next Chapter in MOF Pillaring Strategies: Trigonal Heterofunctional Ligands To Access Targeted High-Connected Three Dimensional Nets, Isoreticular Platforms. In: *Journal of the American Chemical Society*, 2011, vol. 133, pp. 17532–17535. DOI: 10.1021/ja203898s
- LUEBKE, R., et. al. Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. In: *Chemical Science*, 2015, vol. 6, pp. 4095-4102. DOI: 10.1039/c5sc00614g
- GUO, Z., et. al. A Multifunctional 3D Ferroelectric and NLO-Active Porous Metal-Organic Framework. In: *Journal of the American Chemical Society*, 2009, vol. 131, pp. 6894-6895. DOI: 10.1021/ja9000129
- ZHOU, L., et. al. Construction of three-dimensional metal–organic frameworks in the presence of a tetrahedral ligand and a secondary bidentate linker. In: *CrystEngComm*, 2013, vol. 15, pp. 6199-6206. DOI: 10.1039/c3ce40621k
- LAN, Y.-Q., et. al. Mesoporous Metal-Organic Frameworks with Size-tunable Cages: Selective CO₂ Uptake, Encapsulation of Ln³⁺ Cations for Luminescence, and Column-Chromatographic Dye Separation. In: *Advanced Materials*, 2011, vol. 23, pp. 5015–5020. DOI: 10.1002/adma.201102880
- 92. YI, F.-Y., et. al. Construction of porous Mn(II)-based metal–organic frameworks by flexible hexacarboxylic acid and rigid coligands. In: *CrystEngComm*, 2013, vol. 15, pp. 8320-8329. DOI: 10.1039/c3ce41406j

- 93. DENG, Z.-P., et.al. Self-Assembly of Discrete Metallocycle versus Coordination Polymer Based on Silver(I) and Di-2- and Di-3-pyridines with Flexible Spacer. Crystal Growth & Design, 2008, vol. 8(9), pp. 3277–3284. DOI:10.1021/cg800091y
- 94. WU, B., et. al. Sulfate encapsulation in three-fold interpenetrated metal– organic frameworks with bis(pyridylurea) ligands. In: *CrystEngComm*, 2010, vol. 12, pp. 2129–2134. DOI: 10.1039/b920777e
- 95. LIN, Z.-J., et. al. Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. In: *Chemical Society Reviews*, 2013, vol. 43, pp. 5867-5895. DOI:10.1039/c3cs60483g
- DHAKSHINAMOORTHY, A., GARCIA, H. Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. In: *Chemical Society Review*, 2014, vol. 43, pp. 5750-5765. DOI:10.1039/c3cs60442j
- 97. CHAKRABORTY, B., HALDER, P., PAINE, T. Conformational supramolecular isomerism in one-dimensional silver(I) coordination polymer of a flexible bis(bidentate) *N,N*-donor ligand with *p*-xylyl spacer. In: *Journal of the Chemical Society, Dalton Transactions,* 2011, vol. 40, pp, 3647-3654. DOI: 10.1039/c0dt01429j
- 98. HAGA, M., KOIZUMI, K. Synthesis and electrochemical properties of binuclear molybdenum carbonyl complexes with bridging α,α'-diimine liga. In: *Inorganica Chimica Acta*, 1985, vol. 104, pp. 47–50. DOI: 10.1002/chin.198552260
- CHAKRABORTY, S., MUNSHI, P., LAHIRI, G. Dinuclear ruthenium(II) bipyridine complexes having non-symmetric α,α'-diimine based neutral bridging ligands. Synthesis, spectroscopic and electrochemical properties. In: *Polyhedron*, 1999, vol. 18, pp. 1437-1444. DOI: 10.1016/S0277-5387(99)00003-0
- LI, J.-R., BU, X.-H. Structural Diversity and Modulation of Coordination Architectures with Flexible Dithioether or Disulfoxide Ligands. In: *European Journal of Inorganic Chemistry*, 2008, pp. 27-40. DOI: 10.1002/ejic.200701031
- 101. BLACK, J., et. al. Unique Structural Features in Silver(i) Dithioether Complexes: the Single-crystal Structures of [Ag,((PhSCH₂CH₂CH₂SPh)_{2n}](BF₄)_n·10.5*n*H20 and [Ag_n(MeSCH₂CH₂CH₂CH₂SMe)_n](BF₄)_n. In: *Chemical Communications*, 1995, pp. 1277-1278. DOI: 10. 1039/C39950001277
- 102. LI, J.-R., et. al. Novel dithioether–silver(I) coordination architectures: structural diversities by varying the spacers and terminal groups of ligands. In: *Journal of the Chemical Society, Dalton Transactions*, 2005, pp. 464-474. DOI: DOI:10.1039/b416576b
- 103. LI, J.-R., ZHANG, R.-H., BU, X.-H. Lanthanide Complexes of Disulfoxide Ligands with Varied Configurations: Influence of Lanthanide Contraction on the Structures of the Complexes. In: *European Journal of Inorganic Chemistry*, 2005, vol. 1913–1918. DOI: 10.1002/ejic.200400924
- 104. LI, J.-R., BU, X.-H., ZHANG, R.-H. Novel Lanthanide Coordination Polymers with a Flexible Disulfoxide Ligand, 1,2-Bis(ethylsulfinyl)ethane: Structures, Stereochemistry, and the Influences of Counteranions on the Framework Formations. In: *Inorganic Chemistry*, 2004, vol. 43, pp. 237-244. DOI: 10.1021/ic034772i
- BU, X.-H., et. al. Flexible *meso*-Bis(sulfinyl) Ligands as Building Blocks for Copper(II) Coordination Polymers: Cavity Control by Varying the Chain Length of Ligands. In: *Angewandte Chemie International Edition*, 2001, vol. 40, pp. 3201-3203. DOI:10.1002/1521-3773(20010903)40:17<3201::aid-anie3201>3.0.co;2-z
- 106. CHEN, W., et. al. Modifying silver(I) coordination frameworks containing a flexible dithioether ligand by variation of counter anions. In: *CrystEngComm*, 2003, vol. 5, pp. 96-100. DOI: 10.1039/b302208k
- SHELDRICK G. Crystal structure refinement with SHELXL. In: *Acta Crystallographica*, 2015, vol. 71, pp. 3-8. DOI: 10.1107/S2053229614024218
- MACRAE C. F. et al. Mercury: visualization and analysis of crystal structures. In: *Journal of Applied Crystallography*, 2006, vol.39, pp. 453-457.
 DOI: 10.1107/S002188980600731X
- 109. SPEK A. L. Single-crystal structure validation with the program PLATON. In: *Journal of Applied Crystallography*, 2003, vol. 36, pp. 7-13. DOI: 10.1107/S0021889802022112
- CHEETHAM, A, FÉREY, G., LOISEAU, T. Open-Framework Inorganic Materials. In: *Angewandte Chemie International Edition*, 1999 vol. 38, pp. 3268– 3292. DOI:10.1002/(sici)1521-3773(19991115)38:22<3268::aid-anie3268>3.0.co;2-u
- 111. VITIU, A. Novel iron(II) and copper(II) polymeric coordination compounds with N,N'bipyridine-type ligands: synthesis and characterization. In: Chemistry Journal of Moldova, 2019, vol. 14(1), pp. 120-127. DOI: 10.19261/cjm.2019.569
- 112. NORO, S., et. al. Synthesis and Crystal Structure of New Sulfate-Bridged Coordination Polymer, {(4,4'-bpyH₂)[Fe3(4,4'-bpy)₃(SO₄)₄(H₂O)6]·10H₂O}n(4,4'-bpy = 4,4'-Bipyridine). Three-Dimensional Network with Microporous Channels. In: *Chemistry Letters*, 1999, vol. 28(8), pp. 727–728. DOI:10.1246/cl.1999.727
- 113. LI, Y., LÜ, J., CAO, R. Syntheses and structures of two noncentro symmetric inorganic– organic composite materials based on metal sulfate and 4,4'-bipyridine (M=Ni, Fe). In: *Inorganic Chemistry Communications*, 2009, vol. 12(2), pp. 181–183. DOI:10.1016/j.inoche.2008.11.015

- 114. NAKAMOTO, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. In: Jon Wily & Sons: New York, 1978, pp. 448. DOI: 10.1002/9780470405840
- 115. DEY, S., et. al. 2-Benzoylpyridine and copper(II) ion in basic medium: Hydroxide nucleophilic addition stabilized by metal complexation, reactivity, crystal structure, DNA binding study and magnetic behavior. In: Inorganica Chimica Acta, 2011, vol. 367, pp. 1-8. DOI:10.1016/j.ica.2010.11.012
- 116. MA, B., MULFORT, K., HUPP, J. Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. In: Inorg.Chem. 2005. V. 44. P. 4912–4914. DOI: 10.1021/ic050452i
- 117. FARANI, R., et. al. Spectroscopic and structural analyses of the copper(II) 2D coordination polymer {[Cu2(BPP)4(NCS)4]}n (BPP = 1,3-bis(4-pyridyl)propane) comprising interpenetrated layers of (4,4) topology. In: Inorganica Chimica Acta, 2008, vol. 361, pp. 2045–2050. DOI:10.1016/j.ica.2007.10.018
- 118. VITIU, A. Sinteza şi studiul cu raze X a unui nou compus al Cu(II) cu 1,3-bis(4piridil)propan. În: Învațământul superior: Tradiții, Valori, Perspective, 2018, vol. 1, pp. 186-190. ISBN 978-9975-76-252-6
- 119. YU, J.-H., et al. Synthesis, Crystal Structures and Thermal Stabilities of [Cu(bpp)₂(bpdc)(H₂O)₂]_n·2nH₂O and [Cu(bpp)₂]_n·n(tdc)·7.5nH₂O. In: *Chinese Journal of Chemistry*, 2008, vol. 26, pp. 1826–1830. DOI: 10.1002/cjoc.200890329
- 120. LUO, G.-G., XIONG, H.-B., DAI, J.-C. Syntheses, Structural Characterization and Properties of {[Cu(bpp)₂(H₂O)₂](tp)7H₂O} and {[Cu(bpp)₂(H₂O)](ip)7H₂O} Complexes. New Examples of the Organic Anionic Template Effect on Induced Assembly of Water Clusters (bpp = 1,3-Bis(4-pyridyl)propane, tp = Terephthalate, ip = Isophthalate). In: *Crystal Growth & Design*, 2011, vol. 11, pp. 507–515. DOI: 10.1021/cg1013208
- BECKETT, R., HOSKINS, B. F. Crystal and molecular structure of a trinuclear copper(II) complex: μ₃-hydroxo-tri-μ-(pyridine-2-carbaldehyde oximato)-μ₃-sulphato-tricopper(II)–16·3 water. In: *Journal of the Chemical Society, Dalton Transactions*, 1972, vol. 3, pp. 291–295. DOI:10.1039/dt9720000291
- DARLING, K., et. al. Solid State Coordination Chemistry of the Copper(II)/Pyridyl- and Pyrazine-Tetrazolate/Sulfate System. In: *Crystal Growth & Design*, 2012, vol. 12(5), pp. 2662–2672. DOI:10.1021/cg300261k
- 123. HFIDHI, N., et. al. Structure features, thermal analysis, model and experiment magnetic behavior of tetranuclear oxo and sulfato bridged copper (II) aggregate. In: *Inorganica Chimica Acta*, 2018, vol. 469, pp. 431–439. DOI:10.1016/j.ica.2017.09.054

- 124. LI, G., et. al. Two unprecedented 1D coordination polymer chains based on tetranuclear copper(II) building blocks. In: *Journal of Solid State Chemistry*, 2008, vol. 181(9), pp. 2406–2411. DOI:10.1016/j.jssc.2008.05.045
- VASYLEVS'KYY, S. I., et. al. 1,2,4-Triazolyl-Carboxylate-Based MOFs Incorporating Triangular Cu(II)-Hydroxo Clusters: Topological Metamorphosis and Magnetism. In. *Inorganic Chemistry*, 2014, vol. 53(7), pp. 3642–3654. DOI:10.1021/ic403148f
- et.al. 126. ZHENG, S.-R., Structures and photoluminescence of coordination polymers assembled from bifunctional ligand containing both tetrazole and imidazole groups. In: Inorganic Chemistry Communications, 2016. vol. 66. pp. 19–23. DOI:10.1016/j.inoche.2016.01.019
- 127. NORO, S., et. al. Framework Engineering by Anions and Porous Functionalities of Cu(II)/4,4^c-bpy Coordination Polymers. In: *Journal of the American Chemical Society*, 2002, vol. 124, pp. 2568–2583. DOI:10.1021/ja0113192
- 128. DÍAZ, P., et. al. Anion Influence on the Structures of a Series of Copper(II) Metal–Organic Frameworks. In: Inorganic Chemistry, 2006, vol. 45, pp. 1617–1626. DOI:10.1021/ic051457i
- 129. GU, Z.-G., et. al. Crystal Structures and Magnetic and Ferroelectric Properties of Chiral Layered Metal–Organic Frameworks with Dicyanamide as the Bridging Ligand. In: *Inorganic Chemistry*, 2007, vol. 46, pp. 5462–5464. DOI: 10.1021/ic070112s
- XIE, Y.-M., et.al. New Ferroelectric and Nonlinear Optical Porous Coordination Polymer Constructed from a Rare (CuBr)∞Castellated Chain. In: *Crystal Growth & Design*, 2008, vol. 8, pp. 3914–3916. DOI:10.1021/cg800624z
- 131. ERINGATHODI S. et al. Synthesis and Single Crystal Investigation of Two-Dimensional Rectangular Network [M(4,4'-bpy)(Phth)(H₂O)]_n·2H₂O with Small Neutral Cavities. In: *Inorganic Chemistry*, 2001, vol. 40, pp. 4078-4080. DOI:10.1021/ic000434v
- 132. DU M., JIANG X.-J., ZHAO X.-J. Direction of unusual mixed-ligand metal-organic frameworks: a new type of 3-D polythreading involving 1-D and 2-D structural motifs and a 2-fold interpenetrating porous network. In: *Chem.Commun.*, 2005, pp. 5521-5523. DOI: 10.1039/b509875k
- 133. ANG, S., SUN, B. Crystal structure and characterization of organic-inorganic hybridized molecules with molecular zipper structures and two-dimensional grid networks. In: *Crystal Growth & Design*, 2005, vol. 5, pp. 383-386. DOI: 10.1021/cg049847n
- BIRADHA, K., SARKAR, M., RAJPUT, L. Crystal engineering of coordination polymers using 4,4'-bipyridine as a bond between transition metal atoms. In: *Chem. Commun.*, 2006, pp. 4169–4179. DOI: 10.1039/b606184b

- С., 135. MANNA, S. et. al. MnII/CoII-Terephthalate Frameworks Containing Dipyridine Coligands: Syntheses, Crystal Structures, Magnetic Behaviors, and Thermal Studies. In: European Journal of Inorganic Chemistry, 2005, vol. 22. pp. 4646-4654. DOI:10.1002/ejic.200500258
- 136. LI, Z.-G., et. al. Construction of coordination networks with high connectivity: a new 8-connected self-penetrating network based on tetranuclear metal clusters. In: *CrystEngComm*, 2008, vol. 10, pp. 983-985. DOI: 10.1039/b807195k
- ROBL, C. Komplexe mit aromatischen Carbonsäuren. V. Über die Schichtstruktur von Cd[C₆H₄(COO)₂]·H₂O. In: Zeitschrift För Anorganische Und Allgemeine Chemie, 1988, vol. 566(1), pp. 144–150. DOI:10.1002/zaac.19885660119
- VITIU, A., COROPCEANU, E., BOUROSH, P. New Zn(II) and Cd(II) Coordination Polymers with 1,2-Benzenedicarboxylic Acid: Synthesis and Structures. In: *Russian Journal of Coordination Chemistry*, 2019, vol. 45(2), pp. 81–91. DOI: 10.1134/S1070328419020106
- ZHENG, Y.-Q., ZHANG, J., LIU, J.-Y. New Zn(II) coordination polymers with 1,3bis(4-pyridyl)-propane: syntheses, crystal structures and properties. In: CrystEngComm, 2010, vol. 12, pp. 2740-2748. DOI:10.1039/b927448k
- PORAI-KOSHITS, M. Crystal chemistry and stereochemistry of monobasic carboxylates of the transition metals. In: *Journal of Structural Chemistry*, 1980, vol. 21(3), pp. 369–401. DOI: 10.1007/bf00746862
- 141. BACA, S., et. al. Synthesis and X-ray diffraction study of Zn(II) complexes with ophthalic acid and aromatic amines. In: *Polyhedron*, 2001, vol. 20(9-10), pp. 831–837. DOI:10.1016/s0277-5387(01)00698-2
- ZHENG, Y.-Q., ZHANG, J., LIU, J.-Y. New Zn(II) coordination polymers with 1,3bis(4-pyridyl)-propane: syntheses, crystal structures and properties. In: *CrystEngComm*, 2010, vol. 12(10), pp. 2740. DOI:10.1039/b927448k
- 143. REGER, D., et. al. Dinuclear Complexes Containing Linear M–F–M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] Bridges: Trends in Structures, Antiferromagnetic Superexchange Interactions, and Spectroscopic Properties. In: *Inorganic Chemistry*, 2012, vol. 51, pp. 11820–11836. DOI:10.1021/ic301757g
- 144. ROBL, C. Komplexe mit aromatischen Carbons uber die Schichtstruktur von Cd[C₆H₄(COO)₂]·H₂O. In: Zeitschrift For Anorganische Und Allgemeine Chemie, 1988, vol. 566, pp. 144–150. DOI:10.1002/zaac.19885660119

- 145, TANG, E., DAI, Y.-M., LIN, S. Bis(4,4'-bipyridine-κN)bis(hydrogen phthalato)κ²O,O';κO-zinc(II). In: *Acta Crystallographica*, 2004, vol. 60, pp. 433-434. DOI: 10.1107/s0108270104017184
- 146. WANG, X., QIN, C., WANG, E., XU, L. A homochiral 3D covalent framework assembled from vertical chiral layers with achiral bridging ligands. In: Journal of Molecular Structure, 2005, vol. 737, pp. 49–54. DOI:10.1016/j.molstruc.2004.10.063
- 147. SURESH, E., et. al. Synthesis and Single Crystal Investigation of Two-Dimensional Rectangular Network [M(4,4'-bpy)(Phth)(H₂O)]_n·2H₂O with Small Neutral Cavities. In: Inorganic Chemistry, 2001, vol. 40, pp. 4078–4080. DOI:10.1021/ic000434v
- 148. LAMA, P., et. al. A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(ii)-MOF. In: *Chemical Communications*, 2014, vol. 50, pp. 6464–6467. DOI:10.1039/c4cc02634a
- 149. ALMEIDA PAZ, F. A., KLINOWSKI, J. Two- and Three-Dimensional Cadmium–Organic Frameworks with Trimesic Acid and 4,4'-Trimethylenedipyridine. In: *Inorganic Chemistry*, 2004, vol. 43, pp. 3882–3893. DOI:10.1021/ic0495230
- 150. LEI, X.-P., et. al. Tuning the formations of metal-1,3,5-benzenetricarboxylate frameworks via the assistance of amino acids. In: *Journal of Solid State Chemistry*, 2015, vol. 223, pp. 44-52. DOI:10.1016/j.jssc.2014.06.006
- 151. LAMA, P., et. al. Hydration-dependent anomalous thermal expansion behaviour in a coordination polymer. In: *Chemical Communications*, 2016, vol. 52, pp. 3231-3234. DOI:10.1039/c6cc00158k
- 152. BANERJEE, A., MAHATA, P., Natarajan, S. The Use of Liquid–Liquid Interface (Biphasic) for the Preparation of Benzenetricarboxylate Complexes of Cobalt and Nickel. In: *European Journal of Inorganic Chemistry*, 2008, vol. 22, pp. 3501–3514. DOI:10.1002/ejic.200800152
- 153. PAZ, F. A. A., KLINOWSKI, J. Synthesis and Characterization of a Novel Cadmium–Organic Framework with Trimesic Acid and 1,2-Bis(4-pyridyl)ethane. In: *Inorganic Chemistry*, 2004, vol. 43, pp. 3948-3954. DOI:10.1021/ic049794z
- 154. HUSAIN, A., et. al. Single-Crystal-to-Single-Crystal Transformation of a Novel 2-Fold Interpenetrated Cadmium-Organic Framework with Trimesate and 1,2-Bis(4pyridyl)ethane into the Thermally Desolvated Form Which Exhibits Liquid and Gas Sorption Properties. In: *Crystal Growth & Design*, 2013, vol. 13, pp. 1526–1534. DOI:10.1021/cg301760a

- 155. BRADSHAW, D., ROSSEINSKY. M. J. Interpenetrating and noninterpenetrating 3-dimensional coordination polymer frameworks from multiple building Solid blocks. In: State Sciences, 2005, vol. 7, 1522 pp. 1532. DOI:10.1016/j.solidstatesciences.2005.04.020
- 156. KE, S.-Y., et. al. Self-Assembly of Four Coordination Polymers in Three-Dimensional Entangled Architecture Showing Reversible Dynamic Solid-State Structural Dehydration Color-Changing upon Transformation and Behavior Thermal and Rehydration. In: Crystal Growth & Design, 2014, vol. 14, pp. 4011–4018. DOI:10.1021/cg500620k
- WANG, CH.-CH., et. al. Reversible Solid-State Structural Transformation of a 1D–2D Coordination Polymer by Thermal De/Rehydration Processes. In: *Inorganic Chemistry*, 2011, vol. 50, pp. 597–603. DOI:10.1021/ic1018345
- 158. MCKELLAR, S. C., et. al. The effect of pressure on the post-synthetic modification of a nanoporous metal–organic framework. In: *Nanoscale*, 2014, vol. 6, pp. 4163-4173. DOI:10.1039/c3nr04161a
- 159. VITIU, A., COROPCEANU, E., BOUROSH, P. Synthesis and Structure of New Zn(II) and Co(II) Coordination Polymers with 1,3,5-Benzenetricarboxylic Acid. In: *Russian Journal of Coordination Chemistry*, 2017, vol. 43(11), pp. 745–752. DOI: 10.1134/S1070328417110100
- 160. LI, K., et. al. A new strategy to obtain tetranuclear cobalt(II) metal–organic frameworks based on the [Co4(µ3-OH)2] cluster: synthesis, structures and properties. In: *Dalton Transactions*, 2016, vol. 45(38), pp.15078–15088. DOI: 10.1039/c6dt02895k
- 161. GUO,Y., et. al. Two multi-dimensional frameworks constructed from zinc coordination polymers with pyridine carboxylic acids. In: *Journal of Solid State Chemistry*, 2011, vol. 184, pp. 3121–3127. DOI: 10.1016/j.jssc.2011.09.030
- 162. ZUO, Y., et. al. Structural diversity, luminescence, and magnetic property: series of coordination polymers with 2,2'-bipyridyl-4,4'-dicarboxylic acid. In: *Crystal Growth and Design*, 2012, vol. 12, pp. 3917–3926. DOI: 10.1021/cg300323u.
- 163. JURCIC, M., et. al. The vapour phase detection of explosive markers and derivatives using two fluorescent metal-organic frameworks. In: *Journal of Materials Chemistry A*, 2015, vol. 3, pp.6351-6359. DOI: 10.1039/C4TA05638H.
- 164. ERXLEBEN, A. Structures and properties of Zn(II) coordination polymers. In: Coordination Chemistry Reviews, 2003, vol. 246, pp. 203–228. DOI: 10.1016/S0010-8545(03)00117-6

- 165. GAO, E., et al. Synthesis, characterization, interaction with DNA and cytotoxicity in vitro of novel pyridine complexes with Zn(II). In: *European Journal of Medicinal Chemistry*, 2010, vol. 45, pp. 4531-4538. DOI:10.1016/j.ejmech.2010.07.013
- 166. WANG, L., et. al. A nanosized heterometallic {Zn₂Ru₃} coordination cage templated by various polyoxometalates. In: *Dalton Transactions*, 2014, vol. 43, pp. 17244-17247. DOI: 10.1039/b000000x
- 167. XU, W.-X., et. al. A novel 1D linear zinc(II) coordination polymer based 2, 2'-bipyridine-4,4'-dicarboxylic acid: Synthesis, crystal structure and photoluminescence property. In: *Inorganic Chemistry Communications*, 2013, vol. 28, pp. 12–15. Doi.10.1016/j.inoche.2012.11.008
- 168. VITIU, A., et.al. A novel 2D zinc(II) coordination polymer based on 2,2'-bipyridine-4,4'-dicarboxylic acid: synthesis, crystal structure and photoluminescence property. In: *Chemistry Journal of Moldova*, 2018, vol. 13(1), pp. 30-35. DOI: 10.19261/cjm.2018.479
- 169. ADDISON, A. W., et. al. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) perchlorate. In: *Journal of the Chemical Society, Dalton Transactions*, 1984, pp. 1349–1356. DOI: 10.1039/DT9840001349
- BATTEN, S. R.; ROBSON, R. Interpenetrating nets: ordered, periodic entanglement. In: *Angewandte Chemie International Edition*, 1998, vol. 37, pp. 1460-1494. DOI: 10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z
- 171. ZHANG, H., et. al. Two enantiomorphic 3D Zn(II)–carboxylate MOFs with double helical structures serving as a chiral source induced by hydrogen bonding. In: CrystEngComm, 2012, vol. 14, pp. 4165–4167. DOI: 10.1039/c2ce25325a.
- 172. WANG, Y., YANG, M.-H. A new 3D supramolecular material framework directed by functional linkage. In: *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry*, 2009, vol. 39, pp. 520-524. DOI: 10.1080/15533170903324775
- 173. VITIU, A., COROPCEANU, E., BOUROSH, P. New Cu(II) and Co(II) Complexes with
 2-Benzoylpyridine: Syntheses and Crystal Structures. In: *Russian Journal of Coordination Chemistry*, 2019, vol. 45(11), pp. 804–808.
 DOI: 10.1134/S1070328419110101
- 174. GRAETZ, J. New approaches to hydrogen storage. In: Chem. Soc. Rev., 2009, vol. 38, pp. 73–82. DOI:10.1039/b718842k

