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SUMMARY

to the thesis ”Quantum dynamics in molecular dipolar systems”,
presented by Alexandra Mîrzac

for conferring the scientific degree of Ph.D. in Physics, Speciality 131.01 ”Mathematical
Physics”, Chişinau, 2021.

The thesis has been written in English language and consists of the introduction, 4 chapters,
general conclusions and recommendations, and the list of 205 references. The thesis contains 134
pages of basic text, 19 figures and 141 formulae. The results presented in the thesis are published
in 16 scientific papers.

Key words: two-level system, three-level Λ-system, permanent dipole moment, resonance,
fluorescence, squeezing, terahertz lasing, multi-quanta processes, quantum interference, multipho-
ton conversion, quantum emitter, super-Poissonian statistics.

The goal: The detection of new quantum dynamical properties in two and three-level Λ-type
systems possessing a non-zero permanent dipole moment strongly coupled with quantum optical
cavity or opto-mechanical resonators.

Research objectives: The calculation of squeezing effects in the resonance fluorescence pro-
cesses of laser-pumped two-level system possessing a permanent dipole moment; The determi-
nation of the total quantum fluctuation spectra of laser-pumped dipolar two-level systems; The
investigation of a laser-pumped three-level Λ-type system having the upper state coupled with a
quantum oscillator described by a single quantized leaking mode; The identification of three-level
model particularities leading to lasing and cooling effects; The demonstration of quantum inter-
ference effects induced by emitter’s dressed states responsible for flexible lasing and deeper cool-
ing effects; The investigation of frequency conversion from optical to microwave region, via the
resonant pumping of an asymmetrical two-level system incorporated in a quantized single-mode
resonator; The demonstration of multiphoton features of cavity quantum dynamics containing an
asymmetric two-level system using certain multiphoton superposition of generated states.

Scientific novelty and originality of the results: the new features of resonance fluorescence
spectrum of spontaneously emitted photons by dipolar two-level system were demonstrated; two
distinct mechanisms of lasing and cooling based on single- or two-quanta processes where detected
in the three-level Λ-type system; conversion of photons from optical to microwave domains, via
resonantly pumped asymmetrical two-level quantum emitter embedded in a quantized single-mode
resonator.

Themain scientific problem solved consists in computing and analyzing the quantum dynam-
ical properties of few level atomic systems possessing a permanent dipole moment interacting with
external coherent laser field.

Theoretical significance and applicative value: in the thesis, one has investigated the steady
state-quantum dynamics of a laser pumped two-level system possessing a non-zero permanent
dipole moment. New features of the dipolar two-level system have been found in the resonance
fluorescence spectrum, squeezing spectrum and total quantum fluctuations.

The model of a laser-pumped three-level Λ-type system with highest energetic level coupled
with a quantum oscillator described by a single quantized leaking mode has been investigated.
Two distinct regimes leading to cooling and lasing effects of the model have been identified. In the
first regime, the model functions as a two-level system. Whereas in the second regime, the model
evolves into a three-level equidistant system.

The quantummultiphoton dynamics of a two-level system possessing unequal permanent dipoles,
placed in a leaking single-mode quantized cavity field and coupled to it has been investigated. The
photons conversion from optical to microwave frequency domains was proved.

The implementation of the scientific results: the research presented in this thesis have been
successfully implemented in the framework of the national project (15.817.02.09F) also with sup-
port of Moldavian National Agency for Research and Development, grant No. 20.80009.5007.07
and National Scholarship of World Federation of Scientists in Moldova.
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ADNOTARE

la teza ”Studiul dinamicii cuantice în sistemele moleculare dipolare”, elaborată de
Alexandra Mîrzac pentru conferirea gradului științific de doctor în științe fizice la

specialitatea 131.01 ”Fizică matematică”, Chișinău, 2021.

Teza este scrisă în limba engleză și constă din introducere, 4 capitole, concluzii generale și
recomandări, și lista a 205 referințe bibliografice. Teza conține 134 pagini de text de bază, 19
figuri și 141 formule. Rezultatele prezentate în teză sunt publicate în 16 lucrări științifice.

Cuvinte cheie: sistem cu două nivele, Λ-sistem cu trei niveluri, dipol permanent, fluorescența
la rezonanță, comprimare, laser terahertz, procese cuantice multiple, interferență cuantică, conver-
sia multifotonică, emițător cuantic, statistică super-Poissoniană.

Scopul tezei: Detectarea proprietăților noi în dinamica cuantică a sistemelor cu două niveluri
și trei niveluri energetice de tip Λ care posedă dipol permanent nenul și sunt cuplate cu cavitatea
optică cuantică sau rezonator opto-mecanic.

Obiectivele tezei: Demonstrarea efectelor de comprimare în spectrul fluorescenței de rezo-
nanță a sistemelor cu două niveluri pompate laser; Determinarea spectrului fluctuațiilor cuantice
totale a sistemelor dipolare cu două niveluri; Identificarea mecanismelor de emisie laser și răcire
în domeniul THz în sistem cu trei nivele energetice de tip Λ cuplat prin dipol permanent nenul
cu un oscilator cuantic; Demonstrarea efectelor de interferență cuantică care induc emisie laser și
răcire cuantică într-un domeniu extins de frecvențe; Cercetarea metodei de conversie optică de la
domeniul optic spre domeniul microundelor, prin pomparea rezonantă a sistemlor asimetrice cu
două nivele încorporat de un rezonator cuantic unimod; Demonstrarea proprietăților multifotonice
ale cavității cuantice care conține un sistem asimetric cu două niveluri, prin suprapunerea multifo-
tonică a stărilor generate.

Noutatea științifică și originalitatea rezultatelor: au fost demonstrate proprietățile noi ale
spectrului fluorescenței de rezonanță al fotonilor emiși spontan de către un sistem dipolar cu două
niveluri; au fost determinate două mecanisme distincte ale emisiei laser și răcirii cuantice într-
un sistem de tip Λ cu trei niveluri cu dipol permanent nenul, implicând procese cuantice unitare
și binare; a fost demonstrată conversia frecvenței fotonilor din domeniul optic în domeniul mi-
croundelor prin pomparea rezonantă a unui emițător asimetric cu două niveluri incorporat într-un
rezonator cuantic unimodal.

Problema științifică soluționată constă în calculul și analiza proprietăților dinamicii cuantice
a sistemelor cu două și trei niveluri energetice, care posedă dipol permanent nenul și interacționează
cu câmpuri externe coerente laser.

Semnificația teoretică și valoarea aplicativă: în această teză, este investigată dinamica com-
plexă cuantică a unui sistem cu două niveluri, cu dipol permanent nenul, interacționând cu câmp
laser. Au fost determinate noi proprietăți ale sistemului dipolar cu două niveluri prin observarea
unor aspecte distincte în spectrele fluorescenței la rezonanță ale fotonilor emiși spontan, com-
primării fluorescenței de rezonanță și fluctuațiilor cuantice totale, față de cazul neglijării dipolului
permanent. A fost cercetat modelul unui sistem de tipΛ cu trei niveluri energetice cu nivel superior
cuplat cu un oscilator cuantic unimodal. În cadrul acestui model au fost identificate două cazuri
distincte de emisie laser și de răcire laser în domeniul THz. În primul caz, modelul este redus la un
sistem cu două nivele. În al doilea caz, modelul este extins la un sistem echidistant de trei niveluri,
în care frecvența qubitului este apropiată de frecvența generalizată Rabi. A fost modelată dinamica
multifotonică a sistemului dipolar cu două niveluri plasat într-o cavitate optică cuantică și cuplată
cu aceasta prin dipol permanent. A fost demonstrată modularea frecvenței fotonilor din domeniul
optic în domeniul microundelor prin pomparea rezonantă a emițătorului optic asimetric cu două
niveluri plasat într-un rezonator cuantic unimodal.

Implementarea rezultatelor științifice: studiile prezentate în această teză au fost implemen-
tate cu succes în cadrul proiectului național (15.817.02.09F), cu suportul financiar al Agenției
Naționale pentru Cercetare și Dezvoltare, grant Nr.20.80009.5007.07 și cu suportul Bursei Naționale
oferită de Federația Mondială a Savanților în Moldova.
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АННОТАЦИЯ

к диссертации «Исследования квантовой динамики молекулярных диполярных
систем», представленной Александрой Мырзак на соискание ученой степени доктора
физических наук по специальности 131.01 «Математическая физика», Кишинэу, 2021

Диссертация написана на английском языке и состоит из введения, четыреёх глав, об-
щих заключений и рекомендаций, и списка цитируемой литературы из 205 источников. Дис-
сертация содержит 134 страниц основного текста, 19 графиков и 141 формул. Результаты
диссертационной работы опубликованы в 16 научных публикациях.

Ключевые слова: двухуровневая система, трёхуровневая система Λ-типа, постоянный
диполь, резонантная флюресценция, сжатие, терагерцовое лазерное излучение, многокван-
товые процессы, квантовая интерференция, генерация фотонов, генерация фононов, много-
фотонное преобразование, квантовый излучатель, одномодовый резонатор, многофононная
генерация, супер-Пуассоновская статистика, квази-Пуассоновская статистика.

Цель диссертации: Обнаружение новых квантовых динамических свойств в двух- и
трехуровневых системах Λ-типа, обладающих ненулевым постоянным дипольным момен-
том, сильно связанным с квантовым оптическим резонатором или оптико-механическими
резонаторами.

Задачи диссертации: Расчет и моделирование эффектов сжатия в процессах резонанс-
ной флуоресценции двухуровневой системы с лазерной накачкой, обладающей постоянным
дипольным моментом; Моделирование спектров полной квантовой флуктуации в диполь-
ных двухуровневых систем с лазерной накачкой; Исследование новых свойств трехуровне-
вой системы Λ-типа с лазерной накачкой приводящих к гибкому лазерному излучению и
охлаждению; Доказательство квантово-интерференционных эффектов ведущих к гибкому
лазерному излучению и более глубокому лазерному охлаждению; Исследование преобра-
зования частоты из оптической области в микроволновую с помощью резонансной накач-
ки несимметричной двухуровневой системы; Доказательство многофотонных особенностей
квантовой динамики резонатора, содержащего несимметричную двухуровневую систему, с
использованием некоторой многофотонной суперпозиции генерируемых состояний.

Научная новизна и оригинальность результатов: доказанны новые особенности спек-
тра резонансной флуоресценции спонтанно испускаемых фотонов диполярной двухуровне-
вой системой; в трехуровневой системеΛ-типа обнаружены два различных механизма лазер-
ного излучени и охлаждения, включающие одно- или двухквантовые процессы; доказанно
преобразование фотонов из оптической в микроволновую область с помощью асимметрич-
ного двухуровневого квантового излучателя с резонансной накачкой, встроенного в кванто-
ванный одномодовый резонатор.

Основная научная задача, решаемая диссертацией, состоит в вычислении и анали-
зе квантовых динамических свойств малоуровневых атомных систем, обладающих постоян-
ным дипольным моментом, взаимодействующими с внешним когерентным лазерным полем.

Теоретическая значимость и прикладная ценность: в диссертации исследовались но-
вые особенности спектров резонансной флуоресценции спонтанно испускаемых фотонов,
сжатия и полных квантовых флуктуаций в двухуровневой системе с лазерной накачкой, об-
ладающей ненулевым постоянным дипольным моментом

Исследованы два различных механизма лазерного излучения и охлаждения в трехуров-
невой системе Λ-типа с лазерной накачкой. Согласно им, модель обладает одновременно
свойствами двухуровневой и трёхуровневой эквидистантной системы.

Исследована квантовая многофотонная динамика двухуровневой системы с неодинако-
выми постоянными диполями и преобразование фотонов из оптической в микроволновую
частотную область с помощью асимметричного двухуровневого квантово-оптического из-
лучателя с резонансной накачкой, помещенного в квантованный одномодовый резонатор.

Внедрение научных результатов: исследования, представленные в этой диссертации,
были успешно внедренны в рамках национального проекта (15.817.02.09F), а также при под-
держке Нац. Агентства по Исследованиям и Развитию Молдовы, грант (20.80009.5007.07) и
Нац. Стипендии Всемирной Федерации Ученых (Швейцария) в Молдове.
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SHORTCUTS

BWO - Backward Wave Oscillators

CW - Continuous Wave

DFG - Difference Frequency Generation

EO - Electro-Optic

EIT - Electromagnetic Induced Transparency

EHF - Extremely High Frequency

FEL - Free-Electron Laser

JCM - Jaynes-Cummings model

PDM - Permanent Dipole Moment

QCL - Quantum Cascade Laser

QD - Quantum dot

QED - Quantum Electrodynamics

QW - Quantum Well

RWA - Rotating Wave Approximation

SPDC - Spontaneous parametric down conversion

TLS - Two - Level System

THz - Terahertz

{a, a†} - the photonic operators

{b, b†} - the phononic operators

{S+, S−} - the molecular bare-state operators

{R+, R−} - the molecular dressed-state operators

{R̃+, R̃−} - the molecular double dressed-state operators

γ - the spontaneous emission rate

κ - the damping rate of a reservoir

n̄ - the mean phonon number of a thermal reservoir

⟨n⟩ - the mean phonon (or photon) number of a resonator

g(2)(0) - the second-order phonon-phonon (or photon-photon) correlation function

ρ - the density operator

H - the Hamiltonian

Ω - the Rabi frequency
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INTRODUCTION

Actual research status:

The quantum properties of light are the object of studies in quantum optical dynamics. During

last decades, experimental and theoretical progress emerged together in explaining light-matter

interaction and provided a test-bed of various fundamental aspects of quantum mechanics such us

coherence, resonance fluorescence, squeezing, laser cooling and quantum entanglement. Quantum

optics has a direct and indirect impact on the development of quantum technologies, whose purpose

is to integrate non-classical quantum effects in industrial manufacturing and real feasible quantum

computational setups. Quantum properties of light are the foundation of the most promising and

potentially challenging quantum technologies.

The study of photon dynamics is the core of quantum optics as the concept of particles of light

has evolved through various stages of theoretical and technological development. The definition

of coherent state of photons as eigenstate of the annihilation operator and the description of photon

number statistics and the coherence properties of a laser field was proposed by [1]. One of the main

advantages of photons is the implementation of quantum technology operating at temperatures that

don’t require cryogenic level and they are hardly affected by the environment. In order to maintain

the feasibility and optical setup portability, photonic circuits are manufactured as photonic chips,

where all the basic elements embedded into a small chip to fulfill the operational stable require-

ments. The effort in building photonic chips has been improved to integrate photon sources made

of nonlinear materials deposited in the chip for on-chip spontaneous parametric down conversion

(SPDC). Using the photonic chips, various problems of photonics quantum information processing

have been proved experimentally including boson sampling [2].

The key concept of quantum optics is the exploration of light matter interaction employing the

concept of coherent states and used further to explore high-order coherence of light. Squeezed light

a non-classical sample of light-matter interaction has played a major role in quantum optics devel-

opment [3]. Quantum optics manages to combine both theoretical and applied technology studies.

Thus, squeezed light enables a new type of precision measurement, with application in gravita-

tional wave detection [4] and for noiseless communication [5]. In particular, a squeezed vacuum

is generated by spontaneous parametric down conversion (SPDC) and is the most frequently used

process to generate squeezed states, but also, for example, to generate single and entangled pho-

tons. Though isolated two-level systems such as an atom, an ion, a quantum dot or a defect in a
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diamond are also proper candidates to generate single photons [6].

The Jaynes-Cummings model (JCM) provides the description of interaction between a two-

level system, for example an atom, and the modes of the electromagnetic field, gives the best

theoretical tools for studying the non classical features of atom-light interaction [7, 8]. The major

consequence of the field quantization was the collapse and revivals of Rabi oscillation, which was

checked experimentally in quantum electrodynamics (QED) setups. Beside this Jaynes-Cummings

model (JCM) offers an information theoretic approach for the study of cavity field dynamics, which

was initially prepared in a large amplitude coherent state and well turn into a coherent superposi-

tion state at a certain interaction time. While quantum optics studies the physics of light-atom

interaction, quantum information focuses on the properties and applications of the qubit, which is

a quantum bit and the quantum-mechanical extension of a conventional bit
{
0, 1
}
. The quantum-

mechanical superposition of the qubit is the counter part of the coherence in quantum optics. The

superposition of multiple qubits leads to entanglement and the information procession in an non-

classical way. Thus a quantum computer is able to compute complex factoring algorithms in a

more effective way then standard computers. A scheme of creating one-time pad between distant

partners using non-classical light fields prepared in superposition states was proposed by [9]. The

further development of quantum technology and quantum information processing is based on the

ability to control and manipulate the coherence of a quantum system as one of the main challenge

is the system’s interaction with the environment. Consequently, there have been done extensive

studies of decoherence in the framework of Markovian and non-Markovian open quantum systems

[10].

The quantum optical properties of two-level systems interacting with electromagnetic field con-

stitutes the basis for a wide spectrum of applied problems, including laser science [11], fluorescent

spectroscopy [12], nano-imaging [13], design of single photon and multiphoton sources [14, 15]

and efficient light emitting devices [16]. It has a certain impact in the development of quantum in-

formation theory in the context of coherent qubits control. In particular, single photons are the main

tool for quantum key distribution using the quantum informational protocol and for more advanced

schemes, required for long-distance quantum communication. The information is usually encoded

in the polarization of the photon, and in sources emitting single photons on-demand with high en-

tanglement are of major importance for the implementation of quantum information protocols. In

this context, semiconductor quantum dots (QDs) are two-level systems perfectly functioning as

triggered sources of single photons. Also, quantum dots (QDs) are highly advantageous because at

resonant excitation they emit single photons with outstanding quantum properties of multiphoton
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suppression and photon indistinguishability [17].

Indeed, one can say that the advances of modern quantum optics are based on the concept of

a few-level system. Beside Jaynes-Cummings model used to describe a laser single mode driven

two-level system, the projection into the Fock states is used to derive the complex quantum dy-

namical statistics of the emitted field. Additionally, some other relevant approximations are em-

ployed to picture coherent light-matter interaction. First, the dipole approximation presume that

the wavelength of the radiation field is much greater then the atomic dimensions and rotating wave

approximation (RWA) considers only near resonant terms are effective and essential in studying

light-matter interaction. Not enough to describe the radiation-matter interaction, the concept of

dressed states was introduced by [18] for two-level systems to complete the rotating wave approx-

imation (RWA) explaining experiments in the regime of microwaves [19].

The theoretical aspects of light-matter interaction often describe the quantum optical system

dynamics using the non-diagonal matrix element of the dipole moment operator. However, many

systems possess non-zero permanent dipole moment such as polar molecules, an atom polarized by

static electric field or an asymmetric quantum dot [20], magnetic dipole atomic transitions detected

in rare-earth ions [21, 22] posses a non-zero magnetic dipole different from the case of electric

dipole transitions, which are considered zero for atomic eigenstates.

In the majority of studies, two-level systems (TLS) are considered to possess a certain spatial

parity, or their diagonal dipole matrix has a zero value. However, two-level system with perma-

nent dipole moment or two-level systems (TLS) with broken inversion symmetry exhibit appealing

properties. Some of the following features have been proved in two-level systems (TLS) with bro-

ken inversion symmetry: high harmonic generation [23], two-color multiphoton resonances [24],

additional resonances in nondegenerate four-wave mixing [25], high reflectivity two-photon phase

conjugation [26], new set of peaks detected in the emission spectra [27], revivals and collapse of

Rabi oscillations [28, 29], population inversion [30], and enhanced features in the one- and two-

photon nonlinear absorption and dispersion [31]. Quantum systems possessing permanent dipole

moment are widely explored in the context of multiphoton processes. It was proved that the pres-

ence of permanent dipole moment enforces certain changes in multiphoton absorption rates. Dipo-

lar quantum systems can radiate at Rabi frequency and can serve as emitters in the THz frequency

region. Also, two-level systems with permanent dipole manifest population inversion in the steady

state if they are pumped by two monochromatic laser fields.

Two-level systems exhibit an important non-classical property, namely, the squeezing of the

field quadratures in the resonance fluorescence spectrum. In connection with development of
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highly precision measurement devices and quantum computation, the squeezing of the fluorescent

field is an endeavouring research subject of laser driven two and three-level systems. Therefore,

the issue of generation non-classical light with enhanced squeezing in dipolar few-level atomic

systems is still an interesting area of study. More over the presence of permanent dipole moment

(PDM) changes straightforward the optical feedback of the system, for example, modification in

multiphoton resonant excitation [32, 33]. Regarding the three-level quantum systems possessing a

permanent dipole moment (PDM), one notes their novel feature to embedded simultaneously the

properties the two- and three-level systems as function of the tunable Rabi frequency due to the

laser driving due to the presence of permanent dipole moment [34, 35]. Also quantum systems con-

taining a supplementary quantum state reveal a large class of coherent interference effects, as well

as the application of three-level qubits in composing and testing quantum protocols and informa-

tion storage. One of the best experimental examples of three-level systems possessing a permanent

dipole moment are semiconductor quantum wells (QW), which exhibit quantum interference due

to interband transitions and intersubband absorption due to asymmetric structure of the system

[37]. The permanent dipole moment within three-level systems influences the levels shifting due

to charge redistribution, as well the permanent moments interact with optical fields-an aspect rather

less studied.

Consequently, few level atomic systems possessing a non-zero permanent dipole moment can

be used for tunable generation of electromagnetic waves. This is especially laborious for frequency

ranges where known methods are inefficient, such as terahertz (THz) domain [38]. This domain

is especially challenging because it lies between radio and optical frequency ranges, thus neither

optical nor microwave techniques are not suitable for generatingTHzwaves. Therefore, a search of

novel and effective THz radiation sources is an emerging task for applied and theoretical quantum

optics. Also, multiple quanta processes are considered feasible quantum technologies within few

level atomic systems. Thus, the non-resonant multiphoton conversion from optical to microwave

and vice versa region is an emerging task.
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The purpose of the thesis:

The computation and analysis of quantum dynamical properties of few level atomic systems

possessing a permanent dipole moment interacting with external coherent laser fields.

The objectives of the thesis:

• The demonstration of impact of permanent dipole moment (PDM) in the resonance fluores-

cence, squeezing and total quantum fluctuations spectra of a two-level system.

• The investigation of a laser-pumped three-levelΛ-type system the upper energy level coupled

with a quantum oscillator described by a single quantized leaking mode.

• The demonstration of quantum interference effects induced by emitter’s dressed states re-

sponsible for flexible lasing and deeper cooling effects.

• The investigation of the possibility of frequency conversion from optical to microwave re-

gion, via the resonant pumping of an asymmetrical two-level system incorporated in a quan-

tized single-mode resonator.

• The demonstration of multiphoton features of cavity quantum dynamics containing an asym-

metric two-level system using certain multiphoton superposition of generated states.

Research hypothesis:

Two- and three-level systems possessing a non-zero permanent dipole moment interacting with

external coherent laser fields exhibit important nonclassical features. Consequently, the permanent

non-zero dipole moment becomes an advantageous tool to engineer the properties of novel quantum

systems exhibiting novel properties in comparison to the similar systems yet in the absence of

permanent dipoles will be demonstrated below.
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Analytical methods:

• The rotating wave approximation has been applied in order to neglect the quickly oscillating

terms in the Hamiltonian and keep only terms expressing detunings or frequency differences.

As well, the Born-Markov approximation has been adopted in order to eliminate the vacuum

modes of the electromagnetic field reservoir.

• The method of transformation into the interaction picture was applied in order to remove the

time depending terms in the system Hamiltonian using a time dependent unitary operator.

Rewriting the Schrödinger equation in the interaction picture using the unitary transformation

operator, one has modified properly the system Hamiltonian.

• The method of projecting the Bloch equations has been applied in order to describe the evo-

lution of atomic operators, due to the driving and spontaneous emission of the system. An

equivalent procedure involved the derivation equations of motion for single ore more average

operators, which is possible in the Heisenberg picture.

• The method of projecting the master equation into Fock states basis has been applied in order

to detect the quantum dynamics of the system, described by a solvable system of coupled

equations projected in the system state basis. This methods permits one to derive from the

equation of motion the investigated parameters describing the system dynamics.

Obtained scientific results to be defended:

• Detection of new spectral lines in the resonance fluorescence emission in the two-level sys-

tems with permanent dipole moment.

• Demonstration of extra squeezed frequency domains in the two-level systemswith permanent

dipole moment.

• Identification of two disting lasing and cooling regimes in a laser-pumped three-level Λ-type

system.

• Possibility to identify sources of coherent terahertz photons generation in a laser-pumped

three-level Λ-type system.

• Investigation of quantum multiphoton dynamics of a two-level system possessing unequal

permanent dipoles, placed in a leaking single-mode quantizied cavity field.
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Thesis’s structure:

In the first Chapter is presented a review giving a certain insight in the quantum dynamical

phenomena detected in few level atomic systems possessing a permanent dipole moment. This

chapter highlights that these systems are the proper models suitable for the description of and fore-

casting new light-matter interactions and propose feasible quantum-optical devices with a wide

range of emerging applications. One has over-viewed the two-level system framework altogether

with phenomena and applications embedding them. Another specially interesting discussion in this

chapter regards the lasing and cooling phenomena in quantum optical systems. The topic of THz

waves and multiphoton states generation in quantum optical systems is also considered. Never-

theless, the impact of permanent dipole moment on the quantum dynamical properties of various

setups is still neglected and presumed to be zero. Thus, one has contoured the missing block of last

decade researches in the field of quantum optics and helped one to define the problem considered

in the thesis.

In the secondChapter is considered a two-level system possessing a permanent dipole moment

interacting with two external coherent field. One of them has a near resonant frequency with the

transition in the two-level system, while the second one has a resonant frequency with the transition

between the dresses-state levels generated by the first laser pumping. The purpose of the chapter

is to model the influence of the non-zero dipole moment on the resonance fluorescence and total

quantum fluctuations processes in the two-level system. The system has been described using the

semi-classical laser-molecule dressed-state picture due to the first laser pumping. The dressed-state

transformationwas applied to the system in order to project the systemHamiltonian at the frequency

of the second laser. The Hamiltonian describing all types of interactions detected in the system is

presented. Unlike, earlier published similar problems yet in the absence of the permanent dipole

moment, one will present the fluorescence spectrum, which will exhibit supplementary spectral

lines and additional squeezing regions will be shown, within the corresponding chapter.

In the third Chapter is investigated the quantum dynamical properties of a quantum oscillator

coupled with the most upper state of a three- level Λ-type system, which possess orthogonal dipole

moments and is coherently pumped with a single or two electromagnetic field sources. These

systems are particularly compelling for engineering of novel quantum systems exhibiting lasing in

awider range of parameters, lasing and cooling in adjustablemicroscale and nanoscale devices. The

chapter discusses the determination of flexible ranges of lasing and cooling phenomena determined
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by the quantum oscillator’s degrees of freedom and describes the mechanism behind them. Also,

in this chapter is proved the interplay between single- or two-quanta processes appearing with

quantum interference effects among the induced emitter’s dressed states are in charge of flexible

lasing or deeper cooling effects. Consequently, this conducts to reciprocal influence between the

quantum oscillator’s dynamics and the three-level emitter’s quantum dynamics. Additionally, one

has determined that the quantum setup presented in this chapter is suitable for terahertz photon

generation.

In the fourth Chapter is investigated the multiphoton dynamics of a two-level system possess-

ing non-zero permanent dipole moment, which is placed in a leaking single-mode quantized cavity

field and coupled to it. The frequencies of the cavity and the two-level system are presumed to

belong to different range frequencies: microwave and optical. Thus the presented setup consists

of two interacting subsystems, which are coupled through the permanent dipole moments. Thus,

the created highly dispersive regime in the system results in multiphoton quantum dynamical be-

have and causes photon conversion from optical to the microwave range. The chapter gives the

description of the system Hamiltonian required to derive the master equation adopted for the char-

acterization of the multiphoton emission processes. The calculations were completed by consid-

ering the accompanying damping effects due to qubit’s spontaneous emission and cavity’s photon

leakage. The main result presented in the chapter is the demonstration of photon frequency conver-

sion from optical to microwave, via resonantly pumped asymmetrical two-level quantum optical

emitter placed in a quantized single-mode resonator. The chapter contains the demonstration of

multiphoton states generation feasibility. The corresponding photon statistics changes from super-

Poissonian to quasi-Poissonian is assigned particularly in the chapter and the physical mechanism

behind it is explained.
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1 MOLECULAR DIPOLAR SYSTEMS IN QUANTUM OP-
TICS

In this thesis we consider the quantum dynamics of few level atomic systems possessing a perma-

nent non-zero dipole moment and coupled to an optical or mechanical cavity. Few level atomic

systems are considered a proper theoretical model to explore and forecast the non-classical features

of real materials as atoms, artificial atoms, quantum dots, which are attractive candidates for many

optoelectronic devices as single-photon sources, multiphoton sources, frequency down-converting

devices, phonon lasers, lasing or cooling in a wide range of parameters, and computational building

blocks of a quantum computer.

Thus in this chapter, one gives a review of quantum dynamical phenomena observed in few level

atomic systems, alongside with approximations and assumptions considered while research. This

review helped one to contour the missing building block in revealing non-classical features of few

level atomic systems possessing non-zero permanent dipole moment and consequently formulated

the problem considered in this thesis.

The introductory chapter consists of five paragraphs considering different aspects of few level

dipolar atomic systems interacting with coherent light. In the first paragraph 1.1, one presents the

two-level system framework overview and the experimental setups described within this frame-

work and the phenomena occurring within them. In paragraph 1.2, one reviews the resonance

fluorescence and squeezing detected in two-level systems possessing a permanent dipole moment,

which describes the non-classical aspects of light-matter interaction and is presented graphically

by the Mollow spectrum. The physics underlying the Mollow spectrum is presented as well with

the framework of dressed-state picture.

Another particularly interesting discussion about cooling phenomena in quantum optical sys-

tems is presented in 1.3, where are reviewed the existing cooling techniques, setups and the practi-

cal usefulness of laser cooling. In paragraph 1.4 one presents the terahertz lasing methods and the

motivation to propose devices functioning in the THz-gap. In paragraph 1.5 one discusses the mul-

tiphoton behave of quantum dipolar systems, which can generate multiple photon states required for

the practical building of the quantum communication channels based on photons, so-called flying

bits. An overall conclusion is given in paragraph 1.6.
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1.1 Two-level systems possessing a permanent dipole moment

Two-level systems have attracted much attention since the early years of development of quan-

tum mechanics. A two-level system may be considered a spin-1/2 systems or two level atoms

pumped by a classical electromagnetic field, exhibit a wide range of phenomena as self-induced

transparency, photon echoes, Autler-Townes splitting, dynamic Stark splitting, Rabi oscillations

[39, 40, 41]. Simple two-level model exhibits rich physics and is advancing constantly the under-

standing of the light matter interaction. Here it is important to remind that in the early 1937 Rabi

[42], foresaw that in the presence of a classical single-mode field, a two-level systems exhibits

periodical flips between its states. This paragraph reviews varies classes of quantum optical and

quantummechanical devices, which are treated theoretically as two-level systems. Further one will

contour the requirement to consider the permanent dipole moment (PDM) and its impact on the

properties of these devices.

In the current period, a renewed interest is directed to two-level systems, as they are consid-

ered as an essential source of quantum fluctuations or and decoherence in various quantum de-

vices. This enlists superconducting quantum bits or briefly named qubits. Quantum bits or qubits

are resonant microwave frequency circuits, built from micro-structured inductors, capacitors and

Josephson junctions. For the proper functioning of such devices, it is required to have two states or

eigenstates, which are considered as logical states, |1⟩ and |2⟩ and transitions between these states

can be driven to realize logical quantum gates. The main issue in this circuits is the existence of

several excited states, they are required to be anaharmonic so that all transition frequencies are sep-

arable. This is achieved by embedding the Josephson junctions [43, 44, 45], which can be modeled

as nonlinear inductors tuned through a bias current or a magnetic flux. From the first experiment

detection of coherent quantum dynamical behave in Cooper pair box in 1999 [46], qubits developed

into of the leading tools for the implementation of large-scale quantum computing. Nevertheless,

fluctuations and losses occurring due to coupling with two-level system present a significant source

of decoherence and a parameter measuring the fluctuations for superconducting qubits.

Thus the physics of two-level systems makes up the basis for quantum optics and quantum

cavity electrodynamics. It is also a widely employed model in the field of photonic quantum tech-

nologies, because it allows a secure exchange channel of information through the single photons

and it is a proper tool for efficient quantum computation using linear optics. This means that two-

level systems and the single photon transitions within them are the basic source for quantum key

distribution in certain approved quantum computing protocols and for more advanced schemes,

which could comprise a quantum repeater for remote quantum communication. In such quantum
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computing protocols requires secure direct communication. This is achieved through encoding of

information in the polarization of the photon, also employing the sources emitting single photons

with high indistinguishably or entanglement. In this circumstances, the technological implemen-

tation of quantum computing protocols is realized in the quantum dots, which are almost ideal

two-level systems, acting as sources of single photons, where material properties can be used for

generation of linearly polarized photons [17].

Currently, quantum circuits are manufactured from superconducting aluminium as it allows

to fabricate high-performance Josephson junctions using evaporation techniques. An amorphous

oxide layer is growing on the sample once exposed to air. This layer is described by large dielec-

tric loss, which corresponds to high density two-level system in the amorphous material. If the

two states of a two-level system are used to describe the displacement of a charge, then the sys-

tem possesses an electric permanent dipole which coupled it to the oscillating electric field present

in capacitive resonant circuits. In two-level systems build in the few nm-thin Josesphson junc-

tion, where the electric field strength is up to 100 V/m, the coupling is strong. Strong coupled

two-level systems are not efficient for qubit operation as their coherent interaction with the circuit

dynamic properties provides a tool towards direct control of the state of microscopic defects using

macroscopic host device. Considering two-level systems built in a quantum device, it is necessary

to know the classification of two-level systems as function of incoherent and coherent processes

within it. Each particular two-level system is coupled to an ambient environment consisting of

phonon modes at a certain temperature T or other quasiparticles formed from residual charge carri-

ers in the superconducting device. The type of coupling leads to incoherent or coherent transitions

between two-level systems eigenstates such as dissipation, excitation, random fluctuations and en-

ergy dephasing.

Another class of two-level systems are name fluctuators. This devices are in strong coupling

with their own environment and incoherently flip between states the system. The incoherent tran-

sitions between the two states are due to quantum tunneling though the barrier and decoherent

transitions take place due to the coupling to the environment.

On the other hand, coherent two-level systems are the ones in which the coupling between the

two-level system and their environment is weak enough, so it can remain in one of their eigenstates,

or in a coherent superposition of states, during a short time. A feature specific for coherent two-

level systems is the energy splittings, which are larger than the thermal energy of the environment,

E > kBT [47]. Strong coupling regime with the host environment of coherent two-level systems

is described by a coupling strength that exceeds the decoherence rate of both two-level systems and
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the host environment. The change of coupling regime modifies the energy level structure and the

quantum dynamical behave of the two-level system and the host environment, for example anti-

crossings in qubit spectroscopy. Both quantum fluctuators and coherent two-level systems may be

formed in the same physical entities or devices. However, the difference between fluctuators and

coherent two-level systems are useful to be considering while distinguishing the dynamical effects

arising from the individual system and the host environment [48, 49].

The development of semiconductor nanotechnology boosted the considerable research and con-

struction of photonic devices in the quantum limit. In this context, structures embedding quantum

dots (QDs), which are acting as two-level quantum emitters of single photons or might be con-

sidered as sources of entangled photons for the upcoming quantum communication networks. For

example, microlasers embedding quantum dots (QDs) exhibit a certain advantage due to the spon-

taneous emission coupling int the lasing mode, which makes possible to construct microlasers with

ultra-low thresholds and having several QD or single QD as gain medium [50]. Lasing devices

containing quantum dots (QDs) have an improved sensitivity and properties allowing to study the

nonlinear effects in quantum systems like dynamical antibunching in the photon statistics of the

emitted light or thermal bunching [51]. Supplementary, semiconductor quantum dots (QDs) in-

corporated in an optical cavity placed in a magnetic field serves as an alternative setup for linear

optical quantum computing schemes, which use photons as qubits suffering of slight decoherence.

Resonant scattering generates photons emitted from the quantum dot, while the magnetic field de-

tects the encoding of the photons. Thus multiphoton states can be step by step built up [52]. In this

way, nonlinear-optics and nanophotonics are paving the way for engineering of physical elements

assuring advanced secure communication networks.

In majority of studies, the ground and the excited states of a two-level system posses a certain

spatial parity or the diagonal dipole matrix elements are zero. Appealing properties and phenomena

exhibit two-level systems with broken inversion symmetry like: high harmonic generation [23],

two-color multiphoton resonances [24], additional resonances in non-degenerate four wave mixing

[25], two-photon optical bistability [53], new set of peaks in the emission spectra [27], collapse

and revival of Rabi oscillations [29], population inversion [30] and enhanced features in the one-

and two-photon nonlinear absorption and dispersion [31].