- 175. MAŁECKI, J., et al. X-ray studies, spectroscopic characterization and DFT calculations for Mn(II), Ni(II) and Cu(II) complexes with 2-benzoylpyridine. In: *Polyhedron*, 2011, vol. 30, pp. 410–418. DOI: 10.1016/j.poly.2010.11.013
- 176. MOOSUN, S., et. al. Synthesis, crystal structure and applications of palladium thiosalicylate complexes. In: Journal of Saudi Chemical Society, 2017, vol. 21, pp. 441–449. DOI:10.1016/j.jscs.2015.10.003
- 177. TOBY, B., et. al. (2,2'-Dithiodibenzoato)(rac-5,7,7,12,14,-14-hexamethyl-1,4,8,11tetraazacyclotetradecane)cobalt(II). In: Acta Crystallographica Section В **Structural** Crystallography and Chemistry, 1981, vol. 37. Crystal pp. 1737-1739. DOI:10.1107/s0567740881007024
- 178. MOOSUN, S., et.al. Novel Copper(II) Thiodibenzoic Acid Coordination Polymers by in situ Extrusion of Sulfur from 2,2'-Dithiodibenzoic Acid and the Unique Oxidation of Disulfide to Sulfate. In: *Zeitschrift Für Anorganische Und Allgemeine Chemie*, 2015, vol. 64, pp. 890–895. DOI:10.1002/zaac.201500049
- 179. LIU, Z., et. al. Bis(μ-2,2'-disulfanediyldibenzoato)bis[aqua(2,2'-bipyridine)nickel(II)].
 In: Acta Crystallographica Section E Structure Reports Online, 2010, vol. 66, pp. 1563–1563. DOI:10.1107/s1600536810045824
- XIE, J.-B.. Poly[(dimethylformamide)(μ₄-2,2'-sulfanediyldibenzoato)nickel(II)]. In: *Acta Crystallographica*, 2010, vol. 66, pp. 368. DOI: 10.1107/S1600536810007749
- 181. XU, L., ZHU, B. Syntheses and Characterization of Two Cd(II) Coordination Polymers Based on Mixed Flexible Ligands. In: *J Inorg Organomet Polym*, 2016, vol. 26, pp. 264–269. DOI:10.1007/s10904-015-0306-2
- 182. HUMPHREY, S., et. al. Hydrothermal synthesis and magnetic properties of novel Mn(II) and Zn(II) materials with thiolato-carboxylate donor ligand frameworks. In: *Dalton Transactions*, 2004, vol.11, pp. 1670–1678. DOI:10.1039/b401887g
- 183. WANG, S., MAO-LIN, H. CHEN, F. catena-Poly[[[aquazinc(II)]-μ-2,2'dithiodibenzoato] bis(N,N-dimethylformamide)]. In: Acta Crystallographica Section E Structure Reports Online, 2004, vol. 60, pp.413-415. DOI:10.1107/s160053680400621x
- 184. ZHAO, W.-N., ZOU, J.-W., YU, Q.-S. A one-dimensional ladder-like coordination polymer derived from chains formedviahydrogen bonds: catenapoly[[aquadipyridinenickel(II)]-μ-2,2'-dithiodibenzoato-κ3O,O':O'']. In: Acta Crystallographica Section C Crystal Structure Communications, 2004, vol. 60, pp. 443-444. DOI:10.1107/S0108270104017469

- 185. GANESH, V., et. al. Structure of poly[-μ-(2,2'-dithiodibenzoato-O1,O2:O3:O4)hexamethylenetetraminiocobalt(II)-]. In: Acta Crystallographica Section C Crystal Structure Communications, 1990, vol. 46, pp. 2302–2305. DOI:10.1107/s010827018900987x
- 186. HOU, Y.-F., et. al. Two unique entangling ZnII/CdII coordination frameworks featuring multiform helical motifs based on long mixed ligands. In: *CrystEngComm*, 2013, vol.15, pp. 7161-7165. DOI:10.1039/c3ce41127c
- 187. HAO, X.-M., et. al. Synthesis, crystal structures of Cd(II) and Ni(II) complexes with containing flexible sulfide and nitrogen heterocyclic ligands. In: Chinese Journal of Structural Chemistry, 2015, 34, pp. 408-416. DOI: 10.14102/j.cnki.0254-5861.2011-0501
- MOOSUN, S., et. al. Slow diffusion in situ ruthenium/ligand reaction: Crystal structures, fluorescence and biological properties. In: *Inorganic Chemistry Communications*, 2015, vol. 62, pp. 71–76. DOI:10.1016/j.inoche.2015.10.019
- 189. GOROBET, A., et. al. Sulfur extrusion and sulfur oxidation of 2,2'-dithiodibenzoic acid in combination with Cu(II) ion and in the absence of co-ligands: Structural, spectroscopic and thermogravimetric evidence. In: *Polyhedron*, 2018, vol. 151, pp. 51–57. DOI: 10.1016/j.poly.2018.05.013
- 190. EL-WAHED, M., REFAT, M., EL-MEGHARBEL, S. Spectroscopic, thermal and biological studies of coordination compounds of sulfasalazine drug: Mn(II), Hg(II), Cr(III), ZrO(II), VO(II) and Y(III) transition metal complexes. In: *Bulletin of Materials Science*, 2009, vol. 32, pp. 205-214. DOI:10.1007/s12034-009-0032-x
- 191. CHEN, Z.-F., et. al. A neutral chiral diamond-like 3D zinc(II) coordination network with sulfasalazine. In: *Journal of Molecular Structure*, 2008, vol. 882, pp. 134-139. DOI:10.1016/j.molstruc.2007.09.026
- 192. SOLIMAN, A. Spectral and thermal study of the ternary complexes of nickel with sulfasalazine and some amino acids. In: *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2006, vol. 65, pp. 1180–1185. DOI:10.1016/j.saa.2006.01.035
- 193. YUAN, R.-X., SHI, J.-D., YANG G.-W. Synthesis and crystal structure of a novel Cd(II) coordination polymer with antibacterial drug sulfasalazine. In: *Chinese Journal of Inorganic Chemistry*, 2006, vol. 22, pp. 877-880. CCDD: 295625

- HUANG, K.-B., et. al.(Sulfasalazinato-κO)bis(triphenylphosphine-κP)copper(I). In: Acta Crystallographica Section E Structure Reports Online, 2010, vol. 66, pp. 549-550. DOI:10.1107/s1600536810013899
- 195. CHEN, Z.-F., et. al. Crystallographic report: Crystal structure of the first alkaline earth metal compound with the antibacterial drug sulfasalazine: [Sr(H-Sulf)(H₂O)₆](H-Sulf)·3H₂O. In: *Applied Organometallic Chemistry*, 2003, vol. 17, pp. 887–888. DOI:10.1002/aoc.539
- 196. CHAKRABARTI, A., et. al. Biocidal organotin compounds: Part 1. Preparation and characterization of triorganotin(IV) 4-pyridyl- and 2-pyrimidyl- thioacetates and the crystal structure of triphenyltin(2-pyrimidylthioacetate). In: Applied Organometallic Chemistry, 1995, vol. 9, pp. 357-364. DOI:10.1002/aoc.590090409
- 197. KAMURUDDIN, SK., ROY, A. Synthesis and Characterization of Cr (III), Mn (II), Fe (III), Co (II), Ni (II), and Cu (II) Complexes of 4-pyridyl thioacetic acid and 2-pyrimidyl thioacetic acid. In: *Indian Journal of Chemisty*, 2001, pp. 211-212. IJCA 40A(2) 211-212.pdf
- 198. CARLUCCI, L. et al. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp. In: Cryst.Eng.Comm., 2002, vol. 4, pp. 121–129. DOI: 10.1039/b201288j
- EL-GENDY, Z., et. al. ChemInform Abstract: Biologically Active Thiazolidinone. Part
 Synthesis and Fungitoxicities of Isolated and Fused Thiazolidinones Derived from Thiosemicarbazones. In: *Indian Chemical Society*, 1990, vol. 67(11), pp. 927-929. DOI:10.1002/chin.199208212
- 200. SHAH, V., PANT, C.K., JOSHI, P. C. Synthesis and Antifungal Activity of Some Bis(2-arylimino-3-yl-thiazolidinones) and Bis-(1-aryl-3-yl-2-thiohydantoins). In: Asian Journal of Chemistry, 1993, vol. 5(1), pp. 83-88. http://www.asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=5_1_13
- 201. VICINI, P., et. al. Synthesis and antimicrobial activity of novel 2-thiazolylimino-5arylidene-4-thiazolidinones. In: Bioorganic & Medicinal Chemistry, 2006, vol. 14(11), pp. 3859–3864. DOI:10.1016/j.bmc.2006.01.043
- 202. ZERVOSEN, A., et. al. Interactions between Penicillin-Binding Proteins (PBPs) and Two Novel Classes of PBP Inhibitors, Arylalkylidene Rhodanines and Arylalkylidene

Iminothiazolidin-4-ones. In: Antimicrobial Agents and Chemotherapy, 2004, vol. 48(3), pp. 961–969. DOI:10.1128/aac.48.3.961-969.2004

- 203. LIU, H.-L., LIEBERZEIT, Z., ANTHONSEN, T. Synthesis and Fungicidal Activity of 2-Imino-3-(4-arylthiazol-2-yl)-thiazolidin-4-ones and Their 5-Arylidene Derivatives. In: *Molecules*, 2000, vol. 5(12), pp. 1055–1061. DOI:10.3390/50901055
- 204. MURUGAN, R., ANBAZHAGAN, S., SRIMAN NARAYANAN, S. Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. In: European Journal of Medicinal Chemistry, 2009, vol. 44, pp. 3272–3279. DOI:10.1016/j.ejmech.2009.03.035
- 205. KSHIRSAGAR, V., GANDHE, S., GAUTAM, M. Synthesis and Antimicrobial Screening for Rhodanine Complexes of Iron, Copper and Zinc. In: *Asian Journal of Chemistry*, 2008, vol. 20(6), pp. 4955-4956. http://www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=20_6_124
- BARAKAT, A., et. al. Crystal structure of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic acid monohydrate, C₅H₇NO₄S₂. In: Zeitschrift Für Kristallographie - New Crystal Structures, 2017, vol. 232, pp. 141-142. DOI:10.1515/ncrs-2016-0197
- 207. TEJCHMAN, W., SKÓRSKA-STANIA, A., ŻESŁAWSKA, E. The Crystal Structures of Three Rhodanine-3-Carboxylic Acids. In: Journal of Chemical Crystallography, 2016, vol. 46, pp. 181–187. DOI:10.1007/s10870-016-0644-0
- 208. ZHANG, R., SUN, J., MA, C. Structural chemistry of mononuclear, tetranuclear and hexanuclear organotin(IV) carboxylates from the reaction of di-n-butyltin oxide or diphenyltin oxide with rhodanine-N-acetic acid. In: Journal of Organometallic Chemistry, 2005, vol. 690, pp. 4366–4372. DOI:10.1016/j.jorganchem.2005.07.005
- VITIU, A., et. al. Synthesis and Biological Properties of the Novel Coordination Compound with Rhodanine-3-Acetic Acid. In: *IFMBE Proceedings*, *Springer*, 2020, vol. 77, pp. 713—717. DOI: 10.1007/978-3-030-31866-6_126.
- 210. ARAGONI, M., et. al. [M(R-dmet)₂] Bis(1,2-dithiolenes): a Promising New Class Intermediate between [M(dmit)₂] and [M(R,R'-timdt)₂] (M = Ni, Pd, Pt). In: *Inorganic Chemistry*, 2005, vol. 44(26), pp. 9610–9612. DOI:10.1021/ic051260q
- 211. LE GAL, Y., et. al. Efficient routes towards a series of 5,5'-bithiazolidinylidenes as π-electron acceptors. In: Organic & Biomolecular Chemistry, 2015, vol. 13(31), pp. 8479–8486. DOI:10.1039/c5ob01169h

- ZHAO, X.-J., DU, et. al. Formation of cobalt(II)–piperazine supramolecular systems under different organic acid mediums: synthesis, characterization and crystal structures. In: Journal of Molecular Structure, 2004, vol. 692(1-3), pp. 155–161. DOI: 10.1016/j.molstruc.2004.01.025
- BERKOWITZ, S.A.; et. al. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. In: Nature Reviews Drug Discovery, 2012, vol. 11, pp. 527-540. DOI: 10.1038/nrd3746
- 214. GARCÍA-ÁLVAREZ, L., et. al. Proton nuclear magnetic resonance spectroscopy as a technique for gentamicin drug susceptibility studies with Escherichia coli ATCC 25922.
 In: Journal of Clinical Microbiology, 2015, vol. 53, pp. 2433-2438.
 DOI: 10.1128/JCM.00604-15
- 215. PRADE, E., et. al. Structural mechanism of the interaction of Alzheimer's disease Aβ fibrils with the NSAID sulindac sulfide. In: Journal of Biological Chemistry, 2015, vol. 290, pp. 28737-28745. DOI: 10.1074/jbc.M115.675215
- 216. POPESCU, R., et. al. Discrimination of vegetable oils using NMR spectroscopy and chemometrics. In: Food Control, 2015, vol. 48, pp. 84-90. DOI: 10.1016/j.foodcont.2014.04.046
- 217. GEANA, E.I., et. al. Classification of red wines using suitable markers coupled with multivariate statistic analysis. In: Food Chemistry, 2016, vol. 192, pp. 1015-1024. DOI: 10.1016/j.foodchem.2015.07.112
- PASTOR, A., MARTINEZ-VIVIENTE, E. NMR spectroscopy in coordination supramolecular chemistry: A unique and powerful methodology. In: Coordination Chemistry Reviews, 2008, vol. 252, pp. 2314-2345. DOI: 10.1016/j.ccr.2008.01.025
- 219. YI, F.-Y., et. al. Syntheses and Crystal Structures of Novel Manganese(II) or Cadmium(II) Arsonates with Dinuclear Clusters or 1D Arrays. In: Inorganic Chemistry, 2009, vol. 48, pp. 628–637. DOI:10.1021/ic8016535.
- ALLENDORF, M. D., et. al. Luminescent metal–organic frameworks. In: Chemical Society Reviews, 2009, vol. 38, pp. 1330. DOI:10.1039/b802352m
- 221. MOHAMED, G., OMAR, M., IBRAHIM, A. Biological activity studies on metal complexes of novel tridentate Schiff base ligand. Spectroscopic and thermal characterization. In: European Journal of Medicinal Chemistry, 2009, vol. 44, pp. 4801–4812. DOI:10.1016/j.ejmech.2009.07.028

- 222. RIZZOTTO, M. Metal Complexes as Antimicrobial Agents. In: Argentina, Varaprasad Bobbarala, 2012, pp.355 ISBN 978-953-51-0724-8.
- 223. BABAHAN, I., et. al. Spectroscopic and biological approach of Ni(II), Cu(II) and Co(II) complexes of 4-methoxy/ethoxybenzaldehyde thiosemicarbazone glyoxime. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, vol. 121, pp. 205–215. DOI:10.1016/j.saa.2013.10.040

ANEXE

	9	$C_{2l}H_{2\beta}N_2O_5Cd$	492,79	293(2)	Monoclinic	$P2_2/n$	4	10,5046(3)	10,1790(3)	18,2972(5)	60	103,166(3)	90	1905,02(9)	1,718	1,183	992	0,4×0,36×0,12		6426/3532	[R(int) = 0,0216]	3003	272	1,002	0,0327; 0,0712	0,0414; 0,0751	
compușii 1-6	5	$C_{21}H_{1\delta}N_2O_4Zn$	427,74	293(2)	Hexagonal	$P6_1$	12	12,1988(6)	12,1988(6)	49,197(4)	06	06	120	6340,2(6)	1,344	1,189	2640	$0,4 \times 0,2 \times 0,1$		12931/6019	[R(int) = 0,0703]	3269	459	1,009	0,0892; 0,2129	0,1536; 0,2499	
ii de structură pentru	4	C40.75H33.25N4.25O8.50Zh2	849,21	293(2)	Monoclinic	$P2_1/n$	4	12,4678(4)	17,8150(10)	20,6837(11)	90	96,237(3)	90	4566,9(4)	1,235	1,101	1742	0,4×0,15×0,1		15594/8008	[R(int) = 0,0466]	4928	512	1,003	0,0771; 0,2127	0,1307; 0,2452	
grafice și parametı	3	$C_{20}H_{30}N_4O_{24}S_4Cu_5$	1156,42	293(2)	Monoclinic	$P2_{1/c}$	2	12,6586(5)	20,0500(7)	7,3205(2)	06	90,066(3)	06	1834,77(11)	2,093	3,176	1158	0,5×0,15×0,08		6430/3217	[R(int) = 0.0272]	2723	268	1,000	0,0344; 0,0916	0,0439; 0,0970	
ul A 1.1. Datele cristalo	2	C29H38.50B2F8N5O2.75Cu	738,31	293(2)	Monoclinic	$P2_1$	2	10,4031(5)	16,1225(8)	11,4748(5)	90	109,513(5)	90	1814,1(2)	1,352	0,678	761	0,4×0,22×0,05		6617/4373	[R(int)=0,0296]	3364	444	1,003	0,0626; 0,1595	0,0846; 0,1752	
Tabelı	1	$C_{40}H_{52}N_8O_{24}S_4Fe_2$	1268,84	293(2)	Monoclinic	C2/c	4	22,4227(13)	11,5446(6)	18,9051(12)	90	90,165	90	4844,2(5)	1,740	0,870	2624	0,22×0,18×0,02		7853/4281	[R(int)=0,0463]	2774	356	1,005	0,0537; 0,1048	0,0913; 0,1212	
		Formula empirică	Mr	Temperatura	Singonia	Grupul spațial	Ζ	a(Å)	$b(\text{\AA})$	$c(\text{\AA})$	a(grad)	β(grad)	γ(grad)	$V({ m \AA}^3)$	$D_{\rm c}~({\rm g/cm}^{-3})$	μ(mm ⁻¹)	F(000)	Dimensiunile	cristalului (mm ³)	Reflexele	colectate/unice	Reflexe [I>20(I)]	Parametrii fitați	GOF	$R_1, \operatorname{w} R_2 [I > 2\sigma(I)]$	R_1 , w R_2 (pentru	toate refexele)

Anexa 1. Datele cristalografice și parametrii de structură ai compușilor 1-46

	7	8	6	10	11	12
Formula empirică	$C_9H_{16}O_{13}Co_2$	$C_{25}H_{20.75}N_2O_8Zn$	$C_{15}H_{17}N_3O_7Zn$	$C_{24}H_{22}B_2F_8N_2O_4Co$	$C_{24}H_{18}C_{12}N_2O_2Cu$	$C_{59}H_{63}N_5O_{13}S_4Mn_2$
Mr	450,08	542,56	416,69	635,98	500,84	1288,26
Temperatura	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
Singonia	Triclinic	Ortorombic	Ortorombic	Monoclinic	Triclinic	Monoclinic
Grupul spațial	<i>P</i> -1	Cmcm	Pbca	P21/n	<i>P</i> -1	C2/c
Z	2	16	8	2	1	4
a(Å)	7,7923(8)	35,5551(15)	14,9055(19)	9,0790(5)	7,3015(7)	23,603(2)
b(Å)	8,7102(7)	14,9805(10)	13,3734(9)	11,6909(5)	8,2013(8)	13,9408(5)
c(Å)	10,7369(11)	19,9824(6)	16,5231(7)	12,8702(5)	10,.8395(11)	20,6045(12)
a(grad)	101,043(8)	90	90	90	107,777(9)	90
β(grad)	92,285(9)	06	90	92,493(5)	95,380(8)	115,545(6)
$\gamma(\text{grad})$	95,237(7)	90	90	90	113,191(9)	90
$V({ m \AA}^3)$	711,04(12)	10643,3(9)	3293,7(5)	1364,77(10)	550,91(9)	6117,1(7)
$D_{\rm c} ({ m g/cm^{-3}})$	2,102	1,354	1,681	1,545	1,510	1,399
μ(mm ⁻¹)	2,407	0,971	1,537	0,717	1,257	0,615
F(000)	456	4460	1712	642	255	2680
Dimensiunile	0,4×0,33×0,015	0,42×0,28×0,9	0,22 x 0,14 x 0,02	0,36×0,.34×0,12	0,22×0,21×0,18	0,3×0,2×0,08
cristalului (mm ²)						
Reflexele	3812/2507	10350/4827	7024/2899	4450/2399	2910/1943	9991/5366
colectate/unice	[R(int) = 0,0389]	[R(int) = 0,0656]	[R(int) = 0,0862]	[R(int) = 0,0224]	[R(int) = 0,0210]	[R(int) = 0,0369]
Reflexe [I>20(I)]	2036	1958	2899	1717	1677	3346
Parametrii fitați	239	331	1523	187	142	408
GOF	1,000	1,006	1,002	1,006	1,004	1.001
R_1 , w R_2 [$I > 2\sigma(I)$]	0,0705; 0,1751	0,0838; 0,2339	0,0683; 0,1098	0,0920; 0,2952	0,0363; 0,0913	0,0615; 0,1503
R_1, WR_2 (pentru toste refevele)	0,0844; 0,1828	0,1555; 0,2534	0,1550; 0,1361	0.,1171; 0,3287	0,0440; 0,0980	0,1067; 0,1765
INDRIV TATADATA				-		

Т

Т

Tabelul A 1.2. Datele cristalografice și parametrii de structură pentru compușii 7-12

	18	$C_{52}H_{42}N_4O_4S_2Cu$	978,56	293(2)	Triclinic	<i>P</i> -1	1	7,4568(6)	11,5572(6)	14,0914(9)	90,757(5)	100,558(6)	105,784(6)	1146,26(13)	1,418	0,629	507	0,7×0,1×0,07	6181/4019	[R(int) = 0,0249]	2999	315	1,005	0,0617; 0,1642	0,0855; 0,1798
ı compuşii 13-18	17	$C_{37}H_{39}N_3O_{14}S_2Cu_2$	940.91	293	Monoclinic	P21/n	4	13,6617(6)	20,8888(9)	14,3574(6)	06	93,651(4)	90	4089,0(3)	1,528	1,212	1936	0,18×0,06×0,04	12970/7156	[R(int) = 0,0787]	3311	529	0,928	0,0791; 0,0871	0,1852; 0,1119
structură pentru	16	$C_{20}H_{22}N_2O_6SCu$	481,99	293	Triclinic	<i>P</i> -1	2	8,5736(6)	10,8514(9)	12,7430(10)	86,371(7)	78,695(6)	68,104(7)	1078,62(15)	1,484	1,148	498	0,20×0,10×0,06	5851/3774	[R(int) = 0,0445]	2350	275	0,995	0,0663; 0,1106	0,1183; 0,129
fice și parametrii de	15	$C_{30}H_{34}N_2O_{11.50}S_3Co_2$	820,63	293(2)	Triclinic	<i>P</i> -1	2	10,3970(4)	13,7039(5)	13,7672(7)	66,058(4)	88,257(4)	75,025(3)	1725,71(13)	1,579	1,205	844	0,38×0,18×0,04	9383/6079	[R(int) = 0,0283]	4776	461	1,005	0,0462; 0,1130	0,0634; 0,1232
Datele cristalogra	14	$C_{42}H_{34}N_2O_{14}S_4Co_3$	1095,74	293(2)	Triclinic	<i>P</i> -1	1	8,4799(5)	11,3275(9)	12,4212(7)	104,090(6)	94,423(5)	111,458(6)	1058,62(12)	1,719	1,432	557	0,35×0,14×0,03	5751/3735	[R(int) = 0,0267]	3097	295	1,007	0,0382; 0,0837	0,0495; 0,0911
Tabelul A 1.3.	13	$C_{59}H_{63}N_5O_{13}S_4Co_2$	1296,24	293(2)	Monoclinic	C2/c	4	23,383(2)	13,6969(5)	20,3868(9)	06	115,101(5)	06	5912,7(6)	1,456	0,770	2696	0,2×0,18×0,04	10419/5200	[R(int) = 0,0495]	3381	404	1,001	0,0542; 0,0984	0,0945; 0,1176
		Formula empirică	Mr	Temperatura	Singonia	Grupul spațial	Ζ	a(Å)	$b(\text{\AA})$	$c(\mathrm{\AA})$	α(grad)	β(grad)	$\gamma(grad)$	$V(Å^3)$	$D_{\rm c}~({ m g/cm}^{-3})$	$\mu(\text{mm}^{-1})$	F(000)	Dimensiunile cristalului (mm ³)	Reflexele	colectate/unice	Reflexe [I>20(I)]	Parametrii fitați	GOF	$R_1, WR_2 [I > 2\sigma(I)]$	R_1 , w R_2 (pentru toate refexele)

-	_
:	SI
	no
	Ξ
	3
	E
1	E
	De
)	ā
	Ē
	อ
	E
	0 0
-	đ
•	Ξ
	Jel
	an
	ar
	2
	5
ž	SE
	E
	50
1	ğ
	SI.
	5
-	ele
1	at
ſ	
(
•	
-	A.
	ğ
	-

	-
:	Ξ
	Sn
	du
	5
	2
	Ξ
	E D
	ě
)	E
	Ξ
	SE
,	E
	S
7	5
:	Ξ
1	e
	E
	I a
	рa
•	5
	e
ŝ	Ĕ
	13
	0
	B
•	SI
	5
-	e le
•	at
ſ	Ä
	ť
7	-
1	
-	
	<u>e</u>
-	a
E	

	25	26	27	28	29
Formula empirică	$C_{27}H_{22}N_2O_4S_2Co_{0.5}Zn_{0.5}$	$C_{62}H_{52}N_{12}O_{14}S_2Cd_2$	$C_{69}H_{61}N_{14}O_{11}S_2Zn_2$	$C_6H_7N_2O_3SMn$	$C_{12}H_{18}N_4O_8S_2Mn$
Mr	564,74	1478,07	1457,17	242,14	465,36
Temperatura	293(2)	293(2)	293(2)	293(2)	293(2)
Singonia	Trigonal	Triclinic	Triclinic	Monoclinic	Monoclinic
Grupul spațial	$P3_{1}2_{1}$	<i>P</i> -1	<i>P</i> -1	$P2_1/c$	$P2_{1/c}$
Ζ	3	2	2	4	2
a(Å)	11,4871(7)	10,6985(4)	14.4024(15)	14,2283(6)	17,0794(7)
b(Å)	114871(7)	17,2209(6)	15,3455(11)	7,0287(3)	5,3187(2)
c(Å)	16,7589(16)	18,9918(7)	17,0058(14)	8,8006(4)	10,3729(4)
a(grad)	06	105,631(3)	95,999(6)	06	06
β(grad)	06	93,044(3)	108,873(8)	107,958(5)	100,793(4)
γ(grad)	120	107,145(3)	96,098(7)	06	90
$V(Å^3)$	1915,1(2)	3186,3(2)	3497,6(6)	837,24(6)	925,61(6)
$D_{\rm c} ({ m g/cm}^{-3})$	1,469	1,541	1,384	1,921	1,670
μ(mm ⁻¹)	1,017	0,807	0,815	1,797	0,988
F(000)	872	1496	1506	488	478
Dimensiunile	0,18×0,18×0,15	0,22×0,20×0,04	0,36x0,22x0,04	0,4×0,25×0,08	0,28×0,2×0,03
cristalului (mm ²)					
Reflexele	4031/2178	17674/11493	22988/12352	3225/1469	3029/1630
colectate/unice	[R(int) = 0,0472]	[R(int) = 0,0373]	[R(int) = 0, 1200]	[R(int) = 0,0221]	[R(int) = 0,0341]
Reflexe [I>20(I)]	1155	7200	12352	1266	1258
Parametrii fitați	165	815	3678	122	136
GOF	1,004	0,950	1,001	1,005	1,002
$R_1, WR_2 [I > 2\sigma(I)]$	0,0674; 0,.1356	0,0583; 0,1240	0,1135; 0,2572	0,0279; 0,0685	0,0387; 0,0721
R_1 , WR_2 (pentru toste refevele)	0,1355; 0,1735	0,1047; 0,1461	0,2844; 0,3299	0,0354; 0,0724	0,0574; 0,0799
INDUA TATAVANA					

Tabelul A 1.5. Datele cristalografice și parametrii de structură pentru compușii 25-29

	30	31	37	22	3
	00	IC	70	55	F 0
Formula empirică	$C_{22}H_{26}N_6O_8S_2Mn$	$C_{22}H_{26}N_6O_8S_2Co$	$C_{22}H_{26}N_6O_8S_2Zn$	$C_{16}H_{19}BF_4N_4O_5SCd$	$C_{42}H_{43.5}BF_4N_{10}O_{8.25}S_3Zn_2$
Mr	621,55	625,54	631,98	578,62	1134,10
Temperatura	293(2)	293(2)	293(2)	293(2)	293(2)
Singonia	Triclinic	Triclinic	Triclinic	Monoclinic	Triclinic
Grupul spațial	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	$P2_{1/c}$	<i>P</i> -1
Z	1	1	1	4	2
a(Å)	7,3013(5)	7,2575(7)	7,2618(5)	11,6662(3)	10,0194(7)
b(Å)	8,0837(6)	8,0583(6)	8,0781(6)	8,5982(2)	12,0630(6)
c(Å)	11,6163(8)	11,4137(6)	11,4007(9)	22,0725(7)	21,3196(12)
α(grad)	79,138(6)	79,377(6)	79,559(6)	60	101,720(5)
β(grad)	72,352(6)	73,014(6)	72,870(7)	99,295(3)	100,062(5)
γ(grad)	86,227(6)	86,029(7)	85,963(6)	90	104,700(5)
$V(Å^3)$	641,62(8)	627,36(8)	628,43(8)	2184,98(11)	2369,8(2)
$D_{\rm c} ({ m g/cm}^{-3})$	1,609	1,656	1,670	1,759	1,589
$\mu(\text{mm}^{-1})$	0,737	0,912	1,205	1,165	1,224
F(000)	321	323	326	1152	1161
Dimensiunile	0,36×0,32×0,20	0,2×0,18×0,04	0,3×0,3×0,06	0,12×0,04×0,025	0,40×0,20×0,04
cristalului (mm ²)					
Reflexele	3758/2275	3369/2217	3377/2208	7274/3847	14919/8376
colectate/unice	[R(int) = 0,0230]	[R(int) = 0.0350]	[R(int) = 0,0218]	[R(int) = 0,0461]	[R(int) = 0,0401]
Reflexe [I>2o(I)]	1915	1738	1989	2678	5763
Parametrii fitați	181	180	195	289	635
GOF	1,000	1,002	1,000	1,004	1,002
$R_1, WR_2 [I>2\sigma(I)]$	0,0381; 0,0974	0,0474; 0,0951	0,0361; 0,0947	0,0514; 0,0867	0,0514; 0,0904
R_1 , w R_2 (pentru	0,0476; 0,1057	0,0672; 0,1056	0,0417; 0,1009	0,0836; 0,0995	0,0854; 0,1038
toate refexele)					

4
Ľ.
3
:=
S
d
Β
3
Π
Ξ
U
ď
3
nr
E
, j
Ë
đ
ij
Ť
ne
Ξ
~~
ara
para
și para
e și para
fice și para
afice și para
grafice și para
llografice și para
stalografice și para
ristalografice și para
cristalografice și para
le cristalografice și para
tele cristalografice și para
)atele cristalografice și par a
. Datele cristalografice și para
.6. Datele cristalografice și para
1.6. Datele cristalografice și para
A 1.6. Datele cristalografice și para
ul A 1.6. Datele cristalografice și para
elul A 1.6. Datele cristalografice și para
abelul A 1.6. Datele cristalografice și para
Tabelul A 1.6. Datele cristalografice și para

	I abelul A 1./. Datele	cristalogrance și	parametru de stru	ctura pentru con	04-ce usudi	
	35	36	37	38	39	40
Formula empirică	$C_{9.5}H_{11.5}B_{0.25}F_1N_3O_{3.5}S_1Cd$	$C_{24}H_{22}N_{6}O_{4}S_{2}Cd$	$C_{25}H_{28}N_6O_6S_2Zn$	$C_{25}H_{26}N_6O_5S_2Cd$	$C_{24}H_{26}N_6O_6S_2Co$	$C_{I0}H_{I6}N_2O_{I0}S_4 Co$
Mr	389,88	635	638,02	667,04	617,56	511.42
Temperatura	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
Singonia	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
Grupul spațial	Pbam	C2/c	$P2_1/c$	$P2_{1}2_{1}2_{1}$	$P2_{1/c}$	$P2_1/c$
Ζ	4	8	4	4	2	2
$a(\text{\AA})$	20,9318(9)	17,1615(6)	12,4739(6)	9,1195(2)	10,1983(4)	5,2319(5)
$b(\text{\AA})$	8,6341(3)	14,0138(3)	12,2966(6)	12,0033(5)	9,0738(4)	26,3588(18)
c(Å)	13,7903(5)	22,3146(9)	18,6087(7)	25,4266(7)	14,0510(6)	7,1645(10)
α(grad)	06	06	06	60	06	06
$\beta(\text{grad})$	06	111,265(4)	94,334(4)	60	96,548(4)	113,342(9)
$\gamma(grad)$	06	06	06	06	00	06
$V({ m \AA}^3)$	2492,29(17)	5001,2(3)	2846,2(2)	2783,30(15)	1291,75(9)	907,17(17)
$D_{\rm c}~({\rm g/cm^{-3}})$	1,039	1,687	1,489	1,592	1,588	1,872
$\mu(\text{mm}^{-1})$	0,972	1,085	1,060	0,981	0,879	1,461
F(000)	767	2560	1320	1352	638	522
Dimensiunile	0,52x0,37x0,26	0,3×0,2×0,12	0,42×0,12×0,03	0,38×0,32×0,14	$0,.44 \times 0,3 \times 0,15$	$0,4 \times 0,14 \times 0,3$
cristalului (mm ³)						
Reflexele	15204/2310	8704/4424	9227/4995	6550/4518	4707/2413	2908/1605
colectate/unice	[R(int) = 0,0343]	[R(int)=0,0243]	[R(int)=0,0432]	[R(int)=0,0247]	[R(int) = 0,0225]	[R(int) = 0,0266]
Reflexe [I>2o(I)]	2310	3516	3112	3968	2068	1294
Parametrii fitați		341	365	353	180	124
GOF	1,003	1,002	1,002	1,002	1,004	1,004
$R_1, wR_2 [I > 2\sigma(I)]$	0,0736; 0,2227	0,0369; 0,0874	0,0530; 0,0690	0,0348; 0,0587	0,0331; 0,.0853	0,0385; 0,0854
R_1 , w R_2 (pentru toate refexele)	0,0828; 0,2299	0,0504; 0,0947	0,1022; 0,0815	0,0437; 0,0616	0,0437; 0,0616	0,0529; 0,0914

5-40
ompuşii 3.
pentru c
structură
de
parametrii
Śi.
cristalografice
Datele
Г.
1
l A
Tabelu

-

				ind a man ne or		
	41	42	43	44	45	46
Formula empirică	$C_{I0}H_{I6}N_2O_{I0}S_4Ni_I$	$C_{I0}H_{I6}N_2O_{I0}S_4Zn_I$	$C_{16}H_{22}N_4O_{10}S_4Zn_1$	$C_{20}H_{20}N_4O_8S_4Co$	$C_{22}H_{20}N_4O_6S_4Cd$	$C_6H_{12}N_3O_7C_0$
Mr	511,20	517,86	623,98	631,57	677,06	297,12
Temperatura	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
Singonia	monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Grupul spațial	$P2_1/n$	$P2_1/n$	$P2_{1/c}$	C2/c	<i>P</i> -1	$P2_{1/C}$
Ζ	2	2	2	4	2	4
$a(\text{\AA})$	5,2163(5)	5,2532(3)	15,6602(12)	11,1768(10)	9,4114(5)	6,2298(12)
b(Å)	26,347(2)	26,3076(13)	5,1186(3)	11,3964(9)	11,6492(7)	14,230(2)
c(Å)	6,9610(5)	7,0027(3)	17,3621(15)	21,0680(18)	13,1979(6)	12,128(2)
α(grad)	90	06	06	06	110,652(5)	06
β(grad)	110,103(9)	110,365(5)	114,245(10)	99,367(8)	100,339(4)	101,46(2)
$\gamma(\text{grad})$	90	06	06	90	98,007(5)	06
$V({ m \AA}^3)$	898,38(13)	907,27(8)	1268,97(16)	2647,8(4)	1299,33(12)	1053,7(3)
$D_{\rm c} ({\rm g/cm}^{-3})$	1,890	1,896	1,633	1,584	1,731	1,873
$\mu(\text{mm}^{-1})$	1,600	1,869	1,354	1,015	1,208	1,660
F(000)	524	528	640	1292	680	608
Dimensiunile	0,28×0,18×0,05	0,42x0,22x0,06	0,4 x 0,2 x 0,04	0,38x0,22x0,05	0,34x0,28x0,12	0,4×0,09×0,02
cristalului (mm ³)						
Reflexele	2905/1582	3222/1690	3959/2216	4751/2463	8249/4807	3431/1863
colectate/unice	[R(int) = 0,0319]	[R(int) = 0,0240]	[R(int) = 0,0311]	[R(int) = 0,0683]	[R(int) = 0,0268]	[R(int) = 0,0494]
Reflexe [I>20(I)]	1284	5763	1547	1671	4204	1394
Parametrii fitați	125	127	162	171	335	154
GOF	1,002	1,001	1,007	1,000	1,002	1,007
$R_1, \operatorname{w} R_2 [I > 2\sigma(I)]$	0,0740; 0,2207	0,0369; 0,0886	0,0587; 0,1596	0,0706; 0,1721	0,0345; 0,0804	0,0646; 0,1526
R_1 , w R_2 (pentru toate refexele)	0,0890; 0,2316	0,0438; 0,0926	0,0891; 0,1832	0,1031; 0,2052	0,0421; 0,0864	0,0889; 0,1688

ompușii 41-46
pentru (
structură
des
parametrii
.5.
stalografice
cri
)atele
Ξ.
1.8
Tabelul .

Compusul 1			
Fe(1)-O(1)	2,103(3)	Fe(2)-O(2w)	2,152(3)
Fe(1)-O(1w)	2,158(3)	Fe(2)-N(1B)	2,194(5)
Fe(1)-N(1A)	2,222(3)	$Fe(2)-N(2B)^{#3}$	2,232(4)
Fe(2)-O(5)	2,112(3)		
		•	
$O(1)$ -Fe(1)- $O(1w)^{\#1}$	88,14(11)	O(5)-Fe(2)- $O(2w)$	91,56(10)
O(1)-Fe(1)- $O(1w)$	91,86(11)	$O(2w)^{#2}$ -Fe(2)-O(2w)	175,76(13)
O(1)-Fe(1)-N(1A)	89,06(11)	O(5)-Fe(2)-N(1B)	86,27(7)
O(1)-Fe(1)-N(1A) ^{#1}	90,94(11)	O(2w)-Fe(2)-N(1B)	92,12(7)
O(1w)-Fe(1)-N(1A) ^{#1}	88,35(11)	O(5)-Fe(2)-N(2B) ^{#3}	93,73(7)
O(1w)-Fe(1)-N(1A)	91,65(11)	O(2w)-Fe(2)-N(2B) ^{#3}	87.88(7)
$O(5)$ -Fe(2)- $O(5)^{#2}$	172,55(15)	$N(1B)-Fe(2)-N(2B)^{\#3}$	180,000(1)
$O(5)$ -Fe(2)- $O(2w)^{\#2}$	88,72(10)		
$ \frac{\#}{\#} - x + \frac{1}{2} - y + \frac{3}{2} - z \cdot \frac{\#}{2} - x \cdot y $	$-7+1/2 \cdot \frac{\#3}{2} \times y-1_7$		
$- \frac{1}{2} $	Compusul 2		
$Cu(1)-N(2A)^{\#1}$	2.020(5)	Cu(1)-N(1A)	2.024(5)
Cu(1)-N(1B)	2,023(5)	$Cu(1) - N(2B)^{\#1}$	2,021(5) 2,039(6)
Cu(1) - O(1W)	2.292(6)		2,037(0)
	-,	1	
$N(2A)^{\#1}-Cu(1)-N(1B)$	170,0(4)	N(1B)-Cu(1)-N(2B) ^{#1}	92,0(2)
$N(2A)^{\#1}-Cu(1)-N(1A)$	91 2(2)	$N(1A)-Cu(1)-N(2B)^{\#1}$	169 5(4)
N(1B)-Cu(1)-N(1A)	88 3(2)	$N(2A)^{\#1}Cu(1) - O(1w)$	98.6(3)
N(1D)-Cu(1)-N(1A)	86,3(2)	N(2R) - Cu(1) - O(1W)	91 4(2)
$N(2A)^{m}$ -Cu(1)-N(2B) ^m	80,7(2)	N(1B)-Cu(1)-O(1W) $N(2D)^{\#}Cu(1)-O(1w)$	96.1(3)
N(1A)-Cu(1)-O(1W)	94,4(3)	$N(2D)^{*}-Cu(1)-O(1W)$	> = (=)
x,y,z-1	Communel 2		
$C_{\nu}(1) O(1)$		$C_{\rm H}(2) O(1w)$	2341(3)
Cu(1) - O(1)	1,339(2) 1,070(2)	Cu(2) - O(1W) $Cu(3) O(7S)^{\#3}$	2,341(3) 1 032(3)
$C_{u}(1) = O(1S)$	1,979(3)	Cu(3)-O(7S)	1.932(3) 1.953(3)
Cu(1)-O(2w)	2,394(3)	Cu(3)-O(33)	1,935(3) 1,986(3)
Cu(2) = O(5S)	1,955(5)	Cu(3)-IN(1)	2,003(3)
Cu(2)-O(1)	1,968(3)	Cu(3)-O(1)	2,003(3) 2,433(3)
$Cu(2)-N(2)^{#2}$	1,987(3)	Cu(3)-O(1w)	2,435(3)
Cu(2)-O(2S)	2,009(3)		
O(1)-Cu(1)-O(1S)	92,28(10)	O(5S)-Cu(2)-O(2S)	165,64(12)
$O(1)^{#1}-Cu(1)-O(1S)$	87,72(10)	O(1)-Cu(2)-O(2S)	90,43(10)
$O(1)^{#1}-Cu(1)-O(1S)^{#1}$	92,28(10)	$N(2)^{+2}-Cu(2)-O(2S)$	87,55(13)
O(1)-Cu(1)-O(2w)	81,37(11)	O(5S)-Cu(2)-O(1w)	105,44(11)
$O(1)^{#1}-Cu(1)-O(2w)$	98,63(11)	U(1)-U(2)-U(1w)	81,03(10)
O(1S)-Cu(1)-O(2w)	90,31(12)	$N(2)^{m^2}-Cu(2)-O(1w)$	99,87(13)
$O(1S)^{#1}-Cu(1)-O(2w)$	89,69(12)	O(2S)-O(2)-O(1w)	87,39(11)
$O(1)-Cu(1)-O(2w)^{\#1}$	98.63(11)	$O(7S)^{\#3}$ $O(3S)$	109,82(12)
$O(1)^{#1}-Cu(1)-O(2w)^{#}$	81,37(11)	$O(7S)^{-1}-U(3)-N(1)$ O(3S) Cu(2) N(1)	07,00(13)
$O(1S)-Cu(1)-O(2w)^{\#1}$	89,69(12)	O(33)-Cu(3)-IN(1) $O(78)^{\#3}$ Cu(2) O(1)	07,40(12) 02.64(11)
$O(1S)^{#1}-Cu(1)-O(2w)^{#1}$	90,31(12)	O(73) - Cu(3) - O(1) O(3S) - Cu(3) O(1)	92,04(11) 01 78(11)
O(5S)-Cu(2)-O(1)	85,35(12)	N(1) - Cu(3) - O(1)	17002(12)
O(5S)-Cu(2)-N(2) ^{#2}	96,37(13)	$\Omega(1)^{+} O(1)^{+} O$	170,72(13) 87 51(11)
$O(1)-Cu(2)-N(2)^{#2}$	177,75(12)	O(3S) - Cu(3) - O(1w)	84 43(11)
$\frac{\#1}{x+1}$ -x+1, -y+1, -z $\frac{\#2}{x+1}$ -y+1	$\frac{1}{8/2.7+1/2}$ $\frac{\#3}{-x+1v+1}$	17+1	01,13(11)
	$y = y_{\infty} + z_y = y_{\infty} + z_y + y_{\infty} + z_y + $	-, ~ · -	

Anexa 2. Distanțele interatomice și unghiuri de valență selectate pentru compușii 1-45

Compusul 4			
Zn(1)–O(1)	1.94(1)	$Zn(2)-O(7)^{\#3}$	2.23(3)
Zn(1)–O(5)	1.89(2)	$Zn(2)-O(8)^{\#3}$	2.46(3)
Zn(1)-N(1A)	2.07(1)	Zn(2)-N(1B)	2.055(8)
$Zn(1)-N(2A)^{\#1}$	2.03(1)	$Zn(2)-N(2B)^{#2}$	2.03(5)
Zn(2)–O(3)	1.95(1)		
	1		
O(1)-Zn(1)-O(5)	103.4(8)	$O(7)^{#3}$ -Zn(2)-O(8) ^{#3}	53.5(4)
O(1)-Zn(1)-N(1A)	108.4(5)	$O(5)-Zn(1)-N(2A)^{\#1}$	97.6(7)
O(1)-Zn(1)-N(2A) ^{#1}	120.6(5)	$N(1A)-Zn(1)-N(2A)^{\#1}$	104.4(4)
O(5)-Zn(1)-N(1A)	123.4(7)	$N(1B)-Zn(2)-O(7)^{#3}$	103(1)
$O(3)-Zn(2)-O(7)^{\#3}$	140(1)	$N(2B)^{#2}-Zn(2)-O(7)^{#3}$	95(3)
O(3)-Zn(2)-O(8) ^{#3}	92.3(7)	$N(1B)-Zn(2)-O(8)^{#3}$	95.2(7)
O(3)-Zn(2)-N(1B)	99.6(5)	$N(2B)^{#2}-Zn(2)-O(8)^{#3}$	148(3)
$O(3)-Zn(2)-N(2B)^{\#2}$	114(3)		
$x^{n} x - y, x, z + 1/6; x^{n} x - 1, y$	$\frac{-1, z; x - 1, y}{2}$		
$7_{n}(1) \mathbf{O}(1\mathbf{D})$	Compusul 5	$(7n(2) \mathbf{N}(1\mathbf{D}))$	2 055(9)
Zn(1)-O(1B)	1,892(17)	Zn(2)-N(1B)	2,055(8)
Zn(1)-O(1A)	1,940(11)	$Zn(2)-O(3B)^{\#3}$	2,23(3)
$Zn(1)-N(2A)^{\#1}$	2,033(11)	$Zn(2)-O(4B)^{+3}$	2,40(3)
Zn(1)-N(1A)	2,072(10)	$Zn(2)-C(21B)^{\#3}$	2,55(2)
Zn(2)-O(3A)	1,949(12)	$Zn(2)-O(4B)^{\#5}$	2,46(3)
$Zn(2)-N(2B)^{#2}$	2,03(5)		
O(1B)- $Zn(1)$ - $O(1A)$	103,4(8)	$N(1B)-Zn(2)-O(3B)^{#3}$	103,4(12)
O(1B)-Zn(1)-N(2A) ^{#1}	97,6(7)	$O(3A)$ -Zn(2)- $O(4B)^{#3}$	92,3(7)
$O(1A)-Zn(1)-N(2A)^{\#1}$	120,6(5)	$N(2B)^{#2}-Zn(2)-O(4B)^{#3}$	148(3)
O(1B)-Zn(1)-N(1A)	123,4(7)	N(1B)-Zn(2)-O(4B) ^{#3}	95,2(7)
O(1A)-Zn(1)-N(1A)	108,4(5)	$O(3B)^{#3}$ -Zn(2)-O(4B) ^{#3}	53,5(4)
$N(2A)^{\#1}-Zn(1)-N(1A)$	104,4(4)	O(3A)-Zn(2)-C(21B) ^{#3}	113,0(8)
$O(3A)-Zn(2)-N(2B)^{\#2}$	114(3)	N(2B) ^{#2} -Zn(2)C(21B) ^{#3}	120(3)
O(3A)-Zn(2)-N(1B)	99,6(5)	N(1B)- $Zn(2)$ - $C(21B)$ #3	109,4(6)
$N(2B)^{#2}-Zn(2)-N(1B)$	97,3(16)	$O(3B)^{#3}$ -Zn(2)C(21B) ^{#3}	27,7(5)
$O(3A) - Zn(2) - O(3B)^{\#3}$	139.9(10)	$O(4B)^{\#3}$ -Zn(2)C(21B) ^{\#3}	28.6(4)
$N(2R)^{\#2} Zn(2) O(2R)^{\#3}$	95(3)	0(12) 21(2)0(212)	
N(2B) - ZII(2) - O(3B)	# ³ x 1 x -		
<i>x-y,x,z+1/0 x-1,y-1,z</i>	$\frac{x-1, y, z}{Compusul 6}$		
Cd(1)-O(1)	2 349(2)	Cd(1)-O(1w)	2 462(3)
Cd(1)-O(1)	2,377(2) 2 350(3)	$Cd(1) - O(4)^{\#1}$	2,483(3)
$Cd(1) O(2)^{\#1}$	2,350(3)	Cd(1) - C(1)	2,103(3) 2,721(3)
$Cd(1)-N(2)^{\#2}$	2,355(3) 2 369(3)	$Cd(1)-C(8)^{\#1}$	2,721(3) 2,751(4)
Cd(1) O(2)	2,300(3) 2,430(3)	Cu(1)-C(0)	2,731(4)
Cu(1)-O(2)	2,430(3)		
O(1)-Cd(1)-N(1)	94 83(10)	N(1)-Cd(1)-O(1w)	82 24(9)
O(1)-Cd(1)-O(3) ^{#1}	85 98(9)	O(1)-Cd(1)-O(4) ^{#1}	130 35(0)
$N(1) Cd(1) O(3)^{\#1}$	101,00(10)	$N(1) Cd(1) O(4)^{\#1}$	139,33(9)
$N(1)-Cu(1)-U(3)^{m}$	101,09(10)	$In(1)-Cu(1)-O(4)^{22}$	00,14(11)
$U(1)-Cd(1)-N(2)^{+2}$	98,42(9)	$U(3)^{**}$ -Cd(1)-U(4) ^{**}	53,82(9)
$N(1)-Cd(1)-N(2)^{+2}$	161,79(10)	$N(2)^{#2}-Cd(1)-O(4)^{#1}$	89,89(11)
$O(3)^{#1}-Cd(1)-N(2)^{#2}$	92,28(10)	$O(2)-Cd(1)-O(4)^{\#1}$	165,91(9)
O(1)-Cd(1)-O(2)	54,68(8)	$O(1w)-Cd(1)-O(4)^{\#1}$	70,39(9)
N(1)-Cd(1)-O(2)	92,02(10)	$O(3)^{\#1}-Cd(1)-O(2)$	139,58(9)

$O(3)^{\#1}-Cd(1)-O(1w)$	123,75(9)	N(2) ^{#2} -Cd(1)-O(2)	85,56(10)
$N(2)^{#2}-Cd(1)-O(1w)$	80,05(9)	O(1)-Cd(1)-O(1w)	150,20(9)
O(2)-Cd(1)-O(1w)	95.67(9)		
$\frac{\#1}{x+1/2}$, $y+1/2$, $-z+1/2$ $\frac{\#2}{x+1/2}$	-1.v+1.z		
	Compusul 7		
Co(1)–O(1)	2.083(5)	$Co(2) - O(4)^{\#2}$	2.054(6)
$Co(1) - O(1)^{\#1}$	2.084(5)	$Co(2) - O(6)^{\#3}$	2.133(6)
$Co(1) - O(3)^{\#1}$	2.047(6)	Co(2) - O(3w)	2.145(7)
$Co(1) - O(5)^{#2}$	2.035(6)	$C_{0}(2) - O(4w)$	2.099(6)
Co(1)-O(1w)	2.072(7)	$C_{0}(2) - O(1)$	2.035(5)
Co(1) - O(2w)	2.151(7)	Co(2) - O(2)	2.033(6)
O(1)-Co(1)-O(1) ^{#1}	77.9(2)	$O(2)-Co(2)-O(4)^{\#2}$	175.5(2)
$O(1)-Co(1)-O(3)^{\#1}$	171.6(2)	$O(2)-CO(2)-O(6)^{\#3}$	90.1(3)
$O(1)-Co(1)-O(5)^{#2}$	97.3(2)	O(2) - CO(2) - O(3w)	93 6(3)
O(1)-Co(1)-O(1w)	85.4(2)	O(2) - O(2) - O(3w)	93.0(3)
O(1)-Co(1)-O(2W)	88.8(2)	O(2)-O(2)-O(4w)	87.0(2)
$O(1)^{\#1}$ -Co(1)-O(3)^{\#1}	96.5(2)	$O(4)^{#2} - CO(2) - O(6)^{*3}$	89.8(2)
$O(1)^{\#1}-Co(1)-O(5)^{\#2}$	173.8(2)	$O(4)^{\pi^2}$ -Co(2)-O(3w)	86.2(2)
$O(1)^{\#1}$ -Co(1)-O(1w)	94.2(2)	$O(4)^{#2}$ -Co(2)-O(4w)	88.5(2)
$O(1)^{\#1}-CO(1)-O(2w)$	86.8(2)	$O(6)^{#3}$ -Co(2)-O(3w)	175.3(2)
$O(3)^{\#1}$ - $Co(1)$ - $O(1w)$	88.8(3)	$O(6)^{#3}$ -Co(2)-O(4w)	91.1(2)
$O(3)^{\#1}-Co(1)-O(2w)$	97.2(3)	O(3w)-Co(2)-O(4w)	86.3(2)
$O(5)^{#2}-Co(1)-O(1w)$	89.2(3)	$O(1)-Co(2)-O(6)^{\#3}$	95.1(2)
$O(5)^{#2}$ -Co(1)-O(2w)	89.3(3)	O(1)-Co(2)-O(3w)	87.6(2)
O(1w)-Co(1)-O(2w)	173.7(3)	O(1)-Co(2)-O(4w)	173.5(2)
O(1)-Co(2)-O(2)	91.0(2)		
$^{\#1}-x+1, y, -z+1, ^{\#2}x-1, y-1, z, ^{\#2}$	$\frac{1}{2}x^{\pm 3} - x + 1, -y + 1, -z + 2.$		L
	Compusul 8		
Zn(1)-O(1)	1,932(4)	Zn(1)-N(1A)	2,066(6)
Zn(1)–N(1B)	2,043(6)		
O(1)-Zn(1)-O(4)	105,3(2)	O(1)-Zn(1)-N(1B)	89,06(7)
O(1)-Zn(1)-N(1A)	115,9(2)	$N(1)^{#1}-Cu(1)-Cl(1)^{#1}$	90,94(7)
	Compusul 9		
Zn(1)-N(1)	2,130(5)	$Zn(1)-O(3)^{#2}$	2,034(4)
$Zn(1)-O(1)^{\#1}$	1,975(5)	Zn(1)-O(1w)	2,076(5)
$O(1)^{#1}$ -Zn(1)-O(3) ^{#2}	95,1(2)	O(1w)-Zn(1)-N(2)	90,4(2)
$O(1)^{\#1}$ -Zn(1)-O(1w)	93,1(2)	N(1)-Zn(1)-N(2)	76,7(2)
$O(3)^{#2}$ -Zn(1)-O(1w)	94,3(2)	O(1w)-Zn(1)-N(1)	163,4(2)
$O(1)^{\#1}$ -Zn(1)-N(1)	102,0(2)	$O(1)^{\#1}$ -Zn(1)-N(2)	116,3(2)
$O(3)^{#2}$ -Zn(1)-N(1)	91,4(2)	$O(3)^{#2}-Zn(1)-N(2)$	147,9(2)
$\frac{\#1}{x+5/2}, y-1/2, z, \frac{\#2}{x}, -y+3/2$	2, z+1/2		
_	Compusul 10		
Co(1)-N(1)	2,072(4)	Co(1)-O(1w)	2,094(4)
Co(1)-O(1)	2,089(4)		
	= 2 (2)		
N(1)Co(1)O(1)	78.3(2)	O(1)Co(1)O(1w)	88.3(2)
N(1)Co(1)O(1w)	89.2(2)		
	Compusul 11		0.455045
Cu(1)-N(1)	1,977(2)	Cu(1) - O(1)	2.4572(6)
Cu(1)-CI(1)	2,3184(8)		