All these theoretical and experimental researches have been performed in the framework of

symmetry inversion approximation. Formally, in systems with broken inversion symmetry the

transversal and but also longitudinal coupling with electromagnetic field becomes possible. This

circumstance opens a radiative channel between the neighboring dressed levels at Rabi frequency.
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Nevertheless, the violation of the inversion symmetry is emergent in many quantum setups and

arises from nonzero permanent dipole moment (PDM) matrix elements of the ground and excited

states. For instance, in polar molecules [54, 55] permanent dipole moments arise from parity mix-

ing of the molecular states, but it in quantum dot-artificial molecular systems is generated due to

the asymmetry of the confining potential of the dot. The existence of permanent dipole moment is

not just a theoretical assumption, it is an experimentally proved fact determined in several experi-

mental systems [56, 57, 58, 59, 60]. The presence of nonzero permanent dipole moment changes

considerably the optical features of the system, leading, for instance to modification of multiphoton

resonant excitation, creation of the second harmonic-generation, correlated photon pairs, addition-

ally, the generation of new optical transitions within the system possessing a permanent dipole

moment.

The coherent excitation of quantum systems with permanent dipole moment is an area of active

research in last decades. Most theoretical researches regarding nonlinear features of atoms and

artificial molecules, namely quantum dots, drop off the presence of permanent dipole moment.

Dipole systems include polar molecules [61, 62] and some solid materials [57, 63]. The features

of coherent nonlinear optical processes within polar systems can be greatly change, due to the

permanent dipole moment itself. For example, the extension of harmonic spectrum was detected

in a dipolar gas, both the odd and even harmonics parts of the spectrum was extended [64].

Nevertheless, the effects of permanent dipole moments, themselves can be manipulated by the

electric field applied to the quantum system. It has been found that the improved ionization of the

asymmetric molecule (HeH2+) is much more deep if the electric field is applied antiparallel to

the permanent dipole moment in comparison the parallel application of the field to the permanent

dipole moment [65]. This effect is proved by a stronger emission when the electric field pulse is

antiparallel to the permanent dipole moment. The corresponding physical picture of this phenom-

ena involving two-level systems with permanent dipole moments can be illustrated in the dressed

state picture or interpretation [66].

These advances in laser physics, nanotechnology have established the proper base for research-

ing the strong light-matter interaction in various quantum systems. In comparison to weak electro-

magnetic field, the interaction between electrons and a strong field is impossible to be considered

as fluctuation or perturbation. Thus, the system consisting of electron interacting with the strong

field is generically considered as electron-field composite system, which is named electron dressed

by field or dressed states [67].

The concept of dressed states appears also in systems placed in a strong external laser field.
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The generation of dressed states was foreseen in a wide range of experimental systems: solid-

statesetups, bulk-semiconductors, mesoscopic structures. The energy separating dressed states is

named Rabi splitting, which can be easily tuned by the intensity of the dressing field. The ra-

diative transitions between the states of the electromagnetically dressed systems was predicted

theoretically and proved experimentally in various setups, such us systems with broken inversion

symmetry, atomic medias, condensed-matter structures and superconducting circuits.

The field-induced changes of the physical features of the dressed electrons was explored in

atomic systems, various condensed-matter structures, graphene, quantum wells, quantum rings,

quantum dots, which are named in sources artificial atoms, being the most perspective materials

for applications in nanophotonics, as in contrast with natural atoms, quantum dots due to strong

built-in electric field acquire anisotropy or inversion symmetry. This makes quantum dots specially

attractive for the theoretical and experimental of quantum optical effects [68].
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1.2 Resonance fluorescence and squeezing in molecular dipolar systems

Light-matter interaction is specially interesting for several reasons because light scattered from

matter contains a lot of information about the matter itself and generating quantum light sources

is crucial for new applications in quantum technology. A generic example is the interaction of

a coherent laser beam, with a quantum optical cavity or quantum optical resonator, which as the

output generate non-classical light or photons exhibiting non-classical features such as fluctuations,

squeezing, and or resonance fluorescence.

Resonance fluorescence is a simple and most fruitful phenomenon describing the light-matter

interaction, playing a major role in understanding the particularities of the quantum dynamical

interaction of light and matter. Basically, it describes the photon emission of a two-level system

that is coherently pumped and it further emits photons and the same coherent drive frequency.

Also, resonance fluorescence offers a straightforward graphic demonstration of quantization of the

coherent light field [69, 70].

For the first times, resonance fluorescence in the high excitation regime was observed and the-

oretically described in 1969 by Benjamin Mollow [71]. Also, he has been the first to observe the

crossing at resonance of a low-density gas of sodium atoms with a dye laser beam with a two-level

Na atom transition, namely theF = 2 −→ 3 hyperfinetransitions of theD2 line. Thus, the obtained

spectra of resonance fluorescence from highly-driven two-level dipolar system had a peculiar line

shape, namely a triplet. The general solution of the problem in the case of the arbitrary strong

driving field has been derived by Mollow. It is necessary to mention in this context that Mollow’s

approach is based on optical Bloch equations (OBE), resonance fluorescence is explained as emis-

sion of photons by an atom pumped by laser field. Additionally, the quantum features of the vacuum

field is dropped off from the consideration, and all physical features of the emitted radiation are

expressed through the terms of operators for the atomic variables. Also in this approach, the atomic

system, treated in the framework of the dipole and rotating wave approximation, interacting with

an isotropic radiation reservoir is mathematically solved employing an effective one-dimensional

model. This type of mathematical approach is used in several theoretical problems: in condensed

matter this is specific for the theory of magnetic alloys and in quantum optics this approach is used

in the theory of Dicke supperradiance in which a bosonic field interacts with an impurity, which in

quantum optical problems usually is considered an atom.

The interpretation of the resonance fluorescence Mollow triplet of the two-level system is in-

terpreted within dressed-state base formalism. The laser pumped dressed-state base gives rise to

new eigenstates |±⟩, which consist of a combination of bare states: ground and excited, noted with
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corresponding letters g and e, namely |g, n + 1⟩ and |e, n⟩ and n is an integer number counting

the number of photons from the laser. Eigenestates of the two-level system due to dynamic Stark

splitting form a family of such states whose total energy is equal with each other, form amanifold of

excitation. Each manifold consists of eigenstates, which are split by the Rabi frequency, while the

energy difference between two neighboring manifolds is that of the bare states, or their average if it

is non resonant. The transitions between neighboring manifolds hold several features: the spectra

consisting of three peaks, named triplet, in which the total spectral intensities of its peaks shape

correspond to 1 : 2 : 1 proportions, in case of resonant laser pumping of a two-level system. The

Mollow triplet spectrum has become a universal signature of quantum system exhibiting resonance

fluorescence and cannot be interpreted within optical optics. The basic features of the Mollow

triplet are the following: the central peak occurs at the driving laser frequency and the sidebands

are displaced from the central peak by the Rabi frequency. At resonance, the resonance fluores-

cence spectrum is dominated by incoherent emission, also a radiative cascade emission generates

photon antibunching and blinking. These features were proved experimentally in artificial atomic

systems as quantum dots, and nitrogen vacancy defects.

The physics and properties of the underlying states |±⟩ are quantitatively described in the

dressed state picture. The usual quantum optics approach allows to make the following assump-

tions: the two-level system is driven by the incident field and relaxes as the radiation field, namely

a reservoir of un-occupied photon modes, gains population by fluorescence. The solutions of the

quantum optical Bloch equations are derived in the rotating wave approximation (RWA), which

allows to obtain analytical expressions. The solutions with rotating wave approximation (RWA)

account for quantum dynamics describing the resonant photon emission transition. The theoretical

efforts regarding the explanation of photon correlations in the Mollow triplet spectrum have been

limited to photon computation from the peaks. At the same time, the theories of frequency-resolved

photon correlations generate complex models, involving laborious computations to adjust all the

time-orderings of the radiated photons. Particularly, if we expand the correlations to a greater num-

ber of photons then we tackle this problem through approximations based on the dressed-state pic-

ture. Below, one is reviewing some basic theoretical frameworks developed to explain the physics

of resonance fluorescence in certain particular quantum optical systems.

Apanasevich and Kilin [72] have been among the first to derive the theoretical framework of

dressed-state picture and used it to compute the photon correlations between the peaks and pre-

dicted the qualitative cross-correlations between the peaks, such as photon antibunching for the

side peaks, corresponding to emission and bunching between them. Independently from them, Co-
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hen Tannoudji and Reynaud [18] have explored the photon correlations between the side peaks of

Mollow triplet. Their research confirms the radiative cascade occurring in the two-level system

using the dressed-state picture formalism. Scharma et al.[73] have improved the theory regarding

the resoanance fluorescence in the two-level system. They have taken into account the interference

between the emitted photons, which outcomes for example in antibunching between a side peak

and a central peak contesting the assumption of uncorrelated emission proposed in earlier theories.

Ulhaq et al.[74] has revised the photon correlations of peaks in resonance fluorescence spectra of

an quantum dot In(Ga)As.

Carreno et al. [70] in their paper proposed an exact description of high-order photon correlations

from the Mollow triplet spectrum and proposed setups which extend the field of possible exper-

imental configurations and applications, which have bean already intensively explored, replacing

real-state transitions by strongly correlated leapfrog transitions. The resonance fluorescence line

spectrum explored by them reveal rich physics standing behind it. The two-photon correlation

spectrum describes the direct transitions from one manifold to the following two manifolds situ-

ated below, jumping over intermediate manifold in the bottom of the ladder. The photon transitions

involved here result in strong correlations of the emitted pair of photons. The two-photon corre-

lation spectrum proved that the interpretation of the Mollow triplet peaks are particular cases of a

more complicated process.

Further, Kryuchkyan at al.[68] have elaborated the quantum theory of resonance fluorescence

for bichromatically dressed quantum systems. Their aim was to fill the gap between quantum

optics and physics of nanostructures. The problemwas solvedwithin strong light-matter interaction

regime. The interaction of an asymmetric quantum dot with a bichromatic laser is greater then the

spontaneous emission and spontaneous decay of quantum dot excitation. The obtained spectral

lines of resonance fluorescence spectrum for an asymmetric quantum dot driven by a bichromatic

lasing field were ananlyzed using the concept of quasienergetic or dressed electronic states. The

asymmetry of the quantum dot is described by a non-zero difference of diagonal dipole matrix

elements. As a result, the obtained resonance fluorescence spectrum has the following features: an

infinite set of Mollow triplets, the quench of fluorescence peaks generated by dressing field, and

the oscillating aspect of the fluorescence intensity as a function of the dressing field amplitude.

On the other side, Florescu et al.[75] developed an exact multiphoton scattering theory of the

resonance fluorescence in a frequency-dependent photonic reservoir. In their approach, the reso-

nance fluorescence is generated by scattered laser photons on the atomic systems. This approxima-

tion is applicable for any arbitrary laser’s field intensity. Additionally, the proposed approach has
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no coupling restrictions between atom and reservoir, required for the perturbational methods and

can be applied for any non-Markovian system. The resonance fluorescence spectrum was derived

using optical Bloch equations without Born-Markov approximation. Also, the spectrum for a cer-

tain quantum state of the incident field, one has to compute the average of the Mollow spectrum

over this quantum state, only if the incident light is in a coherent state. They have proved Mollow

spectrum dependence of quantum-statistical properties of incident light.

Additionally, Anton et al.[32] presented the optical quantum dynamical properties of the scat-

tered field by a quantum emitter with broken inversion symmetry. The polar system interacts with

an optical fields, which generates the electronic transitions and at the same time is irradiated with a

second low-frequency field that coupled to the non-zero permanent dipole moment. The effective

Hamiltonian is derived in the double-dressed state basis, used for the computation of resonance

fluorescence and squeezing spectra. The shown resonance fluorescence spectrum exhibits nine

spectral lines or three triplets. This achievement is contrasting to the Mollow triplet well-known

for systems without permanent dipole moment. The peak value of each triplet depends on the Rabi

resonance condition of the two driving fields also the second low frequency driving fields tunes the

spectral features. Additionally, the squeezing spectrum of the resonance fluorescence, where some

reduced fluctuations were detected at certain sidebands. These research is of high interest due to

its potential application in quantum information technologies, quantum amplifiers and attenuators.

Resonance fluorescence spectrum exhibits a number of interesting features such as asymmetries

and suppression of the spectral lines. Asymmetries of the spectral lines occur when the fluores-

cence field of the two-level system is damped by the thermal field. Unusual features are detected

only at the central line of the incoherent component part of the spectrum and is assisted with a

decay of the spontaneous emission from the system.

Zhou et al.[76] have shown some anomalous features arising in the spectrum in the bichromatic

case, for a weak squeezed vacuum and high intensities of the bichromatic field. Under bichromatic

irradiation of the two-level system, the resonance fluorescence spectrum consists of a series of sym-

metric sidebands situated by half of the frequency difference between the two frequencies of the

driving field. The manifolds of the dressed states make up a quantum ladder of populations. The

dipole coupling allows transitions from one manifold to another, with no spontaneous transitions

within each sublevel. In the spectrum presented by them, the sidebands are separated indepen-

dently of the Rabi frequency of the driving field. However, the number of the sidebands increases

as function of the Rabi frequency. Also, it was observed the spectrum is changing getting an asym-

metric aspect and the central peak and even sidebands split into doublets when the components of
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the bichromatic field have unequal amplitudes. Thus the resonance spectrum contains more peaks

because of the symmetric distribution of populations is broken and dressed state levels are strongly

displaced as function of amplitudes ratio.

In the above, we have shown that the Mollow triplet reveals a lot of information about light-

matter interactions proven by quantum correlations and dressed-state transitions. We have shown

theMollow spectrum for resonance fluorescence is derived straightforward from the dipole-approximation

Hamiltonian, using Born-Markov approximation. Also, the occurrence of the spectral features for

various experimental setups and theoretical approaches. This revue explains the possibilities resid-

ing in the Mollow triplet. It means that resonance fluorescence phenomenon portrayed by Mollow

triplet is still of great interest for endeavoring for quantum computing using photonic sources as

programmable quantum input.

Despite the conceptual simplicity of resonance fluorescence, as Mollow triplet emission spec-

trum, it posses a fundamental feature-squeezing in the form of reduced quantum fluctuations in

the single photon stream emitted by an atom in free space, was predicted by Walls and Zoller

[77, 78, 79]. In 1981, Walls and Zoller have foreseen that the quadratic squeezing can be gener-

ated through different methods: the interaction of a two-level system with a coherent light field,

described Jaynes-Cummings Hamiltonian [77]. They have proved that fluctuations in one quadra-

ture, expressed by their variance, can be minimized theoretically up to 12, 5 percent lower than

vacuum fluctuations, keeping the intensity statistics antibunched. In comparison with nonlinear

optics, the specific form of squeezed light comes from atomic coherence, which, once projected

onto the emitted field, outcomes in the creation of coherent states in the weak excitation regime.

Higher number states are dropped off by photon antibunching or by the fermionic features of the

atomic operators. Namely, Walls and Zoller have investigated an unusual source of non-Gaussian

quadrature squeezing obtained in the multimode resonance fluorescence field of a driven two-level

emitter, where the emitted photons are antibunched. Photon antinbunching was experimentally

proved using a semiconductor quantum dot platform, which exhibits the necessary high photon

collection efficiency which is impossible to observe in most atomic setups. The two-level system

emitter setup relies on the steady-state coherence between the ground and the excited state, i. e. a

state expressed in the following form |g⟩ + c|e⟩ with some appreciable c. In the ordinary regime

of atomic resonance fluorescence only a reduced set of atomic coherence expressed through the

values of c can be explored, and squeezing is possible to achieve in the weak-driving limit, with

squeezing values rather smaller than the fundamental bound for a two-level system [77].

Squeezed light has become a naturally extended source of continuous variable quantum infor-
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mation applications. Squeezed states can be generated by reducing the fluctuations of the variance

of the electric field below the vacuum with respect to some phase [80]. These states are employed

to improve the accuracy in interferometric measurements metrology applications, as well the in-

terferometric power of Gaussian systems in a squeezed thermal bath [81] and for quantum key

distribution. The Markovian dynamics of the Gaussian interferometric power of two-mode Gaus-

sian states, for a system composed of two bosonic modes, each of them interacting with its squeezed

thermal bath was investigated by [81]. The dynamics was modelled within the approach of the the-

ory of open systems based on completely positive quantum dynamical semigroups. Additionally

this dynamics was described in terms of the covariance matrix for Gaussian input states. Accord-

ing covariance matrix, the behaviour of the Gaussian interferometric power depends on the initial

state of the subsystem (squeezing parameter and thermal photon numbers) and on the parameters

describing the squeezed thermal reservoirs (temperatures, dissipation coefficient, squeezed param-

eter of the baths and squeezing angle). Regardless of the initial state, in the limit of large times the

Gaussian interferometric power decays asymptotically to a zero value.

Experimentally, squeezed states can be generated by various methods, and a various classes of

squeezed states have been simulated theoretically. In this context, we can mention the canonical

Gaussian squeezed coherent states, also various non-Gaussian squeezed states are generated by

photon addition or substraction, or by building superpositions of Gaussian coherent states [82, 83].

Currently, the highest level of squeezing has been obtained in a squeezed vacuum environment

employing an optical parametric amplifier.

Various phase-dependent nonlinear optical processes are used to accomplish the experimental

realization of the squeezed states of light [84]. Some of them include parametric amplifier [84, 85],

four-wave mixing [86], second harmonic generation [84, 87], involving additionally also nonreso-

nant interaction between the light field and the atomic system. Other experimental setups comprise

interactions closer to resonance, comprehending two-photon correlated emission lasers also Ry-

dberg atom lasers. All these examples of experimental setups include atomic systems exposed to

phase-dependent excitation mechanisms leading to the generation of light squeezing. Also, various

studies of such systems have been performed for single- or two-mode field cases, namely Jaynes-

Cummings models, where the squeezing is related to the phase dependence of the initial state of the

atomic system and the field [88]. However, squeezing can be achieved in a large variety of other

situations comprising:

(a) an excited two-level atom coupled with a single- mode cavity in a coherent state [89],

(b) a two-level atom coherently driven and coupled with a single- mode cavity in a vacuum
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state [90],

(c) a pair of two-level atoms in a squeezed state coupled with a single- mode cavity in a vacuum

state [91],

(d) several two-level atoms coupled with a single mode cavity in the following configurations,

as follows: atoms in a coherent state coupled with the cavity in the vacuum state or all atoms are in

the excited state coupled with the cavity in the coherent state, and all atoms are in the ground state

coupled with the cavity in a coherent state [92, 93].

It is important to highlight the concept of squeezing of states is based on the concept of quan-

tum fluctuations. The minimum fluctuations in any quantum measurement of the corresponding

canonically conjugate variables are bound to the Heisenberg uncertainty principle, which cannot

be violated. Although this principle cannot be trespassed, the fluctuations of one variable, such

as position or momentum, can be reduced below a minimum value, enhancing the fluctuations of

the conjugate variable. The most evident accomplishment of this non-classical phenomenon is the

squeezed light, where the quadrature operators of the electric field are canonically conjugate op-

erators. Assuming the quadratic dependence of the bosonic creation and annihilation operators in

the Hamiltonian, squeezed light is generated applying intense lasers and nonlinear optical media.

This type of squeezed light has various practical appliance in the field of quantum optics, the most

endeavoring example being interferometry with reduced quantum noise.

Experiments with superconducting-circuit qubit and squeezedmicrowave photons [80] allowed

researches to extend the limits of observations of resonance fluorescence from two-level system

placed in a bath possessing ordinary vacuum fluctuations to the one placed in a reenginered squeezed

bath, which allowed to narrow the spectroscopic lines of the resonance fluorescence spectrum.

Here, it might be better to remind once again that the spectrum of resonance fluorescence revealing

new properties of light in the quantum theory versus semiclassical theory. This picture emerges the

following features: a two-level system driven resonantly by a laser scatters elastic photons which

have the same frequency as the drive and quasielastic photons. With increase of the intensity of the

driving field, inelastic scattering dominates and creates, as mentioned before, the typical Mollow

triplet spectrum of resonance fluorescence consisting of a central peak at the frequency of the drive

and symmetrical sidebands arising from Rabi flopping. The central peak linewidth is inverse pro-

portional to the spontaneous decay rate of the system’s excited state, while the sidebands are wider

by a factor of 3/2. Basically, theMollow spectrum describes the photon emission into a bath, which

doesn’t contain photons. Unlike in a thermal bath, photons in a squeezed thermal bath are emitted

as correlated pairs, with frequencies of each pair symmetrically situated around the reference reso-
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nance frequency of the two-level system. In the case of the squeezed vacuum, fluctuations undergo

phase amplification in number of photons generated per mode and phase sensitivity also modifies

the spontaneous decay rate. The inelastic scattering pictured by resonance fluorescence spectrum is

generated by an electric dipole under the influence of the coherent pumping and bath fluctuations.

Here bath fluctuations are expressed by spontaneous decay rates and therefore, a dipole embedded

in squeezed fluctuations manifest phase-sensitive decay rate and the central peak of resonance flu-

orescence spectrum can be made sharper, achieving a smaller width in comparison to the one set

by ordinary vacuum fluctuations.

Nevertheless, the interaction of an optical field with a two-level system operating in the weak

excitation regime has continued to require emergent experimental conditions for the observation of

squeezing with atoms. In this context Schulte et al.[94] used an artificial atom possessing a large

optical dipole which allows the enhancement of the photon detection rate comparing to the natural

atom and achieve the required conditions for the detection of quadrature squeezing in single reso-

nance fluorescence photons. They proved that electric field quadrature fluctuations of resonance

fluorescence is a bit lower the fundamental limit determined by vacuum fluctuations, while keeping

the photon statistics antibunched. Thus, the presence of squeezing and antibunching simultaneously

is a non-classical result of wave-particle duality of photons.

Optical emission features of solid-state and molecular systems are influenced by vibrational

modes of the environment, limiting their quantum dynamical features. Thus it is important to turn

the detrimental influence of vibrational environments into advantage. Iles-Smith et al. [95] shown

that vibrational interactions combined with resonance fluorescence to create optical states with a

higher degree of quadrature squeezing in comparison to single atoms. Using the setup based on a

driven quantum dot interacting with phonons, it was proved the possibility to enhance the level of

squeezing above the predicted theoretical level obtained in single atomic systems, outperforming

the single mode squeezed vacuum states.

Comparing with single atoms and bulk materials, the two-level systems observed in quantum

dots are more convenient for the manipulation of the two-level system and field interaction, which

opens new opportunities of exploring light squeezing in resonance fluorescence and allows to use

the outcomes in various quantum optical devices based on artificial atoms-quantum dots.
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1.3 Cooling phenomena in quantum dipolar systems

The importance of colling effects is based on its wide range of potential applications in the mi-

croscale and nanoscale devices. As well, many experiments involving the generation and ma-

nipulation atomic systems require a precise control of the system of interest. It is a crucial tool

for probing quantum properties of the matter. Also it is an important factor in a wide range of

experiments ranging from Bose-Einstein condensation to quantum computing and quantum com-

putational modeling based on atoms and ions. Currently, there are known several cooling schemes

ranging from Doppler cooling for free particles [96], sideband cooling for bound particles [97],

dark- state cooling setups for free [98] and bound particles [99]. Additionally, beginning with the

first observation of laser cooling, many fundamental applications have been developed employing

laser cooling, as in the following examples: the direct experimental observation of quantum jumps,

the preparation of atoms in the motional ground state, high-precision spectroscopy.

Earliest methods to cool quantum optical systems to very low temperatures using coherent light

were proposed about 40 years ago. Themotivation standing behind these researches was to improve

the atomic spectroscopic measurements, but later advances proved the extended range of applica-

tions of laser cooling. Ultra cold few level atomic systems are reformatting constantly the physics

research. They are employed in determination of constants, investigation of ultracold collisions,

study quantum phase transitions, quantum information processing. Laser cooling methods of polar

molecular systems are studied within applications of these cold molecules to a various range of

topics. Heavy polar molecules are used to measure the electric dipole moment and in other exper-

iments since their polar nature improves the interaction between the electric dipole moment and

applied electric field. Also experimental precision can be enhanced by using ultracold molecules

in order to expand the observation time and improve the overall experimental control. Additionally

laser cooled molecules can advance quantum science since quantum molecular systems possess-

ing a large electric dipole moment can be easily controlled through the long-range dipole-dipole

interaction. Thus quantum information processing is another area where cooled quantum optical

systems possessing a dipole moment can have an impact and integrated in real quantum comput-

ing schemes. The rotational states of the quantum optical systems can be considered as qubits,

individual qubits are manipulated by microwave fields, and the dipolar interactions are used for

the building of multi-qubit gates. Thus fundamental questions arising in physics can be explored

within cooling of quantum molecular systems to low temperatures and bringing them into single

quantum states. In this regime, the wave characteristics of the quantum molecular systems and the

interference between these waves is changing. The diverse applications of cooled quantummolecu-
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lar systems as quantum computing, quantum tunneling in reactions, generation of multi-qubit gates

have motivated the worldwide reasearch community to develop and model situations for producing

the cooled quantum molecular systems. An important technique in this context is the laser cooling

in quantum molecular systems [100].

Further quantum optical molecular systems placed in a room temperature environment face a

lot of difficulties in practical implementation due to the high speed limits of the observation time,

the wide range of Doppler shifts displacing their spectral lines and many vibrational and rotational

states, which hinders their quantum-mechanical properties. In order, to have quantum control of

the system over the mechanical motion, thermal fluctuations following inevitably the interaction

with the surrounding environment need to be overcome. Because most nano- and micromechan-

ical setups typically have resonance frequencies below 10 MHz, cooling the system employing a

dilution refrigerator can be not enough to achieve groundstate cooling of the mechanical motion of

the system. Thus to get over this, laser cooling techniques are being developed [101].

Advances in the control and measurement of quantum mechanical oscillators has facilitated

tests of fundamental physics, and applications in quantum information processing and sensing.

Nevertheless, the output of these experiments is frequently reduced by thermal motion of the

mechanical mode. Though the most advanced cooling technologies are enough to cool high-

frequency quantum mechanical structures to the ground state, monitoring quantum behaviour in

lower-frequency quantum mechanical systems demands another cooling methods. In this con-

text, laser cooling techniques controlling coherently the atomic systems allow the lowest possible

cooling and vacuum fluctuations can improve this kind of cooling technique specially suitable for

macroscopic oscillators.

Modern progresses have advanced significantly the manufacturing, measuring and controlling

diverse mechanical systems at micro- and nano-level. The experiments involving such mechanical

devices include generation of non-classical states, entanglement, quantum measurements, estab-

lishing quantum information channels and storage, measuring weak forces as the Casimir force,

and many others. The above mentioned experiments demand the system to be cooled to its ground

state, i. e., in the temperature range from 20 to ∼ 100 mK for 1 GHz resonantors. This is difficult

to be achieved employing bulk cooling methods, but it may be possible to achieve using nonequi-

librium cooling techniques as laser-cooling setups for trapped ions and neutral atoms. However,

in some applications like a macroscopic mechanical oscillator with quantum-level motion, cooling

with lower frequencies is more required due to its greater zero point motion level and less control

required. Even at cryogenic temperature, thermal oscillation are still present at frequency ≲ 100
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MHz. Thus motional excitation can be reduced using supplementary cooling processes, such as

feedback cooling, sideband cooling, ultrafast pulsed laser cooling, or laser cooling with a dissipa-

tive multilevel system. Also, via quantum enhanced cooling by a squeezed field [102], an oscillator

can be steered towards the ground state with real-time feedback. Squeezing improves the cooling

of the quantum mechanical system and thereby simplifies the preparation of the quantum mechan-

ical system in its motional ground state, which is achieved by increasing the power of the probe

beam. Thus, by adjusting the quantum state of the laser beam and reducing the measurement noise,

an improved cooling rate is observed. Nevertheless, cooling rates enough for ground state cooling

are challenging to be achieved due to bulk heating generated by absorption of the probe field.

Laser cooling in a finite-level system is especially useful for quantum information processing

because of the dissipative finite-level system can be integrated in real devices by inherent quan-

tum memory initialization mechanism. If the initial temperature of the oscillator is low enough,

satisfying the Lamb-Dicke regime, a real quantum mechanical oscillator setup can be cooled to

the ground state by coupling with a quantum dot, or a superconducting circuit. In this context,

Lau et al. [103] presented the laser cooling of mechanical oscillator by coupling with a dissipative

three-level system. Considering the environment temperature exceeding the Lamb-Dicke regime,

they have extended the laser cooling analysis. They proved that in low-temperature mode efficient

cooling can be engineered by properly driving a multilevel system, namely a three-level ladder

system, in which quantum coherence between multiple metastable states are inducing cooling ef-

fects different from two-level system cooling. In the high-temperature regimes, electromagnetic

induced transparency (EIT) cooling with Λ-type system exhibits both cooling and phonon-lasing

effects.

Applications in high precision detection of mass, mechanical displacement and quantum in-

formation processing attract considerable interest towards ground state state cooling in microme-

chanical and nanomechanical resonant devices. In order, to entirely make use of nanomechanical

resonators properties and observe a wide range of quantum phenomena within them, it is required

to cool the nanomechanical resonator to the ground state. In their paper, Li et. al [104] presented

a new setup for ground-state cooling of a mechanical resonator consisting of a two coupled quan-

tum dots which has an effective Λ-type three-level system structure. The cooling process in this

setup occurs through phonon absorption when the electrons tunnel through the coupled dots. Con-

sequently, the cooling rate and its efficiency is possible to be achieved in realistic experimental

setups. Additionally, Xia et al. [105] discussed the cooling of a Λ-type three-level system placed

in a nanomechanical resonator, where the ground state cooling occurs due to induced quantum
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interference canceling the heating excitations.

In this context laser cooling has a major impact in the generation of fundamental quantum

mechanical atomic systems, for example: in experiments concerning the quantum statistical prop-

erties of atoms, trapped ions for quantum information processing. Under this aspect, laser cooling

of trapped ions is an important step regarded for the construction of a quantum computer based on

trapped ions. Supplementary, ground state cooling techniques are fundamental for quantum com-

putation schemes with trapped ion and quantum gate operations, because higher quantum compu-

tational speed involves remove of decoherence in the system due the coupling to the environment

and reducing the perturbation of the desired processes. The fundamental requirement for quantum

computing operations with trapped ions is the generation of the ions in the quantum mechanical

ground state of their motion by laser cooling. However, for quantum gate computing consisting

of multiple ion string cooling is required and high fidelity manipulation of the qubits demands the

other modes to satisfy the Lamb-Dicke regime, where the residual amplitude of motion is much

smaller in comparison to the wavelength of the laser that generates optical transitions. Raman cool-

ing has a disadvantage for quantum computing as it allows the cooling of one mode at a time, while

other modes remain heated by spontaneous radiation processes. Thus, electromagnetic induced

transparency (EIT) is an efficient cooling technique for quantum computation because it allows

a larger cooling bandwidth. Several modes are cooled at the same time by suppressing through

quantum interference a large number of the heating processes [106].

The most often ground state laser cooling of trapped ions is achieved through the two-level

sideband cooling and Raman sideband cooling, which is designed for Λ-type three-level system

by Raman coupling. These cooling techniques are based on laser pumping of an atom, which has

two internal levels: ground and excited, correspondingly. In both cases, sideband cooling has to

fulfill several conditions, namely: (a) the system must have equidistant levels, which is possible to

achieve when the particle or particles are placed or trapped in a harmonic oscillator; (b) the system

must work in the Lamb-Dicke regime, which means that the amplitude of the oscillations of the

system’s particles is less than thewavelength of the driving cooling laser; (c) the strong confinement

condition has to be satisfied, according to which the spontaneous decay rate is less then the distance

between any pair of energy levels. In this context, G. Morrigi et al. [107] proposed a method for

ground state cooling of multilevel quantum atomic systems, excluding the carrier excitation by

electromagnetically induced transparency.

Electromagnetically induced transparency (EIT) appears in three-level or multilevel systems

and consists of cancellation of the absorption of the transition induced by synchronous laser driving
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of another transition. The cooling method is based on continuous coherent light driving and has

been proved to bemore effective then two-level andRaman sideband cooling. Thus, unlike the side-

band cooling in two-level systems, the strong confinement regime is no more required. Instead, are

used two dipole-allowed transition, which don’t satisfy the strong confinement limitation and two

lasers are required, unlike Raman sideband cooling which involves a supplementary re-pumping

laser. Finally, they proved a more efficient ground state cooling than sideband cooling methods,

particularly cooling of several vibration modes. Electromagnetically induced transparency (EIT)

[108] achieved in three-level system irradiated by Raman lasers with strong blue detuning that

couple the ground and a metastable state to an excited dissipation state and between the dressed

states of the system is one dark state which cancels the carrier transition. Properly selected param-

eters can place the red sideband corresponding to a peak of Fano-like absorption spectrum, thus

reaching low final temperatures. Unlike cooling on dipole-forbidden transitions and cooling due

to Raman transitions, cooling obtained through electromagnetically induced transparency (EIT)

is an encouraging modern technique to achieve the mechanical ground state of trapped atoms or

ions. Hence Evers J. [109] et al. proposed a double electromagnetically induced transparency

cooling scheme based on three-level Λ-setup, which in the ordinary electromagnetically induced

transparency scheme employ a supplementary-third ground state that is coupled strongly by laser to

the upper state. Thus are obtained two independent electromagnetically induced structures, which

are controlled by the two coupling laser fields delaying the carrier-transitions and the blue-sideband

transitions, correspondingly. In many cooling schemes, single electromagnetically induced trans-

parency demands supplementary repumping fields since the upper level state decays to the other

two lower states. In this context, the proper choice of the parameters as frequency, intensity of the

pumping laser field generates the double electromagnetically induce transparency improving the

cooling performances. This in double electromagnetically induced transparency setups additional

decay paths offer an advantage for cooling. Also, these supplementary decay paths allow multiple

electromagnetically induced transparency cooling with multiple lower states.

Sideband cooling is method of selection of traped ions and it is required for efficient cooling

of the motional sidebands. Cooling takes place when a red sideband transition excites the atom

electronically and at the same time annihilates a phonon to fulfill the energy conservation con-

dition. Also, it requires that Rabi frequency of the laser to be much smaller then the motional

frequency of the sideband. On the other side, a blue transition can heat the system through recoil

after spontaneous decay or coherent generation of a phonon. Further suppression of blue sideband

transitions employs destructive interference observed in the dark state. Thus, the electromagneti-
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cally induced transparency (EIT) has become an important laser cooling schemes for trapped ions

as Stark-shift cooling [122] and some others: feedback cooling [110], ultrafast pulsed laser cooling

[111, 112, 113], laser cooling with a dissipative finite-level sytem [108, 114]. In electromagneti-

cally induced transparency (EIT), quantum interference excludes the carrier transition to enhance

cooling performance while the Stark-shift cooling is achieved through Rabi frequency tuning [115].

The concept of sideband cooling is based on the cancellation of mechanical energy by scattering

incident photons to higher frequencies. However, the photon up-conversion, namely anti-Stokes

process, is exceeded by down-conversion or Stokes process, which adds energy to the system. In

optomechanical cavities, the light-matter interaction emerges due to a parametric change of the res-

onance frequency of an optical cavity with the location of a mechanical oscillator. If the quantum

optical cavity is pumped at laser detuning frequency below its resonance frequency, the discrepancy

in the density of states of the cavity at the sideband frequencies drives to an anti-Stokes scatter-

ing rate. The distinction between Stokes and anti-Stokes scattering rates increases as function of

linewidth of the cavity reduction relative to the frequency of the oscillator. Subsequently, optome-

chanical systems in the the above mentioned resolved sideband limit can be cooled with coherent

light to low temperatures. However, a full quantum analysis brings out that vacuum fluctuations

constantly stimulate some degree of Stokes scattering [111, 116], which inhibits deep ground-state

cooling.

Consequently, there were stated many proposals to cool the quantum optical systems below the

sideband cooling threshold, which include various schemes as: pulsed cooling schemes [117, 118],

dissipative coupling [119], optomechanically induced transparency [101] and nonlinear interac-

tions [120]. For setups built on atomic laser cooling, squeezed light can bring an advantage in

comparison to laser cooling with coherent states. In this context, Clark et al.[121] proposed the im-

plementation of an enhanced quantum cooling scheme for cavity optomechanical systems. They

have shown that irradiating an optomechanical cavity with squeezed coherent light can annihi-

late the Stokes scattering process, as well the sideband cooling threshold can be excluded. Thus

squeezing-enhanced cooling implemented in cavity optomechanical system can reach cooling be-

low the traditional quantum threshold.

Another method of cooling is the Stark-shift cooling [122] which takes place when transitions

between ground and metastable state are determined by one laser and another two Raman lasers

coupled to the superposition of ground, metastable and excited state. The first laser generated Rabi

flips between the dark state and the orthoganal light state. In case of proper coupling strength

tuning, the flips also include neighboring levels so that dark and bright states coupled with carrier
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transitions are excluded. It is important to highlight, that both Stark-shift and EIT cooling reach

a final temperature independent of the Lamb-Dicke parameter. Additionally, Borkje et al. [123]

presented a setup for cooling mechanical motion to the ground state in an optomechanical system

exploiting the effect of optomechanically induced transparency. This cooling setup is an outcome

of a destructive interference effect and is associated to the electromangetically induced transparency

cooling, where EIT is used to cancel unneeded transitions while laser cooling of atoms. Particu-

larly, the optomecanical induced transparency is similar of EIT, as it is changing the the photon

number fluctuation in the cavity and consequently the rate of Stokes and anti-Stokes scattering.