N(1)-Cu(1)-Cl(1)	90,94(7)	O(1)-Cu(1)-Cl(1)	94.2(7)
N(1)-Cu(1)-Cl(1)	90.94(7)		
	Compusul 12		•
Mn(1)-O(1)	2,111(3)	Mn(2)-O(1w)	2,209(3)
Mn(1)-O(5)	2,200(3)	Mn(2)-N(3)	2,259(3)
Mn(1)-N(1)	2.288(6)	Mn(2)-O(3)	2.139(3)
Mn(1)-N(2)	2.338(5)		_,,
	_,		
$O(1)^{\#1}$ -Mn(1)-O(1)	172,24(16)	O(3)-Mn(2)-O(1w)	89 47(11)
O(1)-Mn(1)-O(5)	89 57(12)	O(3)-Mn(2)-N(3)	90.09(12)
O(1)-Mn(1)-O(5) ^{#1}	90.62(12)	$O(1w)^{\#2}$ -Mn(2)-N(3)	90.27(12)
O(1)-Mn(1)-O(3)	925(7)	O(1w) - Mn(2) - N(3)	90,27(12) 89.73(12)
$O(5)-Mn(1)-N(1)^{\#1}$	92,3(7) 86 4(11)	$O(3)-Mn(2)-N(3)^{\#2}$	89.91(12)
O(1)-Mn(1)-N(1)	95 2(7)	$O(1_{W})-Mn(2)-N(3)^{\#}$	90.27(12)
O(1)-Win(1)-IV(1) O(5) Mp(1) N(1)	90,2(7)	O(5) Mp(1) N(2)	90,27(12) 91.42(8)
$N(1)^{\#1} Mp(1) N(1)$	50,7(11) 51(14)	N(1) Mp(1) N(2)	1775(7)
O(1) Mp(1) N(2)	3,1(14) 86 12(8)	$O(3) Mn(2) O(1w)^{\#2}$	177,3(7) 00.53(11)
0(1)-1(1)-1(2)	2/2 = 1	O(3)-WIII(2)-O(1W)	90,33(11)
-x, y, -z - 1/2, -x + 1/2, -y + z	$\frac{D/2, -Z+I}{Communul 12}$	1	
$C_{2}(1) O(1)$	$\frac{\text{Compusur 13}}{2.052(2)}$	$C_{\alpha}(2) O(1_{\alpha})$	2 1 4 2 (2)
$C_0(1) - O(1)$	2,055(3) 2,120(2)	$C_0(2) - O(1W)$	2,142(2)
$C_0(1)$ - $O(1E)$	2,120(2)	$C_0(2)$ -N(1)	2,156(3)
Co(1)-N(2)	2,193(4)	Co(2)-O(3)	2,065(3)
Q(1) Q (1) Q(1)#1	172 21 (1.4)		00 (1/11)
$O(1)-Co(1)-O(1)^{\pi 1}$	173,31(14)	O(3)-Co(2)-N(1)	89,64(11)
$O(1)-Co(1)-O(1E)^{*1}$	89,08(10)	$O(1W)^{#3}-Co(2)-N(1)$	90,18(11)
O(1)-Co(1)-O(1E)	91,13(10)	O(1W)-Co(2)-N(1)	89,82(11)
$O(1)^{#1}-Co(1)-O(1E)$	89,08(10)	$O(3)^{#3}$ -Co(2)-N(1) ^{#3}	89,64(11)
$O(1E)^{#1}-Co(1)-O(1E)$	176,38(15)	$O(3)-Co(2)-N(1)^{#3}$	90,36(11)
$O(1)-Co(1)-N(3)^{#2}$	93,34(7)	$O(1w)-Co(2)-N(1)^{\#3}$	90,18(11)
$O(1E)-Co(1)-N(3)^{#2}$	88,19(8)	$O(3)-Co(2)-O(1w)^{#3}$	88,19(10)
O(1)-Co(1)-N(2)	86,66(7)	O(3)-Co(2)-O(1w)	91,81(10)
O(1E)-Co(1)-N(2)	91,81(8)	$O(3)^{#3}-Co(2)-N(1)$	90,36(11)
$\frac{\#1}{x,y,-z-1/2}$, $\frac{\#2}{x,y+1,z}$, $\#$	$3^{3}-x+1/2,-y+3/2,-z+1$		
	Compusul 14		1
Co(1)-O(6)	2,1389(19)	$Co(1)-O(4)^{#3}$	2,071(2)
Co(2)-O(1)	2,023(2)	Co(2)-O(1 <i>w</i>)	2,191(2)
Co(2)-N(1)	2,129(3)	Co(2)-O(3) ^{#4}	2,044(2)
Co(2)-O(5)	2,194(2)		
$O(2)^{\#1}-Co(1)-O(4)^{\#3}$	89,75(9)	N(1)-Co(2)-O(1w)	88,55(9)
$O(2)^{\#1}-Co(1)-O(6)$	92,75(8)	O(1)-Co(2)-O(5)	92,46(8)
O(4) ^{#3} -Co(1)-O(6)	90,25(8)	N(1)-Co(2)-O(5)	86,15(9)
$N(1)-Co(2)-O(6)^{\#1}$	171,78(8)	$O(6)^{\#1}-Co(2)-O(5)$	86,48(7)
O(1)-Co(2)-O(1w)	175,84(8)	O(1w)-Co(2)-O(5)	83,78(8)
O(1)-Co(2)-N(1)	89,45(9)	$O(3)^{#4}-Co(2)-O(1w)$	82,67(9)
$O(3)^{#4}-Co(2)-N(1)$	95.00(10)	$O(6)^{\#1}-Co(2)-O(1w)$	87.03(8)
$O(1)-Co(2)-O(6)^{\#1}$	94.50(8)		
$^{\#1}$ -x+1y+1z+1: $^{\#2}$ x+1 v.z	$x^{\#3}x+1.y-1.z$; $x^{\#4}xy-1$		1
, , , , , , , , , , , , , , , , , , ,	Compusul 15	/	
Co(1)-S(1)	2.2853(9)	Co(2)-S(3)	2.1971(10)
$C_0(1)-S(3)$	2.2881(9)	$C_0(3)-O(6)$	2.062(2)
$C_0(1)-S(2)$	2.3087(10)	$C_0(3)$ -N(1)	2.152(3)
Co(2)-O(1)	1,913(3)	Co(3)-O(1w)	.,
× / × /	· · · · ·		·

Co(2)-O(3)	1,928(2)	Co(2)-S(1)	2,170(3)
Co(2)-O(5)	1,931(3)	Co(2)-S(2)	2,1867(11)
			2,1931(11)
S(1)-Co(1)-S(3)	79,10(3)	$S(2)^{\#1}-Co(1)-Co(2)$	47,66(3)
$S(1)-Co(1)-S(3)^{\#1}$	100,90(3)	$S(3)^{\#1}$ -Co(1)-Co(2) ^{\#1}	47,83(2)
S(1)-Co(1)-S(2)	79,27(3)	$S(2)-Co(1)-Co(2)^{\#1}$	132,34(3)
S(3)-Co(1)-S(2)	80.57(3)	O(1)-Co(2)-O(3)	85.90(12)
$S(3)^{\#1}-Co(1)-S(2)$	99,43(3)	O(1)- $Co(2)$ - $O(5)$	86.01(12)
$S(3)-Co(1)-S(2)^{\#1}$	100.73(3)	S(3)-Co(1)-Co(2)	47,58(3)
$S(3)^{\#1}$ -Co(1)-S(2) ^{#1}	99.43(3)	S(2)-Co(1)-Co(2)	132.17(2)
S(1)-Co(1)-Co(2)	132,42(3)		10_,17(_)
$\frac{1}{2}$ $\frac{1}$	102,12(0)		
A+2, y+1, 2+2	Compusul 16		
Cu(1)-O(1)	1 949(3)	Cu(1)-O(5)	2 133(4)
$Cu(1) O(1)^{\#1}$	1,959(4)	$Cu(1) - Cu(1)^{\#2}$	2,135(1) 2,636(13)
$Cu(1) - O(2)^{\#2}$	1,957(4) 1.964(3)	$\operatorname{Cu}(1)$ - $\operatorname{Cu}(1)$	2,030(13)
$Cu(1) \cdot O(2)$	1,904(3) 1,970(4)		
Cu(1)-O(3)	1,970(4)		
O(1) = Cu(1) = O(4)	89 12(16)	O(4) - Cu(1) - O(5)	96.83(15)
O(1) - Cu(1) - O(4)	168.00(15)	O(4) = Cu(1) = O(5)	96,09(15)
O(1) = Cu(1) = O(2) O(4) = Cu(1) = O(2)	100,00(13) 80,50(15)	O(2) = Cu(1) = O(3)	90,09(13) 04.71(15)
O(4) = Cu(1) = O(2)	89,30(13) 80,48(15)	O(3) = Cu(1) = O(3)	94,71(13) 90,40(15)
O(1) = Cu(1) = O(3)	69,46(13) 169,46(15)	O(2) = Cu(1) = O(3)	89,49(13)
$\frac{1}{2} \frac{1}{2} \frac{1}$	108,40(13)	O(1) - Cu(1) - O(3)	93,90(13)
-x+1, -y+1, -z+1, -x, -y+	(1, -z+1), x-1, y, z	1	
$C_{22}(1) O(1)$	2018(4)	$C_{22}(2) O(6)$	2.021(4)
Cu(1) - O(1)	2,018(4)	Cu(2) - O(0)	2,021(4)
$Cu(1) - O(4)^{-2}$	2,012(4)	$Cu(2) - O(10)^{m}$	1,990(5)
Cu(1) - O(5)	1,951(4)	Cu(2) = O(1W)	2,107(5)
$Cu(1) = O(9)^{-1}$	1,947(4)	Cu(2) - O(2)	1,950(4)
Cu(1)-O(11)	2,138(5)	$Cu(2)-O(3)^{n^2}$	1,955(4)
	170.0(0)		00.51(10)
$O(9)^{\#1}$ -Cu(1)-O(5)	172,9(2)	$O(3)^{#2}-Cu(2)-O(6)$	90,51(18)
$O(9)^{#1}$ -Cu(1)-O(4) ^{#2}	90,46(18)	$O(10)^{\#1}$ -Cu(2)-O(6)	161,8(2)
$O(5)-Cu(1)-O(4)^{#2}$	90,31(2)	O(2)-Cu(2)-O(1W)	91,6(2)
$O(9)^{#1}-Cu(1)-O(1)$	88,50(18)	$O(3)^{#2}-Cu(2)-O(1W)$	95,7(2)
O(5)-Cu(1)-O(1)	88,64(18)	$O(10)^{#1}$ -Cu(2)-O(1W)	104,7(2)
$O(4)^{#2}-Cu(1)-O(1)$	162,49(19)	O(6)-Cu(2)-O(1W)	93,6(2)
$O(9)^{#1}-Cu(1)-O(11)$	91,48(19)	$O(2)-Cu(2)-O(3)^{#2}$	172,7(2)
O(5)-Cu(1)-O(11)	95,14(19)	$O(2)-Cu(2)-O(10)^{\#1}$	90,56(19)
$O(4)^{#2}$ -Cu(1)-O(11)	104,9(2)	$O(3)^{#2}-Cu(2)-O(10)^{#1}$	87,99(19)
O(1)-Cu(1)-O(11)	92,61(19)	O(2)-Cu(2)-O(6)	88,63(19)
$^{\#1}x-1/2, -y+1/2, z+1/2; ^{\#2}x+1$	1/2, -y+1/2, z+1/2		
	Compusul 18		
Cu(1)-O(1)	1,923(3)	Cu(1)-N(1)	2,049(3)
$O(1)-Cu(1)-N(1)^{\#1}$	90,85(12)	O(1)-Cu(1)-N(1)	89,15(12)
$x^{\#1}$ -x, -y+1, -z+1			
	Compusul 19		
Cu(1)-O(1)	1,970(3)	Cu(1)-O(1W)	2,388(4)
Cu(1)-O(5)	1,967(3)	Cu(1)-N(2)	2,003(4)
Cu(1)-N(1)	1,999(4)		
O(5)-Cu(1)-O(1)	176,78(15)	N(1)-Cu(1)-O(1w)	94,71(16)

O(5)-Cu(1)-N(1)	86,68(16)	N(2)-Cu(1)-O(1w)	96,91(15)
O(1)-Cu(1)-N(1)	92,49(15)	N(1)-Cu(1)-N(2)	168,35(18)
O(5)-Cu(1)-N(2)	91,18(15)	O(5)-Cu(1)-O(1w)	96,14(14)
O(1)-Cu(1)-N(2)	89,01(14)	O(1)-Cu(1)-O(1w)	87,02(13)
	Compusul 20		
Cu(1)-N(1)	1,968(9)		
$N(1)^{\#1}-Cu(1)-N(1)$	104,1(8)	N(1)-Cu(1)-N(1) ^{#3}	112,2(4)
$N(1)^{#2}-Cu(1)-N(1)$	112,2(4)		
$^{\#1}$ -x+1,-y+3/2,z; $^{\#2}$ -y+5/4,	x+1/4,-z+9/4; #3 y-1/	/4,- <i>x</i> +5/4,- <i>z</i> +9/4	

Compusul 21			
Cd(1)-N(1)	2,291(3)	$Cd(1)-O(3)^{\#3}$	2,395(3)
Cd(1)-O(1)	2,296(2)	$Cd(1)-O(4)^{\#3}$	2,417(3)
$Cd(1)-O(2)^{\#1}$	2,264(2)	$Cd(1)-N(2)^{\#2}$	2,290(3)
$O(2)^{\#1}-Cd(1)-N(2)^{\#2}$	86,65(10)	$O(3)^{#3}$ -Cd(1)-O(4) ^{#3}	54,39(8)
$O(2)^{\#1}-Cd(1)-N(1)$	86,70(10)	$O(2)^{\#1}-Cd(1)-O(4)^{\#3}$	90,56(9)
$N(2)^{#2}-Cd(1)-N(1)$	172,77(10)	N(2)#2-Cd(1)-O(4)#	91,47(10)
$O(2)^{\#1}-Cd(1)-O(1)$	120,84(10)	$N(1)-Cd(1)-O(4)^{#3}$	85,76(10)
$N(2)^{#2}-Cd(1)-O(1)$	97,69(10)	$O(1)-Cd(1)-O(4)^{#33}$	147,60(9)
$N(2)^{#2}-Cd(1)-O(3)^{#3}$	98,82(10)	N(1)-Cd(1)-O(1)	88,16(10)
$N(1)-Cd(1)-O(3)^{\#3}$	85,01(10)	$O(2)^{\#1}-Cd(1)-O(3)^{\#3}$	144,44(9)
$O(1)-Cd(1)-O(3)^{\#3}$	93,40(9)		
$^{\#1}$ -x+2,-y+1,-z+1; $^{\#2}$ x+1,y	y+1,z; = x+1,-y+1,-z	+1	
	Compusul 22		1
Zn(1)-O(4)	1,961(6)	Zn(1)-C(5)	2,577(10)
Zn(1)-N(2)	2,090(8)		
	1		1
O(4)-Zn(1)-O(4) ^{#1}	144,4(4)	$N(2)-Zn(1)-N(2)^{\#1}$	105,3(4)
O(4)-Zn(1)-N(2)	92,0(3)	$O(4)^{\#1}$ -Zn(1)-N(2) ^{\#1}	92,0(3)
$O(4)^{\#1}$ -Zn(1)-N(2)	109,6(3)	$O(4)-Zn(1)-N(2)^{\#1}$	109,6(3)
$x^{\#1}$ -x, -x+y, -z+4/3			
	Compusul 23		ſ
Cd(1)-O(1A)	2,273(10)	Cd(3)-N(1C)	2,255(11)
$Cd(1)-N(2A)^{\#1}$	2,285(10)	Cd(3)-O(1C)	2,294(13)
Cd(1)-N(1A)	2,303(10)	$Cd(3)-O(3C)^{\#5}$	2,315(11)
$Cd(1)-O(3A)^{#2}$	2,317(10)	$Cd(3)-O(4C)^{#5}$	2,345(12)
$Cd(1)-O(4A)^{#2}$	2,329(8)	$Cd(3)-N(2C)^{\#6}$	2,353(12)
Cd(1)-O(2A)	2,399(9)	Cd(3)-O(2C)	2,399(11)
Cd(2)-O(1B)	2,311(12)	Cd(2)-N(1B)	2,321(11)
$Cd(2)-O(3B)^{\#3}$	2,311(12)	Cd(2)-N(2B)#4	2,342(11)
$Cd(2)-O(4B)^{#3}$	2,319(10)	Cd(2)-O(2B)	2,387(11)
Q (1 +) Q 1 (1) N (2 +) #1	100.1(4)		
$O(1A)-Cd(1)-N(2A)^{*1}$	100,1(4)	N(1C)-Cd(3)-O(1C)	105,8(5)
O(1A)-Cd(1)-N(1A)	82,6(4)	$N(1C)-Cd(3)-O(3C)^{#5}$	138,7(4)
$N(2A)^{+1}-Cd(1)-N(1A)$	96,3(4)	$O(1C)-Cd(3)-O(3C)^{#3}$	114,6(6)
$O(1A)-Cd(1)-O(3A)^{#2}$	159,8(4)	$N(1C)-Cd(3)-O(4C)^{#5}$	84,6(4)
$N(2A)^{\#1}-Cd(1)-O(3A)^{\#2}$	85,5(4)	O(1C)-Cd(3)-O(4C) ^{#5}	160,5(4)
$N(1A)-Cd(1)-O(3A)^{#2}$	116,3(4)	$O(3C)^{\#3}$ -Cd(3)-O(4C)^{\#3}	54,2(4)
$O(1A)-Cd(1)-O(4A)^{#2}$	121,0(4)	$N(1C)-Cd(3)-N(2C)^{\#6}$	95,5(4)
$N(2A)^{\#1}-Cd(1)-O(4A)^{\#2}$	138,8(4)	$O(1C)-Cd(3)-N(2C)^{\#6}$	82,7(5)
$N(1A)-Cd(1)-O(4A)^{#2}$	91,2(4)	$O(3C)^{\#5}$ -Cd(3)-N(2C)^{\#6}	97,6(4)
$O(3A)^{#2}-Cd(1)-O(4A)^{#2}$	55,4(3)	$O(4C)^{#5}-Cd(3)-N(2C)^{#6}$	113,2(5)

O(1A)-Cd(1)-O(2A)	55,6(3)	N(1C)-Cd(3)-O(2C)	107,8(4)
N(2A) ^{#1} -Cd(1)-O(2A)	113,4(4)	O(1C)-Cd(3)-O(2C)	55,2(4)
N(1A)-Cd(1)-O(2A)	131,2(4)	O(3C) ^{#5} -Cd(3)-O(2C)	89,3(5)
$O(3A)^{#2}-Cd(1)-O(2A)$	104,3(4)	$O(4C)^{\#5}-Cd(3)-O(2C)$	106,3(5)
$O(4A)^{#2}-Cd(1)-O(2A)$	90,5(3)	N(2C) ^{#6} -Cd(3)-O(2C)	135,7(5)
$O(1B)-Cd(2)-O(3B)^{#3}$	158,8(4)	$O(3B)^{#3}-Cd(2)-N(2B)^{#4}$	116,0(5)
$O(1B)-Cd(2)-O(4B)^{\#3}$	118,9(5)	$O(4B)^{#3}$ -Cd(2)-N(2B) ^{#4}	94,0(4)
$O(3B)^{#3}$ -Cd(2)-O(4B) ^{#3}	55.2(4)	$N(1B)-Cd(2)-N(2B)^{#4}$	96.1(4)
O(1B)-Cd(2)-N(1B)	100.7(5)	O(1B)-Cd(2)-O(2B)	54.0(4)
$O(3B)^{#3}$ -Cd(2)-N(1B)	85.8(4)	$O(3B)^{\#3}$ -Cd(2)-O(2B)	104.9(4)
$O(4B)^{#3}-Cd(2)-N(1B)$	140.0(5)	$O(4B)^{\#3}$ -Cd(2)-O(2B)	88.8(5)
$O(1B)-Cd(2)-N(2B)^{\#4}$	83.6(4)	N(1B)-Cd(2)-O(2B)	111.8(4)
$N(2B)^{#4}-Cd(2)-O(2B)$	131.8(4)		;-(-)
$\frac{1}{41} - x + y - 1 - x + 1 - z - 2/3$	$\frac{1}{v} - x + 1 + \frac{1}{3} + \frac{1}{3} - v + 2$	$x - y + 1 - \frac{1}{3} \cdot \frac{\#}{4} - x + y + 1 - x + y + 1$	-1 7-2/3· #5 -
y x - y + 1 z - 1/3. #6 $-x + y - x + 1 z = 1/3$	y, w 1,2, 170 y 12,. y-2/3	<i>y</i> + 1,2, 1,0, <i>y</i> + 1, <i>y</i> +	1,2,2,0,
<u> </u>	Compusul 24		
$Z_n(1)/Cd(1)-O(1)$	2 078(11)	$Z_{n}(1)/Cd(1)-N(1)$	2 193(8)
Zn(1)/Cd(1)-Q(2)	2,070(11) 2 429(7)	$\Sigma \Pi(1)/\Sigma \Pi(1)$	2,195(0)
2.1(1)/04(1)/0(2)	2,129(7)		
$O(1)-Cd(1)-O(1)^{\#1}$	152 7(5)	N(1)-Cd(1)-O(2)	98 4(3)
$O(1)-Cd(1)-N(1)^{\#1}$	132,7(3) 88 1(4)	$O(1)-Cd(1)-O(2)^{\#1}$	1030(4)
O(1) Cd(1) N(1)	100.8(4)	O(1)-Cd(1)-O(2) $O(2)$ Cd(1) $O(2)^{\#1}$	103,0(4) 86.2(5)
$N(1)^{\#1} Cd(1) N(1)$	109,0(4)	$N(1)^{\#1}$ Cd(1) O(2)	1430(4)
N(1) -Cu(1) -N(1) O(1) Cd(1) O(2)	99,4(4) 55 2(2)	N(1) -Cd(1) -O(2)	143,0(4)
$\frac{0}{1} - \frac{1}{2}$	55,2(5)		
<i>y</i> , <i>x</i> ,- <i>z</i> + <i>z</i>	Communul 25		
$C_{2}(1)/7_{2}(1) O(1)$	$\frac{1.074(7)}{1.074(7)}$	$C_{0}(1)/Z_{n}(1) N(1)$	2.107(8)
CO(1)/ZII(1)-O(1)	1,974(7)	CO(1)/ZII(1)-IN(1)	2,107(6)
$O(1) C_{2}(1) O(1)^{\#1}$	147.8(4)	$O(1) C_{0}(1) N(1)$	108 6(3)
$O(1)-Co(1)-O(1)^{\#1}$ O(1)-Co(1) N(1) ^{#1}	147,8(4)	O(1)-Co(1)-N(1) N(1) ^{#1} Co(1) N(1)	108,6(3)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \end{array}$	147,8(4) 91,2(3)	O(1)-Co(1)-N(1) N(1) ^{#1} -Co(1)-N(1)	108,6(3) 104,7(4)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ {}^{\#1}-x+2, -x+y+1, -z+4/3, {}^{\#2}y, \end{array}$	$ \begin{array}{c} 147,8(4) \\ 91,2(3) \\ x,-z+1 \end{array} $	O(1)-Co(1)-N(1) N(1) ^{#1} -Co(1)-N(1)	108,6(3) 104,7(4)
O(1)-Co(1)-O(1) ^{#1} O(1)-Co(1)-N(1) ^{#1} ^{#1} - x +2,- x + y +1,- z +4/3, ^{#2} y ,	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ Compusul 26 $	O(1)-Co(1)-N(1) $N(1)^{\#1}-Co(1)-N(1)$	108,6(3) 104,7(4)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ ^{\#1}-x+2,-x+y+1,-z+4/3, \ ^{\#2}y, \\ \hline Cd(1)-N(1) \\ Cd(1)-N(2) \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1) \\ N(1)^{\#1}-Co(1)-N(1) \end{array}$ $Cd(2)-N(11) \\ Cd(2)-N(12) \\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,200(5)
O(1)-Co(1)-O(1) ^{#1} O(1)-Co(1)-N(1) ^{#1} $\frac{\#}{} -x+2, -x+y+1, -z+4/3, \frac{\#}{} y,$ Cd(1)-N(1) Cd(1)-N(3) Cd(1)-N(3)	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,28(4) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1) \\ N(1)^{\#1}-Co(1)-N(1) \\ \hline \\ Cd(2)-N(11) \\ Cd(2)-N(12) \\ Cd(2)-O(11) \\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,289(4)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ ^{\#1}-x+2,-x+y+1,-z+4/3, ^{\#2}y, \\ \hline Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(7) \\ Cd(1)-N(7) \\ \hline \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,26(4) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1) \\ N(1)^{\#1}-Co(1)-N(1) \\ \hline \\ Cd(2)-N(11) \\ Cd(2)-N(12) \\ Cd(2)-O(1) \\ Cl(2) \\ O(2) \\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,272(4)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ ^{\#1}-x+2,-x+y+1,-z+4/3, ^{\#2}y, \\ \hline Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ O(1)-N(8) \\ O(1)-N(6) \\ \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,265(4) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1) \\ N(1)^{\#1}-Co(1)-N(1) \\ \hline \\ Cd(2)-N(11) \\ Cd(2)-N(12) \\ Cd(2)-O(1) \\ Cd(2)-O(1) \\ Cd(2)-O(2) \\ Cl(2)-N(2)^{\#1} \\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,210(5)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \overset{\#1}{} -x+2, -x+y+1, -z+4/3, & \overset{\#2}{} y, \\ \hline Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ \hline Cl(1)-O(6) \\ \hline Cl(1)-O(7) \\ \hline \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,356(4) \\ 2,121(4) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1) \\ N(1)^{\#1}-Co(1)-N(1) \\ \hline \\ Cd(2)-N(11) \\ Cd(2)-N(12) \\ Cd(2)-O(1) \\ Cd(2)-O(1) \\ Cd(2)-O(2) \\ Cd(2)-N(2)^{\#1} \\ Cl(2)-N(2)^{\#1} \\ \hline \\ Cl(2)-N(2)^{\#1} \\$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,205(5)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \overset{\#1}{-x+2,-x+y+1,-z+4/3,} & \overset{\#2}{-y}, \\ \hline \\ Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array}$ $\begin{array}{c} Cd(2)-N(11)\\ Cd(2)-N(12)\\ Cd(2)-O(1)\\ Cd(2)-O(1)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1) \\ N(1)^{\#1}-Co(1)-N(1) \\ \hline \\ Cd(2)-N(11) \\ Cd(2)-N(12) \\ Cd(2)-O(1) \\ Cd(2)-O(1) \\ Cd(2)-O(2) \\ Cd(2)-N(2)^{\#1} \\ Cd(2)-N(4)^{\#2} \\ \hline \\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \overset{\#1}{} -x+2, -x+y+1, -z+4/3, & \overset{\#2}{} y, \\ \hline \\ Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \hline \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(3) \\ \hline \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(3) \\ \hline \\ \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 100,2(2) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \hline\\ Cd(2)-N(11)\\ Cd(2)-N(12)\\ Cd(2)-O(1)\\ Cd(2)-O(1)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \hline\\ N(4)^{\#2}-Cd(2)-N(11)\\ N(4)^{\#2}-Cd(2)-N(11)\\ \hline\\ N(4)^{\#2}-Cd(2)-N(12)\\ \hline\end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \overset{\#1}{} -x+2, -x+y+1, -z+4/3, & \overset{\#2}{} y, \\ \hline \\ Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \hline \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-N(7) \\ \hline \\ \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 07,9(2) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \hline\\ Cd(2)-N(11)\\ Cd(2)-N(12)\\ Cd(2)-O(1)\\ Cd(2)-O(2)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \hline\\ N(4)^{\#2}-Cd(2)-N(11)\\ N(4)^{\#2}-Cd(2)-N(12)\\ \hline\\ N(4)^{\#2}-Cd(2)-N(12)\\ \hline\\ N(4)^{\#2}-Cd(2)-O(12)\\ \hline\\ N(4$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2) 90,0(2)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \overset{\#1}{} -x+2, -x+y+1, -z+4/3, & \overset{\#2}{} y, \\ \hline \\ Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \hline \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-N(8) \\ \hline \\ N(1)-Cd(1)-N(8) \\ $	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1) \\ N(1)^{\#1}-Co(1)-N(1) \\ \hline \\ Cd(2)-N(11) \\ Cd(2)-N(12) \\ Cd(2)-O(1) \\ Cd(2)-O(2) \\ Cd(2)-O(2) \\ Cd(2)-N(2)^{\#1} \\ Cd(2)-N(4)^{\#2} \\ \hline \\ N(4)^{\#2}-Cd(2)-N(11) \\ N(4)^{\#2}-Cd(2)-N(12) \\ N(4)^{\#2}-Cd(2)-O(1) \\ \hline \\ N(4)^{\#2}-Cd(2)-O(2) \\ \hline \\ \hline \\ N(4)^{\#2}-Cd(2)-O(2) \\ \hline \\ N(4)^{\#2}-Cd(2)-Cd(2)-Cd(2) \\ \hline \\ N(4)^{\#2}-Cd(2)-Cd(2)-Cd(2) \\ \hline \\ N(4)^{\#2}-Cd(2)-Cd(2)-Cd(2)-Cd(2) \\ \hline \\ N(4)^{\#2}-Cd(2)-Cd(2)-Cd(2)-Cd(2) \\ \hline \\ N(4)^{\#2}-Cd($	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2) 89,0(2) 01 (2)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \overset{\#1}{} -x+2, -x+y+1, -z+4/3, \overset{\#2}{} y, \\ \hline \\ Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \hline \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-N(8) \\ N(1)-Cd(1)-O(6) \\ \hline \\ N($	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,365(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 265(2) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array}$ $\begin{array}{c} Cd(2)-N(11)\\ Cd(2)-N(12)\\ Cd(2)-O(1)\\ Cd(2)-O(2)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \end{array}$ $\begin{array}{c} N(4)^{\#2}-Cd(2)-N(11)\\ N(4)^{\#2}-Cd(2)-N(12)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(2)\\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2) 89,0(2) 91,6(2)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \hline \\ O(1)-Co(1)-N(1) \\ \hline \\ Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \hline \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-N(8) \\ N(1)-Cd(1)-O(6) \\ N(1)-Cd(1)-O(7) \\ \hline \\ \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 26,2(2) \\ \hline $	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array}$ $\begin{array}{c} Cd(2)-N(11)\\ Cd(2)-N(12)\\ Cd(2)-O(1)\\ Cd(2)-O(2)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \end{array}$ $\begin{array}{c} N(4)^{\#2}-Cd(2)-N(11)\\ N(4)^{\#2}-Cd(2)-N(12)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(2)\\ N(11)-Cd(2)-N(12)\\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2) 89,0(2) 91,6(2) 56,6(2)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \hline \\ & \\ & \\ & \\ \hline \\ & \\ & \\ & \\ & \\ &$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 99,0(2) \\ 150,2(2) \\ 16$	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2) 89,0(2) 91,6(2) 56,6(2) 152,2(2)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \overset{\#1}{} -x+2, -x+y+1, -z+4/3, \overset{\#2}{} y, \\ \hline \\ Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \hline \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-O(6) \\ N(1)-Cd(1)-O(6) \\ N(1)-Cd(1)-O(7) \\ N(3)-Cd(1)-N(7) \\ N(3)-Cd(1)-N(8) \\ \hline \\ \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 99,0(2) \\ 153,7(2) \\ \hline 2,272(5) \\ 2,272(5) \\ 2,272(5) \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,356(4) \\ 2,356(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 99,0(2) \\ 153,7(2) \\ \hline 2,316(5) \\ 2,272(5) \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,356(4) \\$	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array}$ $\begin{array}{c} Cd(2)-N(11)\\ Cd(2)-N(12)\\ Cd(2)-O(1)\\ Cd(2)-O(2)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \end{array}$ $\begin{array}{c} N(4)^{\#2}-Cd(2)-N(11)\\ N(4)^{\#2}-Cd(2)-N(12)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(2)\\ N(11)-Cd(2)-O(1)\\ N(11)-Cd(2)-O(2)\\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2) 89,0(2) 91,6(2) 56,6(2) 152,2(2) 97,5(2)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \overset{\#1}{} -x+2, -x+y+1, -z+4/3, & \overset{\#2}{} y, \\ \hline \\ Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \hline \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-N(8) \\ N(1)-Cd(1)-O(6) \\ N(1)-Cd(1)-O(7) \\ N(3)-Cd(1)-N(7) \\ N(3)-Cd(1)-N(7) \\ N(3)-Cd(1)-N(8) \\ N(3)-Cd(1)-O(6) \\ \hline \\ \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 99,0(2) \\ 153,7(2) \\ 90,1(2) \\ 20,1(2) \\ 100,$	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array}$ $\begin{array}{c} Cd(2)-N(11)\\ Cd(2)-N(12)\\ Cd(2)-O(1)\\ Cd(2)-O(2)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \end{array}$ $\begin{array}{c} N(4)^{\#2}-Cd(2)-N(11)\\ N(4)^{\#2}-Cd(2)-N(12)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(2)\\ N(11)-Cd(2)-O(1)\\ N(11)-Cd(2)-O(1)\\ N(12)-Cd(2)-O(1)\\ \end{array}$	$ \begin{array}{c} 108,6(3)\\ 104,7(4)\\ \hline 2,314(4)\\ 2,399(5)\\ 2,389(4)\\ 2,373(4)\\ 2,310(5)\\ 2,295(5)\\ \hline 95,1(2)\\ 150,8(2)\\ 89,0(2)\\ 91,6(2)\\ 56,6(2)\\ 152,2(2)\\ 97,5(2)\\ 112,6(2)\\ \hline 55(2)\\ 112,6(2)\\ 112,6(2)\\ \hline 55(2)\\ 112,6(2)\\ \hline 55(2)\\ 112,6(2)\\ \hline 55(2)\\ 112,6(2)\\ \hline 55(2)\\ 112,6(2)\\ 112,6(2)\\ \hline 55(2)\\ 112,6(2)\\$
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1) \\ \hline O(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \hline \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 99,0(2) \\ 153,7(2) \\ 90,1(2) \\ 98,6(2) \\ \hline 101,1(2) \\ 10$	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2) 89,0(2) 91,6(2) 56,6(2) 152,2(2) 97,5(2) 112,6(2) 85,9(2)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1) \\ \hline O(1)-N(3) \\ \hline Cd(1)-N(3) \\ \hline Cd(1)-N(7) \\ \hline Cd(1)-N(8) \\ \hline Cd(1)-O(6) \\ \hline Cd(1)-O(6) \\ \hline Cd(1)-O(7) \\ \hline N(1)-Cd(1)-N(3) \\ \hline N(1)-Cd(1)-N(7) \\ \hline N(1)-Cd(1)-N(8) \\ \hline N(1)-Cd(1)-N(7) \\ \hline N(1)-Cd(1)-O(6) \\ \hline N(1)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-N(7) \\ \hline N(3)-Cd(1)-N(8) \\ \hline N(3)-Cd(1)-O(6) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-O(6) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-O(6) \\ \hline N(3)-Cd(1)-O(6) \\ \hline O(7) \\ \hline N(7)-Cd(1)-O(6) \\ \hline O(7) \\ \hline$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 99,0(2) \\ 153,7(2) \\ 90,1(2) \\ 98,6(2) \\ 105,7(2) \\ \hline \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2) 89,0(2) 91,6(2) 56,6(2) 152,2(2) 97,5(2) 112,6(2) 85,9(2) 54,8(1)
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1) \\ \hline Cd(1)-N(1) \\ Cd(1)-N(3) \\ Cd(1)-N(3) \\ Cd(1)-N(7) \\ Cd(1)-N(8) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(6) \\ Cd(1)-O(7) \\ \hline N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-O(6) \\ N(1)-Cd(1)-O(7) \\ N(3)-Cd(1)-N(7) \\ N(3)-Cd(1)-N(8) \\ N(3)-Cd(1)-N(8) \\ N(3)-Cd(1)-O(6) \\ N(3)-Cd(1)-O(6) \\ N(3)-Cd(1)-O(7) \\ N(7)-Cd(1)-O(6) \\ N(7)-Cd(1)-O(7) \\ \hline \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 99,0(2) \\ 153,7(2) \\ 90,1(2) \\ 98,6(2) \\ 105,7(2) \\ 153,2(2) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array} \\ \hline \\ N(1)^{\#1}-Co(1)-N(1)\\ \hline \\ Cd(2)-N(12)\\ Cd(2)-N(12)\\ Cd(2)-O(1)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \hline \\ N(4)^{\#2}-Cd(2)-N(11)\\ N(4)^{\#2}-Cd(2)-N(12)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(1)-Cd(2)-O(2)\\ N(11)-Cd(2)-O(1)\\ N(11)-Cd(2)-O(2)\\ N(12)-Cd(2)-O(2)\\ N(12)-Cd(2)-O(2)\\ O(1)-Cd(2)-O(2)\\ N(2)^{\#1}-Cd(2)-N(4)^{\#2}\\ \hline \end{array}$	$\begin{array}{c} 108,6(3)\\ 104,7(4)\\ \hline \\ 2,314(4)\\ 2,399(5)\\ 2,389(4)\\ 2,373(4)\\ 2,310(5)\\ 2,295(5)\\ \hline \\ 95,1(2)\\ 150,8(2)\\ 89,0(2)\\ 91,6(2)\\ 56,6(2)\\ 152,2(2)\\ 97,5(2)\\ 112,6(2)\\ 85,9(2)\\ 54,8(1)\\ 104,6(2)\\ \hline \end{array}$
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1) \\ \hline O(1)-Co(1)-N(1) \\ \hline Cd(1)-N(3) \\ \hline Cd(1)-N(3) \\ \hline Cd(1)-N(7) \\ \hline Cd(1)-N(8) \\ \hline Cd(1)-O(6) \\ \hline Cd(1)-O(6) \\ \hline Cd(1)-O(7) \\ \hline N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ \hline N(1)-Cd(1)-N(8) \\ \hline N(1)-Cd(1)-O(6) \\ \hline N(1)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-N(7) \\ \hline N(3)-Cd(1)-N(8) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-O(6) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline O(6)-Cd(1)-N(8) \\ \hline \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,356(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 99,0(2) \\ 153,7(2) \\ 90,1(2) \\ 98,6(2) \\ 105,7(2) \\ 153,2(2) \\ 87,8(2) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \end{array} \\ \hline \\ N(1)^{\#1}-Co(1)-N(1)\\ \hline \\ Cd(2)-N(12)\\ Cd(2)-N(12)\\ Cd(2)-O(2)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \end{array} \\ \hline \\ N(4)^{\#2}-Cd(2)-N(11)\\ N(4)^{\#2}-Cd(2)-N(12)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(11)-Cd(2)-O(2)\\ N(11)-Cd(2)-O(1)\\ N(11)-Cd(2)-O(1)\\ N(12)-Cd(2)-O(2)\\ N(12)-Cd(2)-O(2)\\ N(2)^{\#1}-Cd(2)-N(4)^{\#2}\\ N(2)^{\#1}-Cd(2)-N(11)\\ \end{array}$	$\begin{array}{c} 108,6(3)\\ 104,7(4)\\ \hline \\ 2,314(4)\\ 2,399(5)\\ 2,389(4)\\ 2,373(4)\\ 2,310(5)\\ 2,295(5)\\ \hline \\ 95,1(2)\\ 150,8(2)\\ 89,0(2)\\ 91,6(2)\\ 56,6(2)\\ 152,2(2)\\ 97,5(2)\\ 112,6(2)\\ 85,9(2)\\ 54,8(1)\\ 104,6(2)\\ 108,9(2)\\ \hline \end{array}$
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1) \\ \hline O(1)-Co(1)-N(1) \\ \hline Cd(1)-N(3) \\ \hline Cd(1)-N(3) \\ \hline Cd(1)-N(7) \\ \hline Cd(1)-N(8) \\ \hline Cd(1)-O(6) \\ \hline Cd(1)-O(6) \\ \hline Cd(1)-O(6) \\ \hline Cd(1)-O(7) \\ \hline N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ N(1)-Cd(1)-N(8) \\ \hline N(1)-Cd(1)-N(8) \\ \hline N(1)-Cd(1)-O(6) \\ \hline N(1)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-N(7) \\ \hline N(3)-Cd(1)-N(8) \\ \hline N(3)-Cd(1)-O(6) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-O(6) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline O(6)-Cd(1)-N(8) \\ \hline N(8)-Cd(1)-O(7) \\ \hline \end{array}$	$\begin{array}{r} 147,8(4)\\ 91,2(3)\\ x,-z+1\\ \hline Compusul 26\\ 2,316(5)\\ 2,272(5)\\ 2,328(4)\\ 2,365(4)\\ 2,365(4)\\ 2,356(4)\\ 2,431(4)\\ \hline 101,1(2)\\ 109,3(2)\\ 97,0(2)\\ 140,8(2)\\ 86,7(2)\\ 99,0(2)\\ 153,7(2)\\ 99,0(2)\\ 153,7(2)\\ 99,0(2)\\ 153,7(2)\\ 99,0(2)\\ 153,7(2)\\ 98,6(2)\\ 105,7(2)\\ 153,2(2)\\ 87,8(2)\\ 101,3(2)\\ \end{array}$	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \\ N(1)^{\#1}-Co(1)-N(1)\\ \\ Cd(2)-N(12)\\ Cd(2)-N(12)\\ Cd(2)-O(2)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \end{array}$ $\begin{array}{c} N(4)^{\#2}-Cd(2)-N(11)\\ N(4)^{\#2}-Cd(2)-N(12)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(1)\\ N(4)^{\#2}-Cd(2)-O(2)\\ N(11)-Cd(2)-O(2)\\ N(11)-Cd(2)-O(2)\\ N(11)-Cd(2)-O(1)\\ N(12)-Cd(2)-O(2)\\ N(12)-Cd(2)-O(2)\\ N(12)-Cd(2)-O(2)\\ N(2)^{\#1}-Cd(2)-N(11)\\ N(2)^{\#1}-Cd(2)-N(12)\\ \end{array}$	$ \begin{array}{c} 108,6(3)\\ 104,7(4)\\ \hline 2,314(4)\\ 2,399(5)\\ 2,389(4)\\ 2,373(4)\\ 2,310(5)\\ 2,295(5)\\ \hline 95,1(2)\\ 150,8(2)\\ 89,0(2)\\ 91,6(2)\\ 56,6(2)\\ 152,2(2)\\ 97,5(2)\\ 112,6(2)\\ 85,9(2)\\ 54,8(1)\\ 104,6(2)\\ 108,9(2)\\ 92,6(2)\\ \hline \end{array} $
$\begin{array}{c} O(1)-Co(1)-O(1)^{\#1} \\ O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1)^{\#1} \\ \hline O(1)-Co(1)-N(1) \\ \hline O(1)-Co(1)-N(1) \\ \hline Cd(1)-N(3) \\ \hline Cd(1)-N(3) \\ \hline Cd(1)-N(7) \\ \hline Cd(1)-N(8) \\ \hline Cd(1)-O(6) \\ \hline Cd(1)-O(6) \\ \hline Cd(1)-O(7) \\ \hline N(1)-Cd(1)-N(3) \\ N(1)-Cd(1)-N(7) \\ \hline N(1)-Cd(1)-N(7) \\ \hline N(1)-Cd(1)-N(8) \\ \hline N(1)-Cd(1)-O(7) \\ \hline N(3)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline N(7)-Cd(1)-O(7) \\ \hline O(6)-Cd(1)-O(7) \\ \hline O(6)-Cd(1)-O(7) \\ \hline O(6)-Cd(1)-O(7) \\ \hline \end{array}$	$ \begin{array}{r} 147,8(4) \\ 91,2(3) \\ x,-z+1 \\ \hline Compusul 26 \\ 2,316(5) \\ 2,272(5) \\ 2,328(4) \\ 2,365(4) \\ 2,365(4) \\ 2,356(4) \\ 2,431(4) \\ \hline 101,1(2) \\ 109,3(2) \\ 97,0(2) \\ 140,8(2) \\ 86,7(2) \\ 99,0(2) \\ 153,7(2) \\ 90,1(2) \\ 98,6(2) \\ 105,7(2) \\ 153,2(2) \\ 87,8(2) \\ 101,3(2) \\ 54,3(1) \\ \end{array} $	$\begin{array}{c} O(1)-Co(1)-N(1)\\ N(1)^{\#1}-Co(1)-N(1)\\ \\ N(1)^{\#1}-Co(1)-N(1)\\ \\ Cd(2)-N(12)\\ Cd(2)-N(12)\\ Cd(2)-O(2)\\ Cd(2)-O(2)\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(2)^{\#1}\\ Cd(2)-N(4)^{\#2}\\ \end{array}$	108,6(3) 104,7(4) 2,314(4) 2,399(5) 2,389(4) 2,373(4) 2,310(5) 2,295(5) 95,1(2) 150,8(2) 89,0(2) 91,6(2) 56,6(2) 152,2(2) 97,5(2) 112,6(2) 85,9(2) 54,8(1) 104,6(2) 108,9(2) 92,6(2) 96,5(2)

Compusul 27			
$Zn(1)-O(3A)^{\#1}$	1,968(9)	Zn(1)-N(7A)	2,042(8)
Zn(1)-N(5A)	1.991(9)	Zn(1)-N(2A)	2.526(9)
Zn(1)-N(1A)	2,012(9)	$Zn(2)-O(3B)^{\#2}$	1 976(8)
Zn(2)-N(1B)	1 989(8)	Zn(2) - N(5B)	2,059(9)
Zn(2) - N(6B)	2.046(7)	211(2) 11(32)	2,000())
	2,010(7)		<u> </u>
$O(3A)^{\#1}-Zn(1)-N(1A)$	101 3(4)	$O(3B)^{\#2}-7n(2)-N(6B)$	102 7(4)
N(5A)-Zn(1)-N(1A)	1303(4)	N(1B)-7n(2)-N(6B)	102,7(1) 128.0(3)
$O(3A)^{\#1}-Zn(1)-N(7A)$	97 9(4)	$O(3B)^{\#2}-7n(2)-N(5B)$	980(4)
N(5A) Zn(1) N(7A)	105.8(4)	N(1B) 7n(2) N(5B)	11/3(3)
N(1A) Zn(1) N(7A)	103,0(4) 110 $A(A)$	$N(6P) T_{n}(2) N(5P)$	104.4(3)
$O(2A)^{\#1}$ $Z_{n}(1) N(2A)$	110, 4(4) 159 7(2)	N(0B)-Zn(2)-N(3B) N(7A) Zn(1) N(2A)	104,4(3)
O(3A) - ZII(1) - N(2A) N(5A) $Z_{n}(1) N(2A)$	130,7(3)	N(7A)-ZII(1)-N(2A) $O(2P)^{\#2}(7n(2)) N(1P)$	1047(2)
N(3A)- $ZH(1)$ - $N(2A)N(1A) Z_{n}(1) N(2A)$	09,0(3) 59 2(4)	O(3B) - ZII(2) - IN(1B)	104,7(3)
$\frac{1}{1}$ N(1A)-ZII(1)-N(2A)	38,2(4)		
<i>x,y+1,z x,y-1,z</i>	Compusul 20	2	
$M_{n}(1) - O(1)$	2 1702(15)	$Mn(1) - O(2)^{\#2}$	2 2177(14)
Mn(1) O(1w)	2,1702(15) 2 1085(16)	Win(1)-O(2)	2,2177(14)
WIII(1)-O(1W)	2,1985(10)		
$O(1)^{\#1}$ -Mn(1)-O(1w)	88 15(6)	$O(1)-Mn(1)-O(2)^{\#3}$	94 26(6)
O(1)-Mn(1)-O(1w)	91 85(6)	$O(1w)-Mn(1)-O(2)^{\#3}$	87 45(6)
$O(1)$ -Mn(1)- $O(2)^{\#2}$	85 74(6)	$O(1w) - Mn(1) - O(2)^{\#2}$	92 55(6)
$\frac{1}{4}$ - x - y + 1 - z + 1 $\frac{1}{4}$ - x y - 1/2 -	7+3/2 #3 x -y+3/2 7-1/2)	72,33(0)
	Compusul 29		
Mn(1)-O(2w)	2.137(2)	Mn(1)-O(1w)	2.2096(2)
Mn(1)-O(1)	2,1648(18)		_, (_)
	, (-)		1
$O(2w)-Mn(1)-O(1)^{\#1}$	89,38(8)	O(2w)-Mn(1)-O(1w)	90,84(9)
O(2w)-Mn(1)-O(1)	90.62(8)	O(1)-Mn(1)-O(1w)	89.94(7)
$O(2w)-Mn(1)-O(1w)^{\#1}$	89,16(9)	$O(1)-Mn(1)-O(1w)^{\#1}$	90.06(7)
$\frac{\#1}{2}$ -x, -y+1, -z+1			
	Compusul 30		
Mn(1)-O(1w)	2,1629(2)	Mn(1)-N(1)	2,2695(2)
Mn(1)-O(2w)	2,2202(2)		,
	•		•
O(1w)-Mn(1)-O(2w)	88,01(7)	O(1w)-Mn(1)-N(1)	90,05(7)
$O(1w)-Mn(1)-O(2w)^{\#1}$	91,99(7)	O(2w)-Mn(1)-N(1)	91,72(7)
$O(1w)-Mn(1)-N(1)^{\#1}$	89,95(7)	$O(2w)-Mn(1)-N(1)^{\#1}$	88,28(7)
$^{\#1}$ - <i>x</i> +1,- <i>y</i> +2,- <i>z</i>			
	Compusul 31		
Co(1)-O(2w)	2,076(2)	Co(1)-N(3)	2,160(2)
Co(1)-O(1w)	2,153(2)		
$O(2w)-Co(1)-O(1w)^{\#1}$	88,25(10)	$O(2w)-Co(1)-N(3)^{\#1}$	90,27(9)
O(2w)-Co(1)-O(1w)	91,75(9)	$O(1w)-Co(1)-N(3)^{\#1}$	88,98(9)
O(2w)-Co(1)-N(3)	89,73(9)	O(1w)-Co(1)-N(3)	91,02(9)
$x^{\#1}$ - <i>x</i> +2,- <i>y</i> +2,- <i>z</i>			
	Compusul 32		
Zn(1)-O(1w)	2,0843(2)	Zn(1)-O(2w)	2,1679(2)
Zn(1)-N(1)	2,154(2)		
	00.04/0		
O(1w)-Zn(1)-N(1)	90,36(8)	$O(1w)-Zn(1)-O(2w)^{\#1}$	88,41(8)
O(1w)-Zn(1)-N(1) ^{#1}	89,64(8)	$N(1)-Zn(1)-O(2w)^{\#1}$	89,28(8)