Unlike EIT, optomechanically induced transparency has a priority as it requires only optomechan-

ical interactions. Consequently, the cavity-assisted ground-state cooling of mechanical motion in

the unresolved sideband regime is generated in systems exhibiting dissipative optomechanical cou-

pling, which means that Stokes processes are anihilated by a destructive interference effects and in

ordinary optomechanical systems annihilation occurs thorugh time-depdendent optical driving.

In conclusion, one has presented here various cooling technique setups implemented in various

devices built on the base of few-level atomic or molecular systems embedded in optical cavities or

placed in nano-mechanical resonators. The growing interest for novel quantum systems exhibiting

enhanced cooling in a wider parameter range in microscale and nanoscale devices is an interesting

topic for investigation.

39



1.4 Terahertz lasing in quantum dipolar systems

Terahertz radiation is a type of electromagnetic radiation whose frequency is situated between mi-

crowave and infrared regions of the spectrum. This kind of radiation cannot be seen, however we

can feel this radiation since it is spectrum is situated the vicinity of far-infrared radiation. THz radia-

tion generated naturally is present everywhere, nevertheless this range of electromagnetic spectrum

is still the least explored because of difficulties related to making proper and compact THz sources

and detectors. The absence of any suitable technology or setup functioning in the THz band led

it to be called ”THz” gap. However, this gap has been reducing quickly for last several decades.

This gap has been minded by tremendous technological progresses in the high frequency side and

microwave technologies functioning from the low frequency side.

In this paragraph we are going to give the basic perspectives over the THz radiation: proper-

ties, applications and progresses of THz science and technologies subsequently. The most often

used term referring to this frequency band is ”Terahertz radiation”, which similar to referring mi-

crowaves, infrared radiation, and X-rays. Alternatively, we can refer to Terahertz radiation using

the term ”T-rays”, where ”T” stands for the frequency unit of the spectral band. By now, researchers

from several different disciplines are working independently in the development of THz technolo-

gies. This resulted into distinct description of THz radiation by different communities. Beside the

universal unit referring to THz radiation (1012 Hz), other units can be also used appropriately and

below one is giving the conversion of 1 THz as follows:

• Frequency: ν = 1 THz = 1000 GHz

• Angular frequency: ω = 2πν = 6.28 THz

• Period: τ = 1
ν
= 1 ps

•Wavelength: λ = c
ν
= 0.3 mm = 300 µm

•Wavenumber: k̄ = k
2π

= 1
λ
= 33.3 cm−1

• Photon energy: hν = ℏω = 4.14 meV

• Temperature: T = hν
kB

= 48 K

where c is the speed of light in vacuum, ℏ is Plank’s constant, and kB is Boltzmann’s constant

[124]. Usually defining the THz band, one makes reference to the spectral region 0.1 and 30 THz.

However the range of 10 − 30 THz trespasses the mid-infrared band and exceeds the far-infrared

band, where certain were well-functioning optical technologies exist. The ultrabroadband THz

band comprise the band 0.1 − 10 THz, which is used as a general definition of THz band. From

the electromagnetic spectrum of the THz, it is evident that it intersects with neighboring spec-

tral bands like the milimeter wave-band, which posses the highest radio frequency band named as
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Extremely High Frequency (EHF), additionally the submilimeter-wave band also the far-infrared

band. Characteristic technologies correspond to these bands, for example: solid-statedevices, sen-

sors and millimeter wave emitters are built using microwave technologies [125].

Further, one is going to describe briefly the setups employed for THz generation and detection,

classified by functioning concepts. A method of generation THz radiation is to use a nonlinear

medium in which the incident wave is converted by nonlinear frequency. Optical rectification and

difference frequency generation are methods of THz photon generation by second order nonlinear

optical processes at two different frequencies, so that their difference corresponds to the frequency

of a THz photon. Broadband THz pulses are generated by femtosecond lasers, which posses a broad

spectral bandwidth∼ 10 THz and it is similar to the optical pulse envelope obtained via optical rec-

tification. Two continuous wave (CW) optical beams can generate THz frequencies by difference

frequency generation (DFG). In solid-statedevices based on microwave technology, THz wave

frequencies are generated from conversion of the incoming microwave into harmonic wave using

diodes with nonlinear intensity-voltage characteristics. THz radiation is obtained by laser beam

excitation of a biased photo-conductive (PC) antenna. In this technological method, the photo-

conductive (PC) antenna, which consists of two metal electrodes, is deposited on a semiconductor

substrate. The optical beam creates photo-carriers by irradiating the gap between the electrodes

and the static bias field contributes to the acceleration of the free careers. Since the generated

photo-current alternates in time simultaneously with the incident lase beam intensity, then the fem-

tosecond laser pulses are transformed into THz pulses. Continuous wave (CW) THz radiation is

generated by applying simultaneously or mixing two laser beams with different frequencies and

forming an optical beat. This method of THz waves generation is named photo-mixing. Another

method of generating extremely bright THz radiation uses relativistic electrons produced by elec-

tron accelerators. In this method, a femtosecond laser irradiates an electron source and generates

ultrashort pulses of electrons. After the relativistic speed acceleration of electrons, they are directed

into a metal target or are manipulated to move circularly by a magnetic field. Consequently, this

transient electron acceleration generates THz radiation [126, 127].

Various experimental facilities are employed by now to generate THz radiation. One will men-

tion some of them, as follows: backward wave oscillators (BWO’s) are laboratory level equipment,

free-electron lasers (FEL’s), small scale electron accelerators, as well. Despite the difference in

dimension of these devices, there is a certain resemblance in their THz generation mechanism. In

both backward wave oscillators (BWOs) and free-electron lasers (FEL’s), the electron beam os-

cillates due periodic structures embedded in the construction of these devices, namely: the BWO

41



posses a metal grid and the FEL is build from magnetic array [128].

It is well-known that two-level quantum lasers require population inversion. In the far-infrared

lasers, transitions between molecular rotation energy levels are used to generate frequencies in the

THz region. In the electrically pumped solid-statelasers namely germanium lasers, the lasing takes

place due to the population inversion of two Landau levels generated by hot-carriers influenced by

crossed electric andmagnetic fields. Quantum cascade lasers (QCLs) are classified as semiconduc-

tor heterostructure built from periodically alternating layers of heterogeneous semiconductors. In

these semiconductor nanostructure lasers, THz photons are generated by transitions between sub-

bands. Also in quantum cascade lasers (QCLs), the electrons go through consecutive intersubband

transitions which practically generate coherent THz radiation [111, 129].

Beside THz generation schemes, it is important to ascertain the obtained frequencies to THz

band. The detection setups are organized into coherent and incoherent detection. Coherent mea-

surement method detects the amplitude and the phase of the field, whereas incoherent measure-

ments detects the field intensity. Coherent methods are based on generation techniques because

they share same functioning mechanism and the key assembly components, for example: optical

detection setups use the same light sources for generation and detection.

In the following, we present some commonly used coherent detection techniques. Free-space

electro-optic (EO) technique detects the electric field broadband THz pulses in time by using the

Pockels effect. This type of measurement technique is based on optical rectification principles.

Since the THz field generates birefringence in a nonlinear optical medium which is proportional

to the field amplitude, then the waveform is detected by measuring the field generated birefrin-

gence of the relative time delay between the THz and optical pulses. Broadband THz pulses are

measured by a photoconductive setup in time domain. This method of measurement is based on

the following principle: the THz field injects a current in the photoconductive gap simultaneously

when an optical probe pulse injects photo-carriers. The THz field amplitude is proportional to the

induced photocurrent. By detecting the photocurrent the THz pulse spectrum shape is measured in

time while changing the time delay between the THz pulse and the optical sample [130, 131]. The

broadband generated THz pulses are detected by a combine setup named THz time-domain spec-

troscopy, which measure both the amplitude and the phase of THz pulses induced by a probe, which

offers enough data to measure at the same time the dispersion and the absorption of the sample.

Incoherent detectors mostly used are thermal sensors as: Golay cells, bolometers and pyrroelectric

devices.

Certainly, THz band has innumerable applications exploring the features of material responses

42



to THz radiation because this frequency region is related to the fundamental physical processes, for

example: rotational transitions of molecules, vibrational motions of organic chemical compounds,

lattice oscillations in solids, transitions detected in the intrabands of semiconductors, and energy

gaps in semiconductors. THz spectroscopy is able to analyze the spectral signatures and dynamics

of organic and biological molecules in this spectral region. Therefore it can be used to detect explo-

sives, illegally transported prohibited substances, testing new pharmaceutical substances etc. Many

materials exposed to THz radiation are transparent, like: nonpolar materials, dielectrics such as pa-

per, plastic, clothes and wood that are usually opaque at optical wavelength. This stark property is

specially useful for many imaging techniques because THz imaging is a nondestructive detection

technique to check sealed packages, identification of metal objects like weapons [132, 133].

Indeed, laser sources generating coherent light in the THz region of electromagnetic spectrum

are a subject of ongoing research in fundamental and applied physics. The THz region represents

a technological gap which one can get over it with electronic devices functioning at lower frequen-

cies or with lasing devices operating at higher frequencies. In this context some attempts have

extended the semiconductor quantum lasers to the THz region. Therefore, multiple quantum-well

structures are designed and within the quantized subbands in the conduction band transitions oc-

cur. In quantum cascade laser THz transitions are limited because the radiative lifetimes of excited

electronic states are much greater in comparison to the fast recombination arising from electron-

phonon scattering or from incoherent electronic excitation. Intersubband transitions occur when

there is strong light-matter coupling regime achieved by embedding a multiple doped quantumwell

into a microcavity resonator and creating intersubband cavity polariton modes. In such systems, the

applied electric field is generating the hybridization of the exciton states with different parity. This

makes possible transitions between exciton-polariton states thus creating integrated THz sources

[134, 135].

The growing inquiry for high-energy broadband pulses functioning in the THz frequency range,

situated from tens to thousands of micrometers for respective wavelengths, has emerged into many

new advances in this field such as the development of the optic rectification technique, which

was intensively researched by many groups. Optical rectification is used for intensive efficient

THz conversion in lithium niobate crystal through pumping with high-energy picosecond pulses.

Efficient generation of THz waves has to fulfill the Manley-Rowe conversion threshold, which al-

lows a conversion rate of at least ∼ 10−2 from a wavelength of 1 to 100 µm [136, 137]. Several

solutions have been proposed to overcome this threshold, such as: quasi-phase-matched materi-

als with, THz generation through cascading processes and self-induced transparency (SIT) [138].
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Also, there have been performed attempts to generated THz waves using nonlinear wave mixing in

non-centrosymmetric media, which posses a permanent dipole moments. However, centrosymmet-

ric media like quantum dots are also favorable for applications in mid-and long-infrared photonic

setups [139].

High-power lasers operating in the THz frequency domain are of special interest, because tun-

able coherent THz sources are employed in quantum optics and informatics, control and manip-

ulation of quantum systems, contemporary sensing and visualization systems. Several promising

techniques have been already proposed for the realization of high-intensity THz sources, such as

accelerator-based lasers, ionizing gas targets via ultrashort laser pulses and the most promising out

of them is THz generation based on the difference between optical frequencies in bound-bound

transitions. Also, resonant excitation of the atoms with Rabi oscillations generates the radiation at

the Rabi frequency, which for strong laser fields may be in the THz region. The Rabi frequency de-

pending on the driving field alongside with dipolar moment are used to tune the intensity of the gen-

erated electromagnetic waves. Therefore, the generation of electromagnetic field with frequency

laying in the THz is specially challenging for traditional methods, which appear to be inefficient

and failing. Since this frequency region is situated between radio and optical frequency ranges,

optical and microwave techniques are not applicable for THz waves generation. Consequently,

nanostructures as THz emitters and detectors are the most proper candidates to fill this gap. A

solution might be the quantum cascade THz transitions in quantum dot systems, THz emission

from carbon nanotubes, array of quantum dots with broken inversion symmetry, which is currently

actively explored because it provides smooth control of frequency tuning by adjusting the driving

field intensity. Beside generation, amplification of THz waves in quantum dot arrays is possible to

achieve and can be employed for THz detection [140, 141, 142].

In certain semiconductor structures, namely the ones possessing broken inversion symmetry,

strong light-matter coupling creates Rabi splitting for moderate intensities of the dressing field.

This fact makes them attractive candidates for implementation of THz laser sources. Among the

most auspicious candidates are asymmetric quantum dots (QDs) obtained from semiconducting

materials with crystal structure of wurtzite type, for example GaN quantum dots, which exhibit

giant piezoelectric effects and possess a static dipolar moment. The permanent dipole moment in

asymmetric quantum dots while interactionwith externally driving fields generates a row of unusual

optical phenomena, such as spontaneous emission at Rabi frequency, dynamically controllable flu-

orescence. On the basis of these peculiar properties of asymmetric quantum dots possessing a

dipole moment, THz lasing can be generated in asymmetric QDs dressed an intense lasing field
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inside the THz optical cavity. On the other side, the emission spectrum of symmetric and asym-

metric QDs, which are a standard example of two-level systems, are different if they are driven

by a strong laser field because of violation of symmetry inversion leading to the emission of elec-

tromagnetic waves at Rabi frequency. Since the Rabi frequency depends of the intensity of the

lasing field, this effect is suggested for frequency-tuned generation of electromagnetic waves. This

effect, can be observed III-nitrideQDs with broken inversion symmetry and strong dipole moment

∼ 10 Debye, which makes them emit coherent light at Rabi frequency, which lies in the THz range

for the pumping field ∼ 107 V/m [143, 144]. Also transitions in the THz range were observed in

an asymmetric two-level systems realized in quantum wells and other kind of two-level systems.

Based on this considerations, two-level systems with broken inversion symmetry pumped by an

off-resonant coherent electromagnetic field were investigated [145, 146]. By proper adjustment

of laser frequency, one has generated at a frequency situated in the range between the laser fre-

quency and transition frequency also a subsequent photon with transition frequency, which can be

in THz and optical spectra range. The major advantage of this setup is the opportunity to change

the longer-wavelength photons using the proper selected detuning. This aspect is specially useful

in the control of quantum networks consisting of different modes of various frequencies embed-

ding quantum wells or dots with transition frequency in the THz range. Also that model exhibits

flexibility in applications unlike cascade three-level systems or other down-conversion processes

especially in the emerging quantum information science where entangled photon pairs of different

frequencies are of great interest for the implementation of quantum networks [41, 69].

It is important to bring here this data and prove the importance terahertz spectroscopy and

imaging recalling for the better knowledge of matter and material spectroscopy. Many reliable

THz radiation sources have been proposed, yet some of these sources have operational restraints,

for example, quantum cascade lasers are functioning at cryogenic temperatures, on the other side

free electron based sources are quite bulky [147, 148, 149]. Nevertheless, the design and develop-

ment of new ones implemented on few level systems possessing a permanent dipole moment is the

endeavoring field of research.

In one of the previous paragraphs, we have presented the feature specific for three-level sys-

tems as the observation of electromagnetic induced transparency (EIT) in different experimental

setups, such as coupled resonators, various optomechanic circuits, plasmonic structures and etc.

Widely explored electromagnetic induced transparency (EIT) has its analogue observed in meta-

material structures have drawn a huge research interest because of their effective medium features.

Electromagnetic induced transparency (EIT) in metamterials can work in the terahertz regime and
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can be used to build and design chip-scale optical devices. In their paper Bai Zh. et al. [150]

proposed a method to construct a new type of optical metamaterial that can function as a multilevel

atomic system exhibiting electromagnetic induced transparency (EIT). In their setup the transition

from single EIT to a double EIT in the THz range is achieved by actively adjusting the intensity

of infrared driving field or changing the geometrical structure of resonator. Supplementary, in this

setup the group velocity of the terahertz radiation is adjusted by the driving field intensity. Conse-

quently, the suggested setup may be used to construct chip-scale devices which can switch quickly

from subluminal to superluminal terahertz radiation at room temperature.

Consequently the importance of THz technologies towards sensing, imaging, spectroscopy, or

quantum data communication is highly appreciated. Based on the above explored background,

quantum systems possessing permanent dipoles and able to generate THz frequencies are a special

area of interest for quantum optics [151]. More over, these systems exhibit bare-state population

inversion and multiple spectral lines in resonance fluorescence spectra and squeezing [30, 152].

In this sense, there is a growing interest for new quantum optical devices manifesting in a wider

range of parameters lasing or cooling. From this perspective, the investigation of laser-driven Λ-

type three level system with the upper level coupled with a quantized single- mode boson field is

of edge-cutting interest. More exactly this theoretical model can be employed for the modeling of

experimental schemes consisting of a nanomechanical resonator containing a three-level emitter or

an electromagnetic cavity with a three-level sample embedded inside it and the the upper state of the

sample has a permanent dipole moment. Further, the both situations will be considered separately

as well the mechanism explaining the lasing and cooling effects for them.
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1.5 Multiphoton dynamics of quantum dipolar systems

The photon is the building block of the light. Particular combinations of photon-ranging frommore

stringent distribution to entangled superpositions-are required to power quantum technology. The

ultimate technological advances in handling light-matter interactions, basically the few-level atoms

and photons, were implemented in quantum information protocols. Such interactions implemented

on different platforms have disapproved the mistrust towards the quantum computer becoming real.

Quantum computing protocols have been already embedded on certain setups. Photons can fulfill

the requirement of quantum information coding. A single photon encodes a single qubit in varies

ways, for example, the horizontal and vertical polarization can be employed as a computational

basis, while arbitrary qubits can be generated and managed using available waveplates. Photons

are known to interact very well with environment, which lead to photons decoherence. However,

photons do not interact with each other this makes challenging the criteria of acquiring two qubit

entangled gates.

In the early 2000’s, Knill et al. [153] demonstrated that linear optical components altogether

with single photon sources and single photon detectors can generate the nonlinearity required to

generate, an optical quantum computer possible to be build following the laws of quantummechan-

ics. In the same way, photonics technologies have been implemented in quantum metrology for the

super-resolved images and hyper-sensitive interferometric experiments using single photons. Pho-

tons have always proven to be the most appropriate tool in observing, verifying and understanding

the major quantum mechanical phenomena on which quantum information science is based, par-

ticularly the entanglement phenomenon. Entanglement was experimentally tested using photons

emitter from atomic cascades and entangled photons generated from spontaneous parametric down

conversion. These experiments served as a demonstration of quantum coding protocols dependence

on entanglement, specially the compression of multiple classical bits into a single qubit [154].

In a classical representation, an atom contains a permanent dipole moment and if it is negatively

charged electrons vibrate relative to the positively charged ionic nucleus. The dipole moment re-

sults from the superposition of energetically bound states, allowing specific discrete energies and

the corresponding dipole oscillations emit light with certain frequencies [155]. Properly adjusted

coherent light sources are able to excite dipole oscillations in the resonant regime with specific

dipole oscillation frequencies. Particularly speaking, optical excitation is able to induce transitions

between the atomic eigenstates. It was shown that an isolated atomic system generates an oscil-

lating dipole if it is an appropriate superposition of hydrogen-like eigenstates. In the perspective

of classical optics an oscillating dipole emits light. This quantum-optical set up is computed by
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deriving the equations of motion for the light-matter system. Quantum mechanical consideration

of light generates a wider range of problems analogous to the one arising in the many-body interac-

tions in complex systems. One, considering a system possessing a permanent dipole, will presume

a set of approximations in order to derive a solution and explore the quantum dynamics.

A two-level system coupled with a harmonic oscillator is a simple model which contributed to

the development of the modern physics ranging from quantum optics to condensed matter physics.

The Jaynes-Cummings model accurately describes a two-level atom resonantly coupled to a single

electromagnetic radiation mode [156]. Trapped ion experiments in quantum informatics, graphene

placed in the magnetic field, quantized single mode radiation field, quantum dots coupled with pho-

tonic cavities, superconducting qubits coupled with microwave cavities are the few experimental

realization of Jaynes-Cummingsmodel. Since cavity quantum electrodynamics functions in several

coupling regimes: weak, strong, and ultrastrong allow the control of the spontaneous emission rate

as function of vacuum level by tuning the discrete cavity modes. The strong coupling regime occurs

when the emitter-photon interaction is much greater than the combined decay rate. Due to the recent

advances in solid-statesemiconductor or superconductor systems, ultrastrong coupling is achieved.

Also, in these setups is possible to include new interaction terms in the Jaynes-Cummings model,

which was not available in conventional cavity quantum electrodynamics setups. Another term

included in the Jaynes-Cummings model is an inversion-symmetry-breaking term. In this way, the

well-known Jaynes-Cummings model and Rabi model with classical radiation field assumes that

the dipolar moment operator’s diagonal matrix elements are zero.

Quantum systems possessing a permanent dipole moment in the steady state can exhibit mul-

tiphoton dynamics while pumping the system with a strong laser field. The main advantage of

this system is the generation of Rabi frequencies. The inversion-symmetry-breaking on dynamics

of a two-level system coupled with a quantized harmonic oscillator. Especially, it was explored

and proved the negative impact of the inversion-symmetry-breaking on the eignevalues and eigen-

functions of the generalized Jaynes-Cummings Hamiltonian and the Rabi oscillations dynamics. In

comparison to the quasiclassical case, multiphoton transitions can be adjusted and there are Rabi

oscillations with periodic exchange of several photons between emitter and the bosonic field [29].

The Jaynes-Cummings model can be used for the theoretical modeling of non-dipolar light-

matter interaction, particularly the multiphoton Jaynes-Cummings model which considers multi-

photon interaction. The investigation of multiphoton interaction through the Jaynes-Cummings

Hamiltonian is frequently applied in quantum information science. In this context J. Villas-Boas

et al.[157] have investigated the Hamiltonian describing a multiphoton interaction in the Jaynes-
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Cummings framework for the future employment in quantum information. The proposed setup by

them functioning in the strong coupling regime was transformed using arbitrary rotations defined

in the Fock space involving vacuum and multiphoton rates. The implementation of a quantum

device allowing the channeling of a field only in a finite superposition or mixture of Fock states

was proved by [17]. Particularly the two-photon interaction is applied for single- photon gener-

ation comparing to existing quantum computing protocols involving standard Jaynes-Cummings

interactions. Theory of a two-level system interacting with a lasing field is important for a wide

range of applications due to its very general formalism: laser science, fluorescent spectroscopy,

imaging, efficient light emitting setups, quantum information theory. In this row of ideas, one has

to remind again the theoretical description of light-matter interaction assumes the dynamics of the

system governed by non-diagonal matrix element of the dipole moment operator. Systems with

permanent dipole radiate at Rabi frequency as an emitter in the THz range.

Multiphoton states generation has become an ultimate research field in quantum cryptography

and quantum metrology. Atomic ensembles coupled to waveguide quantum electrodynamic sys-

tem and cavity quantum electrodynamic systems are the basic experimental setups on which were

implemented several quantum information protocols. Teng Zhao et al.[158] in their paper proposed

a scheme to generate the multiphoton nonclassical states in which single- photon and two-photon

states are suppressed by cavity induced transparency effects. Cavity induced transparency was in-

vestigated with a three-level atom in free space, which was employed for the preparation of entan-

gled states with a pair of identical atoms. Cavity induced transparency is a tool for the observation

of Dicke superradiance in a system of two qubits coupled to a single coplanar waveguide resonator.

Namely, they are considering a system consisting of two identical qubits coupled to a single- mode

cavity where the coupling strength is comparable to the cavity decay rate. In comparison to other

papers, they are exploring the abnormal region of hypperradiance that used to be considered as

subradiance. Particularly, the have proved the photon-number distribution is switched to the near-

resonance states via the weal coupling between symmetric and antisymmetric Dicke states. These

states undergoing a particular physical process and have the Poissonian photon-number statistics.

Additionally, the nonclassical behave of photon distribution was verified according to Klyshko

criterion and were figured out multiphoton nonclassical states in which higher-order distribution

exhibit nonclassical behave. Unlike them J. Z. Lin et al.[159] have considered the multiphoton

behave of the two-cascade three-level systems strongly coupled with a cavity, in which two iden-

tical atoms interact with the lasing field and a control field simultaneously. They explored the

possibilities to manipulate the multiphoton blockade through the dressed states of the system by
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adding a strong lasing field. Thus the multiphoton blockade can be manipulated and improved by

controlling the lasing field intensity. In this sense, the two-photon blockade can be switched to

the three-photon by increasing the control field Rabi frequency, when two atoms emit coherent

light in the same phase. If the radiated light is out of phase, then the three-photon blockade can

substantially improved by the control field. Then optical switching is possible to be achieved from

three-photon blockade to the super-Poissonian by increasing the control field Rabi frequency. This

important result is achieved in atom-cavity quantum electrodynamics, also in systems embedded in

quantum electrodynamical circuits for quantum networking and telecommunications. On the other

side Baranov et al.[160] have investigated the Rabi oscillations in a two-level system possessing a

permanent dipole moment. One of the main results of this research proved that permanent dipole

moment enables multiphoton Rabi oscillations and strongly influences the Rabi frequency for sin-

gle photon processes. The quantum picture of light interacting with two-level system possessing a

permanent dipole allowed to observe the collapse of Rabi oscillations in the few photon regimes,

by means of numerical simulations and theoretical analysis, demonstrating previously unexplored

regime of light-matter interaction.

Modern technological progresses in engineering of light-matter interaction, especially for the

atoms possessing few-levels allow the implementation of various applications involving multipho-

ton states, which have become and active research field in quantum information, quantum cryp-

tography, quantum metrology, implementation of quantum processing protocols based on atomic

ensembles coupled to waveguide quantum electrodynamical systems.

The engineering of such interactions on various platforms such as a few level atomic ensembles

coupled to a waveguide quantum electrodynamic system are proving the possibility of building a

real scheme for a quantum computer. In this context, multiphoton nonclassical light possess unique

features as it presents a bundle of indistinguishable photons with highlighted particle behavior. The

nonclassical light with higher number of photons is generated quite easy through squeezing. Also

the interpretation of nonclassical multiphoton states is a challenging theoretical subject.

Interaction of high power electromagnetic fields with atomic systems is proved to have multi-

photon features. As well, recent advances in quantum electrodynamics allow us to achieve multi-

photon effects, which occur when atom-photon coupling rate is in the range of the oscillator fre-

quency. Current laser technology requires generation of electromagnetic fields comparable with

and larger then internal atomic fields. Also, advances in laser technologies enable the generation

of laser sources functioning in high-frequencies ranges. In this circumstances, transitions in atomic

systems are required to have multiphoton features. Thus the increasing interest for strong atom-
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laser interaction is due to the possibility of high harmonic generation via multiphoton transitions.

It is widely known that strong laser fields generate multiphoton resonant excitation of atomic lev-

els. If the laser frequency is in the same range with frequency associated with two-level system,

then applying proper laser pulses one can generate superposition states. Nevertheless, generation

of superposition states is a challenging process due to the energy gap between states, which has to

be comparable with the optical transitions. In this situation, generation of mulitphoton excitation

will enable on to explore cooperative effects in the high frequency region [33, 64].

The two-level atomic system is an efficient and simple model to describe the resonant interac-

tion regime and high efficiency of harmonic generation. In some few-level atomic and molecular

system multiphoton excitation based on the two-level model is more effective when the system has

a permanent dipole moment in the excited states. Otherwise, the energies of the excited states of a

two-level atom has to be close enough to each other and the transition dipole moment between the

state must be non-zero. These systems have an advantage, enabling the generation of frequencies

much lower then laser frequency. The generation of high order harmonics is possible to achieve

within systems with the bound-bound transitions and, as a consequence, a two-level system pos-

sessing permanent dipole moment exposed to multiphoton excitations is of special interest [161].

Quantum systems possessing permanent dipole moment in the steady state are exhibiting new

multiphoton quantum dynamical features in the strong laser field. In this circumstance, the dipolar

system can generate waves of Rabi frequency. Thus systems with permanent dipole moment are

widely investigated in the context of multiphoton quantum dynamics. The permanent dipole in

such systems changes the multiphoton absorption rates, emission spectrum features, transforming

them into systems able to emit at Rabi frequency and generate THz waves. Also, it facilitates multi-

photon Rabi oscillations. Permanent dipole moment influences laser-molecule interplay, especially

absorption of radiation through single- and multiphoton interactions [28, 33].

Various fundamental and experimental research papers cover the issues of multiphoton transi-

tions. Multiphoton resonant transitions occure when atoms are placed in strong lasing field. Pe-

riodic multiphoton exchange between the atom and the radiation field is possible to achieve at

the breaking inversion symmetry in two-level systems. Additionally, one highlights that explor-

ing multiphoton dynamics of a two-level system, which possesses a permanent dipole, places in a

quantized photonic field is a special area of interest [162].

Recently has increased the interest towards studies involving multiphoton laser pumping of

ground state of molecules through absorption of two or several photons [163]. The mechanism

standing behind the two-photon excitation involves one virtual excited state, which is dipole bounded
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to the initial and final excitation state simultaneously. The latest researches explored another mech-

anism responsible for direct two-photon excitation. This one involves both permanent dipoles of

the initial and final states as well the transition dipoles between then can influence the two-photon

absorption. Another discussion of excitation mechanism in the two-and three-photon of dipolar

molecules proves the impact of permanent molecular dipoles for the design of molecules with a

certain multiphoton excitation cross section [164, 165].

The growing interest towards the study of multiphoton excitation of molecules relies in the

applications which involve various processes such as fluorescence microscopy, for example, the

study of biological systems requiring wavelengths, which avoid unwanted absorption [166, 167].

Microscopy based on two-or three absorption has many benefits which are associated with the

reduced scattering of longer-wavelength photons, separation of excitation and fluorescence wave-

lengths, three-dimensional optical data storage and other applications. Therefore, the mechanism

responsible for two-and three-photon excitation of dipolar molecules demonstrated the impact of

permanent molecular dipole moment for the design of molecules with a certain multiphoton exci-

tation cross section in [168].

Nowadays due to various feasible quantum applications, frequency conversion processes where

the pumping light beam can converted into an output beam with another frequency [169, 170]. One

of the first experimental proves of this effect is the experiment reported by [171], which is promis-

ing and well-developed source of quantum tunable light. From this perspective, single- photon

upconversion from a quantum dot keeping preserving the quantum features was proved in [172].

Practical confirmation of strong coupling between telecom (1500 nm) and visible (775 nm) opti-

cal modes on an aluminum nitride photonic chip was proved as well in [173]. Even greater fre-

quency differences can be obtained. For example, an experimental confirmation of converting a

microwave field into and optical field via frequency mixture in a cloud of cold 87Rb atoms was

reported in [174]. Earlier theoretical researches have proved frequency downconversion in laser

driven two-level systems with broken inversion symmetry [146, 152]. Moreover, single- and multi-

photon frequency conversion via ultra-strong coupling regime between the two-level qubit and the

two resonators was theoretically foreseen in [175]. Multiple quantum processes have been investi-

gated for a long period of time. Despite that this subject has attracted again a certain solid research

interest due its potential experimental and industrial applications of multiquanta processes in quan-

tum litography [176] or novel coherent light sources [177, 178, 179]. As well, optomechanically

induced multiphoton induced transparency of X-Rays through optical control was proved by [180]

and the strongly correlated multiphonon emission in an acoustical cavity coupled to a laser pumped
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two-level quantum dot demonstrated by [181] respectively .

Nevertheless, the majority of investigations regarding frequency conversion refer to resonant

processes. In this row of ideas, the demonstration of photon conversion scheme including non-

resonant multiphoton effects is an endeavoring subject of investigation for future industrial appli-

cations.
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1.6 Conclusions to Chapter 1

It is obvious to say that modern quantum optics is built on the concept of a few level atom. The

most important and general concept introduced in this field is the two-level atom and three-level

atom, which is a particular extension of two-level atom model. The physics of of two-and three-

level systems constitutes the basis for quantum optics and quantum electrodynamics. A consid-

erable impact is observed in the field of photonic quantum technologies, where it enables secure

exchange of information via single and multiple photon states. In connection with the development

of quantum informatics, squeezing in resonance fluorescence processes of laser-driven few-level

molecule possessing permanent dipole has been recognized as crucial resource for quantum infor-

mation processing. The potential applications with artificial artificial atomic systems have renewed

interest towards resonance fluorescence and squeezing of the field quadratures within them.

Furthermore, artificial atomiclike systems exhibit an advantage with respect to engineering

of their dipole moments and transition frequencies, which makes them extremely sensitive to to

ultra-weak perturbations and cooling or lasing these systems is of fundamental interest as well.

Moreover, quantum systemswith permanent dipoles are shown to generate terahertz waves required

in high-precision sensing, imaging, spectroscopy and data communication. From this perspective,

the investigation of a laser driven three-level system possessing a non-zero dipole moment and

coupled to a quantum oscillator is an emerging research topic, because of possibility to create

novel quantum system showing lasing or cooling in a wider range of parameters.

Developing sources of quantum tunable light is another relevant nowadays emerging applica-

tion, such as quantum litography, novel light sources or quantum computing protocols. This is the

reason why multiquanta processes are considered under attention as well. Furthermore, the single-

and multiple photon conversion process in strongly coupled two-level qubit to a resonator was pre-

dict before. In this context, frequency conversion processes of input light into an output beam of

a different frequency is very relevant nowadays to do the above mentioned feasible applications.

However, the majority of frequency conversion researches regard only resonant processes. Thus,

demonstration of non-resonant multiphoton conversion scheme will feel the gap in the subject of

frequency down-conversion processes.
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2 PROPERTIESOFNON-CLASSICALLIGHTSCATTERED
BY LASER-PUMPED MOLECULES POSSESSING PER-
MANENT DIPOLES

The phenomenon of resonance fluorescence offers a wide amount of information about light-matter

interaction, as well, it is an iconic illustration of quantum optics in opened systems. During this

phenomenon, a two-level atom is pumped by a resonant continuous wave coherent light source

and the spectral and quantum statistical properties of the emitted fluorescent light emitted by the

atom are detected. If the two-level atom is pumped by a low intensity monochromatic laser field,

then the two-level atom absorbs a photon of the excitation frequency and re-emits it at the same

frequency. Therefore, the spectral width of the fluorescent light us narrow. When the excitation

frequency intensity increases and the Rabi frequency characterizing the driving field is comparable

to the atomic linewidth, then the Rabi oscillations modulate the dipole moment and sidebands begin

to occur in the spectrum of the emitted radiation-the Mollow triplet, which in classically consists of

three lines. The central one arises at the frequency of the driving field and the symmetrically placed

sidebands are arising from the Rabi frequency flopping. Due to the dynamic Stark splitting some

unusual characteristics of light-matter interaction are highlighted in the fluorescent light spectrum.

Additionally, the fluorescent light posses some nonclassical features like squeezing, which is a

quantum-mechanical effect and is described by a field state in which the fluctuation value of one of

the two non commuting observables is less than one-half of the absolute of their commutator. Due to

this special feature of reducing the quantum noise in one quadrature phase, squeezing has a potential

to be integrated in various optical communication systems and detection of gravity waves. Squeez-

ing in resonance fluorescence arising from coherently pumped two-level system is discussed widely

in many sources, beside quantum like features of photon antibunching, sub-Poissonian statistics,

which were proved experimentally. However, these studies assumed collections of many station-

ary two-level atoms manifesting squeezing, taking into account additionally the collective effects,

but not considering the solid impact of permanent dipole moment. It is expected that the con-

sideration of permanent dipole moment will visibly modify the squeezing features of resonance

fluorescence considerably. The squeezing phenomenon in resonance fluorescence spectrum for a

two-level system possessing a permanent dipole will be treated as an important resource for contin-

uous applications in various field of quantum optics and quantum information. By modulating the

fluctuations of the electric field with respect to some phase below that of the vacuum, squeezing in

resonance fluorescence can be employed to improve the accuracy in interferometric measurements
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Fig. 2.1: The energy diagram of a two-level system possessing a permanent dipole. A laser of a
moderate intensity with frequency ωL is interacting with the molecular system, generating the dy-
namical Stark splitting. The second laser of frequency ω = ω2 close to the value of Rabi frequency
due to the first laser is leading to transition between double dressed-states. The double dressed-
states correspond to the Rabi splitting frequency 2ḠR.

for metrology applications, for secret encodings in quantum key distribution, and are an important

resource in continuous variable generation for quantum computing schemes.

In this chapter, one studies squeezing in resonance fluorescence and total quantum fluctuations

processes from a two-level system possessing all dipole matrix elements are considered nonzero.

We shall begin by defining the system Hamiltonian consisting of all terms describing all types of

interactions within the system. We are considering a strong coherent field is pumping the sample

near resonance. The second weal laser field is driving the dressed two-level transition due to a

dynamical Stark-splitting. In comparison to the similar problem yet in the absence of the permanent

dipoles, one will compute the fluorescence spectrum, which will have additional scattered spectral

lines and supplementary squeezing regions are found.

We shall consider a two-level system with permanent dipoles interacting with two external

coherent laser fields. The first laser is near resonance with the transition frequency of the two-level

sample while the second one is close to resonance with the dressed-frequency splitting due to the

first laser, respectively, see Fig.2.1.
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2.1 The theoretical framework

Hamiltonian describing the above mentioned setup is developed in the rotating frame at the first

laser frequency ωL and in the dipole approximation is the following:

H =
∑
k

ℏωka
†
kak + ℏω0Sz + ℏΩ1(S

+e−iωLt + S−eiωLt) + ℏΩ2(S
+ + S−) cos(ωt) +

+ ℏGSz cos(ωt) + ℏG1Sz cos(ωLt) + iℏ
∑
k

(g⃗k · d⃗){a†kS
− + akS

+}. (2.1)

In Hamiltonian (2.1), the first four components are the free energies of the environmental vac-

uum modes and molecular subsystems together with the laser-molecule interaction Hamiltonian,

respectively. Here, Ω1 ≡ Ω = dE1/(2ℏ) is the corresponding Rabi frequency with d ≡ d21 = d12

being the transition dipole moment while E1 is the amplitude of the first laser field. The fifth term

accounts the interaction of the second laser at frequency ω and amplitude E2 with the molecular

system due to the presence of the permanent dipoles incorporated inG, i.e., G = (d22− d11)E2/ℏ,

while the sixth terms is due to the interaction of the first laser with permanent dipoles. The last

term describes the interaction of the molecular subsystems with the experimental vacuummodes of

the electromagnetic field reservoir. Further, g⃗ =
√
2πℏωk/V e⃗λ is the molecule-vacuum coupling

strength with e⃗λ being the photon polarization vector and λ ∈ 1, 2 whereas V is the quantization

volume; ∆ = ω21 − ωL is the laser field detuning from the molecular transition frequency ω21.

The molecule bare-state operators S+ = |2⟩⟨1| and S− = [S+]† obey the commutation relations

[S+, S−] = 2Sz and [Sz, S
±] = ±S±. Here, Sz = (|2⟩⟨2| − |1⟩⟨1|)/2 is the bare-state inversion

operator. |2⟩ and |1⟩ are the excited and the ground state of the molecule , respectively a†k and ak

are the creation and the annihilation operators of the kth electromagnetic field mode and satisfy

standard bosonic commutation relations, namely [ak, a†k] = δkk′ and [ak, ak′ ] = [a†k, a
†
k′ ] = 0.

We reduce the exponential terms present in the Hamiltonian (2.1) by transforming it into the

Schrödinger picture and applying an affine transformation according to Rotating Wave Approxi-

mation (RWA). This is required to adopt the presented Hamiltonian (2.1) of the model to realistic

conditions assuming that Ω ≪ ωL ± ω as well as
{
G,ω

}
≪ ωL and consequently rapid oscil-

lating terms are dropped off. These assumptions are necessary do derive a linear Hamiltonian as

presented in eq.(2.2):

H =
∑
k

ℏ(ωk − ωL)a
†
kak + ℏ∆Sz + ℏΩ1(S

+ + S−) + ℏGSz cos(ωt) +

+ i
∑
k

(g⃗k · d⃗){a†kS
− + akS

+} (2.2)
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where ℏGSz cos(ωt) is a slowly oscillating term and we shall keep it. In this case it is more con-

venient to describe the system in semi-classical laser-molecule picture in the dressed-states base,

due to the first laser pumping:

|2⟩ = − sin θ|1̄⟩+ cos θ|2̄⟩,

|1⟩ = cos θ|1̄⟩+ sin θ|2̄⟩, (2.3)

where the angle θ is defined as:

tan 2θ =
2Ω̄

∆
. (2.4)

Additionally after one has defined the new projection base, the new Rabi frequency depends as

function of Rabi frequency of the first laser pumping and the laser detuning:

Ω̄ =

√
Ω2 +

(∆
2

)2
.

Therefore the new atomic operators defined in the dressed-state base: R+ = |2̄⟩⟨1̄|, R− = [R+]†

and the inversion operatorRz = |2̄⟩⟨2̄|−|1̄⟩⟨1̄| satisfy the commutation relations: [R+, R−] = 2Rz

and [Rz, R
±] = ±2R±.

Using the new atomic operators, the effective Hamiltonian (2.5) is projected in the new dressed-

states base in the following way:

H0 = ℏ∆Sz + ℏΩ1(S
+ − S−) =

= ℏ
{∆
2
cos 2θ + ℏΩ1 sin 2θ

}
Rz + ℏ(R+ −R−)

{
cos 2θ − ∆

2
sin 2θ

}
. (2.5)

Substituting in the effective Hamiltonian H0 (2.5), the eigenfunctions and the eigenvalues of the

dressed state-base (2.4), then we derive the new effective Hamiltonian (2.6) in the dressed-state

base:

H0 = ℏΩ̄Rz. (2.6)

Introducing the dressed-state base tranformation (2.3) into the systemHamiltonian (2.2), the system

Hamiltonian is projected in the dressed-state base:

H =
∑
k

ℏ(ωk − ωL)a
†
kak + ℏΩ̄Rz +

ℏ
4
G{cos 2θRz − sin 2θ(R+ +R−)}{eiωt + e−iωt}

+ i
∑
k

(g⃗k · d⃗)
{
a†k

(1
2
sin 2θRz + cos2 θR− + sin2 θR+

)
−H.c.

}
. (2.7)
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Since the laser frequency is greater then the permanent dipole moment ω ≫ G, as well the dressed-

state Rabi frequency and the laser frequency overcome the value of permanent dipole moment

2Ω̄ + ω ≫ G, rapid oscillating terms ℏG
4
cos 2θRz{eiωt + e−iωt} are excluded from Hamiltonian

(2.7), within rotating wave approximation (RWA) and is obtained the following Hamiltonian:

H =
∑
k

(ωk − ωL)a
†
kak + ℏ

(
Ω̄− ω

2

)
Rz − ℏḠ(R+ +R−)

+ i
∑
k

(g⃗k · d⃗)
{
a†k

(1
2
sin 2θRz + cos2 θR−e−iωt − sin2 θR+eiωt

)
−H.c.

}
. (2.8)

We shall denote the laser detuning ∆̄ = Ω̄− ω
2
and the permanent dipole moment Ḡ = 1

4
G sin 2θ.

In the next, one is going to solve the master equation in the dressed-state base, as follows:

d

dt
⟨Q⟩ =

i

ℏ
⟨[ℏ∆̄Rz − ℏḠ(R+ −R−), Q]⟩

−
∑
k

(g⃗k · d⃗)
ℏ

{⟨
a†k

[1
2
sin 2θRz + cos2 θR−e−iωt − sin2 θR+e+iωt

]⟩
−H.c.

}
.

(2.9)

Before proceeding to the lengthy computation of master equation, we present the differential form

of the equation necessary to derive the generation and annihilation operators:

d

dt
a†k(t) = i(ωk − ωL)a

†
k + (g⃗k · d⃗)

{1
2
sin 2θRz + cos2 θR+eiωt − sin2 θR−e−iωt

}
. (2.10)

The generation operator is obtained from the integral equation:

a†k = a†k(0)e
i(ωk−ωL)t + (g⃗k · d⃗)

×
∫ t

0

dt′ei(ωk−ωL)t
{1
2
sin 2θRz(t

′) + cos2 θR+(t′)eiωt
′ − sin2 θR−(t′)e−iωt′

}
. (2.11)

According to the Markov Approximation, we are neglecting the memory effects t′ = t − τ , thus

we can approximate the atomic operators included in the eq.(2.11) :

Rz(t− τ) ≈ Rz(t),

R−(t− τ) = R−(t)ei(2Ω̄−ω)t,

R+(t− τ) = R+(t)e−i(2Ω̄−ω)t, (2.12)

and using the integration method for complex exponential functions, from which the imaginary
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terms will dropped of keeping the real terms:∫ t

0

dτei(ωk−ωL±2Ω̄)τ = πδ(ωk − ωL ± 2Ω̄) + iP
1

(ωk − ωL ± 2Ω̄)

≈ ξ
(
ωk − ωL ± 2Ω̄

)
(2.13)

is derived the analytical form of the generation operator in the dressed-state base:

a†k = a†k(0)e
i(ωk−ωL)t + π

∑
k

(g⃗k · d⃗)2

ℏ2
{1
2
sin 2θRz(t)ξ(ωk − ωL)

+ sin2 θR−(t)ξ(ωk − ωL − 2Ω̄)e−iωt + cos2 θR+(t)ξ(ωk − ωL + 2Ω̄)eiωt
}
. (2.14)

From the generation operator (2.14), we have derived the spontaneous emission coefficients in the

dressed-state base:

γ0 =
2d2ω3

L

3ℏc3
,

γ± =
2d2(ωL ± 2Ω̄)3

3ℏc3
. (2.15)

The next step is to derive the average values of the atomic operators. For this purpose, following the

Born-Markov Approximation (BMA) and the secular approximation, according to which ω ≈ 2Ω̄

rapid oscillating terms with frequency ±ω, ±2ω are dropped off and is obtained the Heisenberg

equation in the dressed-state base, which includes the spontaneous decay rates (2.15):

d

dt
⟨Q(t)⟩ = i⟨[∆̄Rz − Ḡ(R+ −R−), Q]⟩ − γ0

4
sin2 2θ

{
⟨Rz[Rz, Q]⟩+ ⟨[Q,Rz]⟩Rz

}
− γ+ cos4 θ

{
⟨R+[R−, Q]⟩+ ⟨[Q,R+]⟩R−}

− γ− sin4 θ
{
⟨R−[R+, Q]⟩+ ⟨[Q,R−]⟩R+

}
. (2.16)

Taking into account the medium values of the atomic operators:

⟨R+R−⟩ =
1

2
(1 + Rz),

⟨R−R+⟩ =
1

2
(1−Rz), (2.17)

one derives the master equation for average values of atomic operators ⟨R−(t)⟩, ⟨R+(t)⟩ and

⟨Rz(t)⟩. These equations are a system of linear differential equations or optical Bloch equations,

which are solved in stationary case: t −→∞⇒ d
dt
⟨R−(t)⟩ = 0, d

dt
⟨R+(t)⟩ = 0, d

dt
⟨Rz(t)⟩ = 0.
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d

dt
⟨Rz(t)⟩ = −2iḠ(⟨R−⟩ − ⟨R+⟩)− 2Γ+⟨Rz⟩ − 2Γ−,

d

dt
⟨R+(t)⟩ = (2i∆− Γ)⟨R+⟩+ iḠ⟨Rz⟩,

d

dt
⟨R−(t)⟩ = −(2i∆+ Γ)⟨R−⟩ − iḠ⟨Rz⟩. (2.18)

in the above eq.(2.18), Γ+, Γ− and Γ are:

Γ+ = γ− sin4 θ + γ+ cos4 θ,

Γ− = γ− sin4 θ − γ+ cos4 θ,

Γ = Γ+ + γ0 sin2 2θ, (2.19)

are the spontaneous emission rates in the dressed-state base and the average values of the atomic

operators in the stationary case are the following [188, 189, 190, 191]:

⟨Rz⟩ =
2Γ−

2Γ+ + (2Ḡ)2Γ

Γ+(2∆̄)2

,

⟨R+⟩ =
2iḠΓ−(Γ + 2i∆̄)

2Γ+(Γ2 + (2∆̄)2) + (2Ḡ)2Γ
,

⟨R−⟩ =
−2iḠΓ−(Γ− 2i∆̄)

2Γ+(Γ2 + (2∆̄)2) + (2Ḡ)2Γ
. (2.20)

Due to the second laser of the frequency ω another dynamic Stark splitting takes place, we have

to simplify once more the system Hamiltonian (2.7) in the double dressed-state base and have to

perform the same calculations of the generation and annihilation operators, which lead us to the

value of singlemolecule decay rate in double dressed-state base, according to the algorithm exposed

above in eqs. (2.10)-(2.14). First of all, we have to compute the new base of system Hamiltonian

(2.8) given below and use it for later projection.

H =
∑
k

ℏ(ω − ωk)a
†
kak − ℏ∆Rz − ℏḠ(R+ +R−)

+ i
∑
k

a†k

(1
2
sin 2θRz + cos2θR−e−iωt − sin2θR+eiωt

)
. (2.21)

We diagonalize the dressed-state Hamiltonian (2.21), considering the following effective Hamilto-

nian:
H0 = ℏ∆̄− ℏḠ(R+ +R−). (2.22)
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We obtain the eigenfunctions of the double dressed-state base as follows:
|2̄⟩ = sin θ̄|1̃⟩+ cos θ̄|2̃⟩,

|1̄⟩ = sin θ̄|1̃⟩+ cos θ̄|2̃⟩. (2.23)

These eigenfunctions embed the eigenvalues depending on the two-level system parameters as

the permanent dipole moment Ḡ and new generalized Rabi frequency ḠR projected in the double

dressed-state base:

cos 2θ̄ =
∆̄

ḠR

,

sin 2θ̄ =
Ḡ

ḠR

,

cot 2θ̄ =
∆̄

Ḡ
. (2.24)

where the generalized Rabi frequency are functions of laser detuning and dipole moment value

G̃R =
√
∆̄2 + Ḡ2.

The new operators, i.e, R̃+ = |2̃⟩⟨1̃|,R̃− = [R̃+]† and R̃z = |2̃⟩⟨2̃| − |1̃⟩⟨1̃|, are operating in

the double dressed-state picture obeying the following commutation relations:
[
R̃+, R̃−] = R̃z and[

R̃z, R̃
±] = ±2R̃±. Also, the operators projected in the double dressed-state base depend on the

laser detuning in the double dressed-state ∆̄, dipole moment Ḡ and Rabi frequency ḠR.

We substitute the double dressed-state operators, in order to project the system Hamiltonian

(2.21) into the double dressed-state base:

H =
∑
k

ℏ(ωk − ωL)a
†
kaL + ℏG̃RR̃z + i

∑
k

(g⃗k · d⃗)

×
{
a†k

([1
2
sin 2θ cos 2θ̄ − 1

2
sin 2θ̄ cos2 θe−iωt − 1

2
sin 2θ̄ sin2 θeiωt

]
R̃z

+
[1
2
sin 2θ sin 2θ̄ − cos2 θ sin2 θ̄e−iωt − sin2 θ cos2 θ̄eiωt

]
R̃+

+
[1
2
sin 2θ̄ sin 2θ + cos2 θ̄ cos2 θe−iωt + sin2 θ sin2 θ̄eiωt

]
R̃−
)
−H.c.

}
. (2.25)

The further step is to solve the Heisenberg (2.26) equation in double dressed-state base. The ob-

tained solutions are the generation operators defined in the double dressed-state base, containing

also the spontaneous decay rates. As well, employing this equation one will derive the average

values of the new atomic operators.
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d

dt
⟨Q(t)⟩ = iḠR⟨[R̃z, Q]⟩ − Γ̄0

{
⟨R̃z[R̃z, Q]⟩+ ⟨[Q, R̃z]⟩R̃z

}
− Γ̄+

{
⟨R̃+[R̃−, Q]⟩+ ⟨[Q, R̃+]⟩R̃−}

− Γ̄−
{
⟨R̃−[R̃+, Q]⟩+ ⟨[Q, R̃−]⟩R̃+

}
. (2.26)

Below are presented the analytical forms of the spontaneous decay rates in the double dressed-state

base and included in the above eq.(2.26) [188, 189, 190, 191]:

Γ̄0 =
1

4
γ(ωL) sin2 2θ cos2 2θ̄ +

1

4
γ(ωL + ω) sin2 2θ̄ cos4 θ +

1

4
γ(ωL − ω) sin2 2θ̄ sin4 θ,

Γ̄+ =
1

4
γ(ωL + 2ḠR) sin2 2θ̄ sin2 2θ +

1

4
γ(ωL + ω + 2ḠR) sin4 θ̄ cos4 θ̄

+
1

4
γ(ωL − ω + 2ḠR) sin4 θ sin4 θ̄,

Γ̄− =
1

4
γ(ωL − 2ḠR) sin2 2θ sin2 2θ̄ +

1

4
γ(ωL + ω − 2ḠR) cos4 θ sin4 θ̄

+
1

4
γ(ωL − ω − 2ḠR) sin4 θ cos4 θ̄, (2.27)

which depend of eigenvalues of dressed-state base and double dressed-state base, also the above

presented decay rates embed the single molecule decay rate γ(x), the generalized Rabi frequency

ḠR and laser detuning ∆̄

γ(x) =
2d2x3

3ℏc3
,

G̃R =
√
∆̄2 + Ḡ2,

∆̄ = Ω̄− ω

2
. (2.28)

The master equation (2.26) contains slowly varying terms in the spontaneous emission damping.

Thus, we have assumed that ḠR ≫ γ(ω21), with γ(ω21) =
2d2ω3

21

3ℏc3 . With the help of the master

equation (2.26), we obtain the Bloch system of differential equations, describing our sample, which

is solved first in stationary case, i.e., we consider that d
dt
⟨R̃−(t)⟩ = 0, d

dt
⟨R̃+(t)⟩ = 0, d

dt
⟨R̃z(t)⟩ = 0

in order

d

dt
⟨R̃z(t)⟩ = −2(Γ̄+ + Γ̄−)⟨R̃z⟩+ 2(Γ̄− − Γ̄+),

d

dt
⟨R̃+(t)⟩ = (2iḠR − 4Γ̄0 − Γ̄+ − Γ̄−)⟨R̃+⟩,

d

dt
⟨R̃−(t)⟩ = −(2iḠR + 4Γ̄0 + Γ̄+ + Γ̄−)⟨R̃−⟩, (2.29)

to arrive at the average values of the atomic operators in the double dressed-state base: ⟨R̃z⟩s =
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Γ̄−−Γ̄+

Γ̄−+Γ̄+
, while ⟨R̃+⟩s = ⟨R̃−⟩s = 0. Here, we took into account the relations: ⟨R̃+R̃−⟩ = 1

2
(1+R̃z),

⟨R̃−R̃+⟩ = 1
2
(1 − R̃z). The time dependence of the mean-values of operators R̃± and R̃z in the

double dressed-state basis follows immediately from eq.(2.29):

⟨R̃+⟩ = ⟨R̃+(0)⟩e(2iḠR−Γ̄s)τ ,

⟨R̃−⟩ = ⟨R̃−(0)⟩e−(2iḠR+Γ̄s)τ ,

⟨R̃z⟩ = ⟨Rz(0)⟩e−2(Γ̄−+Γ̄+)τ + ⟨R̃z⟩s(1− e−2(Γ̄−+Γ̄+)τ ), (2.30)

where the spontaneous decay rate is Γ̄s = 4Γ̄0 + Γ̄+ + Γ̄− [188, 190].

In the current paragraph, one has presented the detailed description of the theoretical model of

a two-level system with permanent dipole possessing a permanent dipole moment pumped by a

weak and a low frequency coherent field near resonance. The second stronger laser field driving

the main two-level transition induces a dynamical Stark-splitting in the system. One has developed

the algorithm required to monitor the population dynamics in the manifolds. These results are

employed for further computation of new features of the model in the next paragraph.
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2.2 Resonance fluorescence spectrum of a two-level system

The phenomenon of resonance fluorescence is the process in which a laser pumped two-level atom

scatters photons both coherently and incoherently. If the driving filed is monochromatic, at low

excitement intensities, the atom absorbs a photon and re-emits it at the frequency as a consequence

of energy conservation. The spectral width of the fluorescent light is very narrow. The situation is

considerably more complex when the laser intensity increases and the Rabi frequency associated

with the laser field is comparable or greater that the width of the energy bands of the quantum

emitter. Under these circumstances the atom can coherently interact several times with the field

before spontaneously emitting a photon. In this case, Rabi oscillations appear as amodulation of the

dipolar quantum moment and the side bands appear in the spectrum of the emitted radiation. Due

to the dynamic Stark splitting, which is a specially interesting feature of the atom-field interaction,

the fluorescent light exhibits unusual features including photon antibunching and squeezing.

In this paragraph, we derive the resonance fluorescence for a two-level system possessing a

non-zero permanent dipole and explain the phenomena occurring in such theoretical system. We

shall begin by relating the atomic operators required to derive the characteristics of the fluorescent

light to the atomic permanent dipole moment, in the strong driving field approximation. As well,

we evaluate the complete power spectrum of the fluorescent light scattered by a two-level system

by an incident lasing field.

Generally, the power S(r, ν) spectrum of the fluorescent light at some suitably chosen point r

in the far field is derived by employing the Fourier transform of the normally ordered correlation

function
⟨
E(−)(r, t)E(+)(r, t+ τ)

⟩
, with respect to τ [186]:

S(r, ν) =
1

π
Re

∫ ∞

0

dτei(ν−ωL)
⟨
E(−)(r, t)E(+)(r, t+ τ)

⟩
. (2.31)

Here we have approximated that the field is statistically stationary and the field correlation function

does not depend of the origin so the correlation function
⟨
E(−)(r, t)E(+)(r, t + τ)

⟩
depends only

on the time difference τ . According to Weisskopf-Wigner approximation, then field operator E(+)

at a certain observation point r is determined by:

E(+)(r, t) = Φ(r)S−
(
t− |r− r0|

c

)
,

E(−)(r, t) = Φ(r)S+
(
t− |r− r0|

c

)
. (2.32)

The above equations (2.32) that the positive frequency part of the field and the negative frequency

part of the field operator is proportional to the corresponding atomic operators at a retarded time.
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It follows that the correlation function is computed according to the below given expression:

⟨
E(−)(r, t)E(+)(r, t+ τ)

⟩
= Φ(r)

⟨
S+(t)S−(t+ τ)

⟩
. (2.33)

The two-time correlation function
⟨
S+(t)S−(t + τ)

⟩
is computed using the quantum regression

theorem if we project the single-time correlation function in double-dressed state base. Addition-

ally, we consider below the field correlation independent of the vector of distance to the detector,

then Φ(r) will be considered as numerical constant.

Thus, following theWigner-Khnitchine theorem [187], the power spectrum Sν is given through

the integration of the two-time correlation function of the fluorescent field by:

S(ν) =
1

2π
lim
T→∞

1

T

∫ T

0

dt

∫ T

0

dt′
⟨
E(−)(t)E(+)(t′)

⟩
e−i(ν−ωL)(t−t′). (2.34)

According to the stationary condition, the correlation function
⟨
E(−)(t)E(+)(t′)

⟩
is depending only

on the time τ = t− t′ and (2.34) is transformed into:

S(ν) =
1

2π
lim
T→∞

∫ T

0

dt

(∫ t

0

dt′ +

∫ T

t

dt′

)
×
⟨
E(−)(t)E(+)(t′)

⟩
e−i(ν−ωL)(t−t′) =

=
1

2π
lim
T→∞

∫ T

0

dt

[∫ t

0

dτ
⟨
E(−)(τ)E(+)(0)

⟩
e−i(ν−ωL)τ

+

∫ T−t

0

dτ
⟨
E(−)(0)E(+)(τ)

⟩
ei(ν−ωL)τ

]
. (2.35)

Taking into account that the field operators are correlated over a short time difference, then the

upper limit of the τ -integrations to infinity without any perceptible changes. Thus we have

⟨
E(−)(τ)E(+)(0)

⟩
=

⟨
E(−)(0)E(+)(τ)

⟩
. (2.36)

Taking into account the equality (2.36), it follows from the (2.35) that the power spectrum of res-

onance fluorescence is expressed through the Riemann-Stieltijes integral

S(ν) =
1

π
Re

∫ ∞

0

dτ
⟨
E(−)(0)E(+)(τ)

⟩
ei(ν−ωL)τ . (2.37)

The resonance fluorescence spectrum is represented via the terms of the double-correlated func-

tions of the emitted field [186]:

S(ν) = Φ(r)

∫ ∞

0

dτei(ν−ωL)τ lim
t→∞
⟨S+(t)S−(t− τ)⟩, (2.38)

where Φ(r) = 2d2ω4
21

3r2c4
, r is the distance to the detector. In the double dresed picture, we found the
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following expression for the correlation function entering in (2.38):

lim
t→∞
⟨S+(t)S−(t− τ)⟩ =

⟨R̃−R̃+(τ)⟩
(1
4
sin2 2θ sin2 2θ̄ + cos4 θ sin4 θ̄e−iωτ + sin4 θ cos4 θ̄eiωτ

)
+

⟨R̃+R̃−(τ)⟩
(1
4
sin2 2θ̄ sin2 2θ + cos4 θ̄ cos4 θe−iωτ + sin4 θ sin4 θ̄eiωτ

)
+

⟨R̃zR̃z(τ)⟩
(1
4
sin2 2θ cos2 2θ̄ +

1

4
sin2 2θ̄ cos4 θe−iωτ +

1

4
sin2 2θ̄ sin4 θeiωτ

)
.

(2.39)

Using the time-dependence of the qubit operators (2.39) and integrating the corresponding expres-

sions according to Sokhotskyi-Plemelj formula [187], given as follows:∫ t

0

dt′e±
(
ν−ωj

)(
t−t′
)
= πδ

(
ν − ωj

)
± iP

(
1

ν − ωj

)
, (2.40)

we derive the following terms

Re

∫ ∞

0

dτei(ν−ωL)dτ ⟨R̃zR̃z(τ)⟩ = π⟨Rz⟩2sδ(ν − ωL) + (1− ⟨Rz⟩2s)
Γ∥

Γ2
∥ + (ν − ωL)2

,

Re

∫ ∞

0

dτei(ν+ωL)τe−iωτ ⟨R̃z

{
⟨R̃z⟩s(1− e−Γ∥τ ) + R̃ze

−Γ∥τ )
}
⟩ =

= π⟨Rz⟩2sδ(ν − ωL − ω) + (1− ⟨Rz⟩2s)
Γ∥

Γ2
∥ + (ν − ωL − ω)2

,

Re

∫ ∞

0

dτei(ν−ωL+ω)τ ⟨
{
e−Γ∥τ (1− ⟨R̃z⟩2s) + ⟨R̃z⟩2s

}
, ⟩ =

= π⟨R̃z⟩2sδ(ν − ωL + ω) + (1− ⟨R̃z⟩2s)
Γ∥

Γ2
∥ + (ν − ωL + ω)2

,

Re

∫ ∞

0

dτei(ν−ωL)τ ⟨R̃−R̃+(τ)⟩ = ⟨R̃−R̃+⟩s
Γs

Γ̄2
s + (ν − ωL + 2ḠR)2

,

Re

∫ ∞

0

dτei(ν−ωL−ω)τ ⟨R̃−R̃+(τ)⟩ = ⟨R̃−R̃+⟩s
Γs

Γ̄2
s + (ν − ωL − ω + 2ḠR)2

,

Re

∫ ∞

0

dτei(ν−ωL+ω)τ ⟨R̃−R̃+(τ)⟩ = ⟨R̃−R̃+⟩s
Γs

Γ̄2
s + (ν − ωL + ω + 2ḠR)2

,

Re

∫ ∞

0

dτei(ν−ωL)τ ⟨R̃+R̃−(τ)⟩ = ⟨R̃+R̃−⟩s
Γs

Γ̄2
s + (ν − ωL − 2ḠR)2

,
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Re

∫ ∞

0

dτei(ν−ωL−ω)τ ⟨R̃+R̃−(τ)⟩ = ⟨R̃+R̃−⟩s
Γs

Γ̄2
s + (ν − ωL − ω − 2ḠR)2

,

Re

∫ ∞

0

dτei(ν−ωL+ω)τ ⟨R̃+R̃−(τ)⟩ = ⟨R̃+R̃−⟩s
Γs

Γ̄2
s + (ν − ωL + ω − 2ḠR)2

.

(2.41)

We obtain the final expression of resonance fluorescence spectra in the steady-state [188]:

S(ν) =
1

4
sin2 2θ cos2 θ̄

{
π⟨R̃z⟩2sδ(ν − ωL) + (1− ⟨R̃⟩2s)

Γ∥

Γ2
∥ − (ν − ωL)2

}

+
1

4
sin2 2θ̄ cos4 θ

{
π⟨R̃z⟩2sδ(ν − ωL − ω) + (1− ⟨R̃⟩2s)

Γ∥

Γ2
∥ − (ν − ωL − ω)2

}

+
1

4
sin2 2θ̄ sin4 θ

{
π⟨R̃z⟩2sδ(ν − ωL + ω) + (1− ⟨R̃⟩2s)

Γ∥

Γ2
∥ − (ν − ωL + ω)2

}

+ ⟨R̃−R̃+⟩s

[
1

4
sin2 2θ sin2 2θ̄

Γ̄s

Γ̄2
s + (ν − ωL + 2ḠR)2

+

+ cos4 θ sin4 θ̄
Γ̄s

Γ̄2
s + (ν − ωL − ω + 2ḠR)2

+ sin4 θ cos4 θ̄
Γ̄s

Γ̄2
s + (ν − ωL + ω + 2ḠR)2

]

+ ⟨R̃+R̃−⟩s

[
1

4
sin2 2θ̄ sin2 2θ

Γ̄s

Γ̄2
s + (ν − ωL − 2ḠR)2

+

+ cos4 θ̄ cos4 θ
Γ̄s

Γ̄2
s + (ν − ωL − ω − 2ḠR)2

+ sin4 θ sin4 θ̄
Γ̄s

Γ̄2
s + (ν − ωL + ω − 2ḠR)2

]
,

(2.42)

note that: Γ∥ = 2(Γ̄− + Γ̄+).

The spectrum of resonance fluorescence describes the light scattered by a two-level systemwith

permanent dipole that is driven by a laser of frequency ωL and a second laser of frequency ω. The

spectrum is sketched in Fig.2.2(a) and exhibits for a sufficiently large laser intensity three triplets

whose width in frequency is of the order of the atomic decay rate Γ∥ and Γ̄s. Additionally, the cen-

tral line of the central triplet is an elastic line at the laser frequency whose width is limited by the

frequency width of the laser. The Mollow spectra presented in Fig.2.2(a) is an example of inelastic

scattering since the frequency of laser is changing due to the double dressed-state formalism. We

shall consider this aspect in this paragraph. The correlation function for resonance fluorescence

contains components proportional to the dipole moment itself. According to the Glauber theory

of photodetection [1, 187], which proves that the observed signal involves normally ordered cor-

relation functions of the electric field, thus the resonance fluorescence spectrum is related to the
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(a) (b)

Fig. 2.2: Resonance fluorescence spectra computed for the non-zero permanent dipole moment
G ̸= 0 and the laser detuning ratio over the Rabi frequency:(a) ∆

2Ω
= 0; (b) ∆

2Ω
= 0, 5. Here Ω

γ
= 45

is a parameter representing the ratio between Ω the Rabi frequency and the spontaneous decay rate
γ and Ω≫ γ, whereas ω

γ
= 100 corresponds to the ratio between the frequency of dynamical Stark

splitting ω and the spontaneous decay rate [191].

normally ordered dipole autocorrelation. Due to the transformation into the frame rotating at the

laser frequency ωL appears the exponential eiωLτ and this factor explains the position of the central

peak in the spectrum is located near the laser frequency. Also it shows that the two-level system

has reached a stationary state determined by the laser field and its radiative decay.

The explicit solutions of the master equation involves cumbersome algebraic calculations, and

we shall mention the most important aspect of those manipulations. One of the main ideas is

to rewrite the solutions of the master equations. Each of these functions evolves in time with

exponential e−iντ and gives a contribution to the spectrum that consists of Lorentzian peaks. The

real part of the integrals give the Lorentz-like profile and the frequency shift with respect to the

detector frequency. Also since the stationary solutions of the master equation are reached at long

times, we can conclude that all eigenvalues of the master equation must have positive real part.

Analyzing the resonance fluorescence spectrum given in eq.(2.42), one can observe that there

are three coherently scattered spectral lines at ωL, and ωL±ω and up to nine incoherently scattered

spectral bands, i.e., at ν − ωL = 0, ν − ωL − ω = 0, ν − ωL + ω = 0, etc., in agreement with

double-dressed state picture. Particularly, Fig.2.2(a) and Fig.2.2(b), depicts the resonance fluo-

rescence spectrum for certain parameters. In the strong driving approximation, the two additional

side triplets, displaced by the generalized Rabi frequency in the double-dressed state formalism

2ḠR. This spectral structure is similar to the Mollow triplet. More specifically, one can observe

the cancellation of the central spectral band due to interference effects among the induced double

dressed-state transitions. Asymmetrical behaviors in the scattered light spectrum are observed as

well. This is because of the population inversion in the bare state and it differs from usual resonance
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Fig. 2.3: Dressed-state and double dressed-states atom diagrams showing some of the nine optical
transitions indicated by arrows and corresponding to the spectra presented in Fig.2.2(a).

fluorescence spectrum obtained in the absence of permanent dipoles.

Notice, in the resonance fluorescence spectrum presented in eq.(2.42) the first three terms rep-

resent the coherent part of the spectrum, whereas the last three terms correspond to the incoherent

Mollow spectra line emission. The relative height of the red shifted triplet side-bands: central

triplet: blue shifted triplet sidebands is 1:3:1, the relative area ratio is 1:2:1 and the width of in

angular frequencies is found to be Γ∥ for the central Mollow triplet and Γ̄s for the side-bands re-

spectively, which is evident in the Fig.2.2(a).

Using the optical Bloch equations, one has calculated the resonance fluorescence spectrum at

high intensity or large detuning this spectrum consists of three triplets. We will try to discuss the

various features of the Mollow fluorescence spectra consisting of nine lines, which can be related

to the existence of doublets of the dressed states. Since the dipolar two-level system is resonant

due to the first laser ωL so it degenerates the bare states |1⟩, |2⟩. When the atom-field coupling is

taken into account and the pumping of the second laser ω, one gets series of doublets of double-

dressed states represented in the right part of Fig.2.3, where the splitting of the each doublet equals

to 2ḠR, which is the generalized Rabi frequency corresponding to the field associated with the

cavity. By the strong coupling regime, we mean that the damping rate of the field in the cavity also

the damping rate of the atom are small enough in comparison to 2ḠR that the two dressed states of

each double-dressed doublet are well resolved.

The left part of Fig.2.3 represent two adjacent manifolds of uncoupled dressed-states, similar to

the ones shown in Fig.2.5. Since the distance between the upper two and lower twomanifolds isωL.

When the coupling is taken into consideration, one gets the four doublets of double-dressed states

represented, |2̃,+⟩ and |1̃,+⟩ in the right part of Fig.2.3. In each doublet the splitting is 2ḠR and the
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distance between the upper doublets and lower doublets is ωL−ω−2ḠR. The allowed spontaneous

transitions that take place between double-dressed states levels for which the dipole moment has a

nonzero value. One immediately understands in this way why the resonance fluorescence spectrum

consists of nine lines with frequencies ωL, ωL+ω, ωL−ω, ωL−2ḠR, ωL+ω−2ḠR, ωL−ω−2ḠR,

ωL + 2ḠR, ωL + ω + 2ḠR, ωL − ω + 2ḠR, associated with transitions between the four doublets

|1̃,−⟩ −→ |1̃,−⟩, |1̃,−⟩ −→ |2̃,+⟩, |2̃,+⟩ −→ |2̃,+⟩, |2̃,+⟩ −→ |1̃,−⟩, respectively considering

the strong field approximation.

The peaks in the resonance fluorescence spectrum, see Fig.2.2(a) can be interpreted in terms of

transitions between the double-dressed states of Jaynes-Cummings model. Following this analysis,

the emission at the laser frequencyωL come from transition |1̃,−⟩ −→ |1̃,−⟩ and |2̃,+⟩ −→ |2̃,+⟩.

The transitions on the sidebands of the central triplet occurwhen the atom changes |1̃,−⟩ −→ |2̃,+⟩

at ωL − ω or ωL + ω, corresponding to the blue arrows in Fig.2.3. Here the fluorescence photon

is shifted because of the splitting between the double-dressed states. The transitions on the left

triplet are associated in the following way |1̃,−⟩ −→ |2̃,+⟩ at ωL − 2ḠR; |2̃,+⟩ −→ |2̃,+⟩ at

ωL − ω − 2ḠR; |1̃,−⟩ −→ |2̃,+⟩ at ωL − ω + 2ḠR and are corresponding the green arrows in

Fig.2.3. Additionally, the right triplet is associated to the atomic changes from the following states

|2̃,+⟩ −→ |1̃,−⟩ atωL+2ḠR; |2̃,+⟩ −→ |1̃,−⟩ atωL−ω+2ḠR; |2̃,+⟩ −→ |1̃,+⟩ atωL+ω+2ḠR.

Alternatively, the occurrence of the nine lines in the fluorescence spectrum is explained by the

two-level system flops at the Rabi frequency 2ḠR between the ground and the excited state and

its emission is amplitude and frequency modulated. Therefore, the emission spectrum contains

bands at ωL ± ω, ωL ± 2ḠR and side triplets at ωL − ω ± 2ḠR, ωL + ω ± 2ḠR. Unlike the

spectrum represented in Fig.2.2(a), the fluorescence spectrum in Fig.2.2(b) exhibits cancellation of

the central line at laser frequency ωL and the increase in the amplitude of the right sided triplet and

the decrease of the left sided triplet. These changes occur due to the interference effects among the

double-dressed states and in non-resonant case when the laser detuning has non-zero values.

Additionally, we have computed the resonance fluorescence spectra assuming the zero value

of the dipolar moment, G = 0. We have obtained the Mollow spectra Fig.2.4 in the strong field

approximation. This means the spectrum contains three peaks. The two additional peaks are dis-

placed by the generalized Ω̄ Rabi frequency from the laser frequency.