O(1w)-Zn(1)-O(2w)	91,59(8)	N(1)- $Zn(1)$ - $O(2w)$	90,72(8)
$^{\#1}$ -x+1,-y,-z+1			
	Compusul 33	3	
Cd(1)-O(1w)	2,272(4)	Cd(1)-O(1)	2,340(3)
$Cd(1)-N(4)^{\#1}$	2,298(4)	Cd(1)-S(1)	2,9453(1)
$Cd(1)-O(2)^{\#2}$	2,303(4)	Cd(1)-N(3)	2,305(4)
$O(1w)-Cd(1)-N(4)^{\#1}$	89,83(15)	O(1w)-Cd(1)-S(1)	82,96(10)
$O(1w)-Cd(1)-O(2)^{\#2}$	130,08(13)	$N(4)^{#1}-Cd(1)-S(1)$	86,91(13)
$N(4)^{#1}-Cd(1)-O(2)^{#2}$	95,87(16)	$O(2)^{#2}-Cd(1)-S(1)$	146,73(9)
O(1w)-Cd(1)-N(3)	88,75(15)	N(3)-Cd(1)-S(1)	90,75(12)
$N(4)^{\#1}-Cd(1)-N(3)$	177,40(17)	O(1)-Cd(1)-S(1)	70,26(10)
$O(2)^{#2}-Cd(1)-N(3)$	86,71(15)	$O(2)^{#2}-Cd(1)-O(1)$	76,63(12)
O(1w)-Cd(1)-O(1)	153,21(13)	N(3)-Cd(1)-O(1)	91,22(15)
$N(4)^{\#1}-Cd(1)-O(1)$	89,06(14)		
$\frac{\#1}{x-1}, y, z = \frac{\#2}{x-1}, y+1/2, -z+1$	1/2		
	Compusul 34	ł	
Zn(1)-O(2C)	2,079(3)	Zn(2)-O(1C)	2,020(2)
$Zn(1)-O(2B)^{\#1}$	2,095(2)	Zn(2)-N(1)	2,133(3)
Zn(1)-O(1w)	2,097(2)	Zn(2)-N(2)	2,217(3)
Zn(1)-O(2w)	2,113(2)	Zn(2)-O(1B)	1,998(3)
Zn(1)-N(3)	2,136(3)	Zn(2)-O(1A)	2,019(2)
Zn(1)-N(4)	2,212(3)		, , ,
			I
$O(2C)-Zn(1)-O(2B)^{\#1}$	96,05(10)	O(1B)-Zn(2)-N(1)	95,25(11)
O(2C)-Zn(1)-O(1w)	175,10(11)	O(1A)-Zn(2)-N(1)	93.07(11)
$O(2B)^{\#1}$ -Zn(1)-O(1w)	84,21(10)	O(1C)-Zn(2)-N(1)	91,08(11)
O(2C)-Zn(1)-O(2w)	97.06(10)	O(1B)-Zn(2)-N(2)	88,13(12)
$O(2B)^{\#1}$ -Zn(1)-O(2w)	166.37(10)	O(1A)-Zn(2)-N(2)	83,44(12)
O(1w)-Zn(1)- $O(2w)$	82,41(10)	O(1C)-Zn(2)-N(2)	89,51(11)
O(2C)-Zn(1)-N(3)	92,20(11)	N(1)-Zn(2)-N(2)	176,06(12)
$O(2B)^{\#1}$ -Zn(1)-N(3)	91.87(11)	O(2w)-Zn(1)-N(4)	88.11(11)
O(1w)-Zn(1)-N(3)	92.67(12)	N(3)-Zn(1)-N(4)	177.17(12)
O(2w)-Zn(1)-N(3)	91.35(11)	O(1B)-Zn(2)-O(1A)	121.10(11)
O(2C)-Zn(1)-N(4)	85,10(11)	O(1B)-Zn(2)-O(1C)	112.00(10)
$O(2B)^{\#1}-Zn(1)-N(4)$	89.29(11)	O(1A)-Zn(2)-O(1C)	126.02(10)
O(1w)-Zn(1)-N(4)	90.01(11		120,02(10)
$\frac{\#}{2}$ x-1, y.7	>0,01(11		
	Compusul 35	5	
Cd(1)-N(1)	2.26(4)	Cd(1)-O(1)	2.36(4)
Cd(1)-O(1w)	2.29(5)	Cd(1)-S(1)	3.00(2)
	7 - (-)		()
$N(1)^{\#1}$ -Cd(1)-N(1)	179(2)	N(1)-Cd(1)-S(1)	89.4(12)
N(1)-Cd(1)-O(1w)	89.7(11)	O(1w)-Cd(1)-S(1)	81.4(14)
$N(1) - Cd(1) - O(2)^{\#2}$	90.6(11)	$O(2)^{\#2}$ -Cd(1)-S(1)	1482(14)
$O(1w)-Cd(1)-O(2)^{\#2}$	130 4(19)	O(1)-Cd(1)-S(1)	692(12)
N(1)-Cd(1)-O(1)	90 0(11)	$O(2)^{\#2}$ -Cd(1)-O(1)	79.0(17)
O(1w)-Cd(1)-O(1)	150.6(18)		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\frac{1}{41}$ x y -7+2 $\frac{42}{7}$ -x+1/2 y-1/2 z	7		
	Compusul 36	<u> </u>	
Cd(1)-O(1B)	2.335(3)	$Cd(1)-O(1B)^{\#2}$	2,491(3)
Cd(1) - N(1)	2,340(3)	Cd(1) - C(1A)	2,729(4)
$Cd(1)-N(2)^{\#1}$	2.342(3)	$Cd(1) - O(2B)^{\#2}$	2.391(3)
Cd(1)-O(2A)	2.355(3)	Cd(1)-O(1A)	2.481(3)
	,(-)		=,

O(1B)-Cd(1)-N(1)	89,23(10)	$O(1A)-Cd(1)-O(1B)^{#2}$	137,45(9)
O(1B)-Cd(1)-N(2) ^{#1}	86,23(10)	O(1B)-Cd(1)-C(1A)	122,99(13)
$N(1)-Cd(1)-N(2)^{\#1}$	173,45(10)	N(1)-Cd(1)-C(1A)	89,70(11)
O(1B)-Cd(1)-O(2A)	95,63(11)	$N(2)^{\#1}-Cd(1)-C(1A)$	88,81(10)
N(1)-Cd(1)-O(2A)	88.83(10)	O(2A)-Cd(1)-C(1A)	27.36(11)
$N(2)^{\#1}$ -Cd(1)-Q(2A)	86.91(10)	$O(2B)^{\#2}$ -Cd(1)-C(1A)	111.54(12)
$O(1B)-Cd(1)-O(2B)^{\#2}$	125 46(10)	O(1A)-Cd(1)-C(1A)	2657(11)
$N(1)-Cd(1)-O(2B)^{#2}$	91 63(10)	$O(1B)^{#2}-Cd(1)-C(1A)$	163.95(12)
$N(2)^{\#1}-Cd(1)-O(2B)^{\#2}$	94 86(10)	$O(2B)^{#2}-Cd(1)-O(1A)$	84.98(9)
$O(2A) Cd(1) O(2B)^{#2}$	138 01(0)	$O(1B) Cd(1) O(1B)^{#2}$	72.00(11)
O(2R)-Cd(1)-O(2D) O(1R) Cd(1) O(1A)	130,71(7) 140 56(10)	$N(1) Cd(1) O(1B)^{#2}$	92,00(11)
N(1) Cd(1) O(1A)	147,30(10) 80.70(10)	$N(2)^{\#1} Cd(1) O(1B)^{\#2}$	92,10(10) 01,00(10)
N(1)-Cu(1)-O(1A) $N(2)^{\#1}Cd(1)O(1A)$	03,73(10) 01.72(10)	$O(2A) Cd(1) O(1B)^{#2}$	16856(0)
N(2) -Cd(1) -O(1A)	91,73(10) 52.02(10)	$O(2R)^{+2}Cd(1) O(1B)$	108,30(9)
$\frac{1}{2} \frac{1}{2} \frac{1}$	33,93(10)	O(2B) - Cu(1) - O(1B)	32,40(9)
x, y-1, z -x+1, y, -z+3/2	0 1.25	1	
	Compusul 37		2.022(2)
Zn(1)-O(1)	1,937(2)	$Zn(1)-N(6)^{\pi 1}$	2,022(3)
Zn(1)-O(3)	1,951(2)	Zn(1)-N(5)	2,055(3)
O(1)-Zn(1)-O(3)	109,14(11)	O(3)-Zn(1)-N(5)	113,10(11)
O(1)-Zn(1)-N(6) ^{#1}	108,10(12)	$N(6)^{#1}-Zn(1)-N(5)$	110,57(12)
$O(3)-Zn(1)-N(6)^{\#1}$	118,82(12)	O(1)-Zn(1)-N(5)	94,16(11)
x, y-1, z	~		
	Compusul 38		2.512(2)
Cd(1)- $O(1)$	2,368(3)	Cd(1)-O(4)	2,512(3)
Cd(1)-O(2)	2,509(3)	Cd(1)-O(1w)	2,320(3)
Cd(1)-O(3)	2,380(3)	Cd(1)-N(5)	2,332(4)
$Cd(1)-N(6)^{*1}$	2,346(4)		
$O(1 \rightarrow O(1))$ N(5)	1.67.00(10)		142 11(11)
O(1w)-Cd(1)-N(5)	167,99(12)	O(3)-Cd(1)-O(2)	143,11(11)
$O(1w)-Cd(1)-N(6)^{\#1}$	80,66(12)	O(1w)-Cd(1)-O(4)	103,10(12)
$N(5)-Cd(1)-N(6)^{*1}$	94,40(13)	N(5)-Cd(1)-O(4)	86,82(13)
O(1w)-Cd(1)-O(1)	87,68(11)	$N(6)^{#1}-Cd(1)-O(4)$	81,25(13)
N(5)-Cd(1)-O(1)	88,85(12)	O(1)-Cd(1)-O(4)	140,52(12)
$N(6)^{#1}-Cd(1)-O(1)$	138,22(12)	O(3)-Cd(1)-O(4)	52,95(11)
O(1w)-Cd(1)-O(3)	90,33(12)	O(2)-Cd(1)-O(4)	163,03(11)
N(5)-Cd(1)-O(3)	101,15(13)	O(1w)-Cd(1)-O(2)	84,72(10)
$N(6)^{#1}-Cd(1)-O(3)$	129,97(13)	N(5)-Cd(1)-O(2)	83,96(11)
O(1)-Cd(1)-O(3)	89,74(12)	$N(6)^{\#1}-Cd(1)-O(2)$	85,28(12)
O(1)-Cd(1)-O(2)	53,61(11)		
^{#1} x,y-1,z			
	Compusul 39		
Co(1)-O(1)	2,0909(1)	Co(1)-N(3)	2,1926(2)
Co(1)-O(1 <i>w</i>)	2,1267(1)		
		-	
O(1)-Co(1)-O(1w)	91,53(6)	O(1)-Co(1)-N(3)	90,68(6)
O(1) ^{#1} -Co(1)-O(1w)	88,47(6)	O(1w)-Co(1)-N(3)	91,03(6)
O(1)-Co(1)-N(3) ^{#1}	89,32(6)	$O(1w)-Co(1)-N(3)^{\#1}$	88,97(6)
^{#1} -x+2,-y+2,-z			
	Compusul 40		
Co(1)-O(2w)	2,087(2)	Co(1)-O(1w)	2,141(2)
Co(1)-O(1)	2,106(2)		
$O(2w)^{\#1}-Co(1)-O(1)$	89,34(8)	$O(2w)-Co(1)-O(1w)^{\#1}$	90,42(9)

$O(2w) C_{0}(1) O(1)$	00.66(8)	$O(1) C_{O}(1) O(1w)^{\#1}$	00.70(0)
O(2w)-CO(1)-O(1)	90,00(8)	O(1)-O(1)-O(1w)	90,70(9)
O(2w)-Co(1)-O(1w)	89,58(9)	O(1)-Co(1)-O(1w)	89,30(9)
$x^{\#1} - x + 2, -y, -z + 2$			
	Compusul 41		
Ni(1)-O(2w)	2,042(5)	Ni(1)-O(1w)	2,114(5)
Ni(1)-O(1)	2.076(5)		
	, (.)		
$\Omega(2w)$ -Ni(1)- $\Omega(1)$	91 5(2)	$\Omega(2w)$ -Ni(1)- $\Omega(1w)$	90.3(2)
$O(2w)^{\#1}$ Ni(1) O(1)	88 5(2)	O(1) Ni(1) $O(1w)$	90,3(2)
$O(2w) = NI(1) = O(1w)^{\#1}$	80,3(2)	$O(1) - N(1) - O(1w)^{\#1}$	90,2(2)
O(2W)-INI(1)- $O(1W)$	89,7(2)	O(1)-NI(1)-O(1w)	89,8(2)
$x^{-x+2}, -y, -z$	~		
	Compusul 42		I
Zn(1)-O(1w)	2,057(2)	Zn(1)-O(2w)	2,177(2)
Zn(1)-O(1)	2,112(2)		
	· · · · ·	·	
O(1w)- $Zn(1)$ - $O(1)$	89 21(8)	$O(1w)$ - $Zn(1)$ - $O(2w)^{\#1}$	89 56(8)
$O(1w) Zn(1) O(1)^{\#1}$	0,21(0) 00.70(8)	O(1) $Zn(1)$ $O(2w)$	90,00(9)
O(1w) - Zn(1) - O(1)	90,79(0)	O(1)-ZII(1)-O(2W)	90,00(9)
O(1W)-Zn(1)-O(2W)	90,44(8)		
$x^{n} - x + 1, -y + 1, -z + 1$			
	Compusul 43	5	
Zn(1)-O(1w)	2,067(3)	Zn(1)-O(4)	2,138(4)
Zn(1)-O(1)	2,087(3)		
O(1w)-Zn(1)-O(1)	88,80(13)	$O(1)-Zn(1)-O(4)^{\#1}$	87,68(15)
$O(1w)^{\#1}$ -Zn(1)-O(1)	91,20(13)	$O(1w)^{\#1}$ -Zn(1)-O(4)	91,46(15)
O(1w)-Zn(1)-O(4)	88 54(15)	O(1)-Zn(1)-O(4)	92 32(15)
$\frac{\#}{2} x + 2 y + 1 z + 1$	00,01(10)		72,32(10)
x+2, y+1, z+1	Compusul 44	1	
$C_{2}(1) O(1)$		$C_{2}(1) N(2)$	2.159(6)
$C_0(1) - O(1)$	2,062(3)	CO(1)-IN(2)	2,158(6)
Co(1)-O(1w)	2,144(3)		
	1		
$O(1)-Co(1)-O(1)^{\#1}$	179,93(18)	$O(1)-Co(1)-N(3)^{#2}$	89,97(9)
$O(1)-Co(1)-O(1w)^{\#1}$	89,97(14)	$O(1w)-Co(1)-N(3)^{#2}$	92,63(10)
O(1)-Co(1)-O(1w)	90,04(14)	O(1)-Co(1)-N(2)	90,03(9)
$O(1w)^{\#1}-Co(1)-O(1w)$	174,7(2)	O(1w)-Co(1)-N(2)	87,37(10)
$\frac{\#1}{2} - x \cdot y - z + \frac{1}{2} = \frac{\#2}{2} x \cdot y - 1 \cdot z$, ()		
	Compusul 45	5	
$Cd(1)-N(4)^{\#1}$	2 300(2)	Cd(1)-O(4)	2 380(2)
Cd(1) N(3)	2,300(2) 2,326(2)	Cd(1) O(5)	2,300(2)
$C_{1}(1) - N(3)$	2,320(2)	$C_{1}(1) - O(3)$	2,397(2)
Cd(1)-O(1)	2,307(2)	$Cd(1)-O(2)^{n^2}$	2,356(2)
$N(4)^{*1}$ -Cd(1)-O(1)	91,58(10)	O(4)-Cd(1)-O(5)	54,97(7)
$N(4)^{#1}-Cd(1)-N(3)$	177,19(8)	$N(4)^{\#1}-Cd(1)-O(5)$	92,23(9)
O(1)-Cd(1)-N(3)	90,54(9)	O(1)-Cd(1)-O(5)	146,01(10)
N(4) ^{#1} -Cd(1)-O(2) ^{#2}	91,72(8)	N(3)-Cd(1)-O(5)	87,04(9)
$O(1)-Cd(1)-O(2)^{#2}$	123,50(10)	$O(2)^{#2}$ -Cd(1)-O(5)	90,13(8)
$N(3)-Cd(1)-O(2)^{\#2}$	85.56(8)	N(3)-Cd(1)-O(4)	87.65(9)
$N(4)^{\#1}-Cd(1)-O(4)$	94 16(9)	$O(2)^{\#2}$ -Cd(1)-O(4)	144 76(8)
O(1) Cd(1) O(4)	01.07(10)		177,70(0)
$\frac{1}{4} = \frac{1}{4} = \frac{1}$	91,07(10)	1	I
x - 1, y - 1, z = -x, -y + 1, -z + 1			

D-H···A	d(H···A)	d(D…A)	∠(DHA)	Transformarea
				Simetrică pentru A
	(Compusul 1		
O(1w)-H(1)···O(3w)	1,97	2,758(4)	173	<i>x</i> , <i>y</i> , <i>z</i>
$O(1w) - H(2) \cdots O(7)$	2,27	3,031(5)	156	-x+1/2, +1/2, -z+1/2
$O(2w) - H(1) \cdots O(8)$	2,05	2,754(4)	157	-x, y, -z+1/2
$O(2w) - H(2) \cdots O(3)$	1,83	2,695(4)	169	x, -y+1, z+1/2
$N(1C)-H(1)\cdots O(6)$	1,69	2,628(5)	164	<i>x</i> , <i>y</i> , <i>z</i>
$(2C)-H(2)\cdots O(2)$	1,80	2,618(4)	173	x, -y+2, z+1/2
$O(3w) - H(1) \cdots O(7)$	2,25	3,091(5)	166	x, y+1, z
$O(3w) - H(1) \cdots O(8)$	2,54	3,191(5)	133	x, y+1, z
$O(3w) - H(2) \cdots O(4)$	2,36	3,100(5)	146	x, y, z
$O(4w) - H(1) \cdots O(4)$	2,11	2,985(5)	166	x, y, z - $x - v + 1 - 7$
$O(4w) - H(2) \cdots O(3)$	2.04	2.910(4)	165	x, y, 7
Compusul 2	7-	7 ()		
$O(3w) - H(2) \cdots F(6)$	2.46	3 03(4)	125	x y 7
$O(3w) - H(2) \cdots F(8)$	2,10	2,97(4)	179	x, y, z, x y 7
$O(3w) - H(1) \cdots O(2w)$	2,12	2,97(4) 3 02(4)	143	x, y, z x = 1 + y = 7
$O(3w) - H(2) \cdots O(3w)$	2,52	3,02(4)	170	x = 1, y, z x = 1, y, z
$O(2w) - H(1) \cdots F(4)$	2,13	2,52(4)	172	x + 1, y, z
$O(2w) H(1) H(2) \cdots O(2w)$	1,77	2,33(3) 2,727(15)	172	x, y, z x = 1, y, z = 1
$O(1w) - H(1) \cdots O(1D)$	1,00	2,721(10)	173	x - 1, y, z - 1
$O(1W) \Pi(1) O(1D)$	1,92	$\frac{2,721(10)}{2}$	172	λ, <i>y</i> , <i>ζ</i> ,
$O(1) = H(1O) \dots O(5S)$	2.43	3.241(4)	151	x + 1 $y + 1$ $z + 1$
O(1) - H(10) - O(33) O(1w) H(1) - O(48)	2,43	3,241(4)	151	-x+1, -y+1, -z+1
$O(1w) = H(1) \cdots O(4S)$ $O(1w) = H(2) \cdots O(4S)$	1,90	2,000(4)	136	x, y, z+1
O(1w) = H(2) = O(43) O(2w) = H(1) = O(2W)	1,95	2,030(4) 2,420(10)	174	x, -y+3/2, z+1/2
$O(2w) = H(1) \cdots O(5w)$	2,29	3,430(10) 2,716(5)	179	-x+1, -y+1, -z+1
$O(2w) - H(2) \cdots O(68)$	1,80	2,710(5)	103	-x+1, -y+1, -z
$O(3w) = H(1) \cdots O(8S)$ $O(2w) = H(2) \cdots O(2S)$	1,87	2,700(8) 2,006(7)	102	x, y, z
$O(3w) = H(2) \cdots O(2S)$	2,20	2,990(7)	140	x, y, z+1
$O(4w) - H(1) \cdots O(8S)$	2,11	2,927(11)	170	x, y, z
$O(4w) - H(2) \cdots O(6S)$	2,30	3,097(12)	150	-x+2, -y+1, -z+1
O(1) $U(1)$ $O(2)$	2.07	Compusul 4	1(2)	
$O(1w) - H(1) \cdots O(2)$	2,07	2,88(3)	162	x, y, z
$O(1w) - H(2) \cdots O(8)$	2,15	3,00(3)	1/8	-x+3/2, $y-1/2$, $-z+1/2$
$C(1) - H(1) \cdots O(8)$	2,47	3,201(9)	136	-x+3/2, y-1/2, -z+1/2
$C(4) - H(4) \cdots O(4)$	2,61	3,523(8)	166	x - 1, y, z
$C(9) - H(9) \cdots O(5)$	2,59	3,493(8)	163	-x+3/2, $y-1/2$, $-z+1/2$
$C(10) - H(10) \cdots O(3)$	2,63	3,335(9)	134	-x+3/2, $y-1/2$, $-z+1/2$
$C(11) - H(11) \cdots O(8)$	2,30	3,091(8)	143	-x+1/2, y-1/2, -z+1/2
$C(12) - H(12) \cdots O(3)$	2,48	3,368(9)	161	<i>x-1, y, z</i>
$C(5A)-H(5A)\cdots O(6)$	2,36	3,182(10)	148	<i>x</i> , <i>y</i> , <i>z</i>
$C(1B)-H(1B)\cdots O(6)$	2,41	3,315(11)	164	-x+1/2, $y-1/2$, $-z+1/2$
$C(5B)-H(5B)\cdots O(3)$	2,54	3,177(9)	126	-x+3/2, y-1/2, -z+1/2
	(Compusul 5	1 1	
$C(5A)-H(5A)\cdots O(2A)$	2,47	3,28(2)	147	<i>x</i> , <i>y</i> , <i>z</i>
$C(11A)-H(11A)\cdots O(2A)$	2,21	2,99(2)	140	y, - <i>x</i> + <i>y</i> , <i>z</i> - <i>1</i> /6
$C(1B)-H(1)\cdots O(3A)$	2,52	3,097(17)	120	<i>x</i> , <i>y</i> , <i>z</i>
C(11B)-H(2)···O(3B)	2,59	3,18(2)	121	<i>x</i> , <i>y</i> +1, <i>z</i>
Compusul 6				
$O(1w)-H(2)\cdots O(2)$	1,89	2,676(4)	148	- <i>x</i> , - <i>y</i> +2, - <i>z</i>
$C(10)-H(23)\cdots O(4)$	2.56	3.463(5)	165	x + 1/2, $-y + 3/2$, $7 - 1/2$

Anexa 3. Parametrii legaturilor de hidrogen în compușii 1-45

C(12)-H(30)···O(1)	2,51	3,337(5)	149	-x+1/2, y-1/2, $-z+1/2$
C(18)-H(7)····O(3)	2,50	3,351(5)	152	x+1, y, z
$C(19)-H(9)\cdots O(1)$	2,43	3,299(5)	156	-x+3/2, y-1/2, $-z+1/2$
	(Compusul 7		
$O(1)-H(1)\cdots O(1w)$	2,21	2,817(8)	130	<i>x</i> , <i>y</i> , <i>z</i>
$O(1) - H(1) \cdots O(5w)$	2,53	3,293(10)	153	<i>x</i> , <i>y</i> , <i>z</i>
$O(1w) - H(1) \cdots O(7)$	1,88	2,638(9)	143	x-1, y-1, z-1
$O(1w) - H(1) \cdots O(3w)$	2,33	3,038(9)	137	-x+1, -y, -z+1
$O(1w) - H(2) \cdots O(5w)$	1,97	2,778(11)	152	<i>x</i> , <i>y</i> , <i>z</i>
$O(1w)-H(2)\cdots O(5wA)$	2,43	3,19(5)	164	<i>x</i> , <i>y</i> , <i>z</i>
$O(2w)-H(1)\cdots O(6w)$	1,77	2,64(3)	163	x, y–1, z
$O(2w) - H(1) \cdots O(7w)$	2,13	2,94(4)	150	x, y-1, z
$O(2w)-H(2)\cdots O(5wA)$	1,77	2,57(6)	157	-x+1, -y, -z+1
$O(2w)-H(2)\cdots O(5w)$	2,08	2,926(11)	179	-x+1, -y, -z+1
$O(3w) - H(1) \cdots O(7)$	1,89	2,725(9)	157	-x+2, -y+1, -z+2
$O(3w)-H(2)\cdots O(2w)$	2,11	2,907(9)	150	<i>x</i> , <i>y</i> , <i>z</i>
$O(4w) - H(1) \cdots O(4)$	2,26	2,989(9)	141	-x+2, -y+1, -z+2
$O(4w)-H(2)\cdots O(3w)$	2,09	2,863(8)	146	-x+1, -y, -z+2
$O(5w) - H(1) \cdots O(6)$	2,01	2,769(9)	149	-x+1, -y+1, -z+2
$O(5w) - H(2) \cdots O(3)$	2,41	3,258(11)	175	x - 1, y, z
$O(6w) - H(1) \cdots O(2)$	2,12	2,97(3)	179	<i>x</i> , <i>y</i> , <i>z</i>
$O(6w) - H(2) \cdots O(2wA)$	2,22	2,78(7)	124	x, $y+1$, z
$O(6w) - H(2) \cdots O(2wA)$	2,47	3,06(7)	127	-x+1, -y, -z+1
$O(7w) - H(1) \cdots O(4)$	2,56	3,29(4)	127	x - 1, y, z
$O(7w) - H(2) \cdots O(6)$	2,10	2,95(4)	179	-x+1, -y+1, -z+2
	(Compusul 8		
$O(1w)-H(1)\cdots O(5)$	1,87	2,73(2)	171	<i>x</i> , <i>y</i> , <i>z</i>
$O(1w) - H(2) \cdots O(1w)$	2,36	3,17(3)	161	x, y, $-z+3/2$
$O(2w) - H(1) \cdots O(1w)$	2,05	2,83(4)	177	<i>x</i> , <i>y</i> , <i>z</i>
	(Compusul 9		
O(1w)-H(1)···O(3)	1,96	2,773(6)	162	-x, y-1/2, -z+1/2
$O(1w)-H(2)\cdots O(2w)$	1,87	2,705(8)	168	<i>x</i> , <i>y</i> , <i>z</i>
$O(2w) - H(1) \cdots O(1S)$	1,93	2,77(3)	167	x, $-y+3/2$, $z+1/2$
$O(2w)-H(1)\cdots O(1SA)$	2,25	3,06(3)	158	x, $-y+3/2$, $z+1/2$
$O(2w)-H(2)\cdots O(2)$	1,93	2,784(7)	179	-x, y-1/2, -z+1/2
	С	ompusul 10		
$O(1w) - H(1) \cdots F(3)$	1,88	2,692(7)	170	<i>x</i> , <i>y</i> , <i>z</i>
$O(1w) - H(2) \cdots F(2)$	1,85	2,687(9)	160	-x+1/2, y-1/2, $-z+3/2$
	С	Compusul 12		
O(1w)-H(1)····O(1S)	1,84	2,631(11)	142	<i>x</i> , <i>y</i> , <i>z</i>
$O(1w) - H(2) \cdots O(4)$	1,98	2,669(4)	136	-x+1/2, $-y+3/2$, $-z+1$
$O(5) - H(1) \cdots O(2)$	1,80	2,599(4)	156	<i>x</i> , <i>v</i> , <i>z</i>
	C	Compusul 13		
$O(1E) - H(5) \cdots O(2)$	1,79	2,587(4)	156	<i>x</i> , <i>v</i> , <i>z</i>
$O(1w) - H(1) \cdots O(4)$	1.86	2.640(4)	143	x, y, z
$O(1w) - H(2) \cdots O(1D)$	1.85	2,703(7)	179	<i>x</i> . <i>y</i> . <i>z</i>
	C	Compusul 14		
$O(1w) - H(1) \cdots O(5)$	1,87	2,697(3)	160	-x+1, -y+1, -z+1
$O(1w) - H(2) \cdots S(2)$	2,63	3,437(2)	159	x, y-1, z
	(Compusul 15		· · · · · · · · · · · · · · · · · · ·
O(7w)-H(2)···O(1w)	2.31	3.16(2)	178	-x+1, -y+2, -z+1
$O(6w) - H(2) \cdots O(1w)$	2.01	2.857(17)	161	X. V. 7
$O(6w) - H(1) \cdots O(4)$	2.19	2.778(17)	120	x. y. 7
$O(5w) - H(1) \cdots O(5w)$	1.85	2.664(17)	172	-x+1, $-y+2$, $-z+1$
	1,00	<i></i> ,~~ (<i>17</i>)	- <i>, -</i>	···· · · · · · · · · · · · · · · · · ·