The triplet describing the two-level system as dressed by the laser is generated by the new eigen-

states, formed from a combination of bare states of the two level system. A family of such states

whose total energy is the same, forms a manifold of excitation. In every manifold, the eigenstates

are split by the generalized Rabi frequency Ω̄, while the energy difference between two manifolds
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(a) (b)

Fig. 2.4: Resonance fluorescence spectra computed for the zero value of the permanent dipole
moment G = 0. Here (a) ∆

2Ω
= 0.5 and (b) ∆

2Ω
= 0 are the ratio between the laser detuning and

the Rabi frequency. Other parameters are the ratio between the Rabi frequency Ω and spontaneous
decay rate γ, namely Ω

γ
= 45 and Ω≫ γ [191].

is that of bare states. The transitions taking place between manifolds exhibit the main features:

a triplet in which the integrated spectral intensities of its peaks have 1:2:1 proportions, when the

laser is resonant with the two-level system. This spectral shape is readily derived by solving the

master equation, and it is better understood from the physics perspective as transitions between the

eigenstates |1̄⟩ and |2̄⟩ introduced earlier. The level structure of the ladder of manifolds, separated

by the energy of the of difference between the first and the second laser ω − ωL and each split by

ω, proves the phenomenology of resonance fluorescence in the high-excitation regime. The central

peak of the spectrum is twice high unlike the neighboring peaks due to the four degenerate transi-

tions. The dressed-state description of the transitions and the quantitative results can be obtained

by the master equations for the transitions between the states. The transitions that yield the cen-

tral peak, highlighted by red arrows in Fig.2.5, leave the two-level system unchanged, while those

yielding the side peaks, green arrow and light-blue arrow change the state of the two-level sys-

tem. In this configuration, changes in the populations of the particular dressed state via one-photon

transitions can occur in the following ways: relaxation into a given level involves two transitions

down from the upper manifold and relaxation out of the level occurs by two transitions down to the

lower neighboring manifold.

Using the quantum mechanical treatment of resonantly pumped two-level system in the frame-

work dressed state, which is particularly important to explain the non-classical features of reso-

nance fluorescence spectra computed for the case when the dipolar moment is zeroG = 0, namely

the photon correlations on the Mollow triplet spectra. The excitation laser represented by coherent
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Fig. 2.5: Dressed-state atom diagram showing the three optical transitions indicated by arrows and
corresponding to the spectra presented in Figs.2.4(a) and (b).

light states, which are a superposition of photon number states, interacts with the two-level sys-

tem, consisting of uncoupled states. Via the dynamic Stark interaction the uncoupled states are

transformed into a new combination of eigenstates named as before in this chapter dressed states,

which are now coupled. Taking into account the energetic separation of the dressed states for all

manifolds unlike the classic Jaynes-Cummings ladder, the properties of a strongly driven two-level

system can be interpreted using the reduced part of only two neighbouring doublets of the whole

ladder structure as depicted in Fig.2.5. The four optically allowed transitions are indicated in the

Fig.2.5 via arrows. In the spectra shown in Fig.2.4(a) and (b) these transitions are reflected by

the characteristic Mollow triplet. The transitions from |2̄⟩ → |2̄⟩ and |1̄⟩ → |1̄⟩, highlighted by

the red arrows give, rise to the emission at the two-level system resonance corresponding to as

Rayleigh line. The two sidebands are generated by the transitions |2̄⟩ → |1̄⟩ and |1̄⟩ → |2̄⟩. The

lower energetic sideband is associated with the fluorescence line since it is the nearest to the two-

level system resonance for laser detuning ∆ ≥ 0. Taking into account, that there are two possible

transitions corresponding to the central band, compared to the probability of photon transitions

arising from the sidebands, then the central peak has twice the area of the individual sidebands.

Additionally, it is important to mention that the resonance fluorescence spectra shown in Fig.2.4(a)

computed when ∆
2Ω

= 0.5 manifests lower amplitude Mollow triplet spectra unlike the resonance

fluorescence spectra in Fig.2.4(b), proving the impact of the ratio of laser detuning over the Rabi

frequency ∆
2Ω
.

Finalizing this part, one has studied the resonance fluorescence properties of this system and

we figure out new properties of the resonance fluorescence spectra due to the permanent dipole
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moment. Particularly, one has studied the resonance fluorescence spectra for certain parameters.

One has observed the changes in spectra due to interference effects induced by double-dressed state

transitions. As well, asymmetrical behaviors in the scattered light spectrum are noticed as well,

due to the different population inversion in the bare state unlike the usual resonance fluorescence

spectrum computed in the absence of permanent dipole.

One has shown in this paragraph that the positions of the spectral lines are determined by the

splitting of the dressed states, which in our case is dependent on the Rabi frequency and the heights

of the spectra are proportional to the populations of the corresponding dressed state and numeri-

cally expressed by the spontaneous decay rates. In this context, one mention that the dressed-state

populations in a such system might be associated with Bessel functions of argument ∆
2Ω

[205] and

for certain values of Rabi frequency, the function gets zero value, resulting in disappearance of the

corresponding spectral line evident in Fig.2.2(b). Since the dressed-state population is symmetri-

cally distributed about the central dressed state in each manifold. Thus the resonance fluorescence

spectrum in Figs.2.2(a), 2.4(a) and (b) are symmetric about the laser frequencyωL. In the following,

one shall calculate the squeezing effects in the resonance fluorescence processes of laser-pumped

molecules with permanent dipoles [187, 188].
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2.3 Squeezing spectra and quantum fluctuations

Before embarking on the detailed calculation, we will introduce the basics of squeezing, and how

it can occur in a two-level system possessing a permanent dipole. The minimum variance in any

quantum measurement involving some canonical conjugates variables, for example the position

and momentum are restricted by the Heisenberg uncertainity principle. Though this principle can-

not be disregarded, the fluctuations of a single variable can be minimized below the minimal value

taking the advantage of improving the fluctuations of the conjugate variable. The most exten-

sively researched implementation of this non-classical phenomenon is the squeezed light, where the

quadrature operators X̂1 and X̂2 of the electric field are canonically conjugated operators. Based

on the quadratic dependence on the bosonic creation and annihilation operators in the Hamilto-

nian, squeezed light can be generated using intense laser fields and other nonlinear optical source.

Additionally, we mention the practical importance of the squeezed light as it is employed in inter-

ferometry with reduced quantum noise.

Having motivated the study and nature of squeezed states, we shall consider A and B which

satisfy the commutation relation, which verify the commutation relation

[A,B] = iC. (2.43)

Following the Heisenberg uncertainty principle, the product of the uncertainties in determining the

expectation values of the two variablesb A and B is determined by

∆A∆B ≥ 1

2
|⟨C⟩|. (2.44)

Therefore, we consider that the state system is named squeezed if the unceretainity in one observ-

able, for example A verifies the relation

(
∆A
)2

<
1

2
|⟨C⟩| (2.45)

Beside the condition (2.45), the variances verify the minimum-uncertainity relation, i. e.,

∆A∆B =
1

2
|⟨C⟩|, (2.46)

then the state is defined as an ideal squeezed state. Consequently, in a squeezed state, the quantum

fluctuations of one variable are smaller then their value in a symmetric minimum-uncertainty state(
∆A
)2

=
(
∆B

)2
= |⟨C⟩|

2
from the corresponding increased fluctuations in the conjugated variable,

maintaining the uncertainty relation non-violated [187].
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Aswementioned above, themost proper illustration of state squeezing condition are the quadra-

ture operators of a quantized single-mode electric field of frequency ν

E(t) = E ϵ̂
(
ae−iνt + a†eiνt

)
, (2.47)

in the above formula the a and a† verify the commutation relation

[a, a†] = 1. (2.48)

We introduce the Hermitian quadrature operators, describing the quantized single-mode electric

field:

X1 =
1

2

(
a+ a†

)
,

X2 =
1

2i

(
a− a†

)
, (2.49)

Since both single-mode electric field quadrature operators are functions of generation and annihi-

lation operators, they obey the following commutation relation

[
X1, X2

]
=

i

2
. (2.50)

Rewriting the expression of the single-mode electric field, one substitutes the Hermitian quadrature

operators in (2.47) and derives the following expression:

E(t) = 2E ϵ̂
(
X1 cos νt+X2 sin νt

)
(2.51)

The Hermitian operatorsX1 andX2 are now evidently to be the amplitudes of the quantized single-

mode electric field having a phase difference π
2
. The uncertainty relation for the two amplitudes

is:

∆X1∆X2 ≥
1

4
. (2.52)

Thus, a squeezing of the lasing field occurs when:

⟨∆Xi⟩2 <
1

4
, (i = 1, 2) (2.53)

The ideal, squeezed state is generated if is verified the relation

∆X1∆X2 =
1

4
(2.54)

The steady-state spectrum of squeezing is a phase-sensitive effect, which is evident from the
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expression of the slowly varying part of the radiated field at the detector [32]:

Sφ(ν) =
γ

|µ|2

∫ ∞

0

[eiντ + e−iντ ]× lim
t→∞

Γφ(t+ τ, t)dτ, (2.55)

where Γφ(t + τ), t = ⟨: ∆Eφ(t + τ)∆Eφ(t) :⟩ is the normally ordered variance of the electric

field. The reduced quantum fluctuations are phase dependent due to the weak oscillating terms of

the filed emitted to the detector:

Eφ(t) = E+(t)eiφ+E−(t)e−iφ

2
, (2.56)

whereφ is the phase reference andE(±) are the negative and positive amplitudes of the filed, and the

quadrature variance is∆Eφ(t)
2 = ⟨Eφ(t)

2⟩ − ⟨Eφ(t)⟩2. The Heisenberg uncertainty relation con-

nects to variances in two out of phase quadratures via the following manner ∆Eφ(t)∆Eφ+π
2
(t) ≥

1
2
|⟨[Eφ(t), Eφ+π

2
(t)]⟩|. We consider the state of the field is a minimal uncertainity state when the

reference state is saturated, and then the filed becomes squeezed if there is a quadrature that verifies

the following inequality ∆Eφ(t)
2 < 1

2
|⟨[Eφ(t), Eφ+π

2
(t)]⟩|.

The spectrum of squeezing is related to the normal-order variance:

Γφ(t+ τ, t) = ⟨: ∆Eφ(t+ τ)∆Eφ(t) :⟩

=
1

4

[
e2iφ⟨∆E(+)(t+ τ)∆E(+)(t)⟩+ e(−2iφ)⟨∆E(−)(t)∆E(−)(t+ τ)⟩

+ ⟨∆E(−)(t+ τ)∆E(+)(t)⟩+ ⟨∆E(−)(t)∆E(+)(t+ τ)⟩
]
. (2.57)

Here, the fluctuations presented by eq.(2.57) ∆A = A − ⟨A⟩ and the angular brackets denote the

averages with respect to the atomic density operator ρ.

Particularly, one can show that the normally ordered variance of the radiated field:

Γφ(t+ τ, t) =
1

4
×⟨

:
(
E+(t+ τ)eiφ − E−(t+ τ)e−iφ − ⟨E+(t+ τ)⟩eiφ − ⟨E−(t+ τ)⟩e−iφ

)
×
(
E+(t)eiφ − E−(t)e−iφ − ⟨E+(t)⟩eiφ − ⟨E−(t)⟩e−iφ

)
:
⟩

(2.58)

or the fluctuations of the normally ordered variance of the electric field is

Γφ(t+ τ, t) =

1

4
×
{
e2iφ⟨E+(t+ τ)E+(t)⟩+ e−2iφ⟨E−(t+ τ)E−(t)⟩

+⟨E−(t+ τ)E+(t)⟩+ ⟨E−(t)E+(t+ τ)⟩
}
. (2.59)
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(a) (b)

Fig. 2.6: Squeezing spectrum Sφ(ν) as function of ν: (a) in the absence of permanent dipole
moment g

γ
= 0 it corresponds to the dashed line and in the presence of dipole moment, g

γ
= 16 it

corresponds to the solid line while the observation angle is φ = −π
4
; (b) the projection of squeezing

spectrum function in the system of coordinates defined by the observation angle φ and frequency
ν [191].

In the strong field approximation and in the absence of the free field, the radiated field E+(t) can

be substituted by µS−(t) [186]. Since E+ ∼ a ∼ S−, E− ∼ a† ∼ S+, in this way, we can assume

⟨∆E+(t+ τ)⟩ = S−(t+ τ)− ⟨S−(t+ τ)⟩,

⟨∆E+(t)⟩ = S−(t)− ⟨S−(t+)⟩,

⟨∆E−(t+ τ)⟩ = S+(t+ τ)− ⟨S+(t+ τ)⟩,

⟨∆E−(t)⟩ = S+(t)− ⟨S+(t)⟩. (2.60)

In this way we get the normal ordered correlation function, consisting of atomic operators:

Γφ(t+ τ, t) =
|µ|2

4
×{

e2iφ
(⟨
S−(t+ τ)S−(t)

⟩
−
⟨
S−(t+ τ)

⟩⟨
S−(t)

⟩)
+

+e−2iφ
(⟨
S+(t)S+(t+ τ)

⟩
−
⟨
S+(t)

⟩⟨
S+(t+ τ)

⟩)
+

+
(⟨
S+(t+ τ)S−(t)

⟩
−
⟨
S+(t+ τ)

⟩⟨
S−(t)

⟩)
+

+
(⟨
S+(t)S−(t+ τ)

⟩
−
⟨
S+(t)

⟩⟨
S−(t+ τ)

⟩)}
. (2.61)

Next step involves substitution of the atomic operators in the double dressed-state derived in

previous paragraph (2.2) base in equation corresponding to the normal ordered variance (2.61).

Thus, we obtain the normal ordered variance which includes the fluctuations of the atomic operators

78



from their steady-state mean value and the relative phase of the applied field φ:

Γφ(t+ τ, t) =
|µ|2

4
×

1

2
sin2 2θ cos 2φ

(
cos2 2θ̄ − 1

2
sin2 2θ̄ cosωτ

)(
⟨R̃zR̃z(τ)⟩ − ⟨R̃z⟩⟨R̃z(τ)⟩

)
+
1

4
sin2 2θ

(
sin2 2θ − sin4 θ̄e−iωτ − cos4 θ̄eiωτ

)(
⟨R̃+(τ)R̃−⟩e2iφ + ⟨R̃−R̃+(τ)⟩e−2iφ

)
+
1

4
sin2 2θ

(
sin2 2θ − cos4 θ̄e−iωτ − sin4 θ̄eiωτ

)(
⟨R̃−(τ)R̃+⟩e2iφ + ⟨R̃+R̃−(τ)⟩e−2iφ

)
+
(1
4
sin2 2θ cos2 2θ̄ +

1

4
sin2 2θ̄ cos4 θeiωt +

1

4
sin2 2θ̄ sin4 θe−iωt

)(
⟨R̃z(τ)R̃z⟩ − ⟨R̃z(τ)⟩⟨R̃z⟩

)
+
(1
4
sin2 2θ sin2 2θ̄ + sin4 θ̄ cos4 θeiωτ + cos4 θ̄ sin4 e−iωτ

)
⟨R̃−(τ)R̃+⟩

+
(1
4
sin2 2θ sin2 2θ̄ + cos4 θ̄ cos4 θeiωτ + sin4 θ̄ sin4 e−iωτ

)
⟨R̃+(τ)R̃−⟩

+
(1
4
sin2 2θ cos2 2θ̄ +

1

4
sin2 2θ̄ cos4 θeiωt +

1

4
sin2 2θ̄ sin4 θe−iωt

)(
⟨R̃zR̃z(τ)⟩ − ⟨R̃z⟩⟨R̃z(τ)⟩

)
+
(1
4
sin2 2θ sin2 2θ̄ + sin4 θ̄ cos4 θeiωτ + cos4 θ̄ sin4 e−iωτ

)
⟨R̃−R̃+(τ)⟩

+
(1
4
sin2 2θ sin2 2θ̄ + cos4 θ̄ cos4 θeiωτ + sin4 θ̄ sin4 e−iωτ

)
⟨R̃+R̃−(τ)⟩. (2.62)

We substitute the stationary solutions of the of the Bloch equations in the normally ordered

variance expressed by eq.(2.62) showing the fluctuations of the atomic operators containing the

parameters of interest as the the generalized Rabi frequency ḠR and the decay rate Γ̄S . Also it is

convenient to rewrite the two-time correlation functions from eq. (2.62) determined by the coupled

Bloch equations solutions, also making a contribution to the central component as well as to the

sidebands:

⟨R̃−(τ)R̃+⟩ =
1

2

(
1− ⟨R̃z⟩s

)
e−(2iḠR+Γ̄s)τ ,

⟨R̃+R̃−(τ)⟩ =
1

2

(
1 + ⟨R̃z⟩s

)
e−(2iḠR+Γ̄s)τ ,

⟨R̃+(τ)R̃−⟩ =
1

2

(
1 + ⟨R̃z⟩s

)
e(2iḠR−Γ̄s)τ ,

⟨R̃−R̃+(τ)⟩ =
1

2

(
1− ⟨R̃z⟩s

)
e(2iḠR−Γ̄s)τ . (2.63)

Substituting (2.63) in (2.62) one sets:

Γφ(t+ τ, t) =
|µ|2

4
×

1

2
sin2 2θ cos 2φ

[
cos2 2θ̄ − 1

2
sin2 2θ̄ cos(ωτ)

]{
⟨R̃2

z⟩s − ⟨R̃z⟩2s
}
e−Γ̄∥τ

+
1

4
sin2 2θ sin2 θ̄ cos 2φ

[
e−i(2ḠR−iΓ̄s)τ + ei(2ḠR+iΓ̄s)τ

]
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+
i

4
sin2 2θ sin2 2θ̄ sin 2φ⟨R̃z⟩s

[
ei(2ḠR+iΓ̄s)τ − e−i(2ḠR−iΓ̄s)τ

]
−1

4
sin2 2θ sin4 θ̄ cos 2φ

[
e−i(ω−2ḠR−iΓ̄s)τ + ei(ω−2ḠR+iΓ̄s)τ

]
+
i

4
sin2 2θ sin4 θ̄ sin 2φ⟨R̃z⟩s

[
e−i(ω−2ḠR−iΓ̄s)τ + ei(ω−2ḠR+iΓ̄s)τ

]
−1

4
sin2 2θ sin4 θ̄ cos 2φ

[
ei(ω+2ḠR+iΓ̄s)τ + e−i(ω−2ḠR+iΓ̄s)τ

]
+
i

4
sin2 2θ cos2 2θ̄ sin 2φ⟨R̃z⟩s

[
e−i(ω+2ḠR−iΓ̄s)τ − ei(ω+2ḠR+iΓ̄s)τ

]
+
1

2

(
sin2 2θ cos2 θ̄ + sin2 2θ̄ cosωτ(cos4 θ + sin4 θ)

){
⟨R̃2

z⟩s − ⟨R̃z⟩2s
}
e−Γ̄∥τ

+
1

4
sin2 2θ sin2 θ̄

[
ei(2ḠR+iΓ̄s)τ + e−i(2ḠR−iΓ̄s)τ

]
+
1

2
sin4 θ̄

(
cos4 θ + sin4 θ − ⟨R̃z⟩ cos 2θ

)
[ei(ω−2ḠR+iΓ̄s)τ + e−i(ω−2ḠR−iΓ̄s)τ

]
+
1

2
cos4 θ̄

(
sin4 θ + cos4 θ − ⟨R̃z⟩ cos 2θ

)
[ei(ω+2ḠR+iΓ̄s)τ + e−i(ω+2ḠR−iΓ̄s)τ

]
. (2.64)

The enhancement and appearance of some new squeezing peaks can be explained using the double-

dressed state picture. In order to understand the influence of permanent dipole on the spectral

features of the squeezing spectra shown in Fig.2.6(a), below we present the final analytical formula

for the squeezing spectra in double-dressed state formalism:

Sφ(ν) =
γ

4
×
{(
⟨R̃2

z⟩s − ⟨R̃z⟩2s
)[

sin2 2θ cos2 2θ̄(1 + cos 2φ)
]
χ1(ν)

+
1

2
sin2 2θ̄

(
cos4 θ + sin4 θ +

1

2
sin2 2θ cos 2φ

)
χ2(ν)

+
1

2
sin2 2θ sin2 2θ(1 + cos 2φ)χ3(ν)

+ sin4 θ̄
(
cos4 θ + sin4 θ − ⟨R̃z⟩s cos 2θ −

1

2
sin2 2θ cos 2φ

)
χ4(ν)

+ cos4 θ̄
(
cos4 θ + sin4 θ + ⟨R̃z⟩s cos 2θ −

1

2
sin2 2θ cos 2φ

)
χ5(ν)

+
1

2
sin2 2θ sin2 2θ̄ sin 2φ⟨R̃z⟩sχ6(ν) +

1

2
sin2 2θ sin4 θ̄ sin 2φ⟨R̃z⟩sχ7(ν)

+
1

2
sin2 2θ cos4 θ̄ sin 2φ⟨R̃z⟩sχ8(ν)

}
, (2.65)

where the termsχ1-χ8 represent the squeezing peaks enhanced by the presence of permanent dipole:

χ1(ν) =
2Γ̄∥

Γ̄2
∥ + ν2

,

χ2(ν) =
Γ̄s

Γ̄2
s + (ν − ω)2

+
Γ̄s

Γ̄2
s + (ν + ω)2

,
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χ3(ν) =
Γ̄s

Γ̄2
s + (ν − 2ḠR)2

+
Γ̄s

Γ̄2
s + (ν + 2ḠR)2

,

χ4(ν) =
Γ̄s

Γ̄2
s + (ν − ω + 2ḠR)2

+
Γ̄s

Γ̄2
s + (ν + ω − 2ḠR)2

,

χ5(ν) =
Γ̄s

Γ̄2
s + (ν + ω + 2Ḡr)2

+
Γ̄s

Γ̄2
s + (ν − ω − 2ḠR)2

,

χ6(ν) =
ν − 2ḠR

Γ̄2
s + (ν − 2ḠR)2

− ν + 2ḠR

Γ̄2
s + (ν + 2ḠR)2

,

χ7(ν) =
ν − ω + 2ḠR

Γ̄2
s + (ν − ω + 2ḠR)2

− ν + ω − 2ḠR

Γ̄2
s + (ν + ω − 2ḠR)2

,

χ8(ν) =
ν + ω + 2ḠR

Γ̄2
s + (ν − ω + 2ḠR)2

− ν − ω − 2ḠR

Γ̄2
s + (ν + ω − 2ḠR)2

. (2.66)

Here, χ1 − χ5 exhibit Lorentzian-like while χ6 − χ8 represent dispersion-like terms. On the other

hand, the total normally ordered quantum fluctuation of the radiated field presented by eq. (2.67)

expression can be obtained after frequency integration of eq.(2.65), i.e.,

⟨
:
(
∆Eφ

)2
:
⟩
=

d2

2γ
×{(

⟨R̃z
s⟩s − ⟨R̃z⟩2s

)[
4 sin2 2θ cos2 θ̄ cos2 φ+ sin2 2θ̄

(
cos4 θ + sin4 θ +

1

2
sin2 2θ cos 2φ

)
+ sin2 2θ sin2 2θ̄(1 + cos 2φ)

]
+2 sin4 θ̄

(
cos4 θ + sin4 θ − ⟨R̃z⟩s cos 2θ −

1

2
sin2 2θ cos 2φ

)
+2 cos4 θ̄

(
cos4 θ + sin4 θ + ⟨R̃z⟩s cos 2θ −

1

2
sin2 2θ cosφ

)
+ sin 2φ sin2 2θ(sin2 2θ̄ + sin4 θ̄ + cos4 θ̄)⟨R̃z⟩s

}
. (2.67)

In Fig.2.6(a) is presented the squeezing spectrum for some parameters of interest. Specially, we

would like to highlight that squeezing is observed at negative values, which is evident through the

solid line in the Fig.2.6(a) and the dark-blue areas shown in Fig.2.6(b). This is a straightforward

prove that permanent dipole generates occurrence of new squeezing intervals near the zero value

of the detector’s frequency ν, which are missing in the squeezing spectra shown by the dashed line.

Additionally, in Fig.2.7, we depict the normally ordered variance of the radiated
⟨
:
(
∆Eφ

)2
:
⟩
,

proceeding from the resonance fluorescence processes of laser-pumped two-level systems possess-
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Fig. 2.7: The variance
⟨
:
(
∆Eφ

)2
:
⟩
in units of |d|2 as function of ∆

2Ω
for G

γ
= 0 (dashed line),

G
γ
= 16 (solid line) [191].

ing permanent dipoles. We have found distinct quantum fluctuations features, which are due to

permanent dipoles, which is evident from the comparison of the solid and dashed curves, see also

[189]. The variance curve shown in Fig.2.7 with dashed line was computed for the case when the

permanent dipole moment of the two-level system is zero. The presence of the permanent dipole

changes the aspect of the normally ordered variance of the radiated field expanding the variance

range, though it keeps the same amplitude as compared with dashed line of the normally ordered

variance spectra.

In Fig.2.6(b), we plot the squeezing spectrum for certain parameters of interest. Particularly,

squeezing occurs for negative values (dark are in Fig.2.6(b)) and broader squeezing ranges takes

place because of permanent dipoles (see also [190]). Especially, squeezing around ν is due to

permanent dipoles and will not be be observed in the absence of it.
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2.4 Conclusions of Chapter 2

In this chapter one has investigated the resonance fluorescence and squeezing in resonance fluo-

rescence processes observed in a two-level system possessing all dipole matrix elements nonzero.

One has presented the detailed description of the theoretical model of a two-level system with per-

manent dipole possessing a permanent dipole moment pumped by a weak and a low frequency

coherent field near resonance. The second stronger laser field driving the main two-level tran-

sition induces a dynamical Stark-splitting in the system. The particularity of the current model,

consists in evaluating the impact of non-zero permanent dipole moment on the resonance fluo-

rescence spectrum of the spontaneous emission of photons during the laser pumping processes

of two-level system. One has described the system using semi-classical laser-molecule dressed-

state picture due to the first laser. Applying the dressed-state centrally symmetric transforma-

tion to the system Hamiltonian one arrived at the effective system Hamiltonian represented in a

frame rotating at the second laser field frequency. Performing the rotating wave approximation

with the respect to the second laser ω, one eliminated the vacuum modes of the electromagnetic

field reservoir in the usual way by adopting the Born-Markov approximations. One has computed

the elastic photon scattering spectrum consisting of three lines at
{
ωL, ωL ± ω

}
, considering a

non-zero dipole moment . The inelastic photon scattering contains up to nine spectral lines at

ωL,
{
ωL±ω

}
,
{
ωL±2ḠR

}
,
{
ωL−ω±2ḠR

}
,
{
ωL+ω±2ḠR

}
. Suppression of a spectral line at

the frequency of the strongly driven laser occurs due to interference effects among the induced dou-

ble dressed-state transitions. Asymmetrical behaviors in the scattered light spectrum are observed

as well. This is because of the population inversion in the bare state and it differs from the ordi-

nary resonance fluorescence spectrum computed in the absence of permanent dipoles, which also

modifies the squeezing spectrum for certain parameters of interest. Particularly, squeezing occurs

for negative values (dark area in Fig. 2.6(b)) and broader ranges because of the permanent dipoles.

In the absence of permanent dipoles squeezing around detectors frequency ν is not observed. Ad-

ditionally, the dipole moment expands slightly the range of quantum fluctuations. Summarizing,

we have investigated the steady-state quantum dynamics of laser pumped two-level system pos-

sessing non-zero permanent dipole moment. We have plotted the resonance fluorescence spectrum

of spontaneously emitted photons, squeezing spectrum and total quantum fluctuations, during the

laser pumping processes of the system. Features differing from those in the case of similar pro-

cesses yet in the absence of permanent dipoles have been found. In particular, additional spectral

lines are emitted and extra squeezed frequency domains are observed. The corresponding study is

published in the following scientific papers [189, 190, 191].
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3 DYNAMICS OF A QUANTUM OSCILLATOR COUPLED
WITH A THREE-LEVEL Λ-TYPE EMITTER

The interest for novel quantum systems exhibiting lasing in a wider parameter range, lasing and

cooling in microscale and nanoscale devices is growing. From this perspective, here, we research

out a laser pumped Λ-type three-level system the upper state of which is being coupled with a

quantum oscillator described by a quantized single-model boson field. More exactly, as quantum

oscillator can be considered a vibrational mode of a nanomechanical resonator incorporating the

three-level emitter or, correspondingly, an electromagnetic cavity mode field if the upper state of

the three-level sample, embedded in the cavity, possesses a permanent dipole.

The frequency of the quantum oscillator is smaller than all other frequencies involved to de-

scribe the model; on the other hand, it is of the order of the generalized Rabi frequency identify-

ing the laser-pumped three-level qubit. In accordance to the dressed-state base of the three-level

system, we have derived two resonance conditions regulating the oscillator’s quantum dynamics,

specifically, when the quantum oscillator’s frequency is near to the doubled generalized Rabi fre-

quency or to the generalized Rabi frequency, correspondingly. In this way, we consider these two

situations as distinct cases. We have derived the stationary lasing or cooling regimes in both cases

for the quantum oscillator’s field mode, nevertheless, for asymmetrical spontaneous decay rates

corresponding to each of the three-level qubit’s transition. The mechanisms determining these ef-

fects are totally different for the two cases.

In this circumstance when the double generalized Rabi frequency is close to the oscillator’s

one, the model is in some way similar to a two-level system interacting with a quantum field mode

where the spontaneous decay pumps both levels. On the other side, if the oscillator’s frequency

tends to the value of the generalized Rabi frequency, which is near resonance, then the sample is as-

sociated with an equidistant three-level system where the single-mode quantum oscillator interacts

with both qubit’s transitions. The latter case includes single- or two-quanta processes occurring si-

multaneously with quantum interference effects among the involved dressed states leading to more

profound cooling regimes and flexible ranges for lasing effects. This is contrasting from other sim-

ilar experimental schemes based on electromagnetically induced transparency processes. In this

instance the model consists of an electromagnetic cavity mode, which describes the quantum os-

cillator, then its frequency can be in the terahertz domain and, thus, we prove an effective coherent

electromagnetic field source of such photons. While lasing or cooling effects are possible within

two-level system as well, three-level system may possess an advantage apparently they exhibit im-

proved features for the same parameters involved, which is a benefit when there are only certain
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accessible parameter ranges. Furthermore, certain realistic novel systems are explored employing

the three-level model. For example, as a particular Λ-type system may be considered laser pumped

color center embedded on a vibrating membrane, where strong coupling strengths can be achieved

via vacuum dispersive forces [192]. Few coupled quantum dots are appropriate systems too. Also,

alternative systems can be asymmetrical real or artificial few-level molecules possessing perma-

nent dipoles. If d11 ≫
{
d22, d33

}
, then an electromagnetic resoantor mode can couple with the

upper state of the Λ-type system via its permanent dipole.

In this chapter, one investigates the quantum dynamics of a quantum oscillator coupled with

most upper state of a three- level Λ-type system. The both transitions of three-level emitter, pos-

sessing orthogonal dipole moments, are coherently pumped with a single or two electromagnetic

field sources, respectively. One has determined ranges for flexible lasing and cooling phenomena

related to the quantum oscillator’s degrees of freedom. Due to the asymmetrical decay rates and

quantum interference effects, population transfer takes place among relevant dressed states of the

emitter’s subsystem with which the quantum oscillator is coupled. The most appropriate system

can be a nano-mechanical resonator coupled with the most highly energetic state of the three-level

emitter place on it. On the other side, if the upper state of the Λ-type system has a permanent

dipole it can couple with a cavity electromagnetic field mode oscillating in the terahertz domain,

for instance. Furthermore, we demonstrate an effective electromagnetic field source of terahertz

photons.

85



3.1 The theoretical framework

In this paragraph, we are going to discuss the system Hamiltonian which includes the surrounding

damping phenomena and permanent dipole moment and allows us to model the quantum dynamics

of a nanomechanical resonator and a quantum oscillator simultaneously. One will develop and

present in this paragraph the analytical approximation allowing to consider in further computations,

the proposed model proper to explore the quantum dynamics of a nanomechanical resonator and

quantum oscillator. The Hamiltonian describing a quantum oscillator of frequency ω coupled with

a laser-pumped Λ-type three-level system, see figure, in a frame rotating at ω12+ω13

2
, is:

H = ℏωb†b+
ℏω23

2
(S22 + S33) + ℏgS11(b+ b†)− ℏ

∑
α∈{2,3}

Ωα(S1α + Sα1). (3.1)

One has presumed here that as a pumping electromagnetic field source acts a single laser of fre-

quency ωL exciting both arms of the emitter or, respectively, two lasers fields
{
ωL1, ωL2

}
each

driving separately the two transitions of theΛ-type system possessing orthogonal transition dipoles.

Supplementary, one has also considered that ωL1 = ωL2 ≡ ω12+ω23

2
, see Fig.3.1(a). Here ωαβ are

the frequencies of transitions |α⟩ ←→ |β⟩ between three-level qubit’s,
{
α, β ∈ 1, 2, 3

}
. The terms

entering the Hamiltonian (3.1) have the following meaning, specifically, the first and the second

terms describe the free energies of the quantum oscillator and the atomic subsystem. The third term

accounts the mutual interaction of the quantum oscillator and the atomic subsystem via the most

upper-state energy level with g being the respective coupling strength. The last term corresponds

to the atom-laser interaction and
{
Ω2,Ω3

}
are the corresponding Rabi frequencies associated with

a particular driven transitions. Remark that if the upper state of the investigated model contains a

permanent dipole moment then the external coherent light sources interact with the upper state as

well. The corresponding Hamiltonian is:

Hpd = ℏS11

∑
i∈
{
2,3
}Gj cos

(
ωLit

)
, (3.2)

where Gi =
d11Ej

ℏ is the dipole moment, with Ei being the lasers amplitudes. Nevertheless, the

Hamiltonian Hpd can be considered as fast oscillating function, since ωLi ≫ Gi, being further

dropped off. Consequently, the Hamiltonian (3.1) and the analytical approximation developed

here allow considering simultaneously both situations, basically, when either a nanomechanical

resonator or an electromagnetic cavity is considered as a quantum oscillator.

The three-level qubit’s operators, Sαβ = |α⟩⟨β|, obey the commutation relation [Sαβ, Sβ′α′ ] =

δββ′Sα,α′ − δα′,αSβ′β , whereas the operators describing the quantum oscillators operators satisfy
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(a) (b)

Fig. 3.1: (a) The schematic set up of the model: a laser-pumped three-level Λ-type system. In
this system the upper state, |1⟩ is coupled with a quantum oscillator mode of frequency ω. The
oscillator can be associated with a single mode of a nanomechanical resonator containing the three-
level emitter. On the other side, if the upper state of the three-level system possesses a permanent
dipole then the coupling with an electromagnetic cavity mode occurs in the terahertz ranges of
waves, for instance. In this situation, the coupling of the resonator with the lower two levels is
insignificant small or, otherwise, the cavity resonant frequency should be out of this resonance with
this transition. Additionally, the pumping lasers frequencies are equal to the average transitions
frequency of three-level emitter ω12+ω13

2
. Ω2 and Ω3 are the frequencies corresponding to laser-

qubit coupling strength, ie., the Rabi frequency and γ’s are the particular spontaneous decay rates.
(b) The semi-classical laser-qubit dressed-state picture where each bare-state level is dynamically
split in three dressed states

{
|Ψ2⟩, |Ψ1⟩, |Ψ3⟩

}
. Resonance occur at (I) ω = 2Ω or at (II) ω = Ω,

respectively, where Ω is the generalized Rabi frequency [34].

the following commutation relations [b, b†] = 1 and [b, b] = [b†, b†] = 0, respectively. In the

Born-Markov approximation [7, 79], the quantum dynamics of the proposed complex model can

be explored via the following master equation:

ρ̇+
i

ℏ
[H, ρ] = −

∑
α∈{2,3}

γα[S1α, Sαρ]

− γ[S23, S32ρ]− κ(1 + n̄)[b†, bρ]− κn̄[b, b†ρ] +H.c. (3.3)

The terms situated on the right side of the eq. (3.3) corresponds to the emitter’s damping due to

spontaneous emission as well it accounts the quantum oscillator’s damping effects with

n̄ =
1

exp ℏω
kBT
− 1

,

being the mean oscillator’s quanta number due to the environmental thermostat temperature T .

Note that here kB is the Boltzmann constant, while γ2 and γ3 are the spontaneous decay rates cor-

responding to |1⟩ ←→ |2⟩ and |1⟩ ←→ |3⟩ transitions, respectively see Fig. 3.1 (a). γ coefficient

depicts the spontaneous two-photon decay rate on the |2⟩ ←→ |3⟩ transition of the three-level
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qubit, the collisional decay rate etc., while κ describes the quantum osccillator’s leaking rate, re-

spectively. The physical phenomena standing behind our model can easier understood if we project

the three-level qubit-laser in another base, dressed-state basically, which is given below:

|1⟩ = sin θ|Ψ1⟩ −
cos θ√

2

(
|Ψ2⟩+ |Ψ3⟩

)
,

|2⟩ =
cos√
2
|Ψ2⟩+

1

2
(1 + sin θ)|Ψ2⟩ −

1

2
(1− sin θ)|Ψ3⟩,

|3⟩ = −cos θ√
2
|Ψ1⟩+

1

2
(1− sin θ)Ψ2⟩ −

1

2
(1 + sin θ)|Ψ3⟩, (3.4)

where

sin θ =
ω23

2Ω
,

cos θ =

√
2Ω0

Ω
,

with

Ω =

√
2Ω2

0 +
(ω23

2

2)
,

being the generalized Rabi frequency whereas Ω2 = Ω3 ≡ Ω0. Projecting the Hamiltonian (3.1) in

the new base (3.4), one arrives to the corresponding Hamiltonian’s expression in the dressed-state

picture, i.e,

H = H0 +Hd +H1 +H2,

where

H0 = ℏωb†b+ ℏΩRz,

Hd = ℏg
(
sin2 θR11 + cos2 θ

(R22 +R33)

2

)
(b+ b†),

H1 = ℏ cos2 θ(R32 +R23)
(b+ b†)

2
,

H2 = −ℏsin 2θ
2
√
2
(R21 +R13 +H.C.)(b+ b†), (3.5)

where Rz = R22 − R33. Here the dressed-state three-level system operators are Rαβ = |Ψα⟩⟨Ψβ|

and they satisfy the same commutation relations as the old ones. In the interaction picture,Hd can

be canceled as a fast oscillating term, which can be dropped off the dynamics, while the last two
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Hamiltonians can be represented as:

H1I = ḡ(R23e
2iΩt +H.C.)(b†eiωt +H.c.),

H2I = −g̃((R21 +R13)e
iΩt +H.C.)(b†eiωt +H.c.), (3.6)

where

ḡ = ℏg
cos2 θ
2

,

whereas

g̃ = ℏg
sin 2θ
2
√
2
,

with the unitary transformation:

U(t) = exp
(iH0t

ℏ

)
. (3.7)

According to the above mentioned Hamiltonians one can notice straightforward that the quantum

dynamics of the proposed model is determined by two resonant cases, see Fig. 3.1 (b), more exactly

(I) at

2Ω = ω,

and (II) at

Ω = ω.

Consequently, in what follows, we will consider these two cases separately. Thereby, the Hamil-

tonanian for the first case (I) is:

H = δ̄b†b+ ḡ(R32b
† + bR23), (3.8)

while for the second case (II), it is

H = δ̃b†b− g̃((R12 +R31)b
† + b(R21 +R13)), (3.9)

where, respectively, δ̄ = ω − 2Ω whereas δ̃ = ω − Ω. Supplementary, applying the dressed-

state transformation equations (3.4) one will arrive at a master equation, which will allow to obtain
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a precise system of equations monitoring the quantum dynamics of the examined system. Note

that rapidly oscillating terms in the above Hamiltonians (3.6) were dropped off, meaning that Ω≫{
g, γ, γ2, γ3

}
, which corresponds to the definition of the secular approximation, according to which

the Rabi frequency is much greater then the spontaneous decay rates and the coupling constant of

the most energetic level coupled with an electromagnetic cavity.

In the following, we will compare the two cases, i.e., (I) and (II), for the same parameters range

and the physical phenomena behind them will be discussed, as well the mechanism behind them.

The ideas of lasing and cooling of a quantum oscillator by coupling it to a non-resonantly two-

level atom has been studied extensively. The novelty of the model proposed in this chapter is the

investigation of a laser-pumped Λ-type three-level system with the upper state of which is being

coupled with a quantum oscillator described by a quantized single-mode boson field. However,

we well try to discuss more detailed the advantages of using a three-level system instead of a two-

level system. Thus, in order to clarify the issues regarding similarities and differences of a three-

level system with a two-level system possessing the transition frequency ω21, we bring below the

Hamiltonian describing a laser pumped two-level qubit the upper state of which interacts with a

boson mode is:

H = ℏωb†b+ ℏ∆Sz + ℏΩ0(S
+ − S+) + ℏgS22(b+ b†). (3.10)

Here, the first two components in the Hamiltonian (3.10) describe the free energies of the boson

mode of frequency ω and the qubit’s one, respectively, where the laser detuning is ∆ = ω21 − ωL.

The last two terms depict the laser-qubit and the qubit-boson mode interactions, respectively, where

Ω0 is the standard Rabi frequency while g is the coupling among the boson mode and the two-level

emitter. The qubit’s operators are defined in the usual way, i.e., Sαβ = |α⟩⟨β|, with
{
α, β ∈ 1, 2

}
and Sz =

(
S22−S11

)
/2, satisfying the commutation relations for SU(2) algebra. In the following,

we describe the whole system in the semi-classical dressed-state defined by the transformations:

|2⟩ = cosϕ|2̄⟩ − sinϕ|1̄⟩,

|1⟩ = sinϕ|2̄⟩+ cosϕ|1̄⟩, (3.11)

with cot 2ϕ = ∆
2Ω0

. The semi-classical dressed state transformation involves the diagonalization

of the Hamiltonian describing the laser-qubit subsystem defined via the free qubit Hamiltonian

term of equation (3.10) and the qubit-laser interaction term of the same equation, where the laser is

treated classically. The derived dressed-states are defined via a linear transformation of the initial,

so called bare states. Thus the eigenstates of this subsystem are called dressed-states and define a
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new Hilbertian basis for the atomic states. In this representation, the Hamiltonian (3.10) transforms

as follows:
H = ℏωb†b+ ℏΩRz + ℏg

(
cos2 ϕR22 + sin2 ϕR11 −

1

2
sin 2ϕ

(
R21 +R12

)(
b+ b†

))
,

(3.12)

where Ω =
√

Ω2
0 +

(
∆
2

)2 is the generalized Rabi frequency. The qubit’s operators in the dressed-
state picture are defined as follows: Rαβ = |α⟩⟨β|,

{
α, β ∈ 1̄, 2̄

}
and Rz = R2̄2̄ − R1̄1̄, satisfying

the standard commutation relations for SU(2) algebra. In the interaction picture defined by the

unitary operator

U = exp
(
iH0t

ℏ

)
, (3.13)

with H0 = ℏωb†b+ ℏΩRz, one derives the following expression for the interaction Hamiltonian,

Hi = ℏg
(
cos2 ϕR22 + sin2 ϕR11 −

1

2
sin 2ϕ

(
R21e

2iΩt +R12e
−2iΩt

))(
be−iωt + b†eiωt

)
.

(3.14)

Based on the interaction Hamiltonian (3.14), one can conclude that the resonance occur at

ω = 2Ω, (3.15)

and without having an additional resonance condition at ω = Ω which is distinct from the three-

level qubit case in this chapter.

Thus, the three-level system exhibits additional features in comparison to the two-level one.

Furthermore, the second resonance condition ω = Ω, which exists in the three-level system, im-

proves the lasing or cooling phenomena in comparison to ω = 2Ω case while keeping the same

parameters. This can be an advantage when there are only certain accessible ranges for the involved

parameters. Also, when ω = Ω the mean quanta number shows a dip while ⟨Rz⟩ = 0. These differ-

ences occur because of the quantum decay interference effects among the involved dressed-states

which are not proper to the case of a two-level system. Additionally, there are certain realistic sys-

tems which are described by a three-level Λ-type system, see for instance references [32, 34, 192].

Thus, reducing the three-level system to a two-level one may not always work.

91



3.2 The dressed-state master equation of the three-level Λ-type system

In this paragraph, the master equation (3.16), with Hamiltonians (3.8) and (3.9) is solved by pro-

jecting the both Hamiltonians into the system’s states basis. The solving technique involves the

use of interaction picture.

Below, we are going to present the master equation used to derive the equations of motion

modeling the quantum dynamics of both the quantum oscillator as well as the three-level Λ-type

emitter, as [34, 35, 36]:

ρ̇+
i

ℏ
[H, ρ] = −γ2

[
R(+), R(+)ρ

]
− γ3

[
R(−), R(−)ρ

]
− sin2 θ

4
γ(+)

[
R12, R21ρ

]
− sin2 θ

4
γ(−)

[
R13, R31ρ

]
− γ

(0)
0

(
[R21, R12ρ] + [R31, R13ρ]

)
− Γ(+)[R32, R23ρ]− Γ(−)[R23, R32ρ]−

γ
(+)
0

2

(
[R12, R13ρ] + [R31, R21ρ]

)
− γ

(−)
0

2

(
[R21, R31ρ] + [R13, R12ρ]

)
− γ

4
cos4 θ

×
[1
2
(R22 +R33)−R11,

(1
2
(R22 +R33)−R11

)]
− γ

8
cos2 θ(1− sin θ)2

[
R12 +R31, (R21 −R13)ρ

]
− γ

8
cos2 θ(1 + sin θ)2

[
R21 +R13, (R12 −R31)ρ

]
− κ(1 + n̄)[b†, bρ]− κn̄[b, b†ρ] +H.c. (3.16)

where R(+) and R(−) are the atomic operators in the dressed states

R(+) =
sin 2θ
2
√
2
R11 −

cos θ
2
√
2
(1 + sin θ)R22 +

cos θ
2
√
2
(1− sin θ)R33,

R(−) =
sin 2θ
2
√
2
R11 +

cos θ
2
√
2
(1− sin θ)R22 −

cos θ
2
√
2
(1 + sin θ)R33. (3.17)

The terms
[
R12, R13ρ

]
,
[
R31, R21ρ

]
,
[
R21, R31ρ

]
and

[
R13, R12ρ

]
within master equation (3.16),

as well as their Hermitian conjugate ones, describe the cross-damping effects arising from quan-

tum interference phenomena [195, 196, 197]. Also, we present the equations of motion for the

dressed-state populations of the three-level emitter in the absence of the quantum oscillator, when

the coupling constant is g = 0:

⟨Ṙ22⟩ = γ
(+)
11 ⟨R22⟩ − γ

(+)
22 ⟨R22⟩+ γ

(+)
33 ⟨R33⟩,

⟨Ṙ33⟩ = γ
(−)
11 ⟨R11⟩+ γ

(−)
22 ⟨R22⟩ − γ

(−)
33 ⟨R33⟩,

⟨Ṙ11⟩ = 1− ⟨R22⟩ − ⟨R33⟩, (3.18)
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The stationary solution of the above system (3.18) of equations are

⟨R22⟩ =
γ
(+)
11 γ

(−)
22 + γ

(−)
11 γ

(−)
33

γ
(+)
11

(
γ
(−)
22 + γ

(−)
33

)
+ γ

(+)
22

(
γ
(−)
11 + γ

(−)
22

)
+ γ

(+)
33

(
γ
(−)
11 − γ

(−)
33

) ,
⟨R33⟩ =

γ
(−)
11 γ

(+)
22 + γ

(+)
11 γ

(+)
33

γ
(−)
11

(
γ
(+)
22 + γ

(+)
33

)
+ γ

(−)
22

(
γ
(+)
11 + γ

(+)
22

)
+ γ

(−)
33

(
γ
(+)
11 − γ

(+)
33

) . (3.19)

Here in (3.19) the average values of the atomic operators in the dressed-state base include the

following spontaneous decay rates, where γ(±), Γ(±) are presented later:

γ
(+)
11 = γ(+) sin

2 θ

2
+ γ cos2 θ

(1− sin θ)2

4
,

γ
(−)
11 = γ(−) sin

2 θ

2
+ γ cos2 θ

(1 + sin θ)2

4
,

γ
(+)
22 = 2γ

(0)
0 +

Γ(−)

2
+ γ cos2 θ

(1 + sin θ)2

4
,

γ
(−)
22 = 2γ

(0)
0 +

Γ(+)

2
+ γ cos2 θ

(1− sin θ)2

4
,

γ
(+)
33 = γ(+) cos2 θ

4
+ γ

(1− sin θ)4

8
,

γ
(−)
33 = γ(−) cos2 θ

4
+ γ

(1 + sin θ)4

8
. (3.20)

In the following, we get an explicit solution of the master equation in the form (3.16) and

substituting the Hamiltonian for the case (I) (3.21), given below

H = δ̄b†b+ ḡ(R32b
† + bR23), (3.21)

by projecting in into the system base, which is required for the derivation of the density matrix el-

ements. In this way, if we project the master equation we derive a system of differential equations

define by density matrix elements. This system consists of linear first order differential equations,

which dimensions are determined by the number of the quantum oscillator states multiplied by the

number of all possible phonon states. Further, we have to employ a proper solving method, taking

into account the phonon state basis in order to derive a system of equations which can be truncated.

We will use the Fock states basis, which is the phonon field basis of any other single-mode boson

field defined through the eigenfunctions of the Hamiltonian of the free field in the second quantiza-

tion. The eigenstate |n⟩ are called Fock states or phonon number states, which form a complete set

of states. Though the energy eigenvalues are discrete, which is different from the classical electro-

magnetic theory where energy can take any value, then the energy expectation can take any value

since the state vector is an arbitrary superposition of energy states. The phonon probability dis-
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tribution corresponds to the diagonal elements of the reduced density matrix of the phonon field.

The whole system of density matrix elements is defined in the Hilbert space, where the basis is

considered the quantum oscillator-phonon state basis
{
|i, n⟩

}
≡
{
|i⟩ ⊗ |n⟩

}
, which is a vectorial

product of the three-level system dressed-state basis
{
|i⟩, i ∈

{
|1⟩, |2⟩, |3⟩

}}
and the Fock state

basis
{
|n⟩, n ∈ N

}
. Within Hilbert space, the phonon field is defined by a vectorial sub-space

of the system, thus the reduced density matrix is computed by tracing the system density matrix

over the qubit state basis, i. e., ρphonon = TrQubit[ρ]. As the laser pumped qubit is considered as a

quantum field with a discrete average number of phonons, then its quanta probability distribution

asymptotically tends to zero when n → ∞. This means that phonon probability to be in a certain

Fock states tends to zero, but never gets zero value, for a very high Fock states. The solutions

treating the model’s dynamics are derived taking into account various analytical conditions as the

asymptotic features of the phonon distribution necessary for the truncation of reduced density ma-

trix elements defined by equations of motion. This necessary condition can be applied only to the

diagonal matrix elements and quantities regarding them. Nevertheless, the projection of the diag-

onal elements may involve the off-diagonal elements, which cannot be canceled if n → ∞. The

purpose of the solving method is to build an asymptotically stable system of non-linear differential

equations of first order by rearranging and combining the off-diagonal elements. In this manner,

we form a closed system of equations of motion, further will provide only the quantities obeying

the asymptotic behavior. The projection of master equation for the resonant case (I) into the qubit’s

dressed-state basis, we arrive to a system of seven equations of motion, which are the elements of

the reduced qubit density matrix ρi,j = ⟨i|ρ|j⟩ , where
{
i, j ∈ |1⟩, |2⟩, |3⟩

}
. The projection within

qubit’s basis has canceled the qubit operators from the equation of motion ρi,j , which is defined

only through the field operators. The further projection in the phonon basis, one will derive a sys-

tem of equations defined only through the scalar values of the projected quantities. Combining

the off-diagonal matrix elements appearing in the equations of motion of ρ̇11, ρ̇22, ρ̇33, one derives

the hermitian variables, which contain the cross-correlation terms of the qubit-phonon interaction.

Thus we arrive to the corresponding system of equations for variables describing the (I) resonant

case:

ρ(0) = ρ11 + ρ22 + ρ33,

ρ(1) = ρ22 + ρ33,

ρ(2) = ρ22 − ρ33,

ρ(3) = b†ρ23 − ρ32b,

94



ρ(4) = b†ρ23 + ρ32b,

ρ(5) = ρ23b
† − bρ32,

ρ(6) = ρ23b
† + bρ32. (3.22)

Deriving the new set of Hermitian variables, we have excluded the oscillating part of the off-

diagonal elements that doesn’t vanish asymptotically. The further projection within the phonon

basis derives a systemwhich may be numerically computed. The later projection within the phonon

Fock basis |n⟩ determines a new infinite system of differential equations where the variables are

defined by the scalar values P (i)
n = ⟨n|ρ(i)|n⟩, i ∈

{
0...6

}
and the general form of the equations

mentioned above is

ραβ = ⟨α|ρ|β⟩. (3.23)

The dimension of the new system of equations is 7×∞. The infinite dimension occurs when

the system of equations is projected into the infinite amount of the Fock states. Later, only a certain

amount of first nmax Fock states is considered and thus the dimension of the system used for numer-

ical computation evolves into 7×nmax. The presented projection method has numerous advantages

in comparison to the direct projection mechanism, which incorporate the analytical accuracy of the

approximations applied for its truncation, but also in terms of computational efficiency of numer-

ical computation. From the programming perspective, the direct projection generates a system of

∞×∞, which after truncation leads to an algorithm employing a set of n2
max equations. This is a

strict numerical constraint regarding the number of operations, comparing to the method exposed

above which employs a system of only 7 × nmax dimension. It is important to mention that the

truncation threshold nmax is based on the mean number of the field bosons and their distribution

statistics. The enforced threshold is checked empirically, by applying a higher calculation thresh-

old, which will not change significantly the estimated statistic distribution. The impact of a further

threshold increment is controlled in order to test the asymptotic behavior. Nevertheless, any thresh-

old incrementation also extends the number of numerical operations and reduces the computation

efficiency of the implemented algorithm. Remark, the plots presented in this chapter computed

by varying some of the system parameters, which obviously change the mean quanta number of

the quantum oscillator. Thus, a constant test check of the applied threshold is highly necessary in

order to validated the results. Since we concentrate our attention on the steady-state behaviour of

the statistics, thus the time derivatives of the system variables are dropped off. This is available to

be done, since the system variables were derived by excluding the exponential, or rapid oscillating
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elements of the off-diagonal terms. In this way, within the steady-state regime, the differential

system of equations is simplified to a linear system of coupled equations.

The analytical approach developed in this chapter allows us to derive an exact system of equa-

tions describing the quantum dynamics of a system consisting of laser pumped spontaneously

damped qubit and leaking phonon mode within Rotating Wave Approximation, Born-Markov, and

secular approximations, respectively, and to extract the variables of interest, applying the traced

density operator over the corresponding degrees of freedom. In order to solve the infinite system

of eqs.(3.25), we have to truncate it at a certain maximum value n = nmax checking to not modify

the obtained results in the case of a further increase of value nmax. In the same way, the station-

ary mean value of the dressed-state inversion operator, ⟨Rz⟩ = ⟨R22⟩ − ⟨R33⟩, can be derived as

follows:

⟨Rz⟩ =
nmax∑
n=0

P (2)
n . (3.24)

Thus, the equations of motion for the first situation (I), analyzing the oscillator’s quantum dy-

namics, (i.e, mean quanta number and its quantum statistics, qubit’s populations, etc.), are derived

using the master equation (3.16):

Ṗ (0)
n = iḡ

(
P (5)
n − P (3)

n

)
− 2κn̄

(
(1 + n)P (0)

n − nP
(0)
n−1

)
− 2κ(1 + n̄)

(
nP (0)

n − (n+ 1)P
(0)
n+1

)
,

Ṗ (1)
n = iḡ

(
P (5)
n − P (3)

n

)
− 2κn̄

(
(n+ 1)P (1)

n − nP
(1)
n−1

)
− 2κ(1 + n̄)

(
nP (1)

n − (n+ 1)P
(1)
n+1

)
+ γ

(1)
0 P (0)

n − γ
(1)
1 P (1)

n ,

Ṗ (2)
n = iḡ

(
P (5)
n + P (3)

n

)
− 2κn̄

(
(n+ 1)P (2)

n − nP
(2)
n−1

)
− 2κ(1 + n̄)

(
nP

(2)
2 − (n+ 1)P

(2)
n+1

)
+ γ

(2)
0 P (0)

n − γ
(2)
1 P (1)

n − γ
(2)
2 P (2)

n ,

Ṗ (3)
n = iδ̄P (4)

n − iḡ
(
P (1)
n − P (2)

n − P
(1)
n−1 − P

(2)
n−1

)
− κ(1 + n̄)

(
(2n− 1)P (3)

n − 2(n+ 1)P
(3)
n+1 + 2P (5)

n

)
− κn̄

(
(2n+ 1)P

(3)
2 − 2nP

(3)
n−1

)
− γ

(3)
3 P (3)

n ,

Ṗ (4) = iδ̄P (3)
n − κ(1 + n̄)

(
(2n− 1)P (4)

n + 2P (6)
n − 2(n+ 1)P

(4)
n+1

)
− κn̄

(
(2n+ 1)P (4)

n − 2nP
(4)
n−1

)
− γ

(4)
4 P (4)

n ,

Ṗ (5)
n = iδ̄P (6)

n + iḡ(n+ 1)
(
P (1)
n + P (2)

n − P
(1)
n+1 + P

(2)
n+1

)
− κ(1 + n̄)

(
(2n+ 1)P (5)

n − 2(n+ 1)P
(5)
n+1

)
− κn̄

(
(2n+ 3)P

(5)
2 − 2nP

(5)
n−1 − 2P (3)

n

)
− γ

(5)
5 P (5)

n ,
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Ṗ (6)
n = iδ̄P (5)

n − κn̄
(
(2n+ 3)P (6)

n − 2nP
(6)
n−1 − 2P (4)

n

)
− κ(1 + n̄)

(
(2n+ 1)P (6)

n − 2(n+ 1)P
(6)
n+1

)
− γ

(6)
6 P (6)

n . (3.25)

Below are presented the spontaneous decay rates for the resonant case (I) derived from the master

equation (3.16):

γ
(1)
0 =

1

2

(
γ(−) + γ(+) sin2 θ + γ cos2 θ(1 + sin2 θ)

)
,

γ
(1)
1 =

1

2

(
2γ

(0)
0 + (γ(−) + γ(+)) sin2 θ

)
+

1

4
3γ cos2 θ(1 + sin2 θ),

γ
(2)
0 =

1

2

(
(γ(+) − γ(−)) sin2 θ − 2γ sin θ cos2 θ

)
,

γ
(2)
1 = 2

(
Γ(−) − Γ(+)

)
+

1

2

(
γ(+) − γ(−)

)
sin2 θ − 1

2
γ sin θ cos2 θ,

γ
(2)
2 = 2

(
γ
(0)
0 + Γ(−) + Γ(+) + γ cos2 θ

(1 + sin2 θ)
8

)
,

γ
(3)
3 =

1

2

(
γ2 + γ3

)
cos2 θ + 2γ

(0)
0 + Γ(−) + Γ(+) +

1

4
γ cos2 θ(1 + sin2 θ),

γ
(4)
4 = γ

(5)
5 = γ

(6)
6 = γ

(3)
3 . (3.26)

additionally,

γ(+) = γ2(1 + sin θ)2 + γ3(1− sin θ)2,

γ(−) = γ2(1− sin θ)2 + γ3(1 + sin θ)2,

Γ(+) =
1

8
γ(+) cos2 θ +

1

16
γ(1− sin θ)4,

Γ(−) =
1

8
γ(−) cos2 θ +

1

16
γ(1 + sin θ)4,

γ
(+)
0 =

1

2

(
γ3(1− sin θ)− γ2(1 + sin θ)

)
sin θ cos2 θ,

γ
(−)
0 = −1

2

(
γ3(1 + sin θ)− γ2(1− sin θ)

)
sin θ cos2 θ,

γ
(0)
0 =

1

4
(γ2 + γ3) cos4 θ. (3.27)

Further, we shall present the derivation of equations of motion when ω ≈ Ω for the second case

(II), obtained with the help of master equation (3.16) in which we have substituted the correspond-

ing Hamiltonian for the second case (II):

H = δ̃b†b− g̃((R12 +R31)b
† + b(R21 +R13)), (3.28)

Similar to the case (I), we have employed the same projection algorithm in the Fock state base, as

it is important for us to bring forward the amount of reasonable calculations standing behind the

second case (II).
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In this system of new Hermitian variables as in the (I) resonant case, we have dropped off the

rapid oscillating part of the non-diagonal elements. Further, the system was projected within the

phonon base until the system of equation closes and we receive a set of seventeen equations of

motion, corresponding to new variables, which build the system of 17×∞ equations. The infinite

dimension is limited later to a certain amount of first nmax. This truncation threshold is verified

empirically through the numerical computation for higher thresholds, which did not change the

hypothetical statistic distribution and do not modify the obtained results in the case of increase of

values nmax. Further extension of threshold verifies the asymptotic stability of equations solutions,

meaning that system’s solutions are converging to certain fixed values as system dimensions ap-

proach to infinity. Asymptotic stability appears to be a reasonable requirement, but it only involves

how long it takes to converge. Thus, the corresponding system of equations of motion describing

the resonant case (II) (A-2) presented in 4.3 ANNEXES was derived from the master equations

derived for the resonant case (II) (A-1). In the next paragraph, one is presenting the results and

discussions of the above computed equations, regarding the novel quantum-optical features of the

three-level Λ-type system. The differences of the light statistics between the resonant situations (I)

and (II) will be the special scope of the upcoming paragraph.
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3.3 Lasing and cooling effects in the three-level Λ-type system

The focus of this study is stressed on the quantum dynamic statistics of three-level Λ-type system

coupled with a quantum oscillator mode. We shall compare the two resonant situations, i.e., (I)

and (II), for the same parameters range and discuss the mechanisms behind them. Before, one

shall give some basic insights into the second order correlation functions g(2) and their role in the

interpretation of quantum optical features of the three-level Λ-type system.

Statistical properties of the light are investigated through field measurements at different loca-

tions in time and space. Therefore, the first generalized concept of first-order degree of coherence

included correlations between field intensities measured at different space-time points. In classi-

cal interference experiments, the first-order coherence contributes and governs the formation of

fringes. On the other hand, the intensity correlation yield the the second-order coherence function,

which made possible to obtain statistical information on the field correlations without requiring

the interferometric stability. However g(2) contains only information about energy dynamics of

the field, photon generation times unlike g(1) yielding no information regarding the phase fluctua-

tion. The second-order coherence g(2) is computed through the products of field operators and their

hermitian conjugates, which makes g(2) be positively defined, as given below:

g(2)
(
τ
)

=
⟨I
(
t
)
I
(
t+ τ

)
⟩

⟨I
(
t
)
⟩2

=
⟨Ê†(t)Ê†(t+ τ

)
Ê
(
t+ τ

)
Ê
(
t
)
⟩

⟨Ê†
(
t
)
Ê
(
t
)
⟩2

, (3.29)

with I ∝ |E
(
t
)
|2 and I

(
t+τ

)
being the averaged intensities of the mode at a given time. According

to this definition the g(2)
(
τ
)
function describes the correlation between two temporally separated

intensity signals with time difference τ = t2−t1 from one light source. Applying the transformation

formalism from classical field quantities into equivalent quantum mechanical operators using the

second quantization, we can present the electric fieldE
(
t
)
as function of annihilation â and creation

â† operators:

Êk

(
t
)

= Ê
(+)
k

(
t
)
+ Ê

(−)
k

(
t
)
,

with

Ê
(+)
k

(
t
)
∝ âk · exp

(
−i
(
ωkt−

−→
k · −→r

))
,

Ê
(−)
k

(
t
)
∝

(
âk
)† · exp(−i(ωkt−

−→
k · −→r

)
,
)

representing the negative and positive ωk frequency parts of the mode [7, 8, 187]. For a single

mode we can rewrite the second-order correlation function g(2)
(
τ
)
using the commutator relations,
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as follows [7, 8, 187]:

g(2)
(
τ
)

=

⟨
Ê

(−)
k

(
t
)
Ê

(−)
k

(
t+ τ

)
Ê

(+)
k

(
t+ τ

)
Ê(+)

(
t
)⟩⟨

Ê
(−)
k

(
t
)
Ê

(+)
k

(
t
)⟩2(

τ−→0
)

=

⟨
b̄†b̄†b̄b̄

⟩⟨
b̄†b̄
⟩2 . (3.30)

An important difference between the classical and quantum mechanical description is that in the

latter case the detection of a photon at t reduces the amount of photons detected at t+ τ , since the

photons are the smallest quanta of electromagnetic field and cannot be divided [187]. The steady-

state second-order correlation g(2)(0) function presents a special interest, since it represents the

conditional probability how likely is it to detect a second photon at the same time while one photon

has been already detected. Thus it is a measure tool of the temporal photon coincidences, required

to distinguish and classify different light states. In this sense, we have to remind that in quantum

statistics we can describe the fluctuations in the photon number n of a single mode by the variance(
∆n
)2 defined as the weighted sum of the squared deviations of the photon number n with respect

to the mean occupation ⟨n⟩ [8, 187]:

(
∆n
)2

=
∞∑
n=0

(
n− ⟨n⟩

)2
· P (n) = ⟨n2⟩ − ⟨n⟩2. (3.31)

This expression (3.31) can be further derived according to the general definition of k-th order

factorial moment:

⟨n(n− 1)(n− 2) · ... ·
(
n− k + 1

)
⟩ =

∞∑
n=0

n
(
n− 1

)(
n− 2

)
· ...

·
(
n− k + 1

)
P
(
n
)
. (3.32)

Particularly, for the second order factorial we calculate:

⟨n
(
n− 1

)
⟩ =

∞∑
n=0

n
(
n− 1

)
· P (n) =

∞∑
n=0

n2 · P (n)−
∞∑
n=0

n · P (n) = ⟨n2⟩ − ⟨n⟩.(3.33)

Using the second factorial (3.33) and the variance definition we get the simplified steady-state

second-order correlation function [8, 187]:

g(2)(0) =
⟨n2⟩ − ⟨n⟩
⟨n⟩2

=

(
∆n
)2

+ ⟨n⟩2 − ⟨n⟩
⟨n⟩2

= 1 +

(
∆n
)2 − ⟨n⟩
⟨n⟩2

. (3.34)

According to the steady-state value of second-order correlation function g(2)(0), light states are
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divided into three categories:(
∆n
)2
thermal

= ⟨n2⟩+ ⟨n⟩ ⇒ g(2)(0) = 2,(
∆n
)2
coherent

= ⟨n⟩ ⇒ g(2)(0) = 1,(
∆n
)2
Fock

= 0 ⇒ g(2)(0) = 1− 1
n

(
n ≥ 1

)
.

It is evident from the above equations, the thermal state has a higher probability to emit more than

one photon at the same time [187]. However, this occurs for shorter time periods then coherence

times, which is specific usually for thermal or chaotic light and it is named photon bunching. In

the opposite side, Fock states occur when g(2) < 1 and in this circumstance the probability to emit

two photons at the same time is reduced, generating photon antibunching. Fock states occur when

the photon number n = 1 and if in this state a single photon is annihilated, then the second photon

cannot be detected. Therefore these states are defined as non-classical states and exhibit photon

anti-bunching. The single photon sources are important for the realization of different applica-

tions in quantum photonics. Nevertheless, sources of multiple photons would be a significant step

towards the development of an optical quantum computer, which uses photons as qubits. Con-

sequently, the proposals for the generation of multiple photon states or streams of photons have

been recently put forward. For example, multiphoton states are built up by placing a semiconduc-

tor quantum dot (QD) embedded in an optical microcavity and placed in a magnetic field. In this

set-up, photons are generated by resonant scattering from the quantum dot (QD), while the charge

spin is used to detect the encoding of the photons [193].

The quantum oscillator’s statistics is explored through the mean phonon number ⟨n⟩ and the

phonon-phonon second-order correlation function g(2)(0) = ⟨b†b†bb⟩
⟨b†b⟩2 . The second-order correlation

function and the mean phonon number are derived from the reduced quantum oscillator’s density

matrix. For a proper explanation, we are going to consider a system consisting of two entities or two

subsystems A and B, andO-an operator acting over sub-system A. Basically, the average value of

any random operator is computed through the density matrix operator as follows ⟨O⟩ = Tr[ρO].

Since the operator O acts over the sub-system A, applying the trace over the states of the sub-

system B, i.e, ⟨O⟩ = Tr[ρO] = TrB[TrA[ρO]]. In context of the a laser pumped spontaneously

damped qubit and leaking phonon mode, then the operator O corresponds to the field operator

and sub-systems A and B are the qubit and the leaking phonon mode, consequently is derived as

follows:

⟨O⟩ = TrQubit[Trphonon[ρO]] = TrQubit

[ ∞∑
n=0

⟨n|ρO|n⟩
]
. (3.35)

From the above equation, it follows that the phonon mean number ⟨n⟩ is derived in the following
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way:

⟨n⟩ = ⟨b†b⟩ = TrQubit

[ ∞∑
n=0

⟨n|ρb†b|n⟩
]
= TrQubit

[ ∞∑
n=0

n⟨n|ρ|n⟩
]
, (3.36)

where one has expressed the field operators in the ket base as b†b|n⟩ = n|n⟩. Computing the trace

sum over the system states we get:

⟨n⟩ =
∑

i=1,2,3

∞∑
n=0

n⟨n, i|ρ|n, i⟩ =
∞∑
n=0

⟨n|ρ11 + ρ22 + ρ33|n⟩ =
∞∑
n=0

⟨n|ρ(0)|n⟩, (3.37)

where we have swapped the sum over the system states, preforming in this way the trace over the

qubits states first. According to the computationmethod explained in the last equality, we substitute

the variables (3.22), i.e, P (0)
n and truncate the sum over the infinite Fock states for the numerical

computation:

⟨n⟩ =
∞∑
n=0

nP (0)
n ≃

nmax∑
n=0

nP (0)
n . (3.38)

with
nmax∑
n=0

P (0)
n = 1, (3.39)

while the stationary second-order correlation function is defined as:

g(2)(0) =
⟨b†b†bb⟩
⟨b†b⟩2

=
1

⟨n⟩2
TrQubit

[ ∞∑
n=0

⟨n|ρb†b†bb|n⟩
]
=

1

⟨n⟩2
TrQubit

[ ∞∑
n=0

n(n− 1)⟨n|ρ|n⟩
]

=
1

⟨n⟩2
∑

i=1,2,3

∞∑
n=0

n(n− 1)⟨n, i|ρ|n, i⟩ = 1

⟨n⟩2
∞∑
n=0

n(n− 1)⟨n|ρ(0)|n⟩

=
1

⟨n⟩2
∞∑
n=0

n(n− 1)P (0)
n ≃ 1

⟨n⟩2
nmax∑
n=0

n(n− 1)P (0)
n . (3.40)

These parameters are used to describe the quanta distribution of quantum oscillator’s vibrations. In

another perspective, statistical distribution of the mean phonon number is used for the interpretation

of the field intensity and the distribution parameter. Second-order correlation functions define the

type of the distribution we observe. If the g(2)(0) = 1 then the coherent field has Poissonian

distribution. In the case of the narrow distribution, then the second-order correlation function is

g(2)(0) = 1
n
corresponds to a narrow distribution similar to the Dirac delta function with maximum

at n [187]. The fields exhibiting narrower distribution are named sub-Poissonian fields and the

Dirac peak corresponds to a pure Fock state. Fields with a broader distribution are generated when
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g(2)(0) > 1 or g(2)(0) = 2. The last value of the second-order correlation function corresponds

to a thermal field with an exponential distribution. Fields exceeding the value g(2)(0) ≥ 2 are

named super-Poissonian showing more evidenced exponential-like distribution in comparison to

the thermal fields. Considering eqs.(3.38)-(3.40), one obtained the complete and closed system of

quantities of interest, more exactly, the mean quanta’s number of the quantum oscillator, in other

words the system’s quantum statistics described by the second-order correlation function, as well

the qubit’s populations.
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3.3.1 Lasing and cooling in the resonant case (I)

In the following subparagraphs, we present the results computed for both resonant case (I) and

(II), which involve similar lasing and cooling processes. One is going to demonstrate the different

mechanisms generating lasing and cooling in the three-levelΛ-type system and the novel properties

embedded in the model. One is going to present the results for both cases separately in order to

avoid confusion and give a distinct interpretation to each particular process.

The stationary values of the dressed-state inversion operators ⟨Rz⟩ computed for the resonant

case (I) in the presence g ̸= 0 and in the absence g = 0 of optical cavity is shown in Fig.3.2.

The solid and and the dashed lines highlight the difference between the presence and absence of

the optical cavity. Fig.3.2(a) presents the lasing regime in the resonant case (I) and Fig.3.2(b)

corresponds to the cooling regime in the resonant case (I).

One can notice that there is an evident difference between the cases with g = 0 and g ̸= 0 in

the lasing regimes and cooling regimes, which is evident from the comparison of Fig.3.2(a) and

3.2(b).
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Fig. 3.2: Mean dressed-state inversion operator ⟨Rz⟩ = ⟨R22⟩ − ⟨R33⟩ as a function of ω23

(2Ω0)
,

derived in the steady state for the first situation (I). (a) γ3
γ2
≪ 1 corresponds to lasing whereas (b)

γ2
γ3
≪ 1 corresponds to cooling. The solid lines are obtained with the full system of equations

(3.25), while the dashed lines in the absence of the quantum oscillator, i.e., with eq.(3.19) [34].

Analyzing the equations of motion (3.18) one can notice that the spontaneous decay transitions

takes place between all involved dressed-states |Ψ2⟩ ←→ |Ψ3⟩, |Ψ2⟩ ←→ |Ψ1⟩ and |Ψ1⟩ ←→ |Ψ3⟩.