$O(4w) - H(2) \dots O(2w)$	1.92	2.685(11)	180	x + 1 $y + 1$ $z + 1$
$O(4w) = H(1) \cdots O(3w)$	1,05	2,000(11) 2,674(11)	178	-x+1, -y+1, -z+1
O(4w) = H(1) + O(3w) O(2w) = H(2) + O(2w)	1,05	2,074(11) 2,925(5)	170	x, y, z
$O(3w) = H(1) \dots O(4)$	1,97	2,033(3)	171	-x+1, -y+1, -z+1
O(3w) = H(1) + O(4)	1,95	2,797(0)	179	x, y, z
O(2w) = H(2) + O(1D)	1,90	2,700(0) 2,812(5)	104	x+1, y, z
$O(2w) = H(1) \cdots O(2)$ O(1w) = H(2) = O(5)	2,23	2,013(3)	124	<i>x</i> , <i>y</i> -1, <i>z</i>
$O(1w) - H(2) \cdots O(3)$	1,85	2,088(3)	105	x, y, z
$O(1w) - H(1) \cdots O(2w)$	1,81	2,783(3)	1/0	x, y+1, z
$O(4) - H(4) \cdots O(7w)$	2,14	2,95(2)	101	<i>x</i> , <i>y</i> , <i>z</i>
$O(4) - H(4) \cdots O(6w)$	2,03	2,7/8(17)	146	<i>x</i> , <i>y</i> , <i>z</i>
$O(4) - H(4) \cdots O(5w)$	2,62	3,4/5(8)	180	x, y, z
$O(2)-H(2)\cdots O(2w)$	2,02	2,813(5)	162	<i>x</i> , <i>y</i> + <i>1</i> , <i>z</i>
	C L L L L	ompusul 17	4.69	
$O(1w)-H(1)\cdots O(1X)$	1,91	2,738(8)	162	<i>x</i> , <i>y</i> , <i>z</i>
$O(1w)-H(2)\cdots O(1Z)$	1,88	2,637(14)	150	x+1/2, $-y+1/2$, $z+1/2$
$O(1w)-H(2)\cdots O(1Z')$	1,90	2,729(15)	171	x+1/2, $-y+1/2$, $z+1/2$
$C(20)-H(20)\cdots O(1)$	2,61	3,485(8)	158	x+1/2, $-y+1/2$, $z-1/2$
$C(27)-H(27)\cdots O(3)$	2,57	3,445(9)	157	x+1/2, $-y+1/2$, $z+1/2$
$C(27)-H(27)\cdots O(6)$	2,41	3,088(8)	130	<i>x</i> , <i>y</i> , <i>z</i>
$C(29)-H(29)\cdots O(1)$	2,54	3,023(9)	113	<i>x</i> , <i>y</i> , <i>z</i>
$C(30)-H(30A)\cdots O(10)$	2,53	3,093(10)	118	<i>x</i> -1, <i>y</i> , <i>z</i>
$C(1X)-H(1X)\cdots O(2)$	2,52	3,368(11)	153	<i>x</i> , <i>y</i> , <i>z</i>
$C(3X)-H(3X3)\cdots O(9)$	2,59	3,533(10)	168	-x+1, -y+1, -z+1
$C(3Z)-H(3Z3)\cdots O(5)$	2,56	3,310(19)	136	<i>x</i> , <i>y</i> , <i>z</i>
$C(3Z')-H(3Z6)\cdots O(7)$	2,53	3,28(2)	135	<i>x</i> , <i>y</i> , <i>z</i>
	C	Compusul 18		
$O(3) = H(1O) \dots N(2)$	1.85(7)	2 629(5)	172	-x+1 $-x+1$ -7
$0(3)^{-11}(10)^{-11}(2) \qquad 1,03(7) \qquad 2,029(3) \qquad 172 \qquad -x+1, -y+1, -z$				
0(3)-11(10)-11(2)	C	Compusul 19	172	-x+1, -y+1, -z
$O(1w)-H(1)\cdots O(3w)$	C 2,01	compusul 19	172	-x, -y+1, -z+2
$O(1w)-H(1)\cdots O(3w)$ $O(1w)-H(2)\cdots O(7)$	C 2,01 1,90	2,825(5) compusul 19 2,856(5) 2,722(5)	172 177 162	-x, -y+1, -z+2 x, y, z
$\begin{array}{c} O(3)^{-}H(10)^{-}H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \end{array}$	C 2,01 1,90 2,60	2,856(5) 2,722(5) 3,253(5)	177 162 135	-x, -y+1, -z+2 x, y, z x, y, z
$\begin{array}{c} O(3)^{-}H(10)^{-}H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \end{array}$	2,01 1,90 2,60 2,29	2,825(5) 2,856(5) 2,722(5) 3,253(5) 2,925(5)	177 162 135 126	-x, -y+1, -z+2 x, y, z x, y, z x, y, z x, y, z
$\begin{array}{c} O(3)^{-}H(10)^{-}H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(2) \cdots O(4w) \end{array}$	2,01 1,90 2,60 2,29 2,22	2,825(5) 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6)	177 162 135 126 131	$\begin{array}{c} -x, -y+1, -z+2 \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \end{array}$
$\begin{array}{c} O(3)^{-}H(10)^{-}H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(2) \cdots O(4w) \\ O(3w) - H(1) \cdots O(7) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24	2,825(5) 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5)	177 162 135 126 131 150	$\begin{array}{c} -x, -y+1, -z+2 \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \end{array}$
$\begin{array}{c} O(3)^{-}H(10)^{-}H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(2) \cdots O(4w) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,22 2,24 2,52	2,825(5) 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6)	177 162 135 126 131 150 149	$\begin{array}{c} -x, -y+1, -z+2 \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \\ x, y-1, z \\ x, y-1, z \end{array}$
$\begin{array}{c} O(3)^{-}H(10)^{-}H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(2) \cdots O(4w) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09	2,823(5) 2,702(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5)	177 162 135 126 131 150 149 154	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y-1, z x, y -1, z
$\begin{array}{c} O(3)^{-}H(10)^{-}H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(2) \cdots O(4w) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(1) \cdots O(3) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1 98	2,829(5) 2,029(5) 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6)	177 162 135 126 131 150 149 154 163	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y-1, z x, y, z x, y, z x, y, z x, y, z x, y, z
$\begin{array}{c} O(3)^{-}H(10)^{-}H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(2) \cdots O(4w) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05	2,029(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6)	177 162 135 126 131 150 149 154 163 168	$\begin{array}{c} -x, -y+1, -z+2 \\ x, y, z \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \\ x, y, 1, z \\ x, y, z \\ x, y, z \\ -x, -y+1 \\ -z+1 \end{array}$
$\begin{array}{c} O(3) - H(10) - N(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(2) \cdots O(4w) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82	2,829(5) 2,829(5) 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6)	177 162 135 126 131 150 149 154 163 168 166	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y, z
$\begin{array}{c} O(3)-H(10)-H(2)\\ \hline O(1w)-H(1)\cdots O(3w)\\ O(1w)-H(2)\cdots O(7)\\ O(1w)-H(2)\cdots O(5)\\ O(2w)-H(1)\cdots O(2)\\ O(2w)-H(2)\cdots O(4w)\\ O(3w)-H(1)\cdots O(7)\\ O(3w)-H(1)\cdots O(6)\\ O(3w)-H(2)\cdots O(2)\\ O(4w)-H(1)\cdots O(3)\\ O(4w)-H(2)\cdots O(2w)\\ N(3)-H(3A)\cdots O(4)\\ N(3)-H(3A)\cdots O(3)\\ \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62	2,829(5) 2,825(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6)	177 162 135 126 131 150 149 154 163 168 166 131	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y, z
$\begin{array}{c} O(3) - H(10) - N(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(2) \cdots O(4w) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2w) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77	2,023(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,900(6) 2,663(6) 3,254(6) 2,623(6)	177 162 135 126 131 150 149 154 163 168 166 131 170	$\begin{array}{c} -x, -y+1, -z+2 \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \\ x, y-1, z \\ x, y, 1, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y, z \\ x \\ x \\ y, z \\ x \\ x \\ y \\ z \\ z$
$\begin{array}{c} O(3) - H(10) - N(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(2) \cdots O(4w) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2w) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77	2,023(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,900(6) 2,663(6) 3,254(6) 2,623(6)	177 162 135 126 131 150 149 154 163 168 166 131 170	$\begin{array}{c} -x, -y+1, -z+2 \\ x, y, z \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \\ x, y-1, z \\ x, y, 1, z \\ x, y, 1, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y, z \\ x, y, z \\ x, y, z \\ x, y, z \\ x-1, y, z-1 \end{array}$
$\begin{array}{c} O(3) - H(10) - N(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(4w) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77	2,023(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6) 2,623(6)	177 162 135 126 131 150 149 154 163 168 166 131 170	$\begin{array}{c} -x, -y+1, -z+2 \\ x, y, z \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \\ x, y-1, z \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y, z \\ x, y, z \\ x, y, z \\ x, y, z \\ x-1, y, z-1 \end{array}$
$\begin{array}{c} O(3) - H(10) - N(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77	2,029(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6) 2,623(6)	177 162 135 126 131 150 149 154 163 168 166 131 170	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y, z x-1, y, z-1
$\begin{array}{c} O(3) - H(10) - N(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \\ \hline \end{array}$	2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77 C	2,029(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6) 2,623(6)	177 162 135 126 131 150 149 154 163 168 166 131 170 147 146	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y, z -x, -y+1, -z+1 x, y, z x, y, z -x, -y+1, -z+1 x, y, z x, y, z
$\begin{array}{c} O(3)-H(10) - N(2) \\ \hline O(1w)-H(1)\cdots O(3w) \\ O(1w)-H(2)\cdots O(7) \\ O(1w)-H(2)\cdots O(5) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(4w) \\ O(3w)-H(1)\cdots O(7) \\ O(3w)-H(1)\cdots O(6) \\ O(3w)-H(2)\cdots O(2) \\ O(4w)-H(1)\cdots O(3) \\ O(4w)-H(2)\cdots O(2w) \\ N(3)-H(3A)\cdots O(4) \\ N(3)-H(3A)\cdots O(4) \\ N(3)-H(3A)\cdots O(3) \\ N(4)-H(4)\cdots O(8) \\ \hline \end{array}$	1,83(7) 2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77 C 1,81 1,83	2,029(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,663(6) 3,254(6) 2,623(6) compusul 26 2,541(6) 2,550(6)	172 177 162 135 126 131 150 149 154 163 168 166 131 170	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y, z x, y, z
$\begin{array}{c} O(3) - H(10) - H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(2) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \\ \hline \end{array}$	1,83(7) 2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77	2,023(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6) 2,623(6) compusul 26 2,541(6) 2,550(6) compusul 27 2,527(12)	177 162 135 126 131 150 149 154 163 168 166 131 170 147 146	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y, z
$\begin{array}{c} O(3) - H(10) - N(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(2) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(2) \cdots O(2) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \\ \hline \end{array}$	1,83(7) 2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77 C 1,81 1,83 C	2,023(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6) 2,623(6) compusul 26 2,541(6) 2,550(6) compusul 27 2,527(12) 2,527(12)	172 177 162 135 126 131 150 149 154 163 168 166 131 170	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y, z -x, -y+1, -z+1 x, y, z -x, -y+1, -z+1 x, y, z x, y, z
$\begin{array}{c} O(3) - H(10) - N(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(2) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(2) \cdots O(2) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \\ \hline \\ \hline \\ O(3) - H \cdots O(7) \\ \hline \\ O(5A) - H(5A) \cdots O(4B) \\ O(5B) - H(5BA) \cdots O(4B) \\ O(2AD) = O(2AD) \\ \hline \end{array}$	1,83(7) 2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77 C 1,81 1,83 C 1,79 1,81 2,50	2,022(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6) 2,623(6) compusul 26 2,541(6) 2,550(6) compusul 27 2,527(12) 2,562(11) 2,042(16)	172 177 162 135 126 131 150 149 154 163 168 166 131 170	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y, z
$\begin{array}{c} O(3) - H(10) - H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \\ \hline \end{array}$	1,83(7) 2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77 C 1,81 1,83 C 1,79 1,81 2,50 2,50 2,50	2,022(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6) 2,623(6) compusul 26 2,550(6) compusul 27 2,527(12) 2,562(11) 3,043(16) 2,24(10)	172 177 162 135 126 131 150 149 154 163 168 166 131 170	-x, -y+1, -z+2 x, y, z x, y, z x, y, z -x, -y+1, -z+1 x, y-1, z x, y, z x, y, z -x, -y+1, -z+1 x, y, z x, y, z
$\begin{array}{c} O(3) - H(10) - H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(1) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \\ \hline \\ \hline \\ O(3) - H \cdots O(7) \\ \hline \\ O(5A) - H(5A) \cdots O(4A) \\ O(5B) - H(5A) \cdots O(4B) \\ C(2A) - H(2AB) \cdots O(2A) \\ C(8A) - H(8AA) \cdots O(1B) \\ \hline \\ O(10) - O(10) \\ O(10) $	1,83(7) C 2,01 1,90 2,60 2,29 2,22 2,24 2,52 2,09 1,98 2,05 1,82 2,62 1,77 C 1,81 1,83 C 1,79 1,81 2,50 2,56 2,41	2,029(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6) 2,623(6) compusul 26 2,550(6) compusul 27 2,527(12) 2,562(11) 3,043(16) 3,324(18) 2,17(12)	172 177 162 135 126 131 150 149 154 163 168 166 131 170 147 146 149 152 118 140 126	$\begin{array}{c} -x, -y+1, -y+1, -z+2 \\ x, y, z \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \\ x, y, 1, z \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y, z \\ x, y, z$
$\begin{array}{c} O(3) - H(10) - H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(2) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(2) \cdots O(2) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \\ \hline \end{array}$	$\begin{array}{c} 2,01\\ 1,90\\ 2,60\\ 2,29\\ 2,22\\ 2,24\\ 2,52\\ 2,09\\ 1,98\\ 2,05\\ 1,82\\ 2,62\\ 1,77\\ \hline \\ \hline \\ 1,81\\ 1,83\\ \hline \\ \hline \\ 1,79\\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ \hline \end{array}$	2,029(5) compusul 19 2,856(5) 2,722(5) 3,253(5) 2,925(5) 2,900(6) 3,013(5) 3,290(6) 2,881(5) 2,820(6) 2,900(6) 2,663(6) 3,254(6) 2,623(6) compusul 26 2,541(6) 2,550(6) compusul 27 2,562(11) 3,043(16) 3,174(15) 3,174(15)	172 177 162 135 126 131 150 149 154 163 168 166 131 170	$\begin{array}{c} -x, -y+1, -z+2 \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \\ x, y-1, z \\ x, y, z \\ x-1, y, z-1 \end{array}$
$\begin{array}{c} O(3) - H(10) - N(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(2) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(4) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \\ \hline \end{array}$	$\begin{array}{c} 2,01\\ 1,90\\ 2,60\\ 2,29\\ 2,22\\ 2,24\\ 2,52\\ 2,09\\ 1,98\\ 2,05\\ 1,82\\ 2,62\\ 1,77\\ \hline \\ \hline \\ 1,81\\ 1,83\\ \hline \\ \hline \\ 1,79\\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,52\\ \hline \end{array}$	$\begin{array}{r} 2,023(3)\\ \hline \text{compusul 19}\\ 2,856(5)\\ 2,722(5)\\ 3,253(5)\\ 2,925(5)\\ 2,900(6)\\ 3,013(5)\\ 3,290(6)\\ 2,881(5)\\ 2,820(6)\\ 2,881(5)\\ 2,820(6)\\ 2,900(6)\\ 2,663(6)\\ 3,254(6)\\ 2,623(6)\\ \hline \text{compusul 26}\\ 2,541(6)\\ 2,550(6)\\ \hline \text{compusul 27}\\ 2,527(12)\\ 2,562(11)\\ 3,043(16)\\ 3,324(18)\\ 3,174(15)\\ 3,014(15)\\ \hline \end{array}$	172 177 162 135 126 131 150 149 154 163 168 166 131 170	$\begin{array}{c} -x, -y+1, -y+1, -z+2 \\ x, y, z \\ x, y, z \\ x, y, z \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \\ x, y, 1, z \\ x, y, z \\ -x, -y+1, -z+1 \end{array}$
$\begin{array}{c} O(3) - H(10) - H(2) \\ \hline O(1w) - H(1) \cdots O(3w) \\ O(1w) - H(2) \cdots O(7) \\ O(1w) - H(2) \cdots O(5) \\ O(2w) - H(1) \cdots O(2) \\ O(2w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(7) \\ O(3w) - H(1) \cdots O(6) \\ O(3w) - H(2) \cdots O(2) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(3) \\ O(4w) - H(2) \cdots O(2w) \\ N(3) - H(3A) \cdots O(3) \\ N(4) - H(4) \cdots O(8) \\ \hline \\ \hline \\ O(3) - H \cdots O(7) \\ \hline \\ O(5A) - H(5A) \cdots O(4A) \\ O(5B) - H(5A) \cdots O(4B) \\ C(2A) - H(2AB) \cdots O(2A) \\ C(8A) - H(8AA) \cdots O(1B) \\ C(19A) - H(19A) \cdots O(1A) \\ C(20A) - H(23A) \cdots O(4A) \\ \hline \\ O(2B) - H(23A) \cdots O(4A) \\ \hline \\ \end{array}$	$\begin{array}{c} 2,01\\ 1,90\\ 2,60\\ 2,29\\ 2,22\\ 2,24\\ 2,52\\ 2,09\\ 1,98\\ 2,05\\ 1,82\\ 2,62\\ 1,77\\ \hline \\ \hline \\ 1,81\\ 1,83\\ \hline \\ \hline \\ 1,79\\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,38\\ \hline \\ 2,38\\ \hline \\ 1,79\\ \hline \\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,38\\ \hline \\ 1,79\\ \hline \\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,38\\ \hline \\ 1,79\\ \hline \\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,38\\ \hline \\ 1,79\\ \hline \\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,38\\ \hline \\ 1,79\\ \hline \\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,38\\ \hline \\ 1,79\\ \hline \\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,38\\ \hline \\ 1,79\\ \hline \\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,38\\ \hline \\ 1,79\\ \hline \\ 1,81\\ 2,50\\ 2,56\\ 2,41\\ 2,12\\ 2,38\\ \hline \\ 1,72\\ 1,81\\ 2,12\\ 2,38\\ 1,81\\ 2,12\\ 2$	$\begin{array}{r} \hline 2,029(5) \\ \hline \text{ompusul 19} \\ \hline 2,856(5) \\ 2,722(5) \\ 3,253(5) \\ 2,925(5) \\ 2,900(6) \\ 3,013(5) \\ 3,290(6) \\ 2,881(5) \\ 2,820(6) \\ 2,900(6) \\ 2,663(6) \\ 3,254(6) \\ 2,623(6) \\ \hline \text{compusul 26} \\ \hline 2,541(6) \\ 2,550(6) \\ \hline \text{compusul 27} \\ 2,527(12) \\ 2,562(11) \\ 3,043(16) \\ 3,324(18) \\ 3,174(15) \\ 3,014(15) \\ 3,189(15) \\ \hline \end{array}$	172 177 162 135 126 131 150 149 154 163 168 166 131 170 147 146 149 152 118 140 139 162 145	$\begin{array}{c} -x, -y+1, -y+1, -z+2 \\ x, y, z \\ -x, -y+1, -z+1 \\ x, y-1, z \\ x, y, z \\ x-1, y, z-1 \end{array}$
$C(7B)-H(7BA)\cdots O(1D)$	2,50	3,244(18)	137	<i>x-1, y+1, z</i>
--	--	---	---	---
$C(19B) - H(19B) \cdots O(3B)$	2,45	3,071(15)	124	x, y-1, z
$C(29A) - H(29A) \cdots N(2A)$	2,57	3,178(14)	123	<i>x</i> , <i>y</i> , <i>z</i>
C(25B)-H(25B)····O(4B)	2,47	3,230(12)	139	x, y-1, z
$C(28B) - H(28B) \cdots O(1A)$	2,40	3,314(10)	168	-x, -y+1, -z+1
$C(29B) - H(29B) \cdots O(2B)$	2.58	3.093(17)	115	<i>x</i> . <i>v</i> . <i>z</i>
$C(1D) - H(1DA) \cdots O(4A)$	2.62	3.340(19)	134	x, y+1, z
	 C	ompusul 28		
$C(2)-H(5B)\cdots O(1)$	2.44	3.145(3)	129	$x_{1} - y + 3/2, 7 + 1/2$
$C(4) - H(3) \cdots N(2)$	2.67	3 375(3)	133	-x+1 $y+1/2$ $-z+3/2$
$C(6) - H(1) \cdots O(1)$	2,57	3,375(3) 3,474(3)	176	x + 1, y + 1/2, z + 3/2
$O(1w) - H(2) \cdots N(1)$	2,03	2, 877(2)	165	x, y + 1, z x - y + 3/2 - 7 - 1/2
$O(1w) - H(1) \cdots O(2)$	1 90	2,077(2) 2,751(2)	165	x, -y + 3/2, z - 1/2
$O(1w) - H(1) \cdots O(1)$	2 59	2,731(2) 3,039(2)	113	-x, -y+1, -z+1
$O(1w) \Pi(1) O(1)$	2,39	3,039(2)	115	-x, -y+1, -z+1
		ompusul 20		
C(6) $H(2)$ $O(2)$		$\frac{2}{2} \frac{2}{5} \frac{1}{4} \frac{1}{4}$	160	1/2 = 1/2
$C(0) = H(3) \cdots O(2)$	2,37	3,234(4)	160	x, -y+1/2, z-1/2
$O(2w) - H(2w2) \cdots O(1)$	1,89	2,724(3)	161	x, y-1, z
$O(2w) - H(1w2) \cdots O(1)$	1,92	2,764(3)	1/8	-x, y-1/2, -z+3/2
$O(1w) - H(2w1) \cdots O(2)$	1,99	2,758(3)	152	x, -y+1/2, z-1/2
O(1w)-H(1w1)····N(2)	2,11	2,951(3)	165	<i>x</i> , <i>y</i> , <i>z</i>
	C	ompusul 30		
$O(1w)-H(1)\cdots O(2)$	1,82	2,694(2)	173	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i>
$O(1w)-H(2)\cdots O(2)$	1,84	2,675(3)	159	<i>x</i> -1, <i>y</i> +1, <i>z</i>
O(2w)-H(1)···O(1)	1,88	2,726(2)	167	-x+1, -y+1, -z
$O(2w)-H(2)\cdots O(1)$	1,83	2,803(3)	163	x, y, z
	C	ompusul 31		· · ·
O(1w)-H(1B)···O(2)	C 1,80	ompusul 31 2,591(2)	152	-x+2, -y+2, -z
$O(1w)-H(1B)\cdots O(2)$ $O(1w)-H(1A)\cdots N(2)$	C 1,80 2,04	ompusul 31 2,591(2) 2,898(3)	152 175	-x+2, -y+2, -z -x+2, y+1/2, -z+1/2
O(1w)-H(1B)····O(2) O(1w)-H(1A)····N(2)	C 1,80 2,04 C	ompusul 31 2,591(2) 2,898(3) ompusul 32	152 175	-x+2, -y+2, -z -x+2, y+1/2, -z+1/2
$O(1w)-H(1B)\cdots O(2)$ $O(1w)-H(1A)\cdots N(2)$ $O(1w)-H(1)\cdots O(1)$	C 1,80 2,04 C 1,83	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3)	152 175 165	-x+2, -y+2, -z -x+2, y+1/2, -z+1/2 x-1, y, z
$O(1w)-H(1B)\cdots O(2)$ $O(1w)-H(1A)\cdots N(2)$ $O(1w)-H(1)\cdots O(1)$ $O(1w)-H(2)\cdots O(1)$	C 1,80 2,04 C 1,83 1,87	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3)	152 175 165 163	-x+2, -y+2, -z -x+2, y+1/2, -z+1/2 x-1, y, z -x+1, -y, -z+1
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3)	152 175 165 163 156	-x+2, -y+2, -z -x+2, y+1/2, -z+1/2 x-1, y, z -x+1, -y, -z+1 -x+1, -y+1, -z+1
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3)	152 175 165 163 156 167	-x+2, -y+2, -z -x+2, y+1/2, -z+1/2 x-1, y, z -x+1, -y, -z+1 -x+1, -y+1, -z+1 x, y, z
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,65	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4)	152 175 165 163 156 167 157	-x+2, -y+2, -z -x+2, y+1/2, -z+1/2 x-1, y, z -x+1, -y, -z+1 -x+1, -y+1, -z+1 x, y, z x, y-1, z-1
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ O(2w)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ \hline \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,65 2,91	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3)	152 175 165 163 156 167 157 127	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,65 2,91 2,57	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4)	152 175 165 163 156 167 157 127 148	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,65 2,91 2,57 C	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33	152 175 165 163 156 167 157 127 148	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ O(1w)-H(1)\cdots O(2) \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5)	152 175 165 163 156 167 157 127 148 179	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ O(1w)-H(1)\cdots O(2) \\ O(1w)-H(2)\cdots O(2w) \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 1,85	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7)	152 175 165 163 156 167 157 127 148 179 164	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y-1, z \\ x, y-1$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ O(1w)-H(1)\cdots O(2) \\ O(1w)-H(2)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 1,85 2,32	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8)	152 175 165 163 156 167 157 127 148 179 164 147	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -7 \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(2)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2) \\ O(1w)-H(1)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots O(2w) \\ \hline \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,32 2,13	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17)	152 175 165 163 156 167 157 127 148 179 164 147 160	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1 -y+2 -z \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1A)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(2)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2) \\ O(1w)-H(2)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots O(2w) \\ O(3w)-H(1)\cdots F(1) \\ \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,32 2,13 2,29	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12)	152 175 165 163 156 167 157 127 148 179 164 147 160 144	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ x, y, z \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(2)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(2) \\ \hline \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,32 2,13 2,29 2,18	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14)	152 175 165 163 156 167 157 127 148 179 164 147 160 144 154	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ x, y, z \\ x, y, z \\ x, y, z \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2) \\ O(1w)-H(1)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(2) \\ O(3w)-H(1)\cdots F(2) \\ O(3w)-H(2)\cdots O(2w) \\ \hline \\ O(3w)-H(2)\cdots O(2w) \\ \hline \\ O(3w)-H(2)\cdots O(2w) \\ O(3w)-H(2)\cdots O(2w) \\ \hline \\ O(3w)-H(2)\cdots O(2w) \\ \hline \\ O(3w)-H(2)\cdots O(2w) \\ \hline \\ \end{array}$	C 1,80 2,04 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,32 2,13 2,29 2,18 1,86	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,87(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14) 2,642(14)	152 175 165 163 156 167 157 127 148 179 164 147 160 144 154 176	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ x, y, z \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2) \\ O(1w)-H(2)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(2) \\ O(3w)-H(2)\cdots O(2w) \\ C(2)-H(2)\cdots C(2w) \\ C(2)-H(2)\cdots F(4) \\ \hline \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,32 2,13 2,29 2,13 2,29 2,18 1,86 2,56	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14) 2,642(14) 3,523(10)	152 175 165 163 156 167 157 127 148 179 164 147 160 144 154 154 176 171	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ x, y, z \\ x,$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(2)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2w) \\ O(1w)-H(2)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(2) \\ O(3w)-H(2)\cdots O(2w) \\ C(2)-H(2)\cdots F(4) \\ C(4)-H(4)\cdots F(3) \\ \hline \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,32 2,13 2,29 2,18 1,86 2,56 2,62	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14) 2,642(14) 3,523(10) 3,350(10)	152 175 165 163 156 167 157 127 148 179 164 147 160 144 154 176 171 136	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ x, y, z \\ x,$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline O(1w)-H(1A)\cdots N(2) \\ \hline O(1w)-H(2)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline O(1w)-H(1)\cdots O(2w) \\ O(1w)-H(2)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(2) \\ O(3w)-H(2)\cdots O(2w) \\ C(2)-H(2)\cdots F(4) \\ C(4)-H(4)\cdots F(3) \\ C(6)-H(6)\cdots F(2) \\ \hline \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,32 2,13 2,29 2,18 1,86 2,56 2,62 2,45	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14) 2,642(14) 3,523(10) 3,350(10)	152 175 165 163 156 167 157 127 148 179 164 147 160 144 154 176 171 136 147	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ x, y, z \\ x, y-1, z \\ x+1, y-1, z \\ x+1, y+2, -z \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(2)\cdots O(1) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(2) \\ O(3w)-H(2)\cdots O(2w) \\ C(2)-H(2)\cdots F(4) \\ C(4)-H(4)\cdots F(3) \\ C(6)-H(6)\cdots F(2) \\ C(10)-H(10)\cdots F(2) \\ O(1w)-H(10)\cdots F(1) \\ O(1w$	C 1,80 2,04 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,32 2,13 2,29 2,18 1,86 2,56 2,62 2,45 2,58	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14) 2,642(14) 3,523(10) 3,350(10) 3,270(10) 3,90(8)	152 175 165 163 156 167 157 127 148 179 164 147 160 144 154 176 171 136 147 145	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y+2, -z \\ x, y, z \\ x, y, $
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2) \\ O(1w)-H(2)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(2) \\ O(3w)-H(2)\cdots O(2w) \\ C(2)-H(2)\cdots F(4) \\ C(4)-H(4)\cdots F(3) \\ C(6)-H(6)\cdots F(2) \\ C(10)-H(10)\cdots F(3) \\ C(11)-H(11)\cdots C(1w) \\ \hline \end{array}$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,82 2,13 2,29 2,18 1,86 2,56 2,62 2,45 2,58 2,60	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14) 2,642(14) 3,523(10) 3,270(10) 3,390(8) 2,225(7)	152 175 165 163 156 167 157 127 148 179 164 147 160 144 154 176 171 136 147 145	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ x, y, z \\ x, $
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1)\cdots O(1) \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(1)\cdots O(2) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2w) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(2) \\ O(3w)-H(2)\cdots O(2w) \\ C(2)-H(2)\cdots F(4) \\ C(4)-H(4)\cdots F(3) \\ C(6)-H(6)\cdots F(2) \\ C(10)-H(10)\cdots F(3) \\ C(11)-H(11)\cdots O(1w) \\ \hline \\ C(16)-H(16)\cdots F(2) \\ \end{array}$	C 1,80 2,04 1,83 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,85 2,13 2,29 2,18 1,86 2,56 2,62 2,45 2,58 2,60 2,40	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,87(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14) 2,642(14) 3,523(10) 3,270(10) 3,270(10) 3,225(7) 2,412(0)	152 175 165 163 156 167 157 127 148 179 164 147 160 144 154 176 171 136 147 145 125 171	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y+2, -z \\ x, y, z \\ x+1, -y+2, -z \\ x+1, y, z \\ x, y, z \\ x, y, z \\ x+1, y, z \\ $
$\begin{array}{c} O(1w)-H(1B)\cdots O(2)\\ O(1w)-H(1A)\cdots N(2)\\ \hline\\ O(1w)-H(1A)\cdots N(2)\\ \hline\\ O(1w)-H(1)\cdots O(1)\\ O(2w)-H(2)\cdots O(1)\\ O(2w)-H(2)\cdots O(2)\\ C(2)-H(2)\cdots N(3)\\ C(5)-H(5)\cdots S(1)\\ C(7)-H(7)\cdots O(1w)\\ \hline\\ O(1w)-H(1)\cdots O(2)\\ O(1w)-H(2)\cdots O(2w)\\ O(2w)-H(1)\cdots N(2)\\ O(2w)-H(1)\cdots N(2)\\ O(2w)-H(1)\cdots F(1)\\ O(3w)-H(1)\cdots F(1)\\ O(3w)-H(1)\cdots F(1)\\ O(3w)-H(1)\cdots F(2)\\ O(3w)-H(2)\cdots O(2w)\\ C(2)-H(2)\cdots F(4)\\ C(4)-H(4)\cdots F(3)\\ C(6)-H(6)\cdots F(2)\\ C(10)-H(10)\cdots F(3)\\ C(11)-H(11)\cdots O(1w)\\ C(16)-H(16)\cdots F(3)\\ \hline\end{array}$	C 1,80 2,04 1,83 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,85 2,13 2,29 2,18 1,86 2,56 2,62 2,45 2,58 2,60 2,49	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14) 2,642(14) 3,520(10) 3,270(10) 3,290(8) 3,225(7) 3,412(9)	$ \begin{array}{r} 152 \\ 175 \\ 165 \\ 163 \\ 156 \\ 167 \\ 157 \\ 127 \\ 148 \\ \end{array} $ $ \begin{array}{r} 179 \\ 164 \\ 147 \\ 160 \\ 144 \\ 154 \\ 176 \\ 171 \\ 136 \\ 147 \\ 145 \\ 125 \\ 171 \\ \end{array} $	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ x, y, z \\ -x+1, y-1, z \\ -x+1, y-1/2, -z+1/2 \end{array}$
$\begin{array}{c} O(1w)-H(1B)\cdots O(2) \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(1A)\cdots N(2) \\ \hline \\ O(1w)-H(2)\cdots O(1) \\ O(2w)-H(2)\cdots O(1) \\ O(2w)-H(2)\cdots O(2) \\ C(2)-H(2)\cdots N(3) \\ C(5)-H(5)\cdots S(1) \\ C(7)-H(7)\cdots O(1w) \\ \hline \\ \hline \\ O(1w)-H(1)\cdots O(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots N(2) \\ O(2w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(1) \\ O(3w)-H(1)\cdots F(2) \\ O(3w)-H(2)\cdots O(2w) \\ C(2)-H(2)\cdots F(4) \\ C(4)-H(4)\cdots F(3) \\ C(6)-H(6)\cdots F(3) \\ C(10)-H(10)\cdots F(3) \\ C(16)-H(16)\cdots F(3) \\ \hline \\ O(1w)-H(10)\cdots F(3) \\ O(1w)-H(1w)-H(1w)-H(1w) \\ O(1w)-H(1w)-H(1w)-H(1w) \\ O(1w)-H(1w)-H(1w)-H(1w) \\ O(1w$	C 1,80 2,04 C 1,83 1,87 2,03 1,87 2,03 1,87 2,65 2,91 2,57 C 1,85 1,85 2,32 2,13 2,29 2,18 1,86 2,56 2,62 2,45 2,58 2,60 2,49	ompusul 31 2,591(2) 2,898(3) ompusul 32 2,677(3) 2,700(3) 2,830(3) 2,710(3) 3,526(4) 3,550(3) 3,387(4) ompusul 33 2,695(5) 2,689(7) 3,046(8) 2,983(17) 3,121(12) 3,068(14) 2,642(14) 3,523(10) 3,270(10) 3,270(10) 3,290(8) 3,225(7) 3,412(9) ompusul 34	152 175 165 163 156 167 157 127 148 179 164 147 160 144 154 176 171 136 147 145 125 171	$\begin{array}{c} -x+2, -y+2, -z \\ -x+2, y+1/2, -z+1/2 \end{array}$ $\begin{array}{c} x-1, y, z \\ -x+1, -y, -z+1 \\ -x+1, -y+1, -z+1 \\ x, y, z \\ x, y-1, z-1 \\ -x+1, -y+1, -z+1 \\ -x+1, -y, -z+2 \end{array}$ $\begin{array}{c} x, y+1, z \\ x, y, z \\ -x+1, -y+2, -z \\ -x+1, -y+2, -z \\ x, y, z \\ -x+1, -y+2, -z \\ x+1, y-1, z \\ -x+1, -y+2, -z \\ x+1, y, z \\ x, y, z \\ -x+1, y, -1/2, -z+1/2 \end{array}$