Additionally, later we will highlight the impact of ratio γ2
γ3

on the population inversion between

the dressed states. As well, the cross-correlation terms embedded in eq.(3.16) do not change the

population dynamics given by eq. (3.18). Their impact is evident in the presence of the quantum

oscillator, i.e., when g ̸= 0, and this is evident here, compare Figs.3.2(a) and 3.2(b).
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Fig. 3.3: (a)Mean quanta number of the quantum oscillator ⟨b†b⟩
n̄

for the situation (I). (b) Presents the
second-order correlation function g(2)b (0) as function of ω23

2Ω0
for the situation (I). Here the parameters

of interest are g
γ2

= 4,γ3
γ2

= 0.1, γ
γ2

= 0, κ
γ2

= 10−3, ω
γ2

= 20,Ω0

γ2
= 20 and n̄ = 1 [34].

In the next step, one is presenting the quantum statistics and the mean quanta number computed

with eqs.(3.25) and (3.38)-(3.40) is shown in Fig.3.3. Here, one can observe the maximum value

for ⟨b†b⟩ occurs around δ̄ = 0, i.e., at the resonance when the quanta’s frequency ω is equal to the

dressed-state splitting frequency 2Ω due to pumping laser. It is important to mention here that the

quanta’s statistics is near Poissonian, which means that we have determined lasing regimes in our

system. This result is evident from Fig.3.3(a) and (b). Also, lasing takes place if is satisfied the

following condition γ3
γ2
≪ 1. In this case ⟨R22⟩ > ⟨R33⟩, this means we have population inversion

of the dressed-states, which means we have the lasing effect in our system and evident in Fig.3.2(a).

To avoid any misunderstandings via lasing we mean generation of the quantum oscillator’s quanta

possessing Poissonian statistics, i.e., g(2)b (0) = 1.

Subsequently, Fig.3.4(a) and 3.4(b) brings out the cooling regimes in this system in the context

of resonant case (I). This takes place when γ2
γ3
≪ 1, which means more exactly that ⟨R22⟩ < ⟨R33⟩

leading to quanta’s absorption processes, which is evident in the Fig.3.2(b). The minimum value

in the mean quanta number followed by an increased second-order correlation function g
(2)
b (0) is

observed at δ̄ = 0, which is the resonance condition noticeable in Fig.3.4(a) and 3.4(b).

Here, one can draw some important conclusions regarding the cooling and lasing phenomena

mechanisms standing behind resonant case (I). If γ2 ̸= γ3 and γ = 0, the first situation (I) cor-

responds to a two-level system
{
|Ψ2⟩, |Ψ3⟩

}
of frequency 2Ω interacting, correspondingly, with a

quantum oscillator of frequency ω, we mean here that 2Ω ≈ ω, see also [194]. The spontaneous

decay functions in both directions, i. e., |Ψ2⟩ ←→ |Ψ3⟩, with a reciprocal impact on cooling or

lasing effects.
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Fig. 3.4: (a) Scaled mean quanta number of the quantum oscillator ⟨b†b⟩
n̄

for the situation (I). (b)
The corresponding second-order correlation function g

(2)
b (0) against the scaled parameter ω23

2Ω0
for

the situation (I). Here g
γ3

= 4,γ2
γ3

= 0.1, γ
γ3

= 0, κ
γ3

= 10−3, ω
γ3

= 50,Ω0

γ3
= 20 and n̄ = 15 [34].

3.3.2 Lasing and cooling in the resonant case (II)

Here, we present the results of the cumbersome calculus performed to determine the quantum

optical statistics and mechanisms of lasing and cooling in the second resonant case (II). As well,

one is going to prove the differences and the advantages of the resonant case (II) in comparison to

resonant case (I). The stationary mean value of dressed-state inversion operator ⟨Rz⟩, in the lasing

regime, behaves in another way as in this resonant case (I), compare Fig.3.5(a) with Fig.3.2(a). In

the second situation (II), ⟨Rz⟩ approaches zero values, while the mean quanta’s number is large,

although has a minimum, which is straightforward from Fig.3.6(a). These new distinct features are

due to quantum interference effects. Nonetheless, cooling phenomena occurs when ⟨R22⟩ < ⟨R33⟩

facilitating quanta’s absorption processes, see Fig.3.5(b). Note that we have discreetly checked the

convergence of our results with respect to various values for nmax.

In Fig.3.5(a) ⟨Rz⟩ approaches the zero value, depicted by the solid curve, highlights the pres-

ence of a minimum value in the stationary population of the dressed state, i.e., |2⟩. Equivalently, in

the cooling regimes the quantum oscillator’s impact on the steady-state mean values of the qubit in-

version operator is not quite significant, though still evident via weak oscillations, which is specific

for the second case (II). One arrives to the conclusion that the cross-correlation terms defining the

interference effects induce a different behave of population in the dressed state, which is depicted

by the solid curves in Figs.3.2(a), 3.5(a) as well as in Figs.3.2(b) and 3.5(b), respectively.

To a greater extent, for the sake of comparison, one will keep the same parameters and shall

explore the quantum dynamics for the second situation, i.e., (II). The corresponding equations of
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Fig. 3.5: Mean dressed-state inversion operator ⟨Rz⟩ = ⟨R22⟩ − ⟨R33⟩ as a function of ω23

(2Ω0)
,

derived in the steady state for the first situation (II). (a) γ3
γ2
≪ 1 corresponds to lasing whereas (b)

γ2
γ3
≪ 1 determines cooling.The solid lines are obtained with the full system of equations (A-2),

while the dashed lines are computed for the equations (3.19). All other parameters are as in Fig.3.2,
respectively [34].

motion analyzing the quantum oscillator’s dynamics as well as the quantum emitter’s one were

given in previous paragraph (3.2), i.e., eqs. (A-2).

In the following, Fig. 3.6(a) shows the means quanta’s number of the quantum oscillator in

this case. The mean oscillator’s quanta number, reproduced in Fig. 3.6(a), exhibits an asymmetric

shape, in a certain point of view it is related to a Fano-like profile, forecasting the interference

effects to exhibit a major role here. Reciprocally, Fig. 3.6(b) displays the comparable behavior of

the second order quanta’s correlation function depending on ω23

2Ω0
when γ3

γ2
≪ 1. It is important to

mention that one can notice a wide plateau where quanta’s statistics is Poissonian at the same time

its quantum oscillator’s mean quanta numbers range from small to larger values. Thus, we have an

evident lasing effect in this theoretical setup.

Unlike the resonant case (I), i.e., Fig. 3.3(a) in this paragraph, one has demonstrated the gen-

eration more quanta of the quantum oscillator followed by a broader lasing regime, which is more

suitable for potential industrial applications, see Figs. 3.6(a) and 3.3(a).

In this conditions, if the upper state |1⟩ of the three-level emitter has a permanent dipole then it

can couple with a single-cavity electromagnetic field mode of terahertz frequency, for instance. In

this case, we have retrieved a coherent electromagnetic field source generating terahertz photons.

Moreover, the externally applied field intensities are moderate, preventing the samples degrada-

tion. Correspondingly, Fig.3.7(a) highlight the cooling regime in the studied system, and for the

situation (II), which takes place when γ2
γ3
≪ 1. The second-order correlation function increases

appropriately, see Fig.3.7(b), proving enhanced phonon-phonon or photon-photon correlations ap-
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Fig. 3.6: (a) The mean quanta number of the quantum oscillator ⟨b†b⟩
n̄

for the situation (II). (b)
Second-order correlation function g

(2)
b (0) versus ω23

2Ω0
for the situation (II). Here the parameters of

interest are g
γ2

= 4,γ3
γ2

= 0.1, γ
γ2

= 0, κ
γ2

= 10−3, ω
γ2

= 20,Ω0

γ2
= 20 and n̄ = 1 [34].

plicable for both models. Compared with Fig.3.4(a) describing the same phenomenon but for the

first situation (I), the cooling process is rather improved in the second case (II) at the same time

keeping the identical parameters, see Fig. 3.4(a) and 3.7(a).

Here, one can observe that according to the resonant case (II), see Fig.3.1(b), the three-level

Λ-type system is similar to an equidistant three-level system |Ψ2⟩ ←→ |Ψ1⟩ ←→ |Ψ3⟩, where

each transition occurs at frequency Ω, interacting as well with the quantum oscillator possessing

the frequency ω ≈ Ω. In this circumstance, transitions may emerge via a single oscillator’s quanta

processes among the dressed-state |Ψ2⟩ ←→ |Ψ1⟩ ←→ |Ψ3⟩, or, correspondingly involving two-

quanta effects among the dressed-states |Ψ2⟩ ←→ |Ψ3⟩. This also implies that cross-correlation

terms within master equation (3.16) do determine the quantum dynamics in this case.

This is certainly demonstrated also if one goes through the variable ρ(i),
{
i ∈ 0...16

}
, presented

in 4.3 ANNEXES and see eqs.A-2, since they consist of single- or two-quanta processes emerg-

ing simultaneously. The diversified decay paths among the dressed states involved |Ψ2⟩ ←→

|Ψ1⟩ ←→ |Ψ3⟩ lead to quantum interference, see also eq.(3.16), although the dipole moments cor-

responding to the two bare transitions of the Λ-type sample are orthogonal to each other. These

cross correlations terms [195, 196, 197] among the dressed state reinforce a more flexible range of

lasing and deeper cooling regimes in comparison with the situation (I) and for the same parameters

employed in the computation. Thus, one can draw the conclusion that quantum interference effects

via single-or two-quanta processed identifies the situation (II), described by Hamiltonian given by

the eq.(3.9), from the respective one characterized by the Hamiltonian given by the eq.(3.8), i. e.,

the case (I). This is also the reason for which the three-level emitter’s population dynamics act
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Fig. 3.7: (a) Scaled mean quanta number of the quantum oscillator for the situation (II) ⟨b†b⟩
n̄

. (b)
The second-order correlation function for the situation (II) g(2)b (0) versus ω23

2Ω0
and the parameters

of interest are g
γ3

= 4,γ2
γ3

= 0.1, γ
γ3

= 0, κ
γ3

= 10−3, ω
γ3

= 50,Ω0

γ3
= 20 and n̄ = 15 [34].

uniquely as well in these two cases, compare Fig.3.2 and 3.5.

Notice, when ω23

2Ω
→ 0 then the quantum emitter lies in the state |Ψ⟩ = |3⟩−|2⟩√

2
, whereas ⟨b†b⟩

n̄
= 1

and g
(2)
b (0) = 2, see Figs. 3.3(a)-3.7(b), which means that the quantum oscillator’s mode is in a

thermal state and no cooling or lasing effects occur, respectively. Here, these phenomena occur for
ω23

2Ω0
̸= 0, when some population is located on the higher upper state |1⟩, which is different from

other similar based schemes on coherent population trapping effects or electromagnetically induced

transparency phenomenon [103, 104, 192, 198]. Another important result is that we have observed

the lack of cooling phenomenon for both cases described in this paragraph, (I) or (II), if γ2 = γ3,

while γ = 0. Anyhow, the cooling phenomenon will occur with the increase of γ while maintaining

γ2 = γ3. Finally, the temperatures considered here are within several Kelvins for phonon cooling

effects to few hundreds of Kelvins for coherent terahertz photon generation, correspondingly [34].
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3.4 Conclusions to Chapter 3

In conclusion, one has investigated the quantum dynamics of a quantum oscillator coupled with

the most upper state of a three-level Λ-type system. Additionally, one has specified that as a quan-

tum oscillator can serve a vibrational mode of a nanomechanical resonator containing the three-

level emitter or, equivalently, an electromagnetic cavity mode field, unless the upper state of the

three-level sample is embedded within the cavity, posses permanent dipole. Also it was taken

into consideration, the frequency of the quantum oscillator is significantly smaller than all other

frequencies involved to describe the model. Nevertheless, is of the order of the generalized Rabi

frequency describing the laser-pumped three-level qubit.

Following, the dressed-state picture of the three-level system, one has identified the two-resonance

conditions operating the oscillator’s quantum dynamics. According to the first resonant condition,

the quantum oscillator’s frequency is close to the double generalized Rabi frequency and in the sec-

ond resonant condition the qubit frequency is close to the generalized Rabi frequency, respectively.

For both resonant cases, one has computed the average inversion operators, the mean quanta num-

ber of the qubit and second-order correlation function analyzing the lasing and cooling phenomena

occurring in the three-level system. However, one has identified the different mechanisms behind

the lasing and cooling in each resonant situation. In the first resonant case, the three-level system

resembles a two-level system of frequency 2Ω interacting with a quantum oscillator of frequency ω.

On the other side, in the second resonant case the qubit functions as an equidistant three-level sys-

tem, where each transitions is of frequency Ω interacting as well the quantum oscillator possessing

the frequency ω.

Particularly, we have proved that the exchange between single- or two-quanta processed fol-

lowed by quantum interference effects among the induced emitter’s dressed states are in charge

of flexible lasing or deeper cooling effects, correspondingly. This generates also reciprocal inter-

play between the quantum oscillator’s dynamics and the three-level emitter’s quantum dynamics

respectively. Additionally, if the upper state of the three-level emitter has a permanent dipole that

it could couple with a single-cavity electromagnetic field mode of terahertz frequency. In this case,

the coherent terahertz photons generation is identified as one of the possible applications resulting

from this study.
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4 MICROWAVE MULTIPHOTON CONVERSION VIA CO-
HERENTLY DRIVEN PERMANENT DIPOLE SYSTEMS

In this chapter, our purpose is the investigation of the multiphoton quantum dynamics of a leak-

ing single-mode quantized cavity field coupled with a resonantly laser pumped two-level system

or qubit possessing permanent dipole moment. The frequencies of interacting subsystems, namely

the cavity and the emitter, are situated in different frequency domains, respectively, and in this way

the latter one couples to the resonator via its parallel dipole moments. Also, the generalized Rabi

frequency arising from the external coherent driving field of the two-level qubit is considered to

have another values unlike the resonator’s frequency. Consequently, this highly dispersive inter-

action regime has an impact on the cavity multiphoton quantum dynamics and photon conversion

from optical to microwave ranges.

One is considering a single-mode quantized cavity with a resonantly driven two-level qubit

possessing permanent dipoles. This setup can serve for the implementation of light-matter quan-

tum interface required for quantum information transfer using photons. One of the most studied

quantum mechanical models is the two-level system interacting with a quantum oscillator, a quan-

tum optical cavity or quantum mechanical resonator. It is used in a wide range of phenomena,

especially in atomic physics, where it describes a two-level atom coupled to a quantized electro-

magnetic field. Controlling the output of the light emitter is one of the basic tasks in photonics,

with landmarks such as the development of the laser and single-or multiphoton sources. The ever

growing range of quantum applications is making it increasingly important to diversify the avail-

able quantum sources [177]. It is known, however, that multiphoton processes are realized in a

two-level system, for a number of physically important cases. Such situation occurs when there is

a dipole forbidden transition in the system [199].

In this chapter, one has identified the Hamiltonian defining the quantum dynamical processes

of the model. Each part of the two-level system and every type of interaction among the system’s

components is considered. Furthermore, one has searched and identified the proper set of basis

transformations to be applied to the Hamiltonian, in order to prepare its implementation in the

master equation. The final form of the Hamiltonian and its transformation technique will be shown

further.

Quantum frequency conversion (QFC) is a process in which an input beam light is converted

into an output beam of a different frequency while keeping the quantum state to generate quan-

tum tunable states of light, which is relevant nowadays to various feasible quantum applications.

Namely, frequency conversion can be used to transduce one photon at a given wavelength to a
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photon at another wavelength, which could be used to couple different quantum system possess-

ing different energies or it is embedded in quantum information schemes, which use photons as

a communication channel for quantum information over long distances [170]. Among the first

demonstrations of quantum frequency conversion effect (QFC) is the experiment reported by [171]

promising developments of tunable sources of quantum light. From this perspective, single-photon

upconversion from a quantum dot preserving the quantum features was proved in [172]. Experi-

mental demonstration of strong coupling between telecom (1550 nm) and visible (775 nm) optical

modes on an aluminum nitride photonic chip was proved as well, in [173]. Even greater frequency

differences can be generated. For example, and experimental demonstration of converting a mi-

crowave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms was reported

in [174]. Earlier theoretical researches have proved frequency downconversion in driven two-

level systems with broken inversion symmetry [152, 146]. Additionally, single-and multiphoton

frequency conversion via ultrastrong coupling of a two-level emitter to two resonators was theoret-

ically proposed in [175]. Although, multiquanta processes have been already explored for a long

period of time, recently have attracted a renewed considerable attention as well, due to feasable

application of these processes to quantum technologies related to quantum litography [176], novel

light sources [177], etc. Supplementary, optomechanically multiphonon-induced transparency of

X-Rays via optical control was proved in [180], while strongly correlated multiphonon emission

in an acoustical cavity coupled to a driven two-level quantum dot was demonstrated in [181], re-

spectively. Nevertheless, most of the frequency conversion investigations are related to resonant

processes. In this context, here we will demonstrate a photon conversion scheme involving non-

resonant multiphoton effects.

Coherent conversion from microwave radiation and terahertz radiation into optical range and

vice versa has a huge potential of application: detection and imaging, security screening. Su-

perconducting qubit coupled to optical photons is an example of implementation of a quantum

hybrid system, where optical photons can be transported with low noise. The main problem in

achieving microwave-optical and optical-microwave conversion is to build a suitable platform that

couples strongly to both frequency and assures a proper connection between them. Experimentally

microwave-optical conversion was explored on the a variety of systems included in microcavities

to enhance the coupling to microwaves, such as: Λ-type atomic systems, nanomechanical oscil-

lators, Rydberg atoms possessing strong electric dipole transitions in a wide range of frequencies

from microwaves to terahertz and other microcavity based devices with enahnced photon-photon

interactions [171, 172, 173, 174].
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Fig. 4.1: The scheme of the investigated model. It consists of a coherently pumped two-level
system interacting with a single-mode resonator of frequency ω through its non-zero parallel com-
ponents of the permanent dipole moment, dαα, with α ∈ {1, 2}. In this schematic setup, Ω is the
corresponding Rabi frequency due to the off-diagonal dipole moment d21 whereas ωL, ωL ≫ ω,
is the frequency of the resonantly applied external field. The two-level qubit-resonator coupling
strength is denoted by g, while κ is the resonator’s decay rate. Also are sketched some processed
which may occur, namely, emission or absorption of cavity photon (or two, three etc.) followed by
spontaneous decay γ [204].

Most of the well-known frequency conversion investigations involve resonant processes. For

this reason, we are going to prove a photon conversion setup exhibiting non-resonant multiphoton

effects, respectively. In this context, we are conducting an investigation about frequency down-

conversion processes through a resonantly laser-driven emitter possessing a non-zero permanent

diagonal dipole moment, dαα ̸= 0 with α ∈ {1, 2} and placed in a quantized cavity presented in

Fig.4.1. The frequencies of the two-level qubit and the single-mode cavity are remarkably differ-

ent from each other, namely optical and microwave ranges. Consequently, the two-level emitter

couples by default to the resonator only through its permanent parallel components of the dipole

moment. The cavity’s frequency has a different value from the generalized Rabi frequency that

arises due to resonant and coherent external pumping of the two-level emitter.

As a consequence, this highly dispersive interaction regime generates multiphoton absorption

and emission processes in the resonator mode mediated by the corresponding damping effects,

namely qubit’s spontaneous emission and the photon leaking through the cavity, as it is shown

in Fig.4.1. One has obtained the corresponding cavity photon quantum dynamics in the steady

state and demonstrated the feasibility to generate a certain multiphoton superposition state with

high probability, and at different frequencies than that of the input external coherent pumping. The

multiquanta nature of the final cavity state can be demonstrated via the second-order photon-photon

correlation function.

In this chapter, one is going to derive the corresponding cavity photon quantum dynamics in the

steady state and prove the feasibility to generate a certain multiphoton superposition state with high

probability, and at different frequencies than that of the external lasing field. The main advantage
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of the proposed setup are the features of its components, which have different values of the parallel

dipole moments, namely d22 ̸= d11, such as assymetrical two-level quantum dots and molecules,

or, correspondingly, spin or quantum circuits, altogether with the technological advances towards

their coupling to various resonators. As feasible applications of our results one may consider the

possibility to couple distant real or artificial atoms having transition frequencies in the microwave

domain via multiphoton state generated by our setup. Various entangled states [182, 183, 184, 185]

of distant emitters can be generated then. Another opportunity, for example, would be to study

the quantum thermodynamic performances of distant qubit systems interconnected through the

microwave multiphoton field described here.

Before that, many theoretical and experimental studies have been proposed in the framework of

symmetric quantum emitters where inversion symmetry is presumed. However, the violation of this

presumption is evident in many quantum systems and is evolving into a nonzero permanent dipole

moment of the ground and excited states. The presence of a nonzero permanent dipole moment in

the system considerably changes the optical output of the system generating changes in single- or

multiphoton interactions of a laser with two-level systems. The impact of the dipole is substantial

as it manipulates the laser-molecule coupling and is used as a selection tool of transitions.
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4.1 The theoretical framework

In this paragraph of the chapter, one will present the main steps in derivation of master equation

adopted to the framework of our investigation, which is a differential equation describing the evo-

lution of the probabilities for Markov processes for systems that changes from one to another state

in a continuous time. The quantum optical setup considered in this chapter is an important tool

for the development of ultimate quantum technologies. Furthermore, the Lindblad master equa-

tion plays a major role as it is the most general equation for describing the Markovian dynamics

in quantum systems. Open quantum system techniques are the key systems for many studies in

quantum mechanics. One particular case is the study of the multiphoton dynamics of a two-level

system possessing a permanent dipole that couples the system to an optical cavity.

The master equation analyzing the interaction of a two-level qubit, possessing permanent di-

agonal dipole moment, with a classical coherent electromagnetic field of frequency ωL as well as

with a quantized single mode resonator frequency ω ≪ ωL see Fig.4.1 and is being damped via the

corresponding environmental bath in the Born-Markov approximations is:

d

dt
ρ(t) +

i

ℏ
[H, ρ] = −γ

2
[S+, S−ρ]− κ

2
(1 + n̄)[b†, bρ]− κ

2
n̄[b, b†ρ] +H.c. (4.1)

In this master equation (4.1), γ is the single-qubit spontaneous decay rate, whereas κ is the

corresponding boson’s leaking mode with n̄ =

[
exp

( ℏω
kBT

)
− 1

]−1

is the mean resonator’s photon

number due to thermal bath temperature T , and kB is the Boltzmann constant. The two-level qubit

might have transition frequency in the optical range of frequencies, while the single-mode cavity

frequency is situated in the microwave range of frequencies, respectively. The wavevector of the

coherent applied field is perpendicular to the cavity axis. As well, in eq.(4.1) the bare-state qubit’s

operators are defined as follows: S+ = |2⟩⟨1| and S− = [S+]† are verifying the commutation

relations defined in SU(2) algebra, as follows: [S+, S−] = 2Sz and [Sz, S
±] = ±S±, where

Sz =

(
|2⟩⟨2|−|1⟩⟨1|

)
2

is the bare state inversion operator. Note that, |2⟩ and |1⟩ are corresponding to the

excited and ground state of the qubit, respectively, while b† and b are the creation and annihilation

operator of the electromagnetic field (EMF) in the resonator, are satisfying the standard bosonic

commutation relation, i.e., [b, b†] = 1, and [b, b] = [b†, b†] = 0.

Next, one is going to presents the derivation of Hamiltonian describing the coherent evolution

of the considered system. The Hamiltonian describing completely the interaction of a two-level

system possessing permanent dipoles with an external resonant coherent field as well as with a
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single-mode resonator, in the dipole and rotating wave approximations, is:

H = ℏωb†b+ ℏω21Sz − ℏΩ
(
S+eiωLt + S−eiωLt

)
+ ℏg0

(
d22S22 + d11S11

)(
b† + b

)
+ ℏḡ0

(
S+ + S−)(b† + b

)
− EL

(
d22S22 + d11S11

)
cos
(
ωLt
)
. (4.2)

In this Hamiltonian (4.2), the first two terms correspond to the free energies of the resonator and

the two-level subsystem. The third and the sixth terms of this Hamiltonian (4.2) describes the

interaction of the external laser field with the two-level emitter through its off-diagonal dipole mo-

ments d21, d21 = d12, as well as the diagonal dipole moments d22 and d11, correspondingly. The

fourth and the fifth terms of the Hamiltonian account for the interactions of the cavity mode with

the two-level system va diagonal and off-diagonal dipole moments. Also, EL is the amplitude of

the external driving field, while g0 =
√

2πω
ℏV where V is the quantization volume, and ḡ0 = g0d21.

Sαα,
{
α = 1, 2

}
are the population operators respectively. One can notice that the fifth’s Hamilto-

nian’s term is a rapidly oscillating since ωL is bigger than the corresponding coupling strength, i.e.,

ωL ≫ ḡ0 and ωL ≫ ω, and with respect to this term we have performed the unitary transforma-

tion Ū = exp
(
iωLSzt

)
. The last term in the Hamiltonian (4.2) is neglected for the similar reason

since ωL ≫
{

ELd22
ℏ , ELd11

ℏ

}
for moderate assumed external pumping strengths. After the above

mentioned assumptions and transformations, the following Hamiltonian is derived:

H = ℏωb†b+ ℏ∆Sz − ℏΩ
(
S+ − S−)+ ℏgSz

(
b† + b

)
+ ℏg0

(
d11 + d22

)(b† + b
)

2
, (4.3)

where g = g0
(
d22−d11

)
, and we have also considered the relations S22 =

1
2
+Sz, and S11 =

1
2
−Sz.

Later, applying a unitary transformation V = exp
(
ζb− ζ∗b†

)
, with ζ = g0

(
d11+d22

)
2
(
ω+iκ

2

) , in the whole
master equation (4.1), embedding the Hamiltonian (4.3) one derives the same form of the master

equation with, however, the Hamiltonian (4.5) given below, andwhere∆ ≡ ∆−g20

(
d222−d211

)
ω

, where

ω ≫ κ. The last term from the detuning’s expression is used for the redefinition of the emitter’s

frequency, i.e., ω21 ≡ ω21 − g20

(
d222−d211

)
ω

, so one finally has derived ∆ = ω21 − ωL. Further, if we

perform the unitary transformation in the Hamiltonian (4.5), V̄ (t) = exp
(
iωb†bt

)
, the one derives

the following Hamiltonian:

H = ℏ∆Sz − ℏΩ
(
S+ + S−)+ ℏgSz

(
b†eiωt + be−iωt

)
. (4.4)

If one avoids any resonances in the systemwith respect to the resonator’s frequency or its multiples,

as it is the considered in this chapter, then the last term in the above Hamiltonian (4.4) is a rapidly

oscillating one, if ω is significantly greater then g, and may be dropped off. Below, one develops
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an approach where the contribution of this term is perturbatively computed for moderately intense

externally applied fields and appropriate parameters ranges, i.e., ω > 2Ω≫
{
g, γ, κ

}
, respectively.

The Hamiltonian characterizing the respective coherent evolution of the leaking single-mode

quantized cavity field coupledwith a resonantly driven two-level qubit possessing permanent dipoles

is:

H = ℏωb†b+ ℏ∆Sz − ℏΩ
(
S+ + S−)+ ℏgSz(b

† + b). (4.5)

In the Hamiltonian (4.5), the first two terms describe the free energies of the cavity electromag-

netic field and the two-level qubit, respectively, with∆ = ω21−ωL is the detuning of the two-level

qubit transition frequency ω21 from the laser one. The last two terms are describing, respectively,

the laser interaction with the two-level qubit and the qubit-cavity interaction. In the correspond-

ing way, Ω and g are the respective coupling strengths, according to the model scheme presented

in Fig.4.1. It is important to highlight at this point that Rabi frequency Ω is proportional to the

off-diagonal dipole moment d21, the qubit-cavity coupling is proportional to the diagonal dipole

moments, i.e. g ∝ (d22 − d11). The interaction of the external coherent electromagnetic field with

permanent dipoles are dropped off as being rapidly oscillating terms. From the same reason, the

qubit-cavity interaction described by the Hamiltonian defined in the Jaynes-Cummings framework,

proportional to d21 are dropped off as well.

In what follows, we perform a spin rotation:

U(χ) = exp
[
2iχSy

]
, (4.6)

where

Sy =
S+ − S−

2i
, (4.7)

and

2χ = arctan

[
2Ω

∆̄

]
, (4.8)

with

∆̄ = ∆ + g(b† + b), (4.9)

diagonalizing the last three terms presented in Hamiltonian (4.5). This transformation will lead to

new quasi-spin operators, i.e., Rz and R±, defined via the old emitter’s operators in the following

117



way:

Rz = Sz cos 2χ−
1

2

(
S+ − S−) sin 2χ,

R+ = S+ cos2 χ− S− sin2 χ+ Sz sin 2χ,

R− =
[
R+
]†
.

The new emitter operators R+ = |2̄⟩⟨1̄|, R− = |1̄⟩⟨2̄|, and Rz =

(
|2̄⟩⟨2̄|−|1̄⟩⟨1̄|

)
2

, describing the

transitions and populations among the dressed-state
{
|2̄⟩, |1̄⟩

}
, will obey the commutation rela-

tions
[
R+, R−] = 2Rz and

[
Rz, R

±] = ±R±, similarly to the old-basis ones. Respectively, the

Hamiltonian (4.5) is transformed into:

H = ℏωb†b+ 2ℏΩ̄Rz, (4.10)

where the operator Ω̄ is the new generalized Rabi frequency

Ω̄ =

√
∆̄2

4
+ Ω2, (4.11)

whereas the bosonic annihilation operator b is expanded in power series

b = b̄− iηSy

∞∑
k=0

ηk

k!

(
b̄† + b̄

)k ∂k

∂ξk
1

1 + ξ2
, (4.12)

with bosonic operators being rotated as well, according to the unitary transformation b† =
[
b
]†,

b̄ = UbU−1, b̄† =
[
b̄
]†, and the small parameters defined for further derivation

η =
g

2Ω
,

ξ =
∆

2Ω
.

In the next step, one has to insert eqs.(4.10)-(4.12) in master equation (4.1) getting a cumbersome

final equation and laborious to be derived. To avoid supplementary complicated calculations, one

is going to perform a secular approximation, namely, one is going to drop off all terms from the

master equation oscillating at the generalized Rabi frequency 2Ω0,Ω0 = Ω
√
1 + ξ2 and higher one.

Consequently, will dropped off all terms satisfying the following condition if 2Ω0 ≫
{
ω, g, γ

}
,

which is the situation considered here.

Thus in the following, we are expanding the generalized Rabi frequency Ω̄ defined in (4.11) in
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the Taylor series using the small parameter η, as it is presented below,

Ω̄ = Ω0

{
1 +

ξη̂

1 + ξ2
+

η̂2

2
(
1 + ξ2

)2 − ξη̂3

2
(
1 + ξ2

)3 + ...

}
, (4.13)

in this series expansion (4.13) the small parameter η̂ = η
(
b̄† + b̄

)
is directly proportional to the

bosonic generation and annihilation operators, as well expanded in power series according to (4.12).

Another important step is to get the Heisenberg equation modeling the multiphoton interactions

of the system described in this chapter:

d

dt
⟨Q(t)⟩ − i

ℏ
⟨
[
H,Q

]
⟩ = − γ

8
(
1 + ξ2

){⟨Rz

[
Rz, Q

]
⟩+ ξ2(

1 + ξ2
)2 ⟨η̂Rz

[
η̂Rz, Q

]
⟩

− 1− 2ξ2

2
(
1 + ξ2

)2(⟨Rz

[
η̂2Rz, Q

]
⟩+ ⟨η̂2Rz

[
Rz, Q

]
⟩
)}

− γ

8

{(
1 +

ξ√
1 + ξ2

)2

⟨R+
[
R−, Q

]
⟩+ 1(

1 + ξ2
)2 ⟨η̂R+

[
η̂R−, Q

]
⟩

−
(
1 +

ξ√
1 + ξ2

)
3ξ

2
(
1 + ξ2

) 5
2

(
⟨R+

[
η̂2R−, Q

]
⟩+ ⟨η̂2R+

[
R−, Q

]
⟩
)}

− γ

8

{(
1− ξ√

1 + ξ2

)
⟨R−[R+, Q

]
⟩+ 1(

1 + ξ2
)3 ⟨η̂R+

[
η̂R−, Q

]
⟩

−
(
1 +

ξ√
1 + ξ2

)
3ξ

2
(
1 + ξ2

) 5
2

(
⟨R−[η̂2R+, Q

]
⟩+ ⟨η̂2R−[R+, Q

]
⟩
)}

− κ

2

(
1 + n̄

)
⟨b̄†
[
b̄, Q

]
⟩ − κ

2
n̄⟨b̄
[
b̄†, Q

]
⟩+H.c. (4.14)

The above presented Heisenberg (4.14) form of the master equation derived for the first three

terms of the Taylor series, in which was expanded the generalized Rabi frequency (4.13) including

as well η̂ expanded correspondingly in the power series, as presented below:

η̂2 = η2
(
b̄†b̄+ b̄b̄† + b̄2 + b̄†2

)
. (4.15)

In this context, we present the master equation derived discretely for η̂2 expanded in power series

as presented above, where the rapid oscillating terms were dropped of:

ρ(t) = − γ

8
(
1 + ξ2

){[Rz, Rzρ
]
+

ξ2η2(
1 + ξ2

)2([b̄Rz, Rz b̄
†ρ
]
+
[
b̄†Rz, Rz b̄

])
−

(
1− 2ξ2

)
η2

2
(
1 + ξ2

)2 ([Rz,
(
bb̄† + b̄†b̄

)
Rzρ

]
+
[(
b̄b̄† + b̄†b̄

)
Rz, Rzρ

])}
− γ

8

{(
1 +

ξ√
1 + ξ2

)2[
R+, R−ρ

]
+

η2(
1 + ξ2

)3([b̄R+, R−b̄ρ
]
+
[
b̄†R+, R−b̄ρ

])
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−
(
1 +

ξ√
1 + ξ2

)
3ξ

2
(
1 + ξ2

) 5
2

([
Rz,

(
b̄b̄† + b̄†b̄

)
Rzρ

]
+
[
Rz

(
b̄b̄† + b̄†b̄

)
, Rzρ

])}

− γ

8

{(
1− ξ√

1 + ξ2

)2[
R−, R+ρ

]
+

η2(
1 + ξ2

)3([b̄R+, b̄†R−ρ
]
+
[
b̄†R+, b̄R−ρ

])
−

(
1− ξ√

1 + ξ2

)
3ξ

2
(
1 + ξ2

) 5
2

([
R−,

(
b̄b̄† + b̄†b̄

)
R+ρ

]
+
[
R−(b̄b̄† + b̄†b̄

)
, R+ρ

])}
− κ

2

(
1 + n̄

)
⟨b̄†
[
b̄, Q

]
⟩ − κ

2
n̄⟨b̄
[
b̄†, Q

]
⟩+H.c. (4.16)

In the next step, one is performing a unitary transformation U(t) = exp
[
2iΩ0Rzt

]
of the whole

master equation. This way, we will neglect the rapid oscillating terms at the Rabi frequency 2Ω0

or higher. Afterwards, we project the obtained master equation in the dressed-state base in the

following manner: ρᾱᾱ = ⟨ᾱ|ρ|ᾱ⟩, α ∈
{
1, 2
}
, and one is arriving to the following generalized

master equation describing the cavity degrees of freedom only:

d

dt
ρ̄(t) +

i

ℏ
[
H̄, ρ̄

]
− γ

4

{
cos 2χρ̄ cos 2χ+ sin 2χρ̄ sin 2χ− ρ̄

}
=

− κ

2

(
1 + n̄

)[
b̄†, b̄ρ̄

]
− κ

2
n̄
[
b̄, b̄†ρ̄

]
− κη2

8

(
1 + 2n̄

) ∞∑
k1,k2

fk1
(
η, ξ
)
fk2
(
η, ξ
)

×
[(
b̄† + b̄

)k1 , (b̄† + b̄
)k2 ρ̄]+H.c., (4.17)

where the final master equation was computed as a sum of two master equations projected in the

Fock states base to determine the dynamics of the population ρ̄ = ρ1̄1̄+ ρ2̄2̄. As well, in the master

eq.(4.17) functions fk
(
η, ξ
)
, sin 2χ, cos 2χ are defined in the corresponding power series:

fk
(
η, ξ
)

=
ηk

k!

∂k

∂ξk
1

1 + ξ2
,

sin 2χ =
Ω

Ω̄
=

∞∑
k=0

ηk
(
b̄+ b̄†

)k
k!

∂k

∂ξk
1√

1 + ξ2
,

cos 2χ =
∆̄/2

Ω̄
=

∞∑
k=0

ηk
(
b̄+ b̄†

)k
k!

∂k

∂ξk
ξ√

1 + ξ2
. (4.18)

According to the above presented power series (4.18), one can recognize the multiphoton dynamics

of the cavity electromagnetic quantum field quantum dynamics.

Additionally, one has used the sum of bosonic operators expanded in power series:

(
A+B

)n
=

n∑
k′

n!

k′!
(
n−k′

2

)
!