$O(1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1$	2.11	2875(4)	155	X 11 7
O(1w) = H(2) = F(2) $O(2w) = H(1) \dots O(2A)$	2,11	2,073(4) 2,732(4)	155	<i>x</i> , <i>y</i> , <i>z</i>
O(2w) = H(1) + O(2A) O(2w) = H(2) + E(4)	1,95	2,732(4)	150	<i>x</i> , <i>y</i> , <i>z</i>
O(2w) = H(2) = F(4) O(2w) = H(1) = O(1P)	2,09	2,073(4) 2,10(2)	139	<i>X</i> , <i>Y</i> , <i>Z</i> .
O(3w) = H(1) + O(1B)	2,24	5,10(2)	178	λ, y, ζ
O(1) $H(1)$ $O(2)$			170	1
$O(1w) - H(1) \cdots O(2)$	1,82	2,68(7)	172	x, y-1, z
$O(1w) - H(2) \cdots O(2w)$	1,91	2,74(13)	162	x, y, -z+2
$O(2w)-H(1)\cdots N(2)$	1,95	2,8(2)	176	-x+1, -y, -z+2
O(2w)-H(2) ···N(2)	1,94	2,8(4)	173	<i>x</i> , <i>y</i> , - <i>z</i> +2
	C	Compusul 37	L	Γ
$O(1w)-H(1)\cdots O(2)$	2,09	2,918(4)	165	<i>x</i> , <i>y</i> , <i>z</i>
O(1w)- $H(2)$ ···O(2w)	1,99	2,842(4)	175	<i>x</i> , <i>y</i> , <i>z</i>
$O(2w)-H(1)\cdots N(4)$	2,13	2,873(5)	146	-x+1, -y, -z+1
$O(2w)-H(2)\cdots O(3)$	2,33	2,913(4)	126	- <i>x</i> +1, <i>y</i> -1/2, - <i>z</i> +3/2
	С	Compusul 38		
$O(1w)-H(1w)\cdots O(3)$	1,99	2,814(4)	161	x+1/2, -y+1/2, -z+1
$O(1w)-H(2w)\cdots O(2)$	1,82	2,666(5)	179	x-1/2, -y+1/2, -z+1
	C	Compusul 39		
O(1w)-H(1B)···O(2)	1,80	2,591(2)	152	-x+2, -y+2, -z
$O(1w) - H(1A) \cdots N(2)$	2,04	2,898(3)	175	-x+2, $y+1/2$, $-z+1/2$
	C	Compusul 40		
$O(1w) - H(1) \cdots O(1)$	2,05	2,961(3)	165	-x+1, -y, -z+2
$O(1w) - H(2) \cdots O(2)$	2,00	2,916(3)	168	-x+1, -y, -z+1
$O(2w) - H(1) \cdots O(2)$	1.79	2,647(3)	157	<i>x</i> , <i>v</i> , <i>z</i>
$O(2w) - H(2) \cdots O(3)$	2,03	2,821(3)	170	-x+1, -y, -z+1
	C	Compusul 41		
$O(1w) - H(1) \cdots O(1)$	2.22	2,969(7)	150	x+1. v. z
$O(1w) - H(2) \cdots O(2)$	2.03	2,912(7)	178	x. v. <i>z</i> -1
$O(2w) - H(1) \cdots O(3)$	1.95	2,798(8)	169	-x+2, $-y$, $-7+1$
$O(2w) - H(2) \cdots O(2)$	1.83	2.637(8)	157	x. y. 7
	1,00	2,007(0)	107	, ,, , 、
Compusul 42				
$O(1w) - H(1) \cdots O(2)$	1.85	2.634(3)	147	-x+1, $-y+1$, $-z+1$
$O(1w) - H(2) \cdots O(3)$	1,05	2,809(3)	168	x + 1, y + 1, z + 1
$O(2w) - H(1) \cdots O(1)$	2.08	2,009(3) 2,959(3)	172	x, y, z + 1 x+2, y+1, z+1
$O(2w) - H(2) \cdots O(2)$	2,00	2,999(3) 2,908(3)	168	-x + 2, -y + 1, -z + 1
$(2n) \Pi(2) O(2)$		'ompusul 43	100	-x + 1, -y + 1, -2,
$O(1w) = H(1) \cdots O(1)$	2 32	3 129(5)	167	-r+2 $-v$ $-7+1$
$O(1w) = H(1) \cdots O(2)$	2,32	2,129(3) 2,608(5)	13/	-x + 2, -y, -z + 1 -x + 2, -y + 1, -z + 1
	1,74	2,000(<i>J</i>)	1.54	$-x + 2, -y + 1, -2, \pm 1$
$O(1w) - H(1) \dots O(2)$	1.00	2.927(6)	174	x 1/2 x 1/2 -
$O(1w) = \Pi(1) \cdots O(3)$	1,99	2,037(0) 2,719(6)	1/4	x - 1/2, y - 1/2, z
$O(1w) - H(2) \cdots O(2)$	1,97	2,/18(0)	144	<i>x</i> , <i>y</i> , <i>z</i>

Anexa 4. Spectrele IR ale unor compuși

Figura A 4.1. Spectrul IR al compusului 2

Figura A 4.2. Spectrul IR al compusului 12

Figura A 4.3. Spectrul IR al compusului 13

Figura A 4.4. Spectrul IR al compusului 14

Figura A 4.5. Spectrul IR al compusului 15

Figura A 4.6. Spectrul IR al compusului 16

Figura A 4.7. Spectrul IR al compusului 17

Figura A 4.8. Spectrul IR al compusului 19

Figura A 4.9. Spectrul IR al compusului 22

Figura A 4.10. Spectrul IR al compusului 24

Figura A 4.11. Spectrul IR al compusului 26

Figura A 4.12. Spectrul IR al compusului 27

Figura A 4.13. Spectrul IR al compusului 30

Figura A 4.14. Spectrul IR al compusului 32

Figura A 4.15. Spectrul IR al compusului 34

Anexa 5. Spectrele RMN ale compusului 43

Figura A 5.1. Spectrul ¹H NMR al compusului 43

Figura A 5.2. Fragment al spectrului ¹H/¹³C HMBC NMR al compusului 43

Anexa 6. Curbele termoanalitice ale compuşilor 2, 12, 13, 16, 17, 22

Figura A 6.1. Curbele termoanalitice pentru compusul 2

Figura A 6.2. Curbele termonanalitice a compusului 12

Figura A 6.3. Curbele termonanalitice a compusului 13

Figura A 6.4. Curbele termonanalitice a compusului 16

Figura A 6.5. Curbele termonanalitice a compusului 17

Figura A 6.6. Curbele termonanalitice a compusului 22

Anexa 7. Spectrele de luminescență ale compușilor în baza liganzilor *H*₂*bpdc H*₂*dtdb*, *H*₃*saz*, *Hpmta*, *Hrda*

 $\label{eq:Figura A 7.1. Spectrele luminescente ale ligandului H_2bpdc și compusului \\ \{ [Zn(bpdc)(H_2O)] \cdot dmf \cdot H_2O \}_n \, (9) \end{cases}$

Figura A 7.2. Spectrele de luminiscență ale compușilor 12, 22, 23 și ligandului $H_2 dt db$

Figura A 7.3. Spectrele de luminiscență ale compusului 26, și liganzilor H₃saz și bpe

Figura A 7.4. Spectrele de luminiscență ale compușilor 33, 34, 35 și ligandului Hpmta

Figura A 7.5. Spectrele de luminiscență ale compușilor 42, 45 și ligandului Hrda

Anexa 8. Formulele moleculare ale compușilor descriși în teză și tipul lor (polimeri 1D, 2D, 3D, monomeri)

Nr.	Formula moleculară	Tipul
1.	${(bpyH_2)[Fe(bpy)_2(H_2O)_2(SO_4)_2] \cdot 2H_2O}_n$	1D
2.	${[Cu(bpp)_2(H_2O)](BF_4)_2 \cdot dmf \cdot 0,75H_2O]_n}$	1D
3.	${[Cu_{5}(\mu_{3}-OH)_{2}(\mu-OH_{2})_{4}(\mu_{3}-SO_{4})_{2}(\mu-SO_{4})_{2}(bpy)_{4}]\cdot 3H_{2}O}_{n}$	3D
4.	$\{[Zn_2(1,2-bdc)_2(bpe)_2] \cdot 0, 25dmf \cdot 0, 25H_2O\}_n$	3D
5.	$[Zn_2(1,2-bdc)_2(bpp)_2]_n$	3D
6.	$[Cd(1,2-bdc)(bpp)(H_2O)]_n$	2D
7.	$\{[Co_4(\mu_3-OH)_2(btc)_2(H_2O)_8]\cdot 4H_2O\}_n$	2D
8.	$\{[Zn_4(Hbtc)_3((Me)btc)(bpp)_4]\cdot(Me)_2Hbtc\cdot 2H_2O\}_n$	1D
9.	$\{[Zn(bpdc)(H_2O)] \cdot dmf \cdot H_2O\}_n$	1D
10.	$[Co(bzpy)_2(H_2O)_2](BF_4)_2$	0D
11.	$[Cu(bzpy)_2(Cl)_2]$	0D
12.	${[Mn_2(dtdb)_2(bpe)_2(EtOH)_2(H_2O)_2] \cdot dmf}_n$	3D
13.	${[Co_2(dtdb)_2(bpe)_2(EtOH)_2(H_2O)_2] \cdot dmf}_n$	3D
14.	$[Co_3(dtdb)_2(bpe)(HCOO)_2(H_2O)_2]_n$	3D
15.	${[Co_4(Htb)_4(tb)_2(bpe)(H_2O)] \cdot 2dmf \cdot 9H_2O}_n$	2D
16.	${[Cu(tdb)(dmf)] \cdot dmf}_n$	1D
17.	${[Cu_2(tdb)(sdb)(dmf)(H_2O)] \cdot 2dmf}_n$	2D
18.	$[Cu(Htdb)_2(bpe)_2]$	0D
19.	$\{(bpeH_2)[Cu(bpe)(SO_4)_2(H_2O)]\cdot 3H_2O\}_n$	1D
20.	${[Cu(bpe)_2]F \cdot 0,5H_2O}_n$	2D
21.	$[Cd(tdb)(bpe)]_n$	2D
22.	$[Zn(dtdb)(bpp)]_n$	3D
23.	$[Cd(dtdb)(bpp)]_n$	3D
24.	$[ZnCd(dtdb)(bpp)]_n$	3D
25.	$[CoZn(dtdb)(bpp)]_n$	3D
26.	${[Cd(Hsaz)(bpe)] \cdot 0,5HCOOH}_n$	2D
27.	${[Zn(Hsaz)(bpe)] \cdot 0,5dmf}_n$	2D
28.	$[Mn(pmta)_4(H_2O)_2]_n$	2D
29.	$[Mn(pmta)_2(H_2O)_4]$	0D
30.	${[Mn(bpy)(H_2O)_4](pmta)_2}_n$	1D
31.	${[Co(bpy)(H_2O)_4](pmta)_2}_n$	1D
32.	$\{[Zn(bpy)(H_2O)_4](pmta)_2\}_n$	1D
33.	$\{[Cd(pmta)(bpy)(H_2O)](BF_4) \cdot 2H_2O\}_n$	2D
34.	$\{[Zn_2(pmta)_3(bpe)_2(H_2O)_2](BF_4) \cdot 0, 25H_2O\}_n$	2D
35.	$\{[Cd(pmta)(bpe)(H_2O)](BF_4) \cdot 0, 25H_2O\}_n$	2D
36.	$[Cd(pmta)_2(bpe)]_n$	ID
37.	$\{ [Zn(pmta)_2(bpp)] \cdot 2H_2O \}_n$	2D
38.	$[Cd(pmta)_2(bpp)(H_2O)]_n$	ID 1D
39.	$[Co(pmta)_2(bpe)(H_2U)_2]_n$	
40.	$[UO(FUA)_2(H_2U)_4]$	
41.	$[\text{INI}(\text{IGa})_2(\text{H}_2\text{U})_4]$ $[\text{Zr}(\text{rd}_2) (\text{U}, \text{O})_1]$	
42.	$\begin{bmatrix} \sum \Pi(IUa)_2(\Pi_2 \cup)_4 \end{bmatrix}$	
45.	$[LII(3,3-IUa-IUa)(UIII)_2(H_2U)_2]_n$	
44.	$\begin{bmatrix} Co((tua)_2(Upy)(\Pi_2 U)_2]_n \\ \begin{bmatrix} Cd(rda)_2(hpa)_2 \end{bmatrix}$	
43. AC	$[Co(rlua)_2(0pe)]_n$	
40.	[C0(giy)3] ⁻ H2O]	

Anexa 9. Brevete de invenție

REPUBLICA MOLDOVA

Agenția de Stat pentru Proprietatea Intelectuală

Nr. 4640

Eliberat în temeiul Legii nr. 50/2008 privind protecția invențiilor

Titlul: Compus coordinativ polimeric al zincului cu ligand nou obținut prin condensare, care manifestă activitate antifungică și antibacteriană

Titulari: UNIVERSITATEA DE STAT DIN TIRASPOL, MD; INSTITUTUL DE FIZICĂ APLICATĂ, MD; INSTITUTUL DE CHIMIE, MD Data depozit: 2019.04.01

Descrierea invenției, revendicările și desenele constituie parte integrantă a prezentului brevet de invenție

Director General

CHIŞINĂU

Declarația privind asumarea răspunderii

Subsemnata, declar pe răspundere personală că materialele prezentate în teza de doctorat sunt rezultatul propriilor cercetări și realizări științifice. Conștientizez că, în caz contrar, urmează să suport consecințele în conformitate cu legislația în vigoare.

Vitiu Aliona

Data: 15.03.2020

CURRICULUM VITAE

Numele	Vitiu
Prenumele	Aliona
Data și locul nașterii	16 octombrie 1985
Email:	vitiualiona@gmail.com
Telefon	+(373) 22 73 81 54
Fax:	+(373) 22 72 58 87
Adresa instituțională	Laboratorul Metode Fizice de Studiere a Solidului "T.
	Malinowski" al Institutului de Fizică Aplicată, str. Academiei

Studii și activitatea profesională:

, ∎	
2011-2018	Doctorat în chimie
	Institutului de Fizică Aplicată, Chișinău
2008-2010	Masterat în chimie
	Universitatea Academiei de Științe a Moldovei, Chișinău
2005-2008	Licență în chimie
	Universitatea de Stat din Tiraspol, Chișinău
2019-prezent	Asistent universitar
	Universitatea de Stat din Tiraspol, Chișinău
2015 - prezent	Cercetător științific
	Institutului de Fizică Aplicată, Chișinău
2015 - 2019	Cercetător științific
	Institutului de Chimie, Chișinău

5, MD 2028, Chișinău, R. Moldova

Domenii de interes științific:

Elaborarea designului compușilor coordinativi, inclusiv polimerici, în baza metalelor Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) cu liganzi ce conțin atomi donori N,N, O,O, N,O, O,S și N,O,S; sinteza compușilor proectați, determinarea structurii cristaline prin difracția razelor X și caracterizarea proprietăților fizico-chimice.

Participări în proiecte științifice:

15.817.02.06F	Materiale multifuncționale oxicalcogenice și metalo-organice cu proprietăti magnetice, adsorbtive si luminescente avansate:
	sintetizare, studiu experimental, modelare și aplicații. (IFA ASM MD)
16.00353.50.05A	Designul și dirijarea arhitecturii materialelor metalo-organice
	funcționale prin aplicarea ingineriei cristalelor. (IFA ASM
	MD)
15.819.02.03F	Elaborarea designului și fabricarea compușilor coordinativi în
	baza metalelor 3d și liganzilor polidentați cu diverse seturi de
	atomi donori. (IFA ASM MD)
16.80012.02.05F	Designul, prepararea și studiul materialelor metalo-organice în
	baza metalelor de tranziție și liganzilor micști și polidentați cu
	proprietăți utile. (IFA ASM MD)

15.817.02.18A Asamblarea și studiul complecșilor metalelor tranziționale în baza liganzilor polifuncționali și macrociclici utili pentru agricultură, industria alimentară și biotehnologii avansate. (ICh ASM MD)

Participări la foruri științifice naționale și internaționale

2016	8 th International Conference on Material Science and
	Condensed Matter Physics (Chișinău, Moldova).
2017	New trend and strategies in the chimistry of advanced materials
	with relevance in biological systems, techique and
	enveronmental protection 10 th Edition (Timişoara, România).
2017	The "4 th Central and Eastern European Conference on Thermal
	Analysis and Calorimetry (CEEC-TAC4) (Chişinău, Moldova).
2018	The "12 th European Symposium on Thermal Analysis and
	Calorimetry (ESTAC-12) (Braşov, România)
2018	The "12 th European Symposium on Thermal Analysis and
	Calorimetry (ESTAC-12) (Brasov, România).
2018	The XXXV-th Romanian Chemistry Conference (Călimănesti-
	Căciulata, Vâlcea România).
2019	5 th Central and Eastern European Conference on Thermal
	Analysis and Calorimetry & 14 th Mediterranean Conference on
	Calorimetry and Thermal Analysis (Roma, Italy).
2019	21 st Romanian International Conference on Chemistry and
	Chemical Engineering (Constanta-Mamaia, Romania).
Lucrări stiintifice publicate	
P =====	29 lucrări stiintifice, dintre care:
	2 articole în reviste nationale (Chemistry Journal of Moldova.
	General. Industrial and Ecological Chemistry).
	4 articole în iurnale internationale cu factor de impact (Russian
	Journal of Coordination Chemistry, Polyhedron).
	2 proceeding (Springer, Învătământul superior: Tradiții, Valori,
	Perspective)
	2 brevete de inventie
	19 teze ale comunicărilor stiintifice.
Premii si mentiuni	·····
2017	Bursa de cercetare "Mircea Ciuhrii"
2018	PremiulConcursul pentru selectarea celor mai buni tineri
	cercetători ai Institutului de Fizică Aplicată în baza rezultatelor
	stiintifice obtinute pe parcursul anului 2018"
2020	Premiul municipal pentru tineret, editia 2020, Chisinău
	· · · · · · · · · · · · · · · · · · ·