(
− C

2

)n−k′
2 k′∑

r=0

k′!

r!
(
k′ − r

)
!
× ArBk′−r, (4.19)
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where the operatorsA andB verify the operator’s identities
[
A,B

]
= C and

[
A,C

]
=
[
B,C

]
= 0,

whereas
{
n, k′, r

}
∈ Z∗ are integer non-zero numbers. These properties of power series indexes

are used to reduce the master equation (4.1) to a time-independent equation, unless a supplementary

unitary transformation is performed:

V (t) = exp
[
iωb̄†b̄t

]
, (4.20)

and all terms rotating at frequencyω and higher are dropped off. Also, these transformation neglects

the resonance cases in the system, i. e., 2Ω0 − sω ̸= 0, s ∈
{
1, 2, ...

}
.

In the result, one obtains a diagonal equation for Pn = ⟨n|ρ̄|n⟩, with |n⟩ being the Fock state

base and n ∈
{
0, 1, 2, ...

}
, describing the cavity multiphoton quantum dynamics, in the presence

of the corresponding damping effects, which is modeled then numerically here. Notice that the

coherent part of the master equation (4.17), i.e.,
[
H̄, ρ̄

]
does not contribute to the final expression

for the photon distribution function Pn. The reason is that, after the performed approximations the

Hamiltonian H̄ would contain photonic correlators such that ⟨n|
[
H̄, ρ̄

]
|n⟩ = H̄nPn − PnH̄n = 0.

herefore, the cavity photon dynamics has a multiphoton output because of the highly dispersive

or non-resonant properties of the interaction among the asymmetrical two-level emitter and cavity

field mode. According to this judgment, one obtains an output multiphoton beam of microwave

photons, although the two-level is coherently pumped at a different frequency, i.e. with optical

photons.
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4.2 Results and discussions

Statistics of light is of great importance for many applications in metrology, material probing,

biomedical optics, and optical communications and etc. Light’s statistics features are described

by correlations between the electric field amplitudes at different locations or times. Due to the

variance of light sources, one calculates the first-order correlation function of the field, which af-

ter normalization calculation is named the degree of first-order temporal coherence. The value

of the first-order correlation function is indirectly determined by the power spectrum of the light,

according to Wiener-Khintchine theorem.

In this paragraph, we will present the cavity multiphoton quantum dynamics computed accord-

ing to the master equation (4.17) presented in the paragraph 4.1. The analytical solving method pre-

sented in this paragraph allows us to derive a finite system of equations describing the multiphoton

quantum dynamics of a system consisting of a leaking single-mode quantized cavity field coupled

with resonantly pumped two-level qubit possessing permanent dipoles. Applying the Rotating

Wave Approximation, Born-Markov and secular approximations, one has derived the variables of

interest, applying supplementary the traced density operator over the corresponding equations of

interest. In order to solve the infinite system of equations presented by eq.(4.17), we have truncated

it at certain value n = nmax, which assures the asymptotic stability threshold of system’s solutions

so that further increase of nmax will not modify the result.

Below, we shall describe the cavity multiphoton quantum dynamics defined by eq.(4.17). Here,

we highlight some processes occurring in our setup in more details, namely, the single- and two-

photon effects. Let us write down the time-independent damping part of the master equations

(4.17), taking into account expansion terms up to η4, namely,

d

dt
ρ̄ = − γη2

8
(
1 + ξ2

)2{[b̄, b̄†ρ̄]+ [b̄†, b̄ρ̄]}− γη4
(
1 + 4ξ2

)
32
(
1 + ξ2

)4
×

{[(
b̄b̄† + b̄†b̄

)
,
(
b̄b̄† + b̄†b̄

)
ρ̄
]
+
[
b̄2, b̄†2ρ̄

]
+
[
b̄†2, b̄2

]
ρ̄
}

+
3γη4

(
1− 2ξ2

)
8
(
1 + ξ2

)4 {[
b̄†
(
1 + b̄†b̄

)
, b̄ρ̄
]
+
[(
1 + b̄†b̄

)
b̄, b̄†ρ̄

]}
− κ

2

(
1 + n̄

)[
b̄†, b̄ρ̄

]
− κ

2
n̄
[
b̄, b̄†ρ̄

]
+H.c. (4.21)

where smaller contributions, proportional to κη4, were dropped off since we have considered that
κ
γ
≪ 1. One can notice that terms proportional to η2 describe single-photon processes; that is,

the photon number in the distribution function Pn

(
Pn = ⟨n|ρ̄|n⟩ with n ∈

{
0, 1, 2, ...

})
will

change by±1, i.e., Pn±1. Respectively, the terms proportional to η4 express the two-photon effects.

For example, the last two commutators from the second term of eq.(4.21) will change the photon
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number in the distribution function Pn by±2, i.e., Pn±2 see also eq.(4.28) and Fig.4.1. Concluding

this part, one can generalize that terms proportional η2N , in the master equation (4.17), account for

N -photon processes, respectively. Considering then η4 −→ 0, we derive the eq. (4.26), accounting

for single-photon processes only since

Pn = Z−1e−αn, (4.22)

where the normalization Z is determined by the requirement
∑∞

n=0 e
−αn, whereas α = lnβ and

β = κ1

κ2
with κ1 =

κ
(
1+n̄+γη2

)[
4
(
1+ξ2

)2] , and κ2 = κn̄+ γη4[
4
(
1+ξ2

)2] . The mean-photon number is determined

via

⟨b̄†b̄⟩ =
∞∑
n=0

nPn =
1

β − 1
= n̄+

γη2

4κ
(
1 + ξ2

)2 , (4.23)

which ismentioned below again. Note that, unfortunately, finding the analytic solutiob of eq. (4.21)

or eq. (4.27), incorporating both single- and two-photon processes, is not a trivial task.

Once again, for single-photon non-resonant processes one can derive equation for the photon

distribution function:

d

dt
Pn(t) = −P (1)

n , (4.24)

where

P (1)
n =

{
κ
(
1 + n̄

)
+

γη2

4
(
1 + ξ2

)2}(nPn −
(
n+ 1

)
Pn+1

)
+

{
κn̄+

γη2

4
(
1 + ξ2

)2}((n+ 1
)
Pn − nPn−1

)
. (4.25)

The first line of the above expression for the P (1)
n (4.25) describes the photon generation processes,

i.e., photons that leave the cavity. The second line corresponds to processes describing photons

pumping the cavity mode due to the environmental thermostat and non-resonant external driving,

respectively. One can observe that both processes are influenced by the resonant laser driving of the

two-level emitter possessing permanent dipoles. As a consequences, the stationary mean-photon

number in the resonator mode is

⟨b̄†b̄⟩ = n̄+
γη2

4κ
(
1 + ξ2

)2 , (4.26)

whereas its second-order photon-photon correlation function is g(2)(0) = 2. Correspondingly, for
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two-photon non-resonant processes one derives:

d

dt
Pn(t) = −P (2)

n , (4.27)

where

P (2)
n = P (1)

n −
3γ
(
1− 2ξ2

)
η4

4
(
1 + ξ2

)4 ((
1 + n

)2(
Pn − Pn+1

)
+ n2

(
Pn − Pn−1

))
+

γ
(
1 + 4ξ2

)
η4

16
(
1 + ξ2

)4 (n(n− 1
)
Pn −

(
n+ 1

)(
n+ 2

)
Pn+2

)
+

γ
(
1 + 4ξ2

)
η4

16
(
1 + ξ2

)4 ((n+ 1
)(
n+ 2

)
Pn − n

(
n− 1

)
Pn−2

)
, (4.28)

where terms proportional to κη4 have been dropped off since we have assumed that κ/γ ≪ 1. Here,

the first two lines of the expression for P (2)
n (4.28) describe the photon depopulation and population

of the cavity mode due to single-photon processes. Notice that the single-photon effects are influ-

enced by the second-order one, see the second term proportional to η4 in the first line of P (2)
n . The

last two lines of the same expression consider the resonator photon depopulation and population

effects via two-photon processes, correspondingly. In this way, eq.(4.27) describes the photon pro-

cesses where single-photon and two-photon effects occur simultaneously. In the next paragraph,

we will show the mean-photon number in the cavity mode change correspondingly. Thus, we have

explicitly shown the equations for the photon distribution for single-and two-photon processes,

namely eqs.(4.25) and (4.28). For instance, eq.(4.25) is due to terms in the master eq.(4.17), like[
b̄†, b̄ρ

]
and

[
b̄, b̄†ρ

]
and their Hermitian conjugates, respectively, whereas eq.(4.28) results from

terms
[
b̄†2, b̄2ρ

]
and

[
b̄2, b†2ρ

]
in eq.(4.17). This proves a clear two-photon process in eq. (4.28)

and the final cavity is a multiphoton one as it will be discussed below.

Similarly, additional N − photon non-resonant processes with N ∈
{
3, 4, ...

}
can be included

by reducing the eq.(4.1) to terms up to η2N . In order to solve the infinite system of equations for Pn,

see eq. (4.28) for two-photon processes, we truncate it at a certain maximum value n = nmax so

that increasing this value, i.e. nmax, the calculated results do not change, keeping the the parameters

of interest fixed. Thus, the cavity photon dynamics has multiphoton dynamics due to the highly

dispersive (non-resonant) features of the interaction between the asymmetrical two-level qubit and

cavity field mode. This way, one generates an output multiphoton beam of microwave photons,

although the two-level system is coherently driven at a different frequency, i.e. with optical photons.
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Thus, generally the resonator’s steady-state mean quanta number can be expressed as:

⟨n⟩ = ⟨b̄†b̄⟩ = TrQubit

[ ∞∑
n=0

⟨n|ρb̄†b̄|n⟩
]
= TrQubit

[ ∞∑
n=0

n⟨n|ρ|n⟩
]
, (4.29)

here we expressed the bosonic field operators in the ket basis b̄†b̄|n⟩ = n|n⟩. Deriving the trace

sum over the system states, we get:

⟨n⟩ =
∑
i=1,2

∞∑
n=0

n⟨n, i|ρ|n, i⟩ =
∞∑
n=0

⟨n|ρ11 + ρ22|n⟩ =
∞∑
n=0

n⟨n|ρ̄(1)|n⟩, (4.30)

here we have swapped the sum over the system states, computing in this way the trace over the

two-level qubits states first. Following the computation algorithm brought here, one substitutes

the master equation 4.17, i.e., P (1)
n and truncate the sum over the infinite Fock states, getting the

suitable equations for the numerical calculations:

⟨b̄†b̄⟩ =
nmax∑
n=0

nP (1)
n , (4.31)

with
nmax∑
n=0

P (1)
n = 1, (4.32)

while the steady-state second-order photon-photon correlation function is defined as:

g(2)(0) =
⟨b̄†b̄†b̄b̄⟩
⟨b̄†b̄⟩2

=
1

⟨b̄†b̄⟩2
TrQubit

[ ∞∑
n=0

⟨n|ρb̄†b̄†b̄b̄|n⟩
]
=

1

⟨b̄†b̄⟩2
TrQubit

[ ∞∑
n=0

n
(
n− 1

)
⟩n|ρ|n⟩

]
=

1

⟨b̄†b̄⟩2
∑
i=1,2

∞∑
n=0

n
(
n− 1

)
⟨n, i|ρ|n, i⟩ = 1

⟨b̄†b̄⟩2
∞∑
n=0

n
(
n− 1

)
⟨n|ρ(1)|n⟩

=
1

⟨b̄†b̄⟩2
∞∑
n=0

n
(
n− 1

)
P (1)
n ≃ 1

⟨b̄†b̄⟩2
nmax∑
n=0

n
(
n− 1

)
P (1)
n . (4.33)

Particularly, Fig.4.2 presents the steady-state mean photon numbers and their second-order

photon-photon correlation functions for single-photon and two-photon processes computed using

eqs.(4.24) and (4.27). One can notice here that these quantities are distinct from each other for

single-and two-photon effects, correspondingly. In order to compare and understand the differ-

ence between single- and two-photon processes, Fig.4.3 presents similar effects for two-and three-

photon processes, respectively. Here, it is evident that the mean-photon numbers almost overlap

for the two cases under consideration, whereas their second-order correlation function is different

from each other. One can proceed in the same vein with higher order photon processes. Neverthe-
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Fig. 4.2: In the right side (a) of the figure is presented the steady-state mean cavity photon number
⟨n⟩ ≡ ⟨b̄†b̄⟩ as well as in the left side (b) its second-order correlation function g(2)(0) as a function
of η = g

2Ω
. The blue lines are plotted for single-photon processes N = 1, while the green ones for

two-photon processes, N = 2, respectively. Here, n̄ = 10−1, κ
γ
= 10−3 and ξ = 0 [204].

less, for similar considered parameters, their probabilities are small and the mean photon numbers

are basically identical with ones mentioned in the description of left side of Fig.4.3. Further, the

photon statistics changes from super-Poissonian and thermal features, subsequently, as η increases

with other parameters kept constant. The main conclusion drawn here is that single-, two-and three-

photons processes are most feasible when other parameters are maintained constant, whereas the

final cavity steady state is a quantum superposition of all those photons.

Note, values different from 2 for g(2)(0) occur typically for higher values of η’s with η < 1,

ensure the creation of this final cavity state. Remark that generally the surrounding thermal mean-

photon numberwill count linearly to the final photon flux as presented in eq.(4.26) for single-photon

processes, so that an increase in the environmental temperature will lead to more output photons

for the considered parameter ranges. To prove supplementary this statement, Fig.4.4 displays the

photon distribution function Pn = ⟨n|ρ̄|n⟩ for the same parameters considered for the computation

in Fig.4.2 and 4.3, however, for five-photon processes, i.e. N = 5. One can observe here that

larger rations of η = g
2Ω
, with η < 1 lead to population of higher photon states, compare the green

and the blue curves plotted for η = 0.09 and η = 0.07, respectively facilitating the generation of

multiphoton states when κ
γ
≪ 1. Correspondingly, Pn small for larger n and smaller η, while η < 1,

assuring convergence of the results computed by eq.(4.17). One can notice that the probability of

a two-photon state, that is n = 2, is almost the same for η = 0.07 and η = 0.09, respectively, and

it is higher then 0.1. One may conjecture then that a multiphoton superposition state around n = 2

is generated when other parameters are maintained constant. Furthermore, same results, presented

in the Figs. 4.2, 4.3, 4.4 will strive for moderate detunings, i.e., would not change significantly if

ξ ≪ 1.
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Fig. 4.3: In the left side (a) of the figure is presented the steady-state mean cavity photon number
⟨n⟩ ≡ ⟨b̄†b̄⟩ as well as the right side (b) its second-order correlation function g(2)(0) as a function
of η = g

2Ω
. The green curves are plotted for two-photon processes, N = 2, while the short-dashed

black ones are computed for three-photon processes, N = 3, respectively and keeping the same
parameters as in Fig. 4.2 [204].

Here, we can conclude that the presence of diagonal dipole moments, in a resonance coher-

ently driven two-level qubit, makes achievable the coupling to the resonator mode at a completely

different frequency than the input one which pumps the two-level quantum emitter, and cavity

multiphoton state generation, respectively. Notice, the experimental generation of multiple pho-

ton states with tunable correlation properties using quantum dots was proved by [203]. Also, the

photon statistics in their case varied by the excitation rate from a sub-Poissonian one, where pho-

tons are temporally antibunched, to super-Poissonian, demonstrating a multiply populated quantum

light source emitting temporally bunched photons. Additionally, the proposed approach here may

be applied equally to a laser driven two-level quantum dot incorporated in an acoustical phonon

cavity. In these circumstances, the manipulation of quantum states namely photons and phonons

continues to be one of the main topics of modern science. The increasing research interest towards

multiphoton engineering is raised due to multiphoton lasing effect, embedded in hypersensitive

metrological systems. Setups enabled to generate bundles of photon states was proposed under

the platform of cavity quantum electrodynamics (cQED). Beside them, phonons, which are me-

chanical waves, are emerging as proper states for the engineering of solid-state based quantum

mechanical devices, as on-chip embedded quantum communications systems. Since the speed of

acoustic waves is rather reduced than the speed of light, it suggests phonon based setups to be more

suitable for communication over short distances, in the range of few hundred micrometers or even

less. As well, phonons can be used as radiation loss communication channels in vacuum. Beyond

that another fascinating advantage is the possibility to manufacture greatly tunable phonon cavi-

ties within the resonant frequency ranges from gigahertz (GHz) to terahertz (THz). The phonon
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Fig. 4.4: The cavity photon distribution function Pn in the steady state.The green curve is plotted
for η = 0.09, while the blue one for η = 0.07, respectively η < 1 is a small parameter considered
by default. Other parameters are maintained as in Fig.4.2 [204].

generated THz waves are comparable to the crystal lattice constants, which makes them signifi-

cant for sensing and nanoscale imaging, atomic precision detection. Thus, progresses in quantum

phononics emerged further into multiphonon quantum states generation, setting them milestone

towards acoustic quantum devices. The special interest present the antibunched bundles of phonon

states, used as multi-phonon sources for acoustic quantum precision measurement and applications

in ultrasensitive biodetection. A method of implementing multiphoton bundle emission from a

quantum dot (QD) coupled to an acoustic cavity with electron-phonon interaction and coherently

pumped by a coherent light source at a certain order phonon side band was presented by [181].

The optically driven Stokes processes generate super-Rabi oscillations between the states. Partic-

ularly, the quantum dot (QD) flips are assisted by multiphoton generation in the cavity, induced

by electron-phonon interaction. In contrast to them [181] a multi-photon emitter was realized by

[177] relying on cavity quantum electrodynamics paradigm of a two-level system placed in a cavity

and feasible in a wide range of physical systems, which include atoms in optical cavities, super-

conducting qubits placed in microwave resonators and quantum dots placed in microcavities. They

have shown the realization multiphoton emitters-sources that generate multiple photon grouped in

bundles of photons, excluding the dipolar interaction between the two-level system and the cavity.

Thus the feasibility of light composed of building blocks that are no longer single photons is proved.

Such non-classical emitters present the new generation of light sources for quantum lithography,

metrology, medical applications, allowing greater penetration lengths and better resolution without

harming the tissue [36].
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4.3 Conclusions to Chapter 4

In conclusion, one has investigated the quantum multiphoton dynamics of a two-level system

possessing unequal permanent dipoles, placed in a leaking single-mode quantized cavity field and

coupled to it. In this setup, we considered the frequencies of the interacting subsystems, namely

the cavity and the emitter, are considered to belong to different frequencies range: microwave

and optical domain, correspondingly, and therefore the two-level qubit couples to the resonator

via its parallel dipole moments. Also, the generalized Rabi frequency generated by the external

coherent pumping of the two-level qubit was considered different from the resonator’s frequency.

Consequently, the highly dispersive interaction regime is responsible for the cavity multiphoton

quantum dynamics and photon conversion from optical to microwave range, as it was proved above

in the chapter.

The interaction of driving laser field with a two-level system, which has a nonzero permanent

dipole moment and it’s impact on the multiphoton transitions were computed in the Rotating Wave

Approximation. Numerical calculations within Rotating Wave Approximation for the steady-state

populations of the two-level system states are derived and used to discuss the impact if permanent

dipole moments on the multiphoton transitions problem proposed in this chapter.

One has identified and described the Hamiltonian terms required to solvemultiphoton dynamics

of the quantum model, as well as, the terms required to deduce the master equation with an adapted

approach for the characterization of themultiphoton emission processes, which have been presented

in this chapter. As well, one has defined the complete dynamics of the system by deriving the

required master equation, substituting the transformed Hamiltonian. The master equation has been

simplified in order to obtain a solvable numerically expression. The required transformations and

approximations have been applied, as well, the final analytical form of the master equation has

been presented.

As a result, one has demonstrated the possibility to convert photons from optical to microwave

frequency domains, via resonantly pumped assymetrical two-level quantum optical emitter placed

in a quantized single-mode resonator. The accompanying damping effects due to qubit’s spon-

taneous emission and cavity’s photon leakage were considered as well in the calculations. The

transition frequency of the two-level qubit is several orders different from the cavity’s one, specif-

ically, it can lay in the optical range while resonator’s frequency in the microwave range of fre-

quencies. Consequently, the two-state quantum cavity emitter couples to the cavity mode through

its parallel dipole moments. As well, the cavity’s frequency is regarded as far off-resonance from

the generalized Rabi frequency resulting from the coherent laser driving of the two-level qubit via
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its non-diagonal dipole. In these state of affairs, multiphoton absorption-emission processes are

relating to the cavity quantum dynamics.

It was proved that cavity’s multiphoton characteristics and demonstrated the feasability for a

certain output multiphoton superposition of the generated states. The corresponding photon statis-

tics feature changes from super-Poissonian to quasi-Poissonian photon statistics. These change

arises from the increase of pumping parameter η from zero. Actually, values different from 2 for

the second-order photon-photon correlation function g(2)(0) ensures the creation of the cavity su-

perposition state. Finally, as a certain system, where the developed approach in this chapter can

apply, can serve asymmetrical two-level quantum dots coupled to microwave resonators as well

as polar biomolecules, spin or quantum circuit systems respectively. Additionally, the analytical

approach can be employed for the study of non-resonant multiphoton quantum dynamics when

two-level dot is interacting with an acoustical phonon resonator, respectively. Also, coupling to

THz or even higher-frequency resonators will allow photon conversion in these photon ranges as

well. Finally, it can be generalized to an ensemble of two-level emitters having permanent dipoles.
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CONCLUSIONS AND RECOMMENDATIONS

The objectives of the thesis have been fulfilled and various new features of light-matter interac-

tion and enhanced properties of molecular dipolar systems have been identified while studying the

two-level and Λ-type three-level systems possessing a permanent non-zero dipole moment placed

in quantum oscillator and interacting with external laser fields.

In correspondence with objectives stated in the introduction chapter, three different setups have

been modeled in order to explain more exhaustive the impact of permanent dipole moment in all

three setups and highlight the new quantum optical features of molecular dipolar systems, which

were not discussed in similar researches. In the first case, one is considering a two-level system

possessing permanent dipole moments and interacting with two external coherent laser fields. The

first laser is near resonance with the transition frequency of the two-level system, while the second

laser is close to resonance with the dressed-frequency splitting due to the first laser. In the sec-

ond case, one studies the quantum dynamics of a quantum oscillator coupled with the most upper

state of a three-level Λ-type system. Transitions within the three-level emitter possess orthogonal

dipole moments and are coherently pumped with a single or two electromagnetic field sources,

correspondingly. As a quantum oscillator in this case can serve a vibrational mode of a nanome-

chanical resonator embedding the three-level emitter or an electromagnetic cavity mode field if

the highest energetic level of the Λ-type system incorporated in the cavity possesses a permanent

dipole. In the third case, one investigates the frequency downconversion processes via a resonantly

laser-pumped two-level emitter possessing non-zero permanent diagonal dipoles and is placed in a

quantized microwave resonator.

The main scientific results presented in this thesis are summarized as follows:

1) The investigation of a steady-state quantum dynamics of a laser pumped two-level system

possessing a non-zero permanent dipole moment involved the application of semi-classical laser-

molecule dressed-state picture due to the first laser. The further dressed-state centrally symmetric

transformation of the system Hamiltonian was derived.

One has plotted the resonance fluorescence spectrum of spontaneously emitted photons, squeez-

ing spectrum and total quantum fluctuations, during the laser pumping processes of the system.

New features differing from those in the case of two-level systems yet in the absence of permanent

dipoles have been found. In particular, additional spectral lines are emitted and extra squeezed

frequency domains are observed. The corresponding study is published in [190, 191].

2) The investigation of a laser-pumped three-level Λ-type system with highest energetic level

coupled with a quantum oscillator described by a single quantized leaking mode, has led ones to
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the identification of two distinct regimes leading to cooling and lasing effects of the quantum os-

cillator’s degrees of freedom and have described the mechanisms determining them. Additionally,

one has specified that as a quantum oscillator can serve a vibrational mode of a nanomechanical

resonator containing the three-level emitter or, equivalently, an electromagnetic cavity mode field,

unless the upper state of the three-level sample is embedded within the cavity, posses permanent

dipole. Also it was taken into consideration, the frequency of the quantum oscillator is significantly

smaller than all other frequencies involved to describe the model [34, 35].

3) One has identified the two-resonance conditions operating the oscillator’s quantum dynam-

ics. According to the first resonant condition, the quantum oscillator’s frequency is close to double

generalized Rabi frequency and in the second resonant condition the qubit frequency is close to

generalized Rabi frequency, respectively. For both resonant cases, one has computed the average

inversion operators, the mean quanta number of the qubit and second-order correlation function an-

alyzing the lasing and cooling phenomena occurring in the three-level system. One has identified

the different mechanisms behind the lasing and cooling in each resonant situation [36].

4) One has proved that the exchange between single- or two-quanta processed followed by

quantum interference effects among the induced emitter’s dressed states are in charge of flexible

lasing or deeper cooling effects, correspondingly. Additionally, if the upper state of the three-level

emitter has a permanent dipole then it could couple with a single- cavity electromagnetic field mode

of terahertz frequency. Another important result identified from this model is the coherent terahertz

photons generation assigned as one of the possible applications resulting from this study. The first

complete study on this model is published in [34], while the cooling regime in the three-level system

was lately presented in [36].

5) One has investigated the quantum multiphoton dynamics of a two-level system possessing

unequal permanent dipoles, placed in a leaking single-mode quantized cavity field and coupled to

it. In this setup, we considered the frequencies of the interacting subsystems, namely the cavity and

the emitter, are considered to belong to different frequencies range: microwave and optical domain,

correspondingly, and therefore the two-level qubit couples to the resonator via its parallel dipole

moments. One has demonstrated the possibility to convert photons from optical to microwave

frequency domains, via resonantly pumped asymmetrical two-level quantum optical emitter placed

in a quantized single-mode resonator. It was proved that cavity’s multiphoton characteristics and

demonstrated the feasibility for a certain output multiphoton superposition of the generated states.

The present result is published in [36]

Considering the conlcusions above, one would propose the following recommendations:
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1) The particularity of the current model, consists in evaluating the impact of non-zero per-

manent dipole moment on the resonance fluorescence spectrum of the spontaneous emission of

photons during the laser pumping processes of two-level system. Finally, one has observed the

elastic photon scattering spectrum consists of three lines at
{
ωL, ωL ± ω

}
computed for the case

when the permanent dipole is non zero. The inelastic photon scattering contains to nine spectral

lines at ωL,
{
ωL ± ω

}
,
{
ωL ± 2ḠR

}
,
{
ωL − ω ± ḠR

}
,
{
ωL + ω ± 2ḠR

}
. Suppression of a spec-

tral line at the frequency of the strongly driven laser occurs due to interference effects among the

induced double dressed-state transitions. One has shown that squeezing occurs for negative val-

ues (dark area in Fig.2.6(b)) and broader ranges because of the permanent dipoles. In the absence

of permanent dipoles squeezing around detectors frequency ν is not observed. Additionally, the

dipole moment expands slightly the range of quantum fluctuations, which makes the considered

system specially useful for hyperfine measurements and is valid for integration in certain quantum

optical and mechanical devices.

2) In Λ-type three-level system possessing permanent dipole moment and embedded in an op-

tical cavity, the frequency of the quantum oscillator is quite smaller than all other frequencies

involved to describe the model; on the other hand, it is of the order of the generalized Rabi fre-

quency identifying the laser-pumped three-level qubit. In accordance to the dressed-state base of

the three-level system, one has derived two resonance conditions regulating the oscillator’s quan-

tum dynamics, specifically, when the quantum oscillator’s frequency is near to the doubled gen-

eralized Rabi frequency or to the generalized Rabi frequency, correspondingly. Therefore, one

recommends considering these two situations as distinct cases leading to the stationary lasing or

cooling regimes for the quantum oscillator’s field mode, with different mechanisms behind them.

3) If the double generalized Rabi frequency is close to the oscillator’s one, then the model

is similar to a two-level system interacting with a quantum field mode where the spontaneous

decay pumps both levels. Also, if the oscillator’s frequency tends to the value of the generalized

Rabi frequency, then the sample is associated with an equidistant three-level system. The latter

case includes single- or two-quanta processes occurring simultaneously with quantum interference

effects among the involved dressed states leading to more profound cooling regimes and flexible

ranges for lasing effects. In this instance the model consists of an electromagnetic cavity mode,

which describes the quantum oscillator, then its frequency can be in the terahertz domain and, thus,

we prove an effective coherent electromagnetic field source of such photons. Thus one recommend

the further extensive study of quantum interference in three-level systems.

4) It is known that lasing or cooling effects are possible within two-level system. However, the
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three-level systemmay possess an advantage as it exhibit improved features for the same parameters

involved, which is a benefit when there are only certain accessible parameter ranges. Furthermore,

certain realistic novel systems are explored employing the three-level model and recommended for

further integration in industrial manufacturing. One recommends the developed model proper to

study few coupled quantum dots and alternative systems as asymmetrical real or artificial few-level

molecules possessing permanent dipoles.

5) One would suggest the further investigation of the presence of diagonal dipole moments,

in a resonance coherently driven two-level qubit, because it makes achievable the coupling to the

resonator mode at a completely different frequency than the input one which pumps the two-level

quantum emitter, and cavity multiphoton state generation, respectively. Additionally, the proposed

approach is suitable for a laser driven two-level quantum dot incorporated in an acoustical phonon

cavity. In these circumstances, the manipulation of quantum states namely photons and phonons

continues to be one of the main topics of modern science.

The limitation of the presented results is related to the exclusive theoretical aspect of the

overall thesis, referring to already existing experimental setups.

In Chapter 2, one has presented the theoretical framework related to the dynamics of a two-

level system possessing a permanent non-zero dipole moment interacting with two-laser fields.

One has applied several approximations to define and explain each term of the Hamiltonian and

assign it to a certain type of interaction. The main purpose was to derive the parameters of inter-

est containing the terms responsible for the impact of permanent dipole moment. The developed

approach was consequently extended in chapters 3 and 4, where rotating wave, Born-Markov, the

secular approximations were used to derive valid results plotted in corresponding graphs. Chapters

3 and 4 required certain truncation approximations due to the infinite number of quantum state,

while computing the photon statistics and second order correlation function. Nevertheless, these

assumptions did not affect the overall results but propose solutions to improve the parameters of

existing quantum optical models.

The personal contribution of the author to the presented results: The author has directly con-

tributed to the definition of research objectives, tasks and models. She has been advised about the

theoretical treatment applied to the quantum dynamics of the studied systems. She has contributed

to the writting of publications drafts related to the results presented in this thesis and at various

conferences.
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ANNEXES

Master equation’s variables derived for the resonant case (II):

ρ(0) = ρ11 + ρ22 + ρ33,

ρ(1) = ρ22 + ρ33,

ρ(2) = ρ22 − ρ33,

ρ(3) = b†ρ21 − ρ21b,

ρ(4) = b†ρ21 + ρ21b,

ρ(5) = ρ13b
† − bρ31,

ρ(6) = ρ13b
† + bρ31,

ρ(7) = b†ρ13 − ρ31b,

ρ(8) = b†ρ13 + ρ31b,

ρ(9) = ρ21b
† − bρ12,

ρ(10) = ρ21b
† + bρ12,

ρ(11) = b†ρ23b
† + bρ32b,

ρ(12) = b†ρ23b
† − bρ32b,

ρ(13) = b†2ρ23 + ρ32b
2,

ρ(14) = b†2ρ23 − ρ32b
2,

ρ(15) = ρ23b
†2 + b2ρ32,

ρ(16) = ρ23b
†2 − b2ρ32. (A-1)
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System of equations of motion describing the resonant case (II):
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Ṗ (3)
n = iδ̃P (4)

n − γ̃
(3)
3 P (3)

n + γ̃
(3)
7 P (7)

n + ig̃
(
n
(
2P (0)

n − P (1)
n − P (2)

n

)
− (2n+ 1)P (1)

n

)
− κ(1 + n̄)

(
(2n− 1)P (3)

n − 2(n+ 1)P
(3)
n+1 + 2P (9)

n

)
− κn̄

(
(2n+ 1)P (3)

n − 2nP
(3)
n−1

)
,
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Spontaneous decay rates for the resonant case (II):
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Niveluri: A1 și A2 Utilizator de bază B1 și B2 Utilizator independent C1 și C2 Utilizator experimentat

EDUCAȚIE ȘI FORMARE PROFESIONALĂ

◦ 

COMPETENȚE LINGVISTICE 



Java Programming language  MVTec HALCON  Wolfram Mathamatica  MS office/Latex; (Full proficiency, daily
use)  C / C++ / C#  Good familiarity with MATLAB, Simulink  SVN Git GitLab  Programming languages: Java, C,
Delphi  NXP S32 Family  Arm Cortex M0  NXP S32k14x 

Quantum Photon Conversion via Coherently Driven Permanent Dipole Systems 

5th International Conference on Nanotechnologies and Biomedical Engineering, November 3-5, 2021 
https://link.springer.com/chapter/10.1007/978-3-030-92328-0_2 – 2022 
S. Cârlig, A. Mîrzac, P. Bardetski, M. Macovei.

Microwave multiphoton conversion via coherently driven permanent dipole systems 

Phys. Rev. A. 2021, nr.103, pp.043719/1-8 
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.043719 – 2021 
A. Mîrzac, S. Carlig, M. Macovei

Interferometric power of gaussian systems in a squeezed thermal bath 

Romanian Journal of Physics, nr. 1-2(65), pp. 95-104 
2020 
A. Mîrzac, T. Mihaescu, M. Macovei, A. Isar.

Steady-state behaviors of a quantum oscillator coupled with a three-level emitter 

IFMBE Proceedings, pp.677 - 680 
https://link.springer.com/chapter/10.1007/978-3-030-31866-6_119 – 2020 
A. Mirzac, M. A. Macovei.

Dinamica răcirii cuantice a unui oscilator cuplat cu un atom artificial 

Revista de Știinţă, Inovare, Cultură și Artă „Akademos”. 2019, nr. 4(55), pp. 16-19 
2019 
A. Mîrzac.

Dynamics of a quantum oscillator coupled with a three-level Λ-type emitter. 

Journal of the Optical Society of America B: Optical Physics. 2019, nr. 9(36), pp. 2473-2480. 
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-36-9-2473 – 2019 
A. Mirzac, M. Macovei.

Non-classical light scattered by laser-pumped molecules possessing permanent dipoles. 

Moldavian Journal of the Physical Sciences. 2018, nr. 1-2(17), pp. 95-104. 
2018 
A.Mirzac, V. Ciornea, M. Macovei.

18/09/2019 – 21/09/2019 – Chișinău, Republica Moldova 
The 4th International Conference on Nanotechnologies and Biomedical Engineering 

Talk: A. Mirzac and A. Macovei, “Steady-state Behaviors of a Quantum Oscillator Coupled with a Three-level Emitter”.

COMPETENȚE DIGITALE 

PUBLICAȚII 

CONFERINȚE ȘI SEMINARE 



12/09/2019 – 14/09/2019 – Sinaia, Romania 
International Conference on Advanced Scientific Computing 

Talk: A. Mirzac, “Lasing and cooling effects of a quantum oscillator coupled with a three-level lambda - type system”.

26/03/2019 – 29/03/2019 – Chișinău, Republica Moldova 
Conferința tehnico-știintifică a studenților, masteranzilor si doctoranzilor 

Talk: A. Mirzac, “Steady-state dynamics of a quantum oscillator coupled with a three-level emitter”.

25/09/2018 – 28/09/2018 – Chișinău, Republica Moldova 
Materials Science and Condensed Matter Physics 

Talk:A. Mirzac, M. Macovei, “Non-classical light features scattered by laser pumped molecules with permanent dipoles”.

15/06/2018 – 18/06/2018 – Chișinău, Republica Moldova 
Tendințe contemporane ale dezvoltării științei : viziuni ale tinerilor cercetători. Ediția VII 

Talk: A. Mirzac. "Quantum fluctuations in laser pumped molecular systems with permanent dipole"

2018 – Chișinău, Republica Moldova 
Telecomunications, Electronics and Informatics 

Talk: A.V. Mirzac, V. Ciornea, M. A. Macovei, “Quantum light features scattered by pumped two-level systems with
permanent dipoles”.

2017 – Chișinău, Republica Moldova 
Tendințe dontemporane ale dezvoltării științei: viziuni ale tinerilor cercetători. Ediția a VI-a 

Talk: A. Mirzac. “Resonance fluorescence spectrum in pumped molecular systems with permanent dipole”.

2017 – Chișinău, Republica Moldova 
Humboldt Kolleg, Multidisciplinarity in Modern Science for the Benefit of Society 

Poster : A. Mirzac, M. Macovei. “Squeezing in Fluorescence Spectrum of Pumped Molecular System with Permanent
Dipole”.

12/09/2016 – 16/09/2016 – Chișinău, Republica Moldova 
Material Science and Condensed Matter Physics 

Talk: A. Mîrzac, M. Macovei. "Resonance fluorescence spectrum for a pumped dipolar molecule"

15/03/2016 – 18/03/2016 – Chișinău, Republica Moldova 
Tendințe contemporane ale dezvoltării științei: viziuni ale tinerilor cercetători. Ediția a V-a. 

Talk: A. Mirzac. "Kinetics of molecular systems with permanent dipole moment"

2019 
Bursă Națională – Federația Mondială a Savanților (Elveția) 

21/02/2013 
Bursa de Merit – Bursă Soros 

DISTINCȚII ONORIFICE ȘI PREMII 